
 

SCHOOL OF CIVIL ENGINEERING 
 

 
STIFFNESS REDUCTION OF COLD-FORMED STEEL STRUCTURES 
SUBJECT TO SECTIONAL BUCKLING AND YIELDING  
 
RESEARCH REPORT R971 
 
 
 
 
 
 
 
K J R RASMUSSEN 
 
 
December 2022 
 
ISSN 1833-2781 



Stiffness reduction of cold-formed steel structures subject to sectional buckling and yielding 

School of Civil Engineering Research Report R971 Page 2 
The University of Sydney 

Copyright Notice 
 
School of Civil Engineering, Research Report R971 
Stiffness reduction of cold-formed steel structures subject to sectional buckling and yielding  
K J R Rasmussen MScEng PhD DEng 
December 2022 
 
ISSN 1833-2781 
 
This publication may be redistributed freely in its entirety and in its original form without the consent of the 
copyright owner. 
 
Use of material contained in this publication in any other published works must be appropriately referenced, 
and, if necessary, permission sought from the author. 
 
 
Published by: 
School of Civil Engineering 
The University of Sydney 
Sydney NSW 2006 
Australia 
 
 
 



Stiffness reduction of cold-formed steel structures subject to sectional buckling and yielding 

School of Civil Engineering Research Report R971 Page 3 
The University of Sydney 

Abstract 

The paper develops a stiffness reduction factor to be used in geometric nonlinear beam-element type elastic 
analysis of cold-formed steel structures. The factor accounts for the reduction in flexural and warping torsion 
rigidities resulting from local and distortional buckling as well as residuals stresses, as particular to cold-
formed steel structures. The purpose of applying the factor is to accurately account for the geometric second 
order effects when predicting the internal distributions of moments of cold-formed steel structural frames. The 
stiffness reduction factor arising from local and distortional buckling is first determined followed by the 
stiffness reduction factor caused by residual stresses. Subsequently, the two effects are combined in a single 
expression is a format suitable for incorporation in the North American specification for cold-formed steel 
structures, AISI-S100.  
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1. Introduction 

Hot-rolled and fabricated steel frames composed of slender cross-sections are prone to fail by 
interaction of local buckling and buckling of component load carrying members, including columns and 
beams. In the case of cold-formed steel (CFS) frames, the cross-section may buckle in local and/or 
distortional modes, collectively referred to as sectional buckling modes. Figure 1 shows the sectional 
buckling modes of plain and lipped channel sections. As is well-known [1-3], sectional buckling reduces 
the stiffness of the cross-section, leading to the accelerated growth of flexural and/or flexural-torsional 
buckling deformations of the member and a reduced ultimate capacity. A general theory for calculating 
the buckling load of a sectionally buckled member has been established [4] and applied to doubly- [4], 
singly- [5, 6] and point-symmetric [7] columns, as well as to beams and beam-columns [8].  

 
Fig. 1: Sectional buckling modes of plain (unlipped) and lipped channel section  

Fig. 2a shows the reductions in rigidities for minor axis bending (EIy), major axis bending (EIx) and 
warping torsion (EIω) as the result of local buckling of a plain channel section in compression [5]. The 
loss of stiffness commences prior to the local buckling load (Pl) because of geometric imperfections 
and is a function of the level of imperfection and yield stress relative to the sectional buckling load. As 
shown in Fig. 2a, the larger the imperfection (wo), the faster the loss of stiffness under increasing load.  

 
Fig. 2: Inelastic stiffness reduction of plain channel section in compression; a) minor axis bending (EIy)t, major 

axis bending (EIx)t, warping torsion (EIω)t; b) linear fits to stiffness curves 

Residual stresses produce premature yielding in parts of the cross-section and are known also to 
reduce stiffness [9]. In hot-rolled and welded sections, residual stresses are caused by the non-uniform 
cooling of the cross-section, whereas in cold-formed steel sections, residual stresses arise from the cold-
rolling or brake-pressing process and are dominated by through-thickness variations of stress [10].  

In the design of steel structural frames, the stiffness reductions arising from sectional buckling and/or 
residual stresses must be accounted for in determining the distribution of internal actions. In applying 
the direct analysis method of design of the 2016 versions of the American specifications for hot-rolled 
[11] and cold-formed [12] steel structures, this is achieved by applying the stiffness reduction factor 
τb ≤ 1,  

a) Local buckling c) Distortional bucklingb) Local buckling
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 ,          (1) 

to the stiffness of all members whose stiffnesses contribute to the stability of the structure, where P is 
the compressive axial force and Py = AFy is the yield load. While this expression accounts for the 
premature yielding in parts of the cross-section induced by residual stresses, it does not account for the 
stiffness reduction caused by sectional buckling. In the 2022 version of the AISC-360 Specification 
[13], Py was changed to the section capacity Pns = AeFy to account for the combined effects of yielding 
and local buckling.  

As similar change is required for the AISI-S100 Specification for CFS structures. However, unlike hot-
rolled steel frames, sectional buckling of CFS frames includes both local and distortional modes, both 
of which have associated stiffness reductions similar to those shown in Fig. 2a, and may occur well 
before reaching the sectional buckling strength, depending on the slenderness of the cross-sections of 
the main load carrying members. Also, the stiffness reduction induced by residual stresses is different 
as the residual stress distribution in CFS sections bears no resemblance to those of hot-rolled and welded 
sections. The purpose of this paper is to derive an expression for τb that accounts for the combined 
effects of sectional buckling and residual stress on the stiffness of CFS members. 

2. Slenderness reduction produced by geometric imperfections 

2.1. Modelling the effect of geometric imperfections  

The stiffness reduction curves shown in Fig. 2a were obtained from inelastic post-buckling analyses 
of a plain channel section with length equal to the local buckling half-wavelength, referred to as a locally 
buckled cell, and imperfection in the shape of the local buckling mode [5]. Similar stiffness reduction 
curves can be obtained for other types of cross-sections, including sections for which the critical 
sectional buckling mode is the distortional mode. While flexural and warping stiffness reduction curves 
are not currently available for the distortional buckling mode, a study of the distortional buckling 
behaviour of lipped channels [14] demonstrated that the elastic axial post-distortional buckling stiffness 
was about 60% of the initial value, i.e. EAt / EA ≈ 0.6. The implied reduction of about 40% is similar to 
that shown for major axis bending ((EIx)t / EIx) in Fig. 2a but less than reductions for minor axis bending 
((EIy)t / EIy) and warping torsion ((EIω)t / EIω) also shown in Fig. 2a. As the axial stiffness is generally 
slightly more reduced than the flexural and warping stiffnesses, this result implies that the stiffness 
reduction curves shown in Fig. 2a may conservatively be assumed to also apply to distortional buckling. 

If the stiffness reduction shown in Fig. 2a is applied to the full length of the member, the implication 
is that the shape of the sectional imperfection (local or distortional) is a repeated series of buckles, as 
shown in Fig. 3, i.e. it is assumed the shape of the imperfection is the sectional buckling mode of the 
member.  

 
Fig. 3: Pure sectional mode imperfection with five half-wavelengths 
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However, the sectional buckling mode of the member does not represent actual distributions of 
sectional imperfections. Rather, it is recognised that the distributions of local and distortional geometric 
imperfections are random. Also, comparatively large geometric imperfections are often localised in a 
relatively small part of the member, as exemplified in Fig. 4a for a plain channel section. This raises 
the question about how the stiffness is reduced when the magnitude of the imperfection varies along 
the length. To answer this question, consider the idealised representation of the imperfection shown in 
Fig. 4b, in which the stiffness is reduced from EI to EIl over the length (l) of the localised imperfection 
and the remaining length of the member is geometrically perfect with full stiffness (EI). Note that a 
plain channel is shown by way of example; it could equally well have been a lipped channel with a 
dominant distortional imperfection. 

  

a)  Typical random geometric imperfection b)  Idealised geometric imperfection 
Fig. 4: Typical random geometric imperfections of plain channel section and idealisation 

A simple model of the idealised member is shown in Fig. 5a where moments are applied at the ends 
to create a state of uniform moment.  

  
a)  Localised geometric imperfection b)  Stiffness reduction as function of length of 

imperfection, EIl = 0.5EI 
Fig. 5: Beam with localised imperfection under uniform moment and resulting stiffness reduction 

The moment (M) induces curvatures κl and κ over the lengths with and without imperfection, 

respectively. Calculating the average moment curvature κav= ∫ κ (𝐳𝐳) 𝐝𝐝𝐝𝐝/L, the rigidity (EIt = M/κav) can 

be obtained as, 

𝐸𝐸𝐸𝐸𝑡𝑡
𝐸𝐸𝐸𝐸

= 1

1+� 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙
−1�𝑙𝑙𝐿𝐿

      (2) 

The relationship is plotted in Fig. 5b for EIl = 0.5EI and demonstrates that the stiffness reduction is 
nearly linear with the length of the imperfection. In other words, the stiffness reduction is the average 
of the stiffness reductions in different parts of the member. It follows that a large localised imperfection 
concentrated over a short length of the member does not significantly reduce the stiffness.  
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The model can be refined to consider a member with a large imperfection over the length l and a small 
imperfection elsewhere, also with the length l of each halfwave, as shown in Fig. 6a. Because of the 
difference in the magnitude of the imperfections, the stiffness reduces at different rates in the different 
parts of the beam, as shown in Fig. 2a. Simplifying the stiffness reduction curves by linear curves, as 
shown in Fig. 2b, the stiffness reduction starts at an increasingly lower load (P/Pl <1) for increasing 
amplitude of imperfection, where Pl is the local buckling load. Thus, the stiffness reductions in the parts 
of the beam with small and large magnitudes of imperfection can be idealised as shown in Fig. 6b, 
where for simplicity, the stiffness reduction is assumed to be elastic with a post-buckling stiffness of 
half of the initial stiffness. 

 

 
a)  Member with small and large imperfections b)  Stiffness reduction in respective lengths, 

EIl = 0.5EI 
Fig. 6: Refined model with small and large imperfections 

The solution is obtained using Eq. (2), except that the stiffness in each part of the member is calculated 
at the particular level of axial force, as per Fig. 6b. The resulting stiffness reduction curves are shown 
in Fig. 7. It follows that the effect of the large imperfection present over a relatively small length is to 
initiate the stiffness reduction at a small axial force. However, the rate of reduction remains small until 
the stiffness of the remaining length of the member starts reducing. It is again seen that the stiffness 
reduction is dominated by the reduction of the part of the member with the predominant level of 
imperfection.  

 
Fig. 7: Stiffness reduction of member with small and large imperfections, EIl = 0.5EI 

2.2. Imperfection data and amplitudes  

Evidently, the stiffness reduction is a function of the levels of imperfection in typical members. 
While numerous papers contain measured imperfections of specimens of reported series of tests, most 
papers simply report the maximum imperfections measured at any point in a given member. Few papers 
report lengthwise distributions and few report statistics. Exceptions are the studies by Schafer & Pekoz 
[15] and Zeinoddini and Schafer [16], both concerning lipped channel sections. Among other data, the 
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former study provides statistical data for the magnitudes of local and distortional geometric 
imperfections, as defined in [15], but not statistical data for the lengthwise distribution of imperfections. 
It was reported that the 50% Cumulative Distribution Function (CDF) values of wol/t=0.34 and 
wod/t=0.94 were obtained for the local and distortional geometric imperfection amplitudes, respectively, 
where t is the thickness. These CDF-values represent typical values of large localised imperfections, as 
illustrated in Fig. 4a, and not the predominant level of imperfection.  

In [16], the measured imperfections were expanded transversely in the buckling modes of the section 
and lengthwise in Fourier series following the approach set out in [17], which expands the measured 
imperfection in the buckling modes of the member. For each Fourier term (or number of half-waves, 
m), the amplitude (Sf) of each transverse mode, including the local and distortional modes, was reported, 
see Fig. 8. In construction, the lengths of CFS columns are such that m=4 distortional buckles typically 
form along the length, whereas the number of local buckles may be closer to around m=20. It follows 
from Fig. 8b that the amplitude of the distortional imperfection is about Sf/t=0.2. This is the amplitude 
of a “pure” distortional imperfection in the shape of the distortional buckling mode, as exemplified in 
Fig. 3. The imperfection in this shape is likely to dominate the response of the member, when buckling 
occurs elastically, and as such represents the predominant level of imperfection. Because of the 
relatively small number of half-waves, imperfection components in neighbouring modes (e.g. m=3 or 
m=5) are unlikely to contribute greatly to the response, and by implication the stiffness reduction, 
because their corresponding buckling loads are higher than that for m=4. Importantly, the amplitude of 
the regularly distributed distortional buckling imperfection emerges as wod/t=0.20. This is about one 
fifth of the 50% CDF-value of maximum distortional geometric imperfection reported in [15].  

  
a)  Local imperfection b)  Distortional imperfection 

Fig. 8: Imperfection amplitudes against number of half-wavelengths 

According to Fig. 8a, the amplitude of the local buckling imperfection is about Sf/t=0.025, 
corresponding to, say, m=20. However, in this case, because the buckling loads of neighbouring modes 
(say m=18,19,21,22) are close to that of m=20, (as their half-wavelengths are close), imperfection 
components of neighbouring modes are likely to also affect the stiffness reduction [17]. As an 
approximate calculation, it may be assumed that local modes with half-wavelengths within ±10% of the 
critical mode will contribute, which translates to the minimum and maximum numbers of halfwaves of 
m/1.1 and m/0.9, respectively, i.e. for m=20, modes with m=18, 19, 20, 21 and 22 may be assumed to 
contribute to the stiffness reduction. It is unknown how their contributions combine but guided by 
frequency analysis, we may assume their contributions can be added using the Square Root of Sum of 
Squares calculation. Because of the flatness of the Sf/t-curve at large values of m, the amplitude of all 
modes can be taken as Sf/t=0.025, and so the combined effect is Sf/t=√5×0.025≈0.05. We may use this 
value (wol/t=0.05) as the amplitude of the regularly distributed local buckling imperfection illustrated 
in Fig. 3, which represents the predominant level of imperfection. The value is about on seventh of the 
50% CDF-value of maximum local geometric imperfection reported in [15].  
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2.3. Initiation points (al, ad) of stiffness reduction  

The stiffness reduction curves shown in Fig. 2a display a gradual change of stiffness, the rate of 
which depends on the magnitude of imperfection, and is slow initially. The curves may be simplified 
using linear fits through the steeply descending parts of the curves, as shown in Fig. 2b, such that the 
stiffness reduction commences at the intersection of the fitted linear curve and the horizontal line 
(EIt/EI=1) representing full stiffness. The loads corresponding to this intersection point are referred to 
as alPl and adPd for local and distortional buckling, respectively.  

Suitable values of al can be obtained from the linear fits to the (EI)t/EI vs P/Pl curves, as demonstrated 
in Fig. 2b. The curves shown in Fig. 2a were obtained for plain channel sections and indicated the 
stiffness reduction for local buckling. As mentioned in Section 2.1, similar curves are not available for 
distortional buckling but may be assumed to be similar. The values of the cut-off (al) for each assumed 
value of imperfection are plotted in Fig. 9 for the flexural rigidities about the x- and y-axes, indicating 
a steeper drop in stiffness for the minor y-axis. Trendlines are also fitted through the calculated values 
of al. Assuming the curves shown in Fig. 9 are valid for both local and distortional buckling, the values 
for al and ad are readily read off the curves for the imperfection amplitudes previously obtained 
(wol/t=0.05 and wod/t=0.20), as summarised in Table 1. Average values for minor and major axis 
bending can be obtained, suggesting al = 0.9 and ad = 0.7. 

 

Fig. 9: Relationship between al and imperfection magnitude 

 

Table 1: al and ad for plain and lipped channel sections. 
 Local (al) Distortional (ad) 
Plain channels (EIx) 0.90 0.75 
Plain channels (EIy) 0.85 0.60 
Plain channels 0.9 0.7 
Lipped channels 0.9 0.8 

The stiffness reduction for lipped channels and other common CFS cross-sections with lip stiffeners 
can be assumed to be less severe than for plain channels, especially for bending about the minor y-axis. 
Hence, the more pertinent values of al = 0.9 and ad = 0.8 may be assumed for lipped channel sections 
and other CFS cross-sections which do not rely primarily on unstiffened elements to provide flexural 
and torsional stiffness. 
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2.4. Stiffness reduction curve 

The inelastic stiffness reduction curves shown in Fig. 2a were obtained for a material with stress-
strain curve defined by the Ramberg-Osgood expression (Eq. (3)) with an exponent (n) equal to 8 [5], 
representative of materials with significant softening, such as austenitic stainless steel alloys and work 
hardenable aluminium alloys.  

𝜀𝜀 =  𝜎𝜎
𝐸𝐸

+ 0.002 � 𝜎𝜎
𝐹𝐹𝑦𝑦
�
𝑛𝑛

        (3) 

Additional stiffness reduction curves are shown in Fig. 10 for materials with values of n = 5, 25 and 
∞, where n = 25 and n = ∞ are representative of CFS with low levels of residual stress and ordinary 
carbon steel with sharp transition from elastic state to the yield plateau, respectively, [5]. It follows that 
the stiffness reduction curves may be approximated by linear or parabolic curves, as shown in Fig. 11a, 
where, herein, a linear transition curve is chosen. 

 
Fig. 10: Inelastic stiffness reduction of plain channel section in compression; n = 5, 25, ∞; wo/t = 0.02 [5] 

  
a)  Slender cross-section b)  Stocky cross-section 

Fig. 11: Inelastic stiffness reduction curves; a) slender cross-section (local buckling), b) stocky cross-section  

The linear stiffness reduction commences at the load alPcr,l, where Pcr,l is used in lieu of Pl to 
emphasise it refers to elastic critical buckling. The stiffness reduction transitions to zero at the section 
capacity (Pns), which is the strength of a short length of member and accounts for the effect of sectional 
buckling and yielding. Note that while the stiffness curves shown in Fig. 11a were obtained from those 
shown for local buckling in Fig. 10, similar curves will be assumed to also apply to distortional buckling 
for which accurate stiffness reduction curves of the kind shown in Fig. 10 are not available. 

The section capacity (Pns) is readily obtained from a design specification, such as the Direct Strength 
Method included in AISI-S100 Specification [12]. Considering stiffness reduction caused by either 
local or distortional buckling, the linear stiffness reduction can be expressed as, 
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           (4) 

where as is the sectional buckling cut-off, taken as al or ad depending on whether local buckling 
(alPcr,l < adPcr,d) or distortional buckling (adPcr,d < alPcr,l) initiates the stiffness reduction, respectively.  

3. Slenderness reduction produced by residual stresses and yielding 

3.1. Residual stresses in CFS sections  

Cold-formed steel sections feature residual stresses as a result of the cold-forming process. The two 
main sources of residual stress are the coiling-uncoiling of the steel strip prior to roll-forming and the 
roll-forming process itself. The residual stresses of sections brake-pressed from flat sheets of steel are 
significantly lower than those of cold-rolled sections and are concentrated near the brake-pressed 
corners. Irrespective of the forming process, relatively stocky CFS sections may yield prematurely and 
lose stiffness because of residual stresses prior to reaching the sectional buckling load (alPcr,l or adPcr,d).  

There are three main components of residual stress in cold-rolled sections, viz. the membrane, bending 
and layering components [18]. The three components exist in both the longitudinal and transverse 
directions, implying a total of six residual stress components. Of these, the membrane components 
(constant through the thickness) are usually small and ignored, whereas the bending components (linear 
variation from a positive to a negative maximum at the surfaces) and the layering components (multi-
linear variation through the thickness) have non-negligible values. Both the bending and layering 
residual stress components are present in testing tensile coupons cut from cold-rolled sections, and give 
rise to gradual yielding of the stress-strain curve. A simple approach to determining the factor to account 
for the stiffness reduction caused by residual stress-induced premature yielding is to calculate the 
reduction as Et/E (=EIt/EI) where Et is the tangent of the stress-strain curve.  

3.2. Stress-strain curve  

A method is presented in [19] for constructing the stress-strain curve of CFS sections when the 
bending and layering residual stress components are known. It is shown [19] that the accurate stress-
strain curve incorporating all components of residual stress can be closely approximated by only 
accounting for the usually dominant longitudinal bending component. On this assumption, using the 
analysis described in [19], the stress (σ) vs strain (ε) curve can be expressed as, 

𝜎𝜎
𝐹𝐹𝑦𝑦

=  

⎩
⎪
⎨

⎪
⎧
𝐸𝐸
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− 1
4𝑎𝑎
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𝐸𝐸

   (5) 

where Fy is the yield stress, E is the elastic modulus and a is the ratio of the longitudinal bending residual 
stress component to the yield stress, 

𝑎𝑎 =  𝜎𝜎𝑏𝑏
𝐹𝐹𝑦𝑦

 .     (6) 
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Figure 12 shows stress-strain curves computed using Eq. (5) for E=200,000MPa, Fy=300MPa and 
Fy=550MPa, and a=0.25 and a=0.5. The stress-strain curves are evidently highly dependent on the 
chosen value of a. Research on cold-formed steel tubular sections [18, 20] suggests the longitudinal 
bending residual stress is typically half the yield stress, i.e. a=0.5. However, arguably, this value may 
be deemed too high for common cold-rolled open CFS sections. 

 
Fig. 12: Stress-strain curves for varying levels of bending residual stress and yield stress  

To determine a suitable value of a (Eq. (6)) for open CFS sections, it is observed that the stress-
strain curves shown in Fig. 12 resemble Ramberg-Osgood curves, i.e. curves defined by Eq. (3), in 
which the exponent n determines the degree of gradual yielding. Fitting Ramberg-Osgood curves to 
stress-strain curves for open CFS sections typically results in n-values between 10 and 30, depending 
on the level of through-thickness residual stress. This result may be used to determine values of a by 
defining the proportionality stress (σp) as the 0.01% proof stress, which is common practice, equating 
the proportionality stress to Fy-σb, and then calculating a using Eq. (6). 

It follows from Eq. (3) that the proportionality stress (σp) is related to the plastic component (𝜀𝜀𝑝𝑝
𝑝𝑝) of 

the corresponding strain through, 

𝜀𝜀𝑝𝑝
𝑝𝑝 = 0.0001 =  0.002 �𝜎𝜎𝑝𝑝

𝐹𝐹𝑦𝑦
�
𝑛𝑛

.     (7) 

Solving this equation for n=10, 20 and 30 produces values of σp/Fy of 0.74, 0.86 and 0.90, 
respectively. Using σp=Fy-σb, these values imply values of a of 0.26, 0.14 and 0.10, respectively. 
Conservatively, the value of a=0.25 may be assumed for open CFS sections. 

3.3. Stiffness reduction curve 

Having obtained the stress-strain curve, the tangent modulus (Et) is readily obtained, 

𝐸𝐸𝑡𝑡 =  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

      (8) 

where σ is given by Eq. (5). The following equation is obtained, 
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𝐸𝐸𝑡𝑡
𝐸𝐸

=  

⎩
⎪
⎨

⎪
⎧1 for 𝜀𝜀 < (1 − 𝑎𝑎) 𝐹𝐹𝑦𝑦

𝐸𝐸

− 1
2𝑎𝑎

𝐸𝐸
𝐹𝐹𝑦𝑦
𝜀𝜀 + 1+𝑎𝑎

2𝑎𝑎
for (1 − 𝑎𝑎) 𝐹𝐹𝑦𝑦

𝐸𝐸
≤ 𝜀𝜀 ≤ (1 + 𝑎𝑎) 𝐹𝐹𝑦𝑦

𝐸𝐸

0 for 𝜀𝜀 > (1 + 𝑎𝑎) 𝐹𝐹𝑦𝑦
𝐸𝐸

   (9) 

Thus, expressed in terms of strain, the stiffness reduces linearly between the elastic and fully plastic 
ranges. To express the stiffness reduction in terms of stress, Eq. (5) is first inverted to express strain in 
terms of stress, and the resulting expression for the strain (ε) is then substituted into Eq. (9), producing: 

𝐸𝐸𝑡𝑡
𝐸𝐸

=  

⎩
⎪
⎨

⎪
⎧ 1 for 𝜎𝜎

𝐹𝐹𝑦𝑦
< 1 − 𝑎𝑎

�1− 𝜎𝜎
𝐹𝐹𝑦𝑦

𝑎𝑎
for 1 − 𝑎𝑎 ≤ 𝜎𝜎

𝐹𝐹𝑦𝑦
≤ 1

 .   (10) 

The stiffness reduction thus obtained is shown as solid curves in Fig. 13 for a=0.25 and a=0.5. 
Conservative linear approximations passing through the end points of the nonlinear parts of the stiffness 
curves are shown using dashes lines. Linear approximations that produce approximate best fits are also 
shown using dotted lines. The linear best fit for a=0.25 emerges as a possible solution for Et/E to account 
for the stiffness reduction caused by residual stress-induced premature yielding. In terms of applied 
load (P=Aσ) and yield load (Py=AFy), the stiffness reduction may be expressed as,  

𝐸𝐸𝐸𝐸𝑡𝑡
𝐸𝐸𝐸𝐸

= 𝐸𝐸𝑡𝑡
𝐸𝐸

=  

⎩
⎨

⎧1 for 𝑃𝑃
𝑃𝑃𝑦𝑦
≤ 𝑎𝑎𝑦𝑦

1− 𝑃𝑃
𝑃𝑃𝑦𝑦

1−𝑎𝑎𝑦𝑦
for 𝑃𝑃

𝑃𝑃𝑦𝑦
> 𝑎𝑎𝑦𝑦

     (11) 

where ay = 0.8. 

 
Fig. 13: Stiffness reduction curves for a=0.25 and a=0.5  

4. Slenderness reduction factor (τb) 

Equations (4) and (11) provide expressions for the stiffness reductions (EIt/EI) resulting from 
sectional buckling and yielding due to residual stresses, respectively. They apply to slender and stocky 
CFS cross-sections, respectively, as shown in Figs 11a and 11b. Note that for stocky sections, the 
stiffness reduction starts at a fraction of the yield load (Py), whereas for slender cross-sections, the 
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stiffness reduction starts at a fraction of the critical sectional elastic buckling load, exemplified as Pcr,l 
in Fig. 11a, rather than at a fraction of the sectional strength Pns.  

The stiffness reductions (EIt/EI) correspond to the stiffness reduction factor (τb) in Section C of the 
AISI-S100 Specification. The stiffness reduction may be triggered by local or distortional buckling, or 
by premature yielding caused by residual stresses, and hence starts at the minimum of the loads alPcr,l, 
adPcr,d and ayPy,  

𝑃𝑃𝑠𝑠 =  min (𝑎𝑎𝑙𝑙𝑃𝑃𝑐𝑐𝑐𝑐,𝑙𝑙 ,𝑎𝑎𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐,𝑑𝑑 ,𝑎𝑎𝑦𝑦𝑃𝑃𝑦𝑦)          (12) 

where al = 0.9, ad = 0.8 and ay = 0.8.  

The stiffness is reduced to zero when the section capacity Pns is reached, which is the minimum of 
the local (Pnl) and distortional (Pnd) buckling strengths,  

𝑃𝑃𝑛𝑛𝑛𝑛 =  min (𝑃𝑃𝑛𝑛𝑛𝑛 ,𝑃𝑃𝑛𝑛𝑛𝑛),           (13) 

and equals the yield load Py for sections not affected by sectional buckling. It follows that the stiffness 
reduction can be expressed as,  

𝜏𝜏𝑏𝑏 =  �
1 for 𝑃𝑃 ≤ 𝑃𝑃𝑠𝑠
1− 𝑃𝑃

𝑃𝑃𝑛𝑛𝑛𝑛

1− 𝑃𝑃𝑠𝑠
𝑃𝑃𝑛𝑛𝑛𝑛

for 𝑃𝑃 > 𝑃𝑃𝑠𝑠
   .           (14) 

To elucidate this equation, consider a cross-section whose strength is affected by local buckling but 
not distortional buckling. The local buckling strength Pnl may be determined using the Direct Strength 
Method [12] and calculating the slenderness at the yield load,  

λ𝑙𝑙 =  �
𝑃𝑃𝑦𝑦
𝑃𝑃𝑐𝑐𝑐𝑐,𝑙𝑙

  ,            (15) 

i.e.,  

𝑃𝑃𝑛𝑛𝑛𝑛 =  �
𝑃𝑃𝑦𝑦 for λ𝑙𝑙 ≤  0.776

�1 − 0.15 �𝑃𝑃𝑐𝑐𝑐𝑐,𝑙𝑙
𝑃𝑃𝑦𝑦
�
0.4
� �𝑃𝑃𝑐𝑐𝑐𝑐,𝑙𝑙

𝑃𝑃𝑦𝑦
�
0.4
𝑃𝑃𝑦𝑦 for λ𝑙𝑙 >  0.776

    (16) 

Local buckling will start the stiffness reduction before yielding when alPcr,l < ayPy. In terms of local 
buckling slenderness (Eq. (15)), this implies that local buckling controls the initiation of stiffness 
reduction when the local buckling slenderness exceeds the “cross-over” slenderness (λc-o) defined by,  

𝑎𝑎𝑙𝑙𝐹𝐹𝑐𝑐𝑐𝑐,𝑙𝑙 = 𝑎𝑎𝑦𝑦𝐹𝐹𝑦𝑦     Þ     λ𝑐𝑐−𝑜𝑜 = �
𝑎𝑎𝑙𝑙
𝑎𝑎𝑦𝑦

= 1.061                                         (17) 

It follows that stiffness reduction starts at P = ayPy when λl < λc-o, and at P = alPcr,l when λl > λc-o, 
where λc-o = 1.061. In the slenderness range, 0.776 < λl < λc-o, the section capacity Pnl is less than the 
yield load, as per Eq. (16). Thus, three ranges of slenderness are required for determining the limiting 
stresses for the slenderness reduction: 

• Stocky sections, λl < 0.776:  Stiffness reduction starts at ayPy and finishes at Py 
• Intermediate slenderness sections, 0.776 < λl < λc-o:  Stiffness reduction starts at ayPy and 

finishes at Pns 
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• Slender sections, λl > λc-o:  Stiffness reduction starts at alPcr,l and finishes at Pns 

The three ranges are illustrated in Fig. 14. 

 
Fig. 14: Stiffness reduction curves (τb=EIt/EI) for stocky, intermediate and slender cross-sections prone to 

local buckling  

Many practical CFS cross-sections fall in the intermediate slenderness range. In the slender range, the 
stiffness reduction starts at alPcr,l and hence is a function of slenderness (λl). Figure 15 shows slenderness 
curves for different values of slenderness for the values of ay = 0.8 and al = 0.9.  

 
Fig. 15: Stiffness reduction curves (τb=EIeff/EI) for slender cross-sections (λl > λc-o); ay=0.8 and al =0.9  

Similar curves can be constructed for sections with the distortional mode as the critical sectional 
buckling mode. In this case, λc-o = √ad/ay = 1, and the strength reduction starts at λd = 0.561 [12]. 

5. Conclusions 

Equation (14) has been derived for calculating the stiffness reduction factor (τb) to be applied to the 
flexural and torsional rigidities of members of cold-formed steel frames when determining internal 
actions using beam-type geometric nonlinear elastic analysis. The Equation is in a format suitable for 
use in the North American specification for cold-formed steel structures, AISI-S100. The derivation of 
the stiffness reduction factor accounts for the gradual change of stiffness caused by geometric 
imperfections and residual stresses. Attention is paid to determining the initiation points for the stiffness 
reduction applicable to geometric imperfections in the shapes of the local and distortional buckling 
modes and to premature yielding induced by residual stress. The initiation points are based on 
measurements of geometric imperfections and decomposition of these into the buckling modes of the 
member. Likewise, the initiation point for stiffness reduction caused by residual stresses is based on 
measurements of residual stress in cold-rolled sections.  
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