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Abstract

Asteroseismology is the study of stellar oscillations. Recent space missions, such as
CoRoT, Kepler, and TESS, are rapidly revolutionising the field by collecting vast amounts
of data. These data have enabled accurate characterisation of stellar oscillations for a
wide range of stars, leading to improved understanding of stellar physics and knowl-
edge of Galactic and planetary populations. This thesis builds on existing tools and
develops new techniques to advance our understanding of stars using their oscilla-
tions.

Firstly, we investigate 36 subgiants observed by Kepler, measuring their oscillation
parameters and extracting their frequencies, amplitudes and linewidths. They are
used as modelling input to derive accurate stellar parameters.

Secondly, we measure the core and envelope rotation rates for these subgiants, and
study them as a function of stellar properties. We find near solid-body rotation in early
subgiants and differential rotation in later stages.

Thirdly, we evaluate the intrinsic scatter of the asteroseismic scaling relations, us-
ing the sharpness of population-level features that are naturally formed by stars. We
constrain the intrinsic scatter to be a few percent.

Fourthly, we propose a new method to correct the stellar surface effect, which in-
volves prescribing the surface effect as a function of stellar surface parameters. This
method reduces the scatter of model-derived stellar properties and provides a revised
correction for the ∆ν scaling relation.

Fifthly, we test the νmax scaling relation by comparing observed νmax with model-
inferred scaling νmax constrained by individual frequencies. We conclude no noticeable
deviation of the νmax scaling relation and a lack of metallicity dependency.

Lastly, we construct a mass-radius diagram for red clump stars, leading to the dis-
covery of two new types of post-mass-transfer stars. The new finding offers exciting
opportunities to study binary evolution using asteroseismology.
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1 Introduction

1.1 Motivation

Dating back to prehistory, humans were fascinated with stars and attempted to pre-
dict the future from their motions. They would not have imagined that one day, future
generations would be able to understand stars in so many intricate details, far beyond
just their motions. Today, we can analyze various characteristics of stars, including
their sizes, ages, masses, spectral features, distances, and so on. The study of stellar
oscillations, asteroseismology, even allows us to delve beneath the surface and un-
derstand what’s happening inside stars. It is fascinating that all of this knowledge is
obtained by simply observing stars through telescopes.

The continuous advancement of science and technology has driven this increased
understanding of stars. As the precision improves, new discoveries are revealed be-
cause everything is “seen” better. One such example is the Hertzsprung–Russell dia-
gram (H–R) diagram, which has been studied for a century. The recent remaking of
this diagram with higher precision by ESA’s Gaia space telescope has led to new and
exciting discoveries, such as the dual sequence of white dwarfs that previously went
unnoticed (Gaia Collaboration et al., 2018).

In recent years, a revolution has taken place in the field of asteroseismology for
similar reasons, which is the focus of this thesis. The NASA’s Kepler spacecraft collected
high-precision, high-cadence data from 2009 to 2014, and significantly advanced the
study of asteroseismology. These data produced promising results, especially for FGK
main-sequence dwarfs and red giants. The detection of numerous oscillation modes
allows for a critical evaluation of current theories of stellar evolution by comparing
predicted and observed oscillation properties.

The impact is mainly two-fold. It leads to a deeper understanding of the internal
structure of stars, including the study of internal rotation, core and envelope proper-
ties. This reveals discrepancies in current star modelling techniques, such as the sur-
face effect. The ability to observe oscillations in a wide range of stars enables critical
examinations of these phenomena on a population level, rather than on a star-by-star
basis. The wealth of data also results in precise determinations of stellar properties,
such as mass, radius, and age, which would be very difficult to obtain by other means.
These stellar properties have significant implications for a range of scientific fields,
including planetary and Galactic studies.

We begin by reviewing basic concepts relevant to the study of stellar oscillations in
Chapter 1. Section 1.2 presents a basic introduction of standard stellar structure and
evolutionary theory. Section 1.3 explains how oscillations can refine our knowledge
of these topics. Section 1.4 provides an overview of the observing techniques that are

1
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Figure 1.1: Theoretical H–R diagram showing luminosity vs. Teff on the left, and
observational colour–magnitude diagram showing MG vs. GBP −GRP. The left panel
shows theoretical evolutionary tracks of 1-M� and 3-M� stars calculated with MESA.
The insets highlight the RGB bump for the 1-M� track and the helium-burning phase
for the 3-M� track. Figure inspired by Hekker & Christensen-Dalsgaard (2017). The
right panel shows stars observed by Gaia in the solar neighbourhood (within 200 pc)
The inset highlights red giants, where many features such as the red clump and the
secondary red clump can be seen. Figure inspired by Gaia Collaboration et al. (2018).

utilised in asteroseismology. Finally, Section 1.5 discusses the modelling techniques
used to analyse and interpret observations.

1.2 Evolution of low and intermediate mass stars

This thesis focuses on stars in the mass range 0.5 < M/M� < 3.0. We begin with
an overview of their evolution and basic properties relevant to our work. There are
many comprehensive reviews and textbooks on this topic, for example, Kippenhahn
& Weigert (1990), Aerts et al. (2010), Hekker & Christensen-Dalsgaard (2017), and
Girardi (2016).

Single stars form from contracting interstellar clouds. They initiate nuclear burn-
ing, specifically hydrogen burning, when the centre of the cloud reaches a high enough
temperature. The star stops contracting because the thermal pressure is able to bal-
ance gravity. This core hydrogen burning phase is called the main sequence, which
comprises the majority of a star’s lifetime. The length of the main sequence depends
on the stellar mass, with more massive stars having a shorter lifespan. Low-mass stars
(M < 1.2 M�) fuse hydrogen into helium through the proton-proton reaction, while
more massive stars (M > 1.2 M�) with higher core temperatures undergo more rapid
hydrogen burning through the CNO cycle, which uses carbon, nitrogen and oxygen as
catalysts to speed up the fusion process. During the main sequence, stars undergo only
relatively slight changes in their luminosities and effective temperatures, as shown in
Fig 1.1.
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Figure 1.2: Kippenhahn diagrams showing the structural evolution of the 1-M� star
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Figure 1.3: Helium core mass as a function of total mass at RGB tip (see also Mon-
talbán et al., 2013; Hekker & Christensen-Dalsgaard, 2017). The models are from
MIST (Choi et al., 2016).

There are two primary ways to transport energy in stellar interiors: radiation and
convection. The convective instability is decided by the Schwarzschild criterion, which
compares the radiative and adiabatic temperature gradients:

∇rad >∇ad. (1.1)

The means of energy transport has a significant impact on stellar evolution and oscilla-
tion properties, as discussed in Section 1.3. Fig. 1.2 illustrates the evolutionary picture
of stellar structures for the two stars shown in Fig. 1.1. On the main-sequence, low-
mass stars (M < 1.2 M�) develop a radiative core and a convective envelope, while
the intemediate-mass stars (M > 1.2 M�) develop a convective core and a radiative
envelope.

The exhaustion of central hydrogen (completion of the conversion to helium) marks
the end of a star’s main-sequence phase. After this, the star enters into the subgiant
phases, which is characterised by its decreasing Teff. Then follows the red giant branch
(RGB) phase, during which the luminosity increases. However, the boundary between
these two phases is not well-defined. During the subgiant and RGB phases, hydrogen
burns in a shell surrounding the inert helium core, which grows in size until reaching
the tip of RGB.

During the subgiant and RGB phases, both low-mass and intermediate-mass stars
have convective envelopes and radiative cores. In particular, the convective envelopes
can extend to the region where fusion occurred during the main-sequence phase. This
phenomenon is known as the first dredge-up. Since convection is very efficient at
mixing chemical elements, the surface abundance ratios 12C/13C and C/N may be
lowered due to the mixing with core materials. The dredge-up also leaves a chemical
discontinuity at the bottom of the convective envelope when it is deepest.

On the RGB, the increasing luminosity is associated with an increase in the mean
molecular weight µ. However, when the hydrogen-burning shell crosses the com-
position discontinuity created during the dredge-up, there is a sudden decrease in
µ, changing opacities and hence luminosities (Refsdal & Weigert, 1970; Christensen-
Dalsgaard, 2015; Khan et al., 2018). Thus, as the star climbs up the RGB, there is a
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temporary drop in luminosity before increasing again. This leads to the RGB bump
(the inset of Fig. 1.1), which can be observed as an overdensity of RGB stars at this
luminosity.

It is worth noting that the properties of the helium core developed on the RGB
depend on the star’s mass. For stars below 1.8 M�, the inert helium core is supported
by electron degeneracy pressure, preventing it from collapsing. At the RGB tip, where
the core temperatures are high enough to burn helium, the helium is ignited in an
explosive process known as the helium flash. The formed helium core has a mass
around 0.5M�. For stars above 1.8 M� on the RGB, the radiative pressure in the core
is strong enough to support against gravity. For these stars, the masses of helium
core formed at the RGB tip could be deduced from the Schönberg–Chandrasekhar
limit (Schönberg & Chandrasekhar, 1942), which states that the helium core mass
is approximately a fixed fraction of the total mass. Fig. 1.3 shows this relationship.
Interestingly, a 2.2 M� star will have a smaller helium core than a 1.0 M� star.

When helium is ignited, the star will contract and reduce to a lower luminosity than
at the RGB tip. This is called the core-helium-burning phase (cHeB; see Fig. 1.1). The
core helium is converted into carbon through the triple alpha reaction. The Teff of
cHeB and RGB are very similar, so it is difficult to distinguish the two groups of stars
based on their positions on the H–R diagram. However, their internal structures are
different: the cHeB stars have a convective core while the RGB stars have a radiative
core (see Fig. 1.2). The cHeB phase is relatively long compared to the RGB, resulting
in an overdensity of stars on the H–R diagram, a feature known as the red clump
(RC), mainly formed by M < 1.8 M� stars. Stars with M > 1.8 M� are more vertically
aligned on the H–R diagram, a feature known as the vertical structure (VS) or the
secondary red clump (SRC).

Once the core helium is exhausted, the star will ascend in luminosity again on the
asymptotic-giant branch (AGB). The energy sources of AGB stars are helium and hy-
drogen burning shells surrounding the carbon core. The AGB bump, a temporary drop
in luminosity, similar to the RGB bump, occurs during the ascending phase (Dréau
et al., 2022).

1.3 Solar-like oscillations

Fig. 1.4 illustrates how stars pulsate across different regions of the H–R diagram. This
thesis focuses on solar-type stars (below 1.2 M� on the main-sequence) and red giants
(below 5 M�). They are located on the right part of the H–R diagram (below 6500 K),
and host thick convective envelopes. These stars exhibit solar-like oscillations, which
are driven by near-surface turbulent convection and were first discovered in the Sun
(Balmforth, 1992; Goldreich et al., 1994). For a comprehensive review of the exci-
tation and damping mechanisms (non-adiabatic effects) of oscillations, we refer to
Samadi et al. (2015) and Houdek & Dupret (2015). In this section, we review some
basic properties of solar-like oscillations (see also Chaplin & Miglio, 2013; Bedding,
2014; Basu & Chaplin, 2017; Basu & Hekker, 2020; Aerts, 2021; Kurtz, 2022).

The oscillations studied here are standing waves within stars, whose restoring forces
are either the pressure gradient (pressure, or p modes) or the buoyancy (gravity, or g
modes). Mixed modes also arise in evolved stars, resulting from a coupling of p and
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Figure 1.5: Power spectra of four representative stars. From top to bottom: 16
Cyg A (main-sequence star), KIC 11026764 (subgiant), KIC 6779699 (RGB), KIC
7936407 (CHeB). The radial (l = 0), dipole (l = 1), and quadrupole (l = 2) modes
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g modes, so the modes are oscillating like p modes in the envelope and like g modes
in the core. Each mode is characterised by three quantum numbers: the radial order
n, the spherical degree l, and the azimuthal degree m. We only consider m when
non-axis-symmetric effect such as rotation are concerned.

The distinctive signal of solar-like oscillations is a series of peaks in the oscillation
power spectrum, obtained by Fourier-transforming the photometric light curves or
radial velocities. The amplitudes of these peaks are modulated by a Gaussian-like
envelope centred around a frequency known as νmax. Fig. 1.5 presents the power
spectra of four stars observed by Kepler: a main sequence star (16 Cyg A), a subgiant
(KIC 11026764), a red-giant-branch star (KIC 6779699), and a core helium-burning
star (KIC 7936407).

Note their oscillation frequencies, which are in a range around νmax, are significantly
different from star to star. Brown et al. (1991) hypothesised that νmax is proportional
to the acoustic cutoff frequency, νac, which is an upper limit of oscillation frequency.
Standing waves cannot form above νac, as they are not reflected in the atmosphere.
The acoustic cutoff frequency is given by

νac =
c

4πH

�

1− 2
dH
dr

�1/2

, (1.2)

where c and H are the sound speed and the density scale height in the stellar atmo-
sphere. Hence, following a scaling law and some approximations, it suggests (Brown
et al., 1991; Kjeldsen & Bedding, 1995),

νmax∝ νac∝
c
H
∝ g/

p

Teff∝ MR−2Teff
−1/2, (1.3)

where g, Teff, M , and R are the surface gravity, effective temperature, mass, and ra-
dius, respectively. Despite being based on a fairly crude assumption, the relation has
shown to have great precision, and is widely used to derive stellar properties (e.g.
Pinsonneault et al., 2018). From the above equation, it can be seen that νmax mainly
depends on surface gravity. Therefore, solar-type main-sequence stars have larger νmax

(the νmax of the Sun is 3090 µHz), red giants have smaller νmax (below 400 µHz), and
subgiants are somewhere in between. This is illustrated in Fig. 1.5.

1.3.1 p modes

Upon closer examination of Fig. 1.5, a discernible regular pattern emerges in the oscil-
lation frequencies. High radial order (n) p modes can be described by an asymptotic
expression (Tassoul, 1980; Gough, 1986):

νnl =∆ν
�

n+
l
2
+ εp

�

−δνnl , (1.4)

where ∆ν is the p-mode large separation, εp is the dimensionless phase offset, and
δνnl is the small separation that specifies the distances between radial and non-radial
modes (which is small compared to∆ν). The large separation is related to the inverse
of sound travel time across the star and can be expressed as

∆ν=

�

2

∫ R

0

dr
c

�−1

, (1.5)
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Figure 1.6: Power spectra of the four stars in Fig. 1.5 shown in the échelle format.
Note the same spectrum is plotted twice to avoid edge effect.

where c is the sound speed, and R is the stellar radius. Under simple approximations,
∆ν is related to the mean stellar density ρ̄ (Ulrich, 1986; Kjeldsen & Bedding, 1995):

∆ν∝p

ρ̄∝ M1/2R−3/2. (1.6)

This is another very useful scaling relation to derive stellar properties. According to
Eq. 1.4, modes of the same spherical degree l but with consecutive orders n are equally
spaced by ∆ν. This can be observed from Fig. 1.5, particularly in 16 Cyg A, whose
oscillations are all high-order p modes.

The regular spacings in the oscillation frequencies can be conveniently displayed
using the échelle diagram, where the power spectrum is sliced into equal segments of
length ∆ν and each segments are stacked vertically. Fig. 1.6 shows the power spectra
in the échelle format for the stars in Fig. 1.5. The color scale now represents the power
of oscillations. For main-sequence stars like 16 Cyg A, which exhibit high radial-order
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Figure 1.7: Evolution of mode frequencies in 1-M� stellar models calculated with
MESA. The solid and the dotted black lines indicate l = 0 and l = 1 modes, respec-
tively. The blue lines in the middle trace the evolution of νmax.

p modes, modes with the same l degrees align vertically on this diagram and form
three ridges, since they are equally spaced by ∆ν.

It is also easy to identify the value of εp and small separations δνnl in this diagram.
According to Eq. 1.4, for radial modes, we have

νn,l=0 =∆ν
�

n+ εp

�

. (1.7)

Hence, the distance of the l = 0 ridge from the left edge of the échelle is ∆ν · εp (or
∆ν·(εp−1), since εp could be larger than 1 but smaller than 2, according to theoretical
models). For dipole and quadrupole modes, we have

νn,l=1 =∆ν
�

n+ 1/2+ εp

�−δνn,l=1, (1.8)

and
νn,l=2 =∆ν

�

n+ 1+ εp

�−δνn,l=2. (1.9)

Thus, the 02 small separation δνn,l=2 = νn+1,l=0 − νn,l=2 is the horizontal distance be-
tween the 0 and 2 ridges on the échelle. The 01 small separation δνn,l=1 = (νn+1,l=0+
νn,l=0)/2−νn,l=1 is the offset of the l = 1 ridge from the midpoint of the two copies of
l = 0 ridges.

1.3.2 g modes

As a star evolves from the main sequence to the RGB, its surface gravity g decreases,
resulting a decrease in νmax. The value of ∆ν, which is related to the mean density,
also decreases. According to Eq. 1.4, the frequency for each individual mode also de-
creases. In Fig. 1.7, the evolution of mode frequencies are shown in three evolutionary
stages. An interesting phenomenon occurs during the subgiant phase. Although the
l = 0 modes remain equally spaced by ∆ν, the l = 1 modes depart from this pat-
tern. This is known as mode bumping. These l = 1 modes in subgiants are mixed
modes, resulting from the coupling of p modes, which mainly propagates in the outer
convective envelope, and g modes, which only propagate in the inner radiative zone.
The frequencies of gravity modes are very low on the main sequence and gradually
increase as stars evolve.
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According to asymptotic theories, high order g modes are equally spaced in period,
whereas high order p modes are equally spaced in frequency. The periods of g modes
can be written as

Πnl = ν
−1
nl =∆Πl(n+ εg), (1.10)

where εg is the dimensionless phase offset for g modes. The period spacing ∆Πl is
related to the buoyancy frequency N (or Brunt–Väisälä frequency), which is given by

∆Π1 =
2π2

p

l(l + 1)

�

∫ r2

r1

N
dr
r

�−1

, (1.11)

and

N 2 = g
�

1
Γ1

d ln p
dr
− d lnρ

dr

�

, (1.12)

where N > 0, Γ1 is the first adiabatic component, and the region for g mode propaga-
tion is defined by (r1, r2).

1.3.3 Mixed modes

To understand the nature of p and g modes, it is helpful to consider the equation that
describes stellar oscillations. By neglecting some terms (for a full derivation see Aerts
et al. 2010) and using the Cowling approximation, that is, neglecting gravitational
perturbations in the oscillation equations (shown in Section 1.5), it can be shown that
the oscillations can be described by a second order differential equation:

d2ξr

dr2
= −K(r)ξr = −

ω2

c2

�

N 2

ω2
− 1

�

�

S2
l

ω2
− 1

�

ξr , (1.13)

where ξr is the radial displacement of the oscillation at distance r from the stellar
centre,ω is the angular oscillation frequency, and Sl is the Lamb frequency defined by

S2
l =

l(l + 1)c2

r2
. (1.14)

The condition for oscillatory solutions is K(r)> 0, which corresponds to two scenarios:
(1) |ω| > |N | and |ω| > Sl , and (2) |ω| < |N | and |ω| < Sl . Scenario (1) forms
p modes, and scenario (2) forms g modes. The so-called propagation diagrams for
three evolutionary stages are shown in Fig. 1.8, highlighting the propagation regions
of p and g modes according to the above criteria. On the main sequence, only p modes
are relevant near νmax. However, in the subgiant phase, modes near νmax behave as g
modes in the inner g-mode cavity and as p modes in the outer p-mode cavity, creating
p-g mixed modes. Mixed modes only exists as non-radial modes (l ≥ 1), because
there are no radial g modes. In red giants, the buoyancy frequency increases while
νmax decreases, allowing more g modes to couple with p modes, resulting in many
mixed modes per radial order, as shown in Fig. 1.7. In Fig. 1.6, the multiple l = 1
peaks present in subgiants and red giants are mixed modes resulting from p and g
mode coupling. The coupling also happens for l = 2 modes, but they have a weaker
coupling so only p-like l = 2 modes are seen.
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Figure 1.8: Propagation diagrams in four models at different evolutionary stages
calculated with MESA. The blue and yellow regions show the g mode and p mode
propagation areas, respectively, which are characterised by the buoyancy frequencies
and lamb frequencies. Only modes near νmax (dashed lines) are excited.
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Mixed modes are not equally spaced in either period or frequency. Rather, they can
be described by an asymptotic expression (Unno et al., 1989; Mosser et al., 2018):

tanθp = q tanθg , (1.15)

θp = π
ν− νp

∆ν
, (1.16)

and

θg = π
1
∆Πl

�

1
ν
− 1
νg

�

, (1.17)

where q is the coupling factor ranging from 0 to 1, ν is the mixed mode frequency, and
νp and νg are the pure p and g mode frequencies calculated from Eqs. 1.4 and 1.10.
Based on the observed mixed mode frequencies and∆ν inferred from radial modes, it
is possible to derive the true g mode period spacings for dipole modes (e.g. Vrard et al.,
2016). It has been shown that HeB stars have ∆Π1∼ 300 s, while ∆Π1 of RGB stars
are much lower. This is mainly because HeB stars have convective cores (N < 0 so g
modes do not exist), which affects the g mode propagation regions (Fig. 1.8). This in
turn affects the upper and lower boundary for the integration in Eq. 1.11, resulting in
larger ∆Π1. This fact has been used to distinguish HeB and RGB stars (Dupret et al.,
2009; Bedding et al., 2011; Mosser et al., 2012a).

From Eq. 1.15, it is not straightforward to see how mixed mode frequencies are
spaced. However, in red giants, it is informative to consider the mixed mode periods
to be equally spaced (g mode period spacing ∆Π1) but with a departure function p to
be determined, i.e. P = nm∆Π1+p (nm is the order of mixed modes). Substituting this
prescription to the derivative of Eq. 1.15 with respective to nm, Mosser et al. (2015)
showed that the period spacings of mixed modes ∆P link to ∆Π1 by a function ζ:

∆P
∆Π1

= ζ(ν) =

�

1+
q

∆ν/(ν2∆Π1)
1

q2 cos2 θp + sin2 θp

�−1

. (1.18)

Furthermore, ζ can be shown to be the ratio of mode inertia in the core to the total
mode inertia (Goupil et al., 2013):

ζ= Icore/I , (1.19)

which can be evaluated from models. Fig. 1.9 shows the mode inertia I , the function ζ,
and the mixed mode period spacings for an RGB model, revealing the close connection
between these quantities. Specifically, the g-like l = 1 modes, close to the l = 0 mode
frequencies, are more likely to be equally spaced in periods, while the p-like l = 1
modes, close to the midpoint of consecutive l = 0 modes, are shifted away from the
regular period spacing.

1.4 Observational techniques

1.4.1 Data collection

Observing oscillations in stars can be done using two main methods (see reviews by
Bedding, 2014). The first method is to measure brightness fluctuations using photom-
etry. However, ground-based observations of solar-type stars are challenging due to
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atmospheric scintillation. Spaced-based observations, such as those from MOST and
CoRoT, and then Kepler and TESS played a significant role in obtaining photometric
data for these stars. These space missions are able to provide high-precision photom-
etry for a large number of stars at the same time. The revolution of studying solar-like
oscillations begins with CoRoT for red giants (De Ridder et al., 2009; Mosser et al.,
2011) and then really took off with Kepler, a 0.95-m space telescope funded by NASA
and launched in 2009. The majority of this thesis is enabled by the data collected by
this mission. The telescope operates in a earth-trailing orbit, and have a fixed field-of-
view of 115 square degrees pointed at the constellations Cynus, Lyra and Draco, for a
continuous time of four years. The combined differential photometric precision of Ke-
pler is 30 ppm for a 12th magntiude star over 6.5 hr (Gilliland et al., 2011). During its
primary mission, Kepler observed oscillations of ∼20,000 red giants in a 30-min long-
cadence mode, and∼700 main-sequence stars and subgiants in a 1-min short-cadence
mode (e.g. Hekker et al., 2011a; Huber et al., 2011; Chaplin et al., 2014; Huber et al.,
2013; Stello et al., 2013; Huber et al., 2014; Mathur et al., 2016; Yu et al., 2016,
2018; Mathur et al., 2022). Additionally, there are four open clusters observed in the
Kepler field, and three of them have high-quality oscillation data in red giants (Hekker
et al., 2011b; Stello et al., 2011; Corsaro et al., 2012; Colman et al., 2022). In 2013,
following the failure of two out of four reaction wheels, the spacecraft was unable
to sustain stable pointing. It began a drifting mode, debuted as the K2 mission, that
observes different fields near the ecliptic every few months, expanding the mission’s
capability to observe a wider range of stars.

The second method for observing stellar oscillations is to utilise Doppler shifts in
radial velocities. The technique has been widely used in ground-based observations
since the 1980s. See Bedding (2014) for a review on the history of ground-based ob-
servations. The first detections of solar-like oscillations in stars other than the Sun
were in the F star Procyon (Brown et al., 1991) and the subgiant η Boo (Kjeldsen
et al., 1995), although the detection in η Boo also utilised oscillations in Balmer line
equivalent widths. However, single-site ground-based observations suffer from Fourier
aliases, which can greatly hamper the interpretation of oscillation spectra, especially
when searching for regular spacings. To overcome this limitation, the Stellar Oscilla-
tions Network Group (SONG; Grundahl et al., 2008) will be established as a global net-
work of one-metre telescopes with high precision radial velocity spectrographs. SONG
has successfully detected oscillations in stars including the subgiant µ Her (Grundahl
et al., 2017), the red giant 46 LMi (Frandsen et al., 2018), and ε Tau (Arentoft et al.,
2019). The use of radial velocities (RV) to detect oscillations still has very important
advantages: (1) simultaneous RV and photometric measurements provide amplitude
ratios and phase offsets, putting extra constraints on stellar atmosphere and pulsation
theories (Houdek, 2006; Zhou et al., 2021b); (2) RV power spectra have lower gran-
ulation noise, making it easier to observe oscillations in K dwarfs; (3) ground-based
RV campaigns can target nearby benchmark stars or exoplanet hosts, the oscillations
of which provide valuable information on stellar interiors and stellar properties.
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1.4.2 Data processing

Once we collected data (brightness or radial velocities) in the time domain, the com-
mon approach is to model their oscillation behaviour in the frequency domain using
a Fourier transform. However, it should be noted that approaches that directly model
data in the time domain also exist, such as Gaussian processes (e.g. Foreman-Mackey
et al., 2017). The basis to transform a continuous function x(t) to a Fourier spectrum
X (ω) is,

X (ω) =
1p
2π

∫ +∞

−∞
x(t)exp(−iωt)dt. (1.20)

For a time series x j, the discrete transform Xk is

Xk =
1p
N

N−1
∑

j=0

x j exp(−i2πk j/N), (1.21)

Then the power spectrum is defined as Pk = |Xk|2. However, for a time series with
gaps and irregular cadence defined by pairs of {tn, xn}, we can use the Lomb-Scargle
method to calculate the power spectrum at any frequency f :

P( f ) =
1
N

�

�

�

�

�

N
∑

n=1

xn exp(−i2π f tn)

�

�

�

�

�

2

. (1.22)

This is equivalent to fitting sines and cosines to the time series.
The signal in the power spectrum has multiple stellar astrophysics origins, including

rotation, granulation, and oscillation. Oscillations in solar-like stars can be thought
of damped oscillators with a typical damping timescale (the so-called mode lifetime
τ), which are stochastically re-excited. If the observing time is much longer than the
mode lifetime, then the oscillation has a Lorentzian profile on the power spectrum:

P(ν) =
H

1+ [(ν− ν0)/(Γ/2)]2
, (1.23)

where H is the mode height, ν0 is the mode frequency, and Γ is the full-width at half-
maximum, which relates to the mode lifetime through Γ = 1/(πτ). If the observing
time is shorter than the mode lifetime, then the oscillation appears as a coherent signal.

The normally distributed noise in the time domain will generate a power spectrum
that follows the χ2 distribution with two degrees of freedom (d.o.f.). To estimate pa-
rameters in the power spectrum, one can fit the power spectrum using superimposition
of Lorentzian profiles. More details regarding fitting techniques can be found in (Basu
& Chaplin, 2017).

1.5 Modelling techniques

1.5.1 Software tools

To compare observations with theoretical models and study the internal structure and
evolution of stars, we need software tools to model stars. In this work, we use Modules
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for Experiments in Stellar Astrophysics (MESA; Paxton et al., 2011, 2013, 2015, 2018,
2019), a set of open-source, robust and modular software tools to model stellar struc-
ture and evolution. Another tool is GYRE (Townsend & Teitler, 2013), an open-source
stellar oscillation code that solves oscillation modes based on the stellar structure out-
put from MESA. These software tools have become widely used and have revolution-
ized asteroseismology in the computational aspect. We provide a brief overview of
the equations that govern the computations here. A more detailed derivation can be
found in textbooks such as Aerts et al. (2010) and Basu & Chaplin (2017).

One-dimensional modelling codes assume spherically symmetric, non-rotating, and
non-magnetic stellar structure, and solve a set of equations derived from the conser-
vation of mass, momentum and energy:

∂ p
∂m
= − g

4πr2
= − Gm

4πr4
, (1.24)

∂ r
∂m
=

1
4πr2ρ

, (1.25)

∂ L
∂m
= ε− εν − εg (1.26)

∂ T
∂m
= − GmT

4πr4p
∇, ∇=

¨

∇rad = (3κpL)/(16πac̃GT 4m) , in radiative regions

∇conv , in convective regions
(1.27)

and the equation that governs the evolution of chemical abundance Xk:

∂ Xk

∂ t
= Rk +

∂

∂m

�

Dk
∂ Xk

∂m

�

+
∂

∂m
(VkXk) . (1.28)

In these equations, t is the time, p the pressure, m the mass within r, g the gravity
at r, ρ the density, L the luminosity within r, ε the rate of energy generation per
unit mass, εν the rate of energy lost per unit mass through neutrino cooling, εg the
rate of energy released through gravitational contraction or expansion, a the radiation
density constant, c̃ the speed of light, G the Gravitational constant, κ the opacity, Rk

the rate of change of Xk due to nuclear reactions, Dk the diffusion coefficients, and
Vk the settling coefficients. The convective instability is decided by the Schwarzschild
criterion. In radiative regions, the temperature gradient ∇ is obtained via the diffu-
sion approximation. In convective region, this quantity is usually obtained through
the mixing length theory (e.g. Böhm-Vitense, 1958; Henyey et al., 1965; Cox & Giuli,
1968), which involves at least one free parameter. Once supplied with necessary at-
mospheric boundary conditions, as well as configurations to microphysics (the equa-
tion of state, opacities, nuclear reaction rates, diffusion coefficients) and macrophysics
(mixing length, convective overshoot), MESA is able to evolve stars from a protostar
to a white dwarf, and to save the equilibrium structure and stellar properties at each
step.

To obtain the fundamental oscillation modes for a stellar structure, a linear and
first-order perturbation approach can be used to analyze all physical quantities. For
example, pressure, density, and gravitation potential can rewritten as p + p′, ρ + ρ′,
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and Φ+ Φ′. Using the separation of variables, the displacement vector of a gas blob
can expressed as

δr =
p

4πRe

��

ξr(r)Y
m

l (θ ,φ)ar + ξh(r)

�

∂ Y m
l

∂ θ
aθ +

1
sinθ

∂ Y m
l

∂ φ
aφ

��

exp(−iωt)

�

,

(1.29)
where (r,θ ,φ), (ar , aθ , aφ), ξr , ξh, and Y m

l represent the spherical coordinates, the
base vectors, the radial displacement, the horizontal displacement, and the spherical
harmonics, respectively. Using these perturbative quantities, the structure equations
can be reformulated by neglecting higher-order terms and subtracting the original
equilibrium equations. This exercise can lead to the oscillation equations to be solved.
In the case of adiabatic oscillations, where no energy is injection or dissipated, the
obtained equations are

dξr

dr
= −

�

2
r
+

1
Γ1p

dp
dr

�

ξr +
1
ρc2

�

S2
l

ω2
− 1

�

p′ +
l(l + 1)
ω2r2

Φ′, (1.30)

dp′

dr
= ρ(ω2 − N 2)ξr +

1
Γ1p

dp
dr

p′ − p
dΦ′

dr
, (1.31)

and
1
r2

d
dr

�

r2 dΦ′

dr

�

= 4πG
�

p′

c2
+
ρξr

g
N 2
�

+
l(l + 1)

r2
Φ′. (1.32)

They form a complete set of ordinary differential equations with ξr , p′, Φ′, and dΦ′/dr
being the dependent variables. Their eigenfunctions together with eigenvalues ω can
be solved by applying appropriate boundary conditions. Although GYRE uses a slightly
different format for writing the oscillation equations, the fundamental idea remains
the same.

1.5.2 Uncertainties of input stellar physics

Understanding model and code dependencies are crucial, since they modify predicted
oscillation behaviours (see e.g. Monteiro, 2009; Silva Aguirre et al., 2020; Christensen-
Dalsgaard et al., 2020; Cunha et al., 2021). In this section, we provide a brief overview
of several key physical ingredients involved in stellar modelling that are pertinent to
this thesis.

Initial helium abundance. To simulate the evolution of a star, it is essential to
specify not only the input physics but also the initial chemical composition, which in-
clude helium and metal abundances. Unlike metal abundances, direct measurement
of helium abundances through spectroscopy is challenging due to the absence of he-
lium lines in the atmospheres of cool stars. Hence, the initial helium abundance (Yinit)
remains rather uncertain, as neither the initial nor the current helium abundance of
the star can be precisely determined.

In stellar modelling, there is a known degeneracy between Yinit and stellar mass (Le-
breton & Goupil, 2014; Verma et al., 2022). Given a set of observational constraints
such as luminosity and radius, a range of (Yinit, M) values can satisfy these conditions.
This poses a serious limitations on the precision of mass derived from stellar modelling
(Nsamba et al., 2021). Additionally, a low value of Yinit may result in the development
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of a convective core for low-mass stellar models, significantly altering their evolution-
ary paths (Basu & Chaplin, 2017). Due to the lack of reliable ground truth for helium
abundance, this parameter Yinit is often treated as a free parameter, as has been done
in this thesis.

Helium abundances in the stellar envelope could be measured directly from seismol-
ogy. The ionization of hydrogen and helium results in a local dip in the first adiabatic
index, Γ1(r), which affects all acoustic waves passing through this region. This effect
introduces a characteristic oscillatory modulation in mode frequencies as a function
of n, in addition to the regular spacing predicted by Eq. 1.4. This principle has been
successfully applied to the Sun, allowing for precise solar envelope helium abundance
determined using intermediate-degree oscillation modes (Basu et al., 2004). For other
stars, only low-degree modes can be observed, but this technique still remains feasi-
ble if uncertainties of frequencies are small (Mazumdar et al., 2014; Verma & Silva
Aguirre, 2019; Farnir et al., 2023). This presents a promising approach for constrain-
ing Yinit in a select group of benchmark stars.

Alternatively, helium abundances can influence the shape of evolutionary tracks (or
isochrones). Therefore, when several stars in a stellar cluster are used collectively, Yinit

can be more presicely constrained (e.g. McKeever et al., 2019). The method can be
extended to a broader range of samples.

Convection. One-dimensional stellar models employ the mixing-length theory to
determine the temperature gradient in convective regions (as illustrated in Eq. 1.27).
This theory depends on the mixing length parameter (αMLT), which defines the dis-
tance of a convective parcel that travels before dispersing into its surroundings. Essen-
tially, it serves as an indicator of convective efficiency within superadiabatic regions,
such as the surfaces of cool stars (Teff<6500 K). There are a number of problems as-
sociated with this theory. For a thorough review on this subject, see Joyce & Tayar
(2023).

To model a star using 1D models, the value of αMLT must be specified. Tradition-
ally, this parameter is calibrated using solar observational data (by matching L, R,
age, abundances, and seismology), and then applied to non-solar targets. However,
it is unclear whether this parameter has the same value for all stars and throughout
all evolutionary phases (Tayar et al., 2017; Joyce & Chaboyer, 2018; Li et al., 2018;
Viani et al., 2018; Valle et al., 2019). Calibrations of this parameter using 3D hy-
drodynamic simulations of stellar surfaces suggest slightly different values than those
obtained from 1D stellar models (Trampedach et al., 2014; Magic et al., 2015), in-
dicating 1D-calibrated αMLT may be incompatible with 3D calibrations, since it also
carries deficiencies that may stem from other poorly described model physics.

The uncertainty of αMLT represents another significant source of uncertainty in stel-
lar modelling, in addition to Yinit. It is crucial to understand and properly calibrate
this parameter such that observational properties of stars can be properly described.

Angular momentum transport. Rotation and angular momentum (AM) transport
are physical processes not accounted for in traditional 1D stellar models, making it an
emerging and exciting research field. Observations of p-g mixed modes have advanced
our understanding of AM transport within stars by probing both the core and envelope
rotation rates for evolved stars. Early subgiants have been observed to exhibit near
solid-body rotation (Deheuvels et al., 2020). On the RGB, the core rotates rapidly,
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with periods between 10 and 20 days, whereas the surface rotates much more slowly
(Beck et al., 2012; Deheuvels et al., 2014; Ceillier et al., 2017; Triana et al., 2017;
Gehan et al., 2018; Fellay et al., 2021). During the HeB phase, the core experiences
spin-down and rotates in the range of 30–200 days (Deheuvels et al., 2015; Mosser
et al., 2012b; Tayar et al., 2019), suggesting that efficient AM transport mechanisms
are at play. Various candidates for AM transport mechanisms have been proposed, in-
cluding shear instabilities, meridional circulation,(Marques et al., 2013; Eggenberger
et al., 2012; Ceillier et al., 2013), internal gravity waves (Fuller et al., 2014; Pinçon
et al., 2016), mixed modes (Belkacem et al., 2015a,b), and magnetic fields (Cantiello
et al., 2014; Eggenberger et al., 2019; den Hartogh et al., 2019; Eggenberger et al.,
2022; Moyano et al., 2023). However, none of these mechanisms can fully explain the
observed rotation rates across all evolutionary phases. See Aerts (2021) for a review
on this topic.

Mass loss. The amount of mass loss due to radiation and pulsation is another crucial
aspect of stellar evolution. In this thesis, it is particularly important to examine mass
loss on the RGB, since it directly impacts the mass of zero-age helium-burning stars.
Recent studies have focused on comparing mass differences between coeval RGB and
RC stars within the same stellar clusters. Although the RGB and RC stars have different
initial masses, that difference is relatively small compared to the amount of mass loss
they experience. It can be concluded that the mass loss at the RGB tip range from
0.1 M� to 0.2 M� depending on the stars’ metallicities and ages (Miglio et al., 2012;
Stello et al., 2016; Handberg et al., 2017; Howell et al., 2022; McDonald & Zijlstra,
2015). Substantial efforts are still required to map mass loss as a function of mass,
metallicity and luminosity, and to establish connections with mass-loss prescriptions
implemented in stellar models (Reimers, 1975; Schröder & Cuntz, 2005).

Mass transfer. An additional source of mass loss on the RGB is mass transfer due
to binary interactions. When a star ascends the RGB and is within a binary system,
its envelope could potentially fill its Roche lobe. Binary interactions can lead to sta-
ble Roche lobe overflow and also to unstable Roche lobe overflow that can include
common-envelope ejection and merger (Han et al., 2020). If a red giant’s envelope is
completely stripped, the star could form a subdwarf B star or a low-mass white dwarf,
depending on the system’s properties (Heber, 2016; Byrne et al., 2021; Lynas-Gray,
2021). However, if only part of the envelope is removed, the result is still a red giant,
seemingly indistinguishable from a regular red giant. Recent advancements in astero-
seismology offer a way forward to identify such objects through their anamalous stellar
properties, such as core size, radius, mass, and rotation period, which deviate from
expectations for regular stars (Rui & Fuller, 2021; Deheuvels et al., 2021; Li et al.,
2022c; Tayar et al., 2022b; Matteuzzi et al., 2023).

1.6 Thesis overview

The purpose of this thesis is to build upon current knowledge and further advance the
techniques used to study stellar oscillations. The fundamental methodology is based
on the comparison between observations and models, which enables us to address,
constrain, and improve any discrepancies that may arise. The rest of the thesis is
organised as follows.
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Chapter 2–3 focus on Kepler subgiants. In Chapter 2, we extract their oscillation
properties and use them as modelling inputs. In Chapter 3, we further analyse their
core and envelope rotation rates to constrain the timescales of angular momentum
transport.

Chapter 4–6 investigate the validity of the ∆ν and νmax scaling relations, which are
widely used for deriving stellar mass and radius. Chapter 4 tests the intrinsic scatter
of the scaling relations, utilising the sharpness of population-level features that are
naturally formed in stars. Chapter 5 provides a new correction for the ∆ν scaling
relation, taking into account that the surface correction for the first time. Chapter 6
evaluates the systematic offsets of the νmax relation, by comparing observed νmax with
model-inferred scaling νmax constrained by individual frequencies.

Chapter 5 presents a new method for correcting the stellar surface effect, which
is a well-known model deficiency that often overestimates the modelled oscillation
frequencies. Traditional approaches use functions involving free parameters to correct
it. We impose those parameters to relate with stellar surface parameters.

Chapter 7 constructs a mass–radius diagram for red clump stars. Thanks to the re-
markable precision provided by asteroseismology, we found two types of stars that do
not conform to single stellar evolution and we explained their existence using dramatic
mass loss due to binary evolution.
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2 Oscillation properties of subgiant stars

The paper produced in this chapter is published as Li, Yaguang et al. (2020b). The
work is a collaborative effort. I created the pipeline and extracted the oscillation
parameters. Tim Bedding, Tanda Li, and Shaolan Bi provided the initial idea. Dennis
Stello, Yixiao Zhou and Timothy R. White contributed to the interpretation of the
results. I wrote the paper, and all authors (especially Tim Bedding) commented on
the manuscript. The result of this paper has been used as modelling input in the
companion study: Li, Tanda et al. (2020a).

23



MNRAS 495, 2363–2386 (2020) doi:10.1093/mnras/staa1335
Advance Access publication 2020 May 19

Asteroseismology of 36 Kepler subgiants – I. Oscillation frequencies,
linewidths, and amplitudes

Yaguang Li ,1,2,3‹ Timothy R. Bedding ,2,3‹ Tanda Li ,2,3 Shaolan Bi,1‹

Dennis Stello,2,3,4 Yixiao Zhou5 and Timothy R. White2,3

1Department of Astronomy, Beijing Normal University, Beijing 100875, China
2Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, NSW 2006, Australia
3Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
4School of Physics, University of New South Wales, Kensington, NSW 2052, Australia
5Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

Accepted 2020 May 7. Received 2020 May 7; in original form 2019 December 20

ABSTRACT
The presence of mixed modes makes subgiants excellent targets for asteroseismology,
providing a probe for the internal structure of stars. Here we study 36 Kepler subgiants
with solar-like oscillations and report their oscillation mode parameters. We performed a
so-called peakbagging exercise, i.e. estimating oscillation mode frequencies, linewidths, and
amplitudes with a power spectrum model, fitted in the Bayesian framework and sampled with
a Markov chain Monte Carlo algorithm. The uncertainties of the mode frequencies have a
median value of 0.180 μHz. We obtained seismic parameters from the peakbagging, analysed
their correlation with stellar parameters, and examined against scaling relations. The behaviour
of seismic parameters (e.g. �ν, νmax, εp) is in general consistent with theoretical predictions.
We presented the observational p–g diagrams, namely γ 1–�ν for early subgiants and ��1–
�ν for late subgiants, and demonstrate their capability to estimate stellar mass. We also found
a log g dependence on the linewidths and a mass dependence on the oscillation amplitudes and
the widths of oscillation excess. This sample will be valuable constraints for modelling stars
and studying mode physics such as excitation and damping.

Key words: stars: low-mass – stars: solar-type – stars: oscillations.

1 IN T RO D U C T I O N

Some of the first detections of solar-like oscillations, using
ground-based spectroscopy, were in subgiant stars such as η Boo
(Christensen-Dalsgaard, Bedding & Kjeldsen 1995; Kjeldsen et al.
1995, 2003; Guenther & Demarque 1996; Di Mauro et al. 2003a;
Guenther 2004; Carrier, Eggenberger & Bouchy 2005), β Hyi
(Bedding et al. 2001, 2007; Carrier et al. 2001; Fernandes &
Monteiro 2003; Di Mauro, Christensen-Dalsgaard & Paternò 2003b;
Brandão et al. 2011), ν Ind (Bedding et al. 2006; Carrier et al.
2007), and μ Her (Bonanno et al. 2008; Pinheiro & Fernandes
2010; Grundahl et al. 2017). Observations by the space telescopes
CoRoT and Kepler enabled high-quality photometry with high duty
cycle. These include subgiants such as HD 49385 (Deheuvels &
Michel 2010; Paxton et al. 2013), HD 169392A (Mathur et al. 2013),
KIC 11026764 (‘Gemma’; Metcalfe et al. 2010), KIC 11395018
(‘Boogie’; Mathur et al. 2011), KIC 10920273 and KIC 10273246

	 E-mail: yali4742@uni.sydney.edu.au (YL); tim.bedding@sydney.edu.au
(TRB); bisl@bnu.edu.cn (SB)

(‘Scully’ and ‘Mulder’; Campante et al. 2011), the α-enhanced star
KIC 7976303 (Ge et al. 2015), and the binary twin system KIC
7107778 (Li et al. 2018).

Beginning with η Boo, it was realized that subgiants show
mixed modes (Christensen-Dalsgaard et al. 1995), which are now
recognized as a feature in all evolved stars. Main-sequence (MS)
dwarfs with solar-like oscillations host a convective envelope, which
excites and propagates pressure (p) modes. In subgiants, the so-
called mixed modes that result from coupling between the pressure
mode cavity and gravity (g) mode cavity carry information from the
core and have observable amplitudes on the surface.

The mixed modes have long been realized to have strong
diagnostic potential because the frequencies of g modes, which
we denote by γ , evolve quite rapidly (Christensen-Dalsgaard et al.
1995). Bedding (2014) suggested a new asteroseismic diagram, the
p – g diagram, which plots γ versus the large separation of p modes
�ν. By comparing observed values of γ and �ν with stellar models
on this diagram, a stellar mass can be estimated. Benomar et al.
(2012) showed that the coupling strength (see Section 3) is a strong
indicator of evolutionary stage in subgiants. These suggestions
of the diagnostic power of mixed modes were confirmed with

C© 2020 The Author(s)
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modelling. When modelling Gemma (KIC 11026764), Metcalfe
et al. (2010) showed that the asteroseismic age could be constrained
to a precision of 15 per cent, whic was set by the choice of input
physics. Li et al. (2019) modelled μ Her and demonstrated that
the asteroseismic age did not significantly change as a function of
the mixing-length parameter, or the initial helium abundance. In
addition to global parameters, the mixed modes also shed light on
the interior physics of stars, for example, constraining the buoyancy
frequency profile (Li et al. 2019), internal angular momentum
transport (Deheuvels et al. 2014; Eggenberger et al. 2019), and
convective core overshooting (Deheuvels et al. 2016).

A complete analysis of oscillation modes has been made for
Kepler observations of 35 planet-host stars (Davies et al. 2016) and
66 MS stars (Lund et al. 2017), the so-called LEGACY sample.
However, similar analyses for subgiants have only been done on a
subset of Kepler data (e.g. Appourchaux et al. 2012). Therefore,
it is valuable to gather and analyse subgiants with the full set of
Kepler observations, given the great promise of mixed modes. In this
paper, we fit the oscillation modes and analyse the fitted frequencies,
linewidths, and amplitudes from the fit. In a companion paper (Li
et al. submitted, hereafter Paper II), we perform a detailed modelling
to these stars with the constraints of frequencies obtained here.

2 O B SERVATIONS

We considered Kepler targets observed in a short-cadence mode,
which samples at an integration time �t = 58.89 s, or frequency fs =
1/�t = 16 980.8 μHz. There are about 5000 stars observed in this
mode, and we detected about 50 subgiants. In this context, we define
subgiants as stars showing oscillations of mixed modes, recognized
as mode bumping (see Section 3.1 for a detailed discussion), which
starts around the time of hydrogen exhaustion in the core. However,
we required that the density of the mixed modes should be low
enough, such that ��1 > �ν/ν2, where ��1 is the period spacing
of dipolar g modes. This occurs around the subgiant phase. Only
subgiants with high signal-to-noise ratios (S/Ns) were selected to
avoid any ambiguity of the correct assignment of the spherical
degree l of each mode (see Section 3.1). Further, we required the
observation duration, denoted by tobs, to be at least two months.
This resulted in a total of 36 subgiants that we analyse here.

The atmospheric parameters (Teff and [Fe/H]) were adopted from
the KIC DR25 release (Mathur et al. 2017). Table 1 lists the 36 stars
in our sample along with tobs, nicknames used in previous papers
and references to any previous studies. Fig. 1 shows the targets
in the �ν – Teff plane. They extend from the MS turn-off phase to
the bottom of red giant branch (RGB). The MS stars in the Kepler
LEGACY sample (Lund et al. 2017) are also shown.

We used light curves measured from simple aperture photometry
(SAP) by the Kepler Science Center.1 We corrected instrumental
effects with the KASOC FILTER.2 For a full description of this
reduction procedure, see Garcı́a et al. (2011) and Handberg & Lund
(2014). Briefly, it constructs moving-median high-pass filters, one
with τ long = 1/2 d, and another with τ short = 1/24 d. Trends longer
than 1/τ long ∼ 23 μHz are removed, and any sharp feature that
could produce drastically different signals for the two filters are
eliminated. The light curves were converted into relative flux in
ppm (parts per million) and we calculated power spectra by a
Lomb–Scargle Periodogram algorithm (Lomb 1976; Scargle 1982),

1https://archive.stsci.edu/kepler/.
2https://github.com/tasoc/corrections.

Figure 1. Asteroseismic H-R diagram showing �ν versus Teff for the
36 subgiants shown as black circles colour-coded by metallicity. For
comparison, the LEGACY sample (Lund et al. 2017) is together shown
in triangles labelled as dwarfs. The Sun is marked by the usual symbol. The
theoretical evolutionary tracks with solar metallicity (Stello et al. 2013) are
shown before (dashed lines) and after (solid lines) the exhaustion of central
hydrogen, with each track labelled with mass in solar units.

Figure 2. Power spectrum density of Gemma (KIC 11026764). The original
(grey), smoothed (black), and fitted power spectra (green) are shown. The
peaks around 4500 μHz are artifacts (Gilliland et al. 2010). The inset shows
the normalized spectral window.

equivalent to a sine-wave fitting, as implemented in ASTROPY (As-
tropy Collaboration 2013, 2018). The power density spectra were
constructed by multiplying the power by the total observing time
(Kjeldsen & Bedding 1995). Fig. 2 uses Gemma (KIC 11026764) as
an example to illustrate the power density spectrum and the spectral
window. The former is comprised of a background and a group
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Table 1. Observational properties.

KIC Nickname tobs (d) Teff (K) log g (cgs; dex) [Fe/H] (dex) References

2991448 – 204 5623 ± 80 3.98 ± 0.02 − 0.10 ± 0.15 –
3852594 – 540 6296 ± 78 4.02 ± 0.14 − 0.40 ± 0.15 –
4346201 – 108 6058 ± 81 3.97 ± 0.01 − 0.24 ± 0.17 –
5108214 – 222 5799 ± 78 3.81 ± 0.07 0.16 ± 0.15 –
5607242 – 1031 5485 ± 81 3.76 ± 0.06 − 0.06 ± 0.15 a
5689820 – 506 5037 ± 76 3.76 ± 0.06 0.21 ± 0.15 b
5955122 Rhapsody 988 5877 ± 79 3.87 ± 0.01 − 0.22 ± 0.15 a
6064910 – 532 6376 ± 80 3.83 ± 0.01 − 0.26 ± 0.17 –
6370489 – 97 6184 ± 80 3.92 ± 0.01 − 0.36 ± 0.15 –
6442183 Dougal 822 5702 ± 76 4.00 ± 0.01 − 0.20 ± 0.15 c, d
6693861 – 565 5626 ± 84 3.84 ± 0.02 − 0.36 ± 0.15 –
6766513 – 534 6227 ± 78 3.93 ± 0.02 − 0.18 ± 0.15 –
7174707 – 1031 5168 ± 82 3.71 ± 0.12 0.07 ± 0.15 –
7199397 – 1182 5903 ± 79 3.76 ± 0.07 − 0.14 ± 0.15 e
7668623 – 112 6228 ± 77 3.87 ± 0.02 0.24 ± 0.15 –
7747078 – 986 5903 ± 74 3.90 ± 0.01 − 0.22 ± 0.15 a
7976303 John 962 6079 ± 81 3.89 ± 0.06 − 0.48 ± 0.15 a
8026226 Gypsy 305 6224 ± 84 3.70 ± 0.06 − 0.18 ± 0.17 a
8524425 Katrina 1006 5543 ± 87 3.97 ± 0.01 0.02 ± 0.17 a
8702606 – 980 5529 ± 82 3.76 ± 0.06 − 0.16 ± 0.15 a, b
8738809 – 341 6045 ± 72 3.90 ± 0.01 0.20 ± 0.12 –
9512063 – 110 5838 ± 78 3.88 ± 0.02 − 0.22 ± 0.15 –
10018963 Klaas 936 6177 ± 82 3.93 ± 0.01 − 0.22 ± 0.17 a
10147635 – 761 5941 ± 80 3.75 ± 0.02 − 0.02 ± 0.15 –
10273246 Mulder 705 6269 ± 124 4.41 ± 0.07 0.21 ± 0.15 f
10593351 – 528 5754 ± 82 3.66 ± 0.06 0.16 ± 0.15 –
10873176 – 122 6520 ± 87 3.90 ± 0.01 − 0.20 ± 0.28 –
10920273 Scully 532 5365 ± 85 3.78 ± 0.12 − 0.16 ± 0.15 f
10972873 – 878 5705 ± 81 3.96 ± 0.02 − 0.08 ± 0.15 –
11026764 Gemma 985 5636 ± 80 3.89 ± 0.06 0.04 ± 0.15 a
11137075 Zebedee 530 5510 ± 74 4.00 ± 0.01 − 0.12 ± 0.12 c
11193681 – 1026 5575 ± 79 3.79 ± 0.06 0.21 ± 0.15 a
11395018 Boogie 562 5753 ± 114 3.65 ± 0.18 0.02 ± 0.15 a, g
11414712 Jingle 943 5622 ± 80 3.80 ± 0.06 − 0.14 ± 0.15 a
11771760 – 1030 5796 ± 78 3.67 ± 0.06 − 0.06 ± 0.17 a
12508433 – 999 5303 ± 78 3.83 ± 0.06 0.20 ± 0.15 a, b

References. (a) Appourchaux et al. (2012); (b) Deheuvels et al. (2014); (c) Tian et al. (2015); (d) Appourchaux et al.
(2014); (e) Davies et al. (2016); (f) Campante et al. (2011); (g) Mathur et al. (2011).

of peaks with a Gaussian-like envelope centred on νmax. Although
there are small gaps in the original data, they have a negligible
influence on the shape of oscillation modes. This can be seen
from the fact that the spectral window has sidelobes with very low
power.

3 PA R AMETER E S T IM AT I ON

3.1 Mode identification

Each oscillation mode is associated with three quantum numbers
(n, l, m). The first step in mode identification is to assign an l-degree
to each peak. In the asymptotic regime (n � l) of p modes (Tassoul
1980; Gough 1986), this is straightforward because modes follow
regular patterns. The frequencies are approximately equally spaced
by �ν:

νp(np, l) ≈ �ν

(
np + l

2
+ εp

)
− δν0l , (1)

where �ν is the separation between adjacent radial modes, εp is
the offset of the pattern, and the small separation δν0l defines the

frequency differences between l = 0 and l. The g modes, which we
do not observe directly, are approximately equally spaced in period
in the asymptotic regime:

�g(ng, l) = ν−1
g (ng, l) ≈ ��l

(
ng + εg

)
, (2)

where ��l and εg are the period spacing and offset for g modes,
respectively. Shibahashi (1979) derived an asymptotic relation for
mixed modes. Specifically, for dipolar modes (l = 1), the mixed-
mode frequencies νm satisfy

tan θp = q tan θg, (3)

where

θp = π

�ν

(
νm − νp

)
, (4)

θg = π

��1

(
1

νm
− 1

νg

)
, (5)

and q is a coupling factor determined by the width of the evanescent
zone (Mosser et al. 2015). Less-evolved subgiants have large
period spacings, with one g mode often coupling with several p
modes. The coupled modes can be bumped very far away from
their regular p-mode spacings. By replicating echelle diagrams
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Figure 3. Replicated echelle diagram for Gemma (KIC 11026764). By
shifting one �ν downwards for the right replicate, the dipolar modes can
be traced by a single line with one mode per horizontal row. The grey scale
denotes the square root of S/N to enhance contrast. The symbols represent
extracted frequencies.

horizontally, a line can trace all mixed modes, which helps mode
identification (Bedding 2012; Benomar et al. 2012). See Fig. 3 for an
illustration. Using this method, we were able to make unambiguous
identifications for mixed dipolar modes, which still have a detectable
amplitude even when they are bumped by a large amount. However,
that is not the case for quadrupolar (l = 2) modes due to their weaker
couplings. Therefore, in most cases, we only expect to detect one
mixed quadrupolar mode in each order, even though sometimes two
should be present. The same is true for octupolar (l = 3) modes.
To sum up, the dipolar mixed modes follow equation (3) closely,
and the radial, quadrupolar and octupolar modes are distributed
regularly, approximately, as described by equation (1).

We first obtained a crude estimate of �ν by tuning the horizontal
width of the echelle diagram such that the ridge of radial modes
was vertical. To identify modes in each star, we smoothed the power
spectrum and folded by �ν to create a collapsed power spectrum.
This was cross-correlated with a template spectrum comprising
three peaks, two narrower (l = 0 and 2) and one wider (l = 1), to
simulate the ridges. The value of εp, which defines the location of
l = 0, could be correctly identified according to the lag at which
the correlation coefficient was the largest. The modes satisfying
(ν/�ν mod 1) ∈ [εp − 0.04, εp + 0.04], [εp − 0.12, εp − 0.04],
and [εp + 0.31, εp + 0.39] were labelled as l = 0, 2, and 3,
respectively. These ranges were first empirically chosen. The reason
is that δν0l approximately follows a linear trend with �ν and the
slope is consistent with the ranges defined by those numbers (see
Section 4). All other modes were provisionally assigned as l =
1, noting that some l = 0, 2, and 3 modes could actually be l =
1. We used the relative height (l = 1 modes are typically higher)
and the regularity of those modes (equation 1) to help resolve the
ambiguity. All labels were further confirmed in echelle diagrams
using the method mentioned above. We identified all modes within
±8�ν around νmax. The identified peaks were used as inputs for
the peakbagging.

3.2 Power spectrum model

We now describe the model used to fit the power spectrum. First,
we consider the background caused by granulation, modelled as a
sum of Lorentzian profiles:

B(ν) =
n∑

i=1

2
√

2

π

a2
i /bi

1 + (ν/bi)ci
. (6)

The number of power profiles was set to be n = 1 or 2 (Harvey
1985; Kallinger et al. 2014), subject to the goodness of fit, which
is sufficient to account for the background near νmax. Secondly, we
describe the signal of oscillations. For a mode with quantum number
(n, l, m), we adopted a power spectrum model

Lnlm(ν) = Elm(i∗)2A2
nl/(π�nl)

1 + 4(ν − νnl + mνs,nl)2/�2
nl

(7)

to account for oscillations, where the frequency νnl, linewidth �nl,
amplitude Anl, and rotational splitting νs, nl varies with n and l
(Anderson, Duvall & Jefferies 1990). The relative height within
a multiplet depends on the inclination angle i∗ of the star and is
modulated by a visibility function:

Elm(i∗) = (l − |m|)!
(l + |m|)!

[
P

|m|
l (cos i∗)

]2
, (8)

where P
|m|
l are Legendre functions (Gizon & Solanki 2003). The

final model to fit the whole power spectrum was

M(ν) = η2(ν)

[
nmax∑

n=nmin

3∑

l=0

l∑

m=−l

Lnlm(ν) + B(ν)

]
+ W. (9)

We used a frequency-independent constant W to account for
white/photon noise. The apodization of the signal due to the
integration time �t = 58.89 s was

η2(ν) = sin2(πν�t)

(πν�t)2
. (10)

The free parameters to fit the power spectrum were θ = {νnl, Anl,
�nl, νs, nl, i∗, ai, bi, ci, W}.

3.3 Fitting method

We estimated the model parameters in the Bayesian framework
(Handberg & Campante 2011). Given data D, model M, and
prior information I, the parameters θ were estimated via posterior
probability using Bayes’ theorem:

p(θ |D,M, I ) = p(θ |M, I )p(D|θ,M, I )

p(D|M, I )
. (11)

The posterior probability can be seen as a product of the prior and
the likelihood function, divided by the Bayesian evidence, which is
the marginalization of that product over all parameter space.

We utilized three kinds of prior functions. The first was a uniform
prior, which sets the prior probability as a constant over a parameter
range:

p(θ |M, I ) =
{

1
θmax−θmin

, θmin < θ < θmax

0, otherwise
. (12)

We used uniform priors for most parameters. For example, the priors
on the frequencies, νnl, were set to be 3-μHz ranges centred around
their initial guessed values. The inclination angle was assigned a
uniform prior across [−π /2, π ] and folded to [0, π /2] after sampling.
We also tested an isotropic prior for the inclination, but found no
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significant bias on mode parameters. The second is a modified
Jeffreys prior, which was set for the linewidths and amplitudes:

p(θ |M, I ) =
{

1
θ+θuni

1
log((θuni+θmax)/θuni)

, 0 < θ < θmax

0, otherwise
. (13)

We tested the impact of adopting uniform priors for these two
particular parameters. The amplitudes do not present obvious bias
while the linewidths are typically overestimated using the uniform
priors. Despite the present bias, more than 95 per cent modes in our
sample agree within 1σ . For the splitting frequency, νs, nl, we used
the third prior, a flat prior with a half-Gaussian:

p(θ |M, I ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, θ < S

C, S ≤ θ < U

C · exp
[
− (θ−U )2

2σ 2

]
, θ ≥ U

, (14)

where C = (U − S + √
π/2σ )−1. We applied this prior to νs, nl with

S = 0, U = 1, and σ = 0.5 μHz (Deheuvels et al. 2014).
Gaussian noise in the time domain translates into a χ2 distribution

with 2 degrees of freedom in the frequency domain (in power).
Assuming all frequency bins, indexed by i in the power spectrum, are
statistically independent, the logarithm of the likelihood function is

ln p(D|θ,M, I ) = −
∑

i

[
ln Mi(θ ) + Di

Mi(θ )

]
. (15)

We used an H1 (odds ratio) approach to test whether a frequency
range contains a mode (Appourchaux et al. 2012; Corsaro & De
Ridder 2014; Davies et al. 2016). H1 is the hypothesis that a
range of a power spectrum contains the mode, while H0 is the
null hypothesis. In short, we computed the Bayes factor ln K =
ln p(D|M1, I) − ln p(D|M0, I) and assessed it based on the Kass &
Raftery (1995) scale:

ln K =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

< 0 favours H0

0–1 not worth more than a bare mention

1–3 positive

3–5 strong

> 5 very strong

. (16)

3.4 Fitting details

Based on the methods mentioned in the previous sections, we fitted
the data as follows:

(i) The power spectrum was initially fitted with equation (9) but
the sum of Lorentzians was replaced by a single Gaussian profile
centred around νmax (see Fig. 2). The background spectrum was
determined from this fit. By dividing the signal by the background,
we obtained the S/N spectrum, which fluctuates around 1.

(ii) We selected seven modes with the highest amplitudes to fit si-
multaneously and to determine the inclination angle by maximizing
the posterior probability.

(iii) The power spectrum was divided into segments and modes
were fitted in each segment separately with a fixed inclination
determined in step (ii). The sizes of the segments were based on
the proximity of consecutive mode frequencies. Any two modes
closer than 10 μHz were grouped into the same segment. There
was a minimum of one and a maximum of five modes per segment.

Figure 4. Significance tests for three modes of Gemma (KIC 11026764).
Each panel presents the fits of the mode marked by the symbol, under H1
and H0 hypotheses separately. All three modes show very strong detections
according to the Kass & Raftery (1995) scale.

The estimation of each parameter was obtained by marginalizing
the posterior probability and calculating median and 68 per cent
credible limit values.

(iv) The Bayes factor was calculated for each mode to evaluate its
significance, by comparing the Bayesian evidence with or without
that mode in the model. Fig. 4 shows the fit of the three modes in a
segment. All of them have very strong detections.

We developed PYTHON software called
SOLARLIKEPEAKBAGGING,3 providing a wrapper for the Markov
chain Monte Carlo (MCMC) sampling algorithm implemented in
EMCEE (Goodman & Weare 2010; Foreman-Mackey et al. 2013),
also featuring customizable Bayesian statistics, models, and other
fitting algorithms. For the above fits, the sampler was chosen either
to be an affine-invariant ensemble sampler (step ii) or a parallel-
tempering sampler with 20 temperatures (step iii), depending on
whether the Bayes factor was calculated. We initialized 500 walkers
with values adopted from a least-squares fit, then burned-in for
1000 steps and iterated for 2000 steps. After each run, we checked
convergence and the goodness of sampling by several metrics,
including auto-correlation time, acceptance fraction, the evolution
of model parameters, and the shapes of the marginal probability
distributions.

3.5 Fitting results

We present mode frequencies, amplitudes, and linewidths for m = 0
modes in Table 2. The rotational splittings will be comprehensively
studied in a future paper. Fig. 5 shows the power spectrum of Gemma

3https://github.com/parallelpro/SolarlikePeakbagging.
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Table 2. Mode parameters obtained from the peakbagging.

KIC l νnl (μHz) �nl (μHz) Anl (ppm) ln K

2991448 0 889.34 ± 0.312 0.79 ± 0.96 5.72 ± 1.53 2.16 ± 0.75
2991448 0 949.46 ± 1.111 8.02 ± 2.37 12.95 ± 1.61 3.61 ± 0.98
2991448 0 1011.17 ± 0.202 1.15 ± 0.46 9.47 ± 1.23 20.49 ± 4.32
2991448 0 1072.78 ± 0.099 0.76 ± 0.24 14.78 ± 1.49 39.42 ± 2.54
2991448 0 1134.18 ± 0.113 0.89 ± 0.28 14.21 ± 1.38 47.86 ± 2.81
2991448 0 1195.89 ± 0.547 3.29 ± 1.72 13.37 ± 2.38 5.40 ± 2.13
2991448 0 1257.81 ± 0.969 3.53 ± 2.63 10.04 ± 2.96 2.68 ± 1.52
2991448 0 1319.52 ± 1.294 3.00 ± 3.56 5.09 ± 3.29 0.18 ± 1.20
2991448 1 857.88 ± 0.384 0.97 ± 0.79 5.88 ± 1.62 − 0.21 ± 0.69
2991448 1 915.60 ± 0.153 0.81 ± 0.32 9.62 ± 1.27 19.19 ± 1.16

Notes. These are m = 0 modes. Only the first 10 rows are shown. The full table is available online.

Figure 5. Power spectrum of Gemma (KIC 11026764). The fitted power spectrum (black) is overlaid on the original power spectrum (light grey).

(KIC 11026764) with fitted mode frequencies overlaid. We present
the plots of the other stars in Appendix A.

In Fig. 6, we show the histograms of uncertainties. The median
value of frequency uncertainties is 0.180 μHz. As expected, the
uncertainty is a function of S/N. The typical uncertainty is 0.1 μHz
for S/N = 3. The median uncertainties of linewidths are 31.7 per cent
and amplitudes are 10.1 per cent.

As a check, we can consider the classical maximum likelihood
estimator (MLE; Libbrecht 1992; Toutain & Appourchaux 1994;
Ballot et al. 2008). This calculates uncertainties by inverting the
Hessian matrix whose elements are the second derivatives of the
likelihood function to the parameters. The Cramér–Rao bound states
that an unbiased MLE reaches the lowest variance bound, so any
other unbiased estimators are expected to obtain a larger variance.
Libbrecht (1992) derived an analytical form of the uncertainty. We

found the estimated uncertainties derived from the MCMC-based
posterior distributions were typically larger than those obtained
from the above analytical forms, by factors of 1.15 (frequency), 1.18
(linewidth), and 1.41 (height), respectively. Thus, the uncertainties
are safe to use for modelling.

4 MO D E FR E QU E N C I E S

We fitted the radial mode frequencies with equation (1) to estimate
�ν and εp. The errors were considered within the Bayesian
framework; thus, they were propagated from the priors and likeli-
hoods. The likelihood function was selected to reflect the residuals
between data and the models, weighted by uncorrelated uncertain-
ties from both dependent and independent variables, as normal
distributions.
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Asteroseismology of 36 Kepler subgiants 2369

Figure 6. Histograms of the uncertainties for measured mode frequencies (left-hand panel), linewidths (middle panel), and amplitudes (right-hand panel). The
linewidths and amplitudes are shown in relative uncertainty.

Figure 7. εp versus Teff with colour-coded log g. The measurement of red
giants were adopted from Huber et al. (2010). The theoretical evolutionary
tracks (White et al. 2011b) are labelled with mass in solar units. The crosses
mark the zero-age MS.

The p-mode offset εp is sensitive to the lower and upper turning
points of a mode (e.g. Gough 1986). It has been demonstrated to vary
with Teff and �ν (White et al. 2011b; Hon, Stello & Yu 2018), and
was used to resolve ambiguous mode identification problems found
in F-type dwarfs (White et al. 2012) and to discriminate between
RGB and helium-core-burning (HeB) stars (Kallinger et al. 2012).
The upper turning point lies at the surface, where Teff and log g are
relevant quantities, so it may be conjectured that εp is related to both
of them. In Fig. 7, we present εp as a function of Teff. As Ong & Basu
(2019) pointed out, εp depends on the method of measurement, so
we recalculated the εp of the MS dwarfs from Lund et al. (2017)
using our approach. As the figure shows, the general trend of εp in
subgiants follows a similar pattern as for dwarfs. We also identify a
dependence on log g: stars with similar Teff but smaller log g have
lower εp. The dwarf stars, which have higher log g, sit above the
subgiants on the εp – Teff diagram. In the bottom panel of Fig. 8,
we present εp as a function of �ν. The obvious offset between

Figure 8. Top and middle panels: C – D diagrams, which show the small
separation δν02 as a function of �ν, with colour-coded log g. The solid line
is a linear fit to the subgiants, and the dashed line is a similar fit to low-
luminosity red giants (Bedding et al. 2010). Bottom panel: εp versus �ν.
The measurement of dwarfs and red giants were adopted from Lund et al.
(2017) and Huber et al. (2010), respectively. The theoretical evolutionary
tracks (White et al. 2011b) are labelled with mass in solar units with crosses
marking the zero-age MS.
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Figure 9. �ν– νmax diagram. The solid line is the best-fitting curve for
subgiants. The dashed line is a similar fit, but obtained from a sample of MS
dwarfs and red giants (Huber et al. 2011). The measurement of dwarfs were
adopted from Lund et al. (2017).

observations and stellar models stems from the improper modelling
of near-surface layers (Christensen-Dalsgaard, Dappen & Lebreton
1988).

We show the small separations δν02 versus �ν in Fig. 8, the
so-called C – D diagram (Christensen-Dalsgaard 1984; Mazumdar
2005). The evolutionary tracks with different masses are well
separated on the MS. By comparing to models, the diagram is useful
for estimating mass and age when δν02 and �ν are known. We
note that the εp – �ν diagram could be used for a similar purpose,
provided the surface effect is well accounted for. However, the
tracks become more degenerate in the subgiant phase (White et al.
2011a, b). We performed a linear fit to the subgiants:

δν02 = (0.088 ± 0.001)�ν + (0.070 ± 0.059) μHz. (17)

We point out that some obvious outliers from the fitted line are
present. They are affected by bumped l = 2 modes, which lift the
average distance of a quadrupolar mode to a radial mode. Bedding
et al. (2010) fitted the same relation to a sample of red giants, which
have a steeper slope (as shown by the dashed line in Fig. 8). This
difference is also visible from the calculation of stellar models.
Similarly, we fitted δν03 using ten stars that have detected l = 3
modes:

δν03 = (0.152 ± 0.002)�ν + (2.578 ± 0.102) μHz. (18)

Finally, we use the radial modes to determine νmax because they
are purely acoustic, since there are no radial g modes for them
to couple with. By fitting the amplitudes versus frequencies of
radial modes with a Gaussian function, νmax was obtained as the
Gaussian’s centre. The height of the Gaussian, Amax, together with
the width, are analysed in Section 7. We fitted the well-established
�ν–νmax relation (e.g. Stello et al. 2009; Huber et al. 2009) to our
subgiants,

�ν = a(νmax/μHz)b μHz, (19)

and determined the best-fitting parameters as a = 0.158 ± 0.036
and b = 0.847 ± 0.034. Huber et al. (2011) determined a = 0.22
and b = 0.797 from a sample consisting of both MS stars and red
giants. We plot the two relations in Fig. 9. The most noticeable
effect is that the subgiants lie above the dwarfs, which can be
understood from simple scaling arguments. The asteroseismic scal-
ing relations (Brown et al. 1991; Kjeldsen & Bedding 1995) state
that �ν ∝ √

ρ ∝ M1/2R−3/2, and νmax ∝ g/
√

Teff ∝ MR−2T
−1/2

eff .

Dividing the two relations, we obtain �ν/νmax ∝ M−1/2R1/2T
−1/2

eff .
The subgiants and dwarfs have similar M and Teff, but subgiants are

more inflated, which ultimately leads to higher �ν/νmax. Indeed, this
spread is the signal upon which the widely used scaling relations
for mass and radius are based (Stello et al. 2008; Kallinger et al.
2010).

5 TH E P – G D I AG R A M

We now focus on the frequencies of the underlying g modes,
which we denote by γ (Aizenman, Smeyers & Weigert 1977).
Adjusting the model parameters to fit the observed frequencies
can be difficult and time-consuming. As pointed out by Bedding
(2014), the information contained in the mixed modes can be
used more elegantly, by considering the frequencies of the avoided
crossings themselves. The suggestion was that, before fitting
models to the observed mixed modes, one can first consider the
underlying g modes. These are not directly detected but their
frequencies can be inferred from the locations of the avoided
crossings.

This discussion suggests a new asteroseismic diagram (Bedding
2014), inspired by the classical C–D diagram, in which the fre-
quencies of the avoided crossings γ are plotted against the large
separation of the p modes. This p–g diagram, so named because it
plots g-mode frequencies versus p-mode frequencies, could prove
to be an instructive way to display results of many stars and to make
a first comparison with theoretical models (Campante et al. 2011;
Bedding 2014)

For example, the echelle diagram in Fig. 3 shows three avoided
crossings of dipole modes, at about 950, 750, and 650 μHz. We
recognize these as the frequencies of the γ modes, that is, the pure
g modes that would exist in the core cavity if there was no coupling
to the p modes in the envelope (Aizenman et al. 1977). Much of
the diagnostic information contained in the mixed modes can be
captured in this way. This is because the overall pattern of the
mixed modes is determined by the mode bumping at each avoided
crossing, and these patterns are determined by the g modes trapped
in the core. For related discussion on this point, see Deheuvels &
Michel (2010) and Benomar et al. (2013).

We determined the g-mode frequencies, γ , from fitting l = 1
mixed-mode frequencies νn, l = 1. Specifically, Lorentzian profiles
were fitted to νn + 1, l = 1 − νn, l = 1 versus (νn + 1, l = 1 + νn, l = 1)/2.
A dip is present wherever there is an avoided crossing. This is
because the presence of mixed modes makes two adjacent modes
closer in frequency. We identified the centres of the Lorentzian
profiles as the g-mode frequencies, γ . The errors were estimated
following a Monte Carlo procedure by adding Gaussian errors to
mode frequencies, repeating the fitting for 1000 times, and adopting
the standard deviation of γ from the distribution. If multiple avoided
crossings (at least three) are present, we further estimated ��1

by calculating the average differences between 1/γ . The results
are shown in Table 3. Some stars do not have reported γ 1 or
��1 because they tend to have uncertain identifications of the
first g mode, and they also present a small number of avoided
crossings.

For less-evolved subgiants in which the first (ng = 1) g-mode
frequency, γ 1, is present, we made the γ 1 – �ν diagram in Fig. 10.
This provides an indicative measurement of stellar mass when
evolutionary tracks are simultaneously plotted, unlike the C–D
diagram where stellar tracks are degenerate. The stars evolve
diagonally, so γ 1 and �ν can determine not only mass, but age
as well.

Another important diagnostic diagram is to plot the period
spacings of g-mode ��1 in equation (2) versus �ν (another p–
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Table 3. Global oscillation parameters.

KIC �ν (μHz) εp νmax (μHz) Amax (ppm) Width (μHz) δν02 (μHz) δν03 (μHz) γ 1 (μHz) ��1 (s)
2991448 61.35 ± 0.05 1.486 ± 0.013 1115 ± 16 9.83 ± 0.45 187.3 ± 21.9 5.38 ± 0.41 – 1022.0 ± 0.3 –
3852594 51.95 ± 0.06 1.270 ± 0.018 912 ± 8 13.00 ± 0.35 181.3 ± 12.7 – – – –
4346201 56.00 ± 0.04 1.169 ± 0.014 1123 ± 107 8.07 ± 0.48 366.5 ± 129.1 5.26 ± 0.53 – 812.2 ± 2.6 –
5108214 40.81 ± 0.02 1.309 ± 0.007 712 ± 7 9.51 ± 0.35 197.2 ± 11.8 3.38 ± 0.24 – – 411 ± 23
5607242 40.39 ± 0.01 1.444 ± 0.003 684 ± 2 10.76 ± 0.27 114.4 ± 3.7 3.77 ± 0.14 8.77 ± 0.13 – 176 ± 16
5689820 41.02 ± 0.01 1.561 ± 0.002 683 ± 4 13.85 ± 0.47 100.1 ± 5.0 3.81 ± 0.21 9.24 ± 0.39 – 154 ± 2
5955122 49.22 ± 0.01 1.340 ± 0.004 861 ± 4 9.04 ± 0.14 175.5 ± 5.6 4.02 ± 0.23 – 1143.9 ± 10.0 –
6064910 43.82 ± 0.08 1.160 ± 0.032 649 ± 197 12.75 ± 0.98 456.8 ± 275.9 – – – 390 ± 5
6370489 51.22 ± 0.03 1.394 ± 0.010 907 ± 13 9.50 ± 0.44 220.6 ± 19.7 5.21 ± 0.37 – 937.6 ± 0.8 –
6442183 64.65 ± 0.01 1.490 ± 0.002 1166 ± 3 7.82 ± 0.13 206.1 ± 4.3 5.42 ± 0.21 12.33 ± 0.09 1005.6 ± 0.1 –
6693861 47.26 ± 0.01 1.402 ± 0.005 818 ± 9 10.76 ± 0.38 147.9 ± 12.3 4.89 ± 0.13 – – –
6766513 50.91 ± 0.04 1.151 ± 0.013 945 ± 18 9.03 ± 0.43 288.3 ± 29.2 4.09 ± 0.50 – 799.3 ± 0.4 –
7174707 47.19 ± 0.01 1.492 ± 0.003 819 ± 4 11.22 ± 0.30 118.4 ± 4.9 5.35 ± 0.23 10.14 ± 0.18 – 172 ± 5
7199397 38.54 ± 0.01 1.353 ± 0.005 661 ± 6 9.87 ± 0.21 148.9 ± 6.5 3.53 ± 0.25 – – 228 ± 45
7668623 46.05 ± 0.05 1.033 ± 0.019 889 ± 18 8.77 ± 0.39 216.8 ± 25.4 5.40 ± 0.60 – 675.2 ± 1.1 –
7747078 53.22 ± 0.01 1.475 ± 0.002 931 ± 5 8.14 ± 0.13 187.7 ± 5.8 4.30 ± 0.24 – 1031.7 ± 0.2 –
7976303 50.85 ± 0.01 1.346 ± 0.003 866 ± 4 9.21 ± 0.13 182.3 ± 4.7 5.09 ± 0.22 – 979.4 ± 0.6 –
8026226 33.85 ± 0.02 1.231 ± 0.010 611 ± 90 8.03 ± 0.54 334.5 ± 160.0 3.15 ± 0.31 – – 343 ± 25
8524425 59.23 ± 0.01 1.539 ± 0.001 1069 ± 3 8.96 ± 0.15 184.2 ± 4.4 5.09 ± 0.22 10.15 ± 0.72 1049.6 ± 0.1 –
8702606 39.55 ± 0.01 1.416 ± 0.002 667 ± 2 10.74 ± 0.20 116.8 ± 2.5 3.97 ± 0.08 8.70 ± 0.25 – 167 ± 17
8738809 49.44 ± 0.02 1.178 ± 0.008 905 ± 9 8.40 ± 0.31 217.6 ± 11.4 3.86 ± 0.24 – 852.4 ± 0.2 –
9512063 49.55 ± 0.02 1.340 ± 0.008 890 ± 23 7.93 ± 0.53 238.1 ± 62.7 4.55 ± 0.27 – – –
10018963 54.66 ± 0.01 1.352 ± 0.003 1035 ± 6 7.55 ± 0.12 246.5 ± 5.9 4.63 ± 0.19 – 786.0 ± 0.3 –
10147635 37.08 ± 0.01 1.303 ± 0.006 672 ± 15 8.84 ± 0.39 190.9 ± 19.6 3.26 ± 0.25 – 683.9 ± 0.3 –
10273246 47.98 ± 0.02 1.391 ± 0.006 881 ± 8 10.58 ± 0.36 189.8 ± 10.4 4.19 ± 0.28 – 977.8 ± 1.0 –
10593351 31.18 ± 0.01 1.354 ± 0.006 543 ± 5 12.77 ± 0.47 133.8 ± 7.1 3.49 ± 0.24 – – 350 ± 23
10873176 48.43 ± 0.11 1.314 ± 0.037 845 ± 11 14.34 ± 0.90 117.6 ± 11.8 – – – –
10920273 57.19 ± 0.02 1.435 ± 0.007 1035 ± 13 10.73 ± 0.40 185.4 ± 22.0 5.19 ± 0.22 – – –
10972873 58.07 ± 0.01 1.469 ± 0.003 1033 ± 5 8.84 ± 0.17 186.3 ± 6.1 5.26 ± 0.21 10.57 ± 0.13 1041.7 ± 0.1 –
11026764 50.07 ± 0.01 1.454 ± 0.003 866 ± 3 8.08 ± 0.13 171.5 ± 4.0 4.74 ± 0.19 10.09 ± 0.23 926.4 ± 0.1 –
11137075 65.35 ± 0.01 1.510 ± 0.003 1177 ± 7 9.66 ± 0.29 181.7 ± 11.0 6.31 ± 0.18 – 1143.6 ± 0.1 –
11193681 42.48 ± 0.01 1.497 ± 0.004 737 ± 4 10.21 ± 0.20 151.5 ± 5.6 3.81 ± 0.16 – – –
11395018 47.76 ± 0.02 1.330 ± 0.006 852 ± 10 10.35 ± 0.25 171.7 ± 15.9 4.32 ± 0.18 – – –
11414712 43.62 ± 0.01 1.444 ± 0.002 750 ± 3 8.73 ± 0.15 146.4 ± 3.4 4.11 ± 0.13 10.07 ± 0.20 – 204 ± 17
11771760 32.10 ± 0.02 1.262 ± 0.008 526 ± 5 12.20 ± 0.35 106.7 ± 7.7 3.02 ± 0.13 – – 191 ± 10
12508433 44.84 ± 0.00 1.490 ± 0.002 790 ± 2 11.14 ± 0.21 111.7 ± 2.0 3.89 ± 0.17 9.32 ± 0.23 – 164 ± 9

Figure 10. The p–g diagram using the lowest order dipolar g mode γ 1

versus �ν for less-evolved subgiants. We also include five stars observed
by ground-based telescopes and CoRoT, shown in the star symbols. The
theoretical evolutionary tracks (Paper II) are labelled with mass in solar
units, with the black arrow pointing in the direction of evolution.

g diagram). The diagram has been proved useful for distinguishing
RGB and HeB stars because the two types of stars cluster at different
locations (Bedding et al. 2011; Mosser et al. 2012b; Stello et al.
2013; Vrard, Mosser & Samadi 2016). We made the diagram in
Fig. 11 for more evolved subgiants. These stars have more than one
avoided crossing, which makes measuring ��1 feasible, although
we note that these are lower order g modes so we are not in the
asymptotic regime. For subgiants, stellar models predict ��1 is

Figure 11. The dipolar g-mode period spacing ��1 versus �ν for more
evolved subgiants. The theoretical evolutionary tracks (Choi et al. 2016)
are labelled with mass in solar units, with the black arrow pointing in the
direction of evolution.

rather independent of �ν, especially for higher mass subgiants,
such that they evolve almost vertically (Benomar et al. 2013; Gai
et al. 2017).

Finally, we note that using the two diagrams to infer mass and age
provides a method independent of asteroseismic scaling relations.
This is discussed in more detail in Paper II.
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6 MO D E L I N E W I D T H S

6.1 Linewidths as a function of frequency

The modes of solar-like oscillations are damped by convection.
For these observations, the modes have lifetimes much shorter than
the length of time series, which results in a broadened Lorentzian
shape in the power spectrum. The modes are hence ‘resolved’. The
linewidth [full width at half-maximum (FWHM)] of that shape
can be translated to the lifetime through τ = (π�)−1, or damping
rate η = π�. This is important to constrain the physics of the
superadiabatic layers near the surface, including the mechanism of
how the kinetic energy of oscillations is dissipated into turbulent
convection. The answer requires a detailed treatment of convection,
but it is difficult to formulate with current convection theories
(Gough 1980; Balmforth 1992a; Gabriel 1996; Houdek et al. 1999;
Grigahcène et al. 2005; Xiong, Deng & Zhang 2015). However,
the theories are able to reproduce the frequency dependence of the
linewidths seen in the observations, provided the free parameters in
the modelling are carefully calibrated, in red giants (Aarslev et al.
2018) and in MS stars (Houdek et al. 2019). 3D hydrodynamical
convection simulations may offer a promising path, by eliminating
the degrees of freedom in the theory and provide a numerical
solution (e.g. Belkacem et al. 2019; Zhou, Asplund & Collet 2019).

Appourchaux et al. (2014) first parametrized the �–ν relation in a
given star and Lund et al. (2017) improved the fitting details. Here,
we followed the definition in Lund et al. (2017) to fit the linewidths
of radial modes, as follows:

ln �(ν; θ ) = α ln(ν/νmax) + ln �α + ln ��dip

1 +
[

2 ln(ν/νdip)
ln(Wdip/νmax)

]2 , (20)

where the free parameters are θ = (α, �α , ��dip, νdip, Wdip). This
� – ν relation follows a power-law but saturates near νmax to form a
plateau (or a dip) centred on νdip, with width Wdip and height ��dip.
The dip could originate from a resonance of the thermal time-scale
in the superadiabatic layer and mode frequency (Balmforth 1992a;
Belkacem et al. 2011). To fit the parameters, we optimized the
likelihood function:

ln L ∝
∑

i

[ln �i − ln �(νi ; θ )]2
/
σ 2

ln �i
. (21)

The modes used in this fit were radial modes satisfying Bayes
factors ln K > 1. The priors of ��dip and Wdip deserve a further
mention. As suggested by Lund et al. (2017), the values of ��dip

were bound to be between 0 and 1 to reduce correlations between
the parameters. Wdip can have two solutions: one larger than νmax,
and one smaller. We kept the convention from Lund et al. (2017) to
use the larger one. We estimated the FWHM of the dip through
FWHM= νdip

∣∣√Wdip/νmax − √
νmax/Wdip

∣∣ (Appourchaux et al.
2016), and the amplitude of the dip as Adip = exp |ln ��dip| (Lund
et al. 2017). Fig. 12 shows the fit for Gemma (KIC 11026764),
which shows a dip around νmax. Note that some stars do not present
the evidence of a dip. Their linewidths increase monotonically with
frequencies. We only fitted those stars with the first two terms of
equation (20). Fig. 12 also shows an example, KIC 9512063, where
the large random errors obscure the presence of either a dip or a
plateau. Table 4 lists the fitted parameters for all stars.

The dipole modes have a more complicated � – ν relation.
The dipole modes with more g-mode characteristics have larger
inertia and are less affected by damping from the surface than are
radial modes, hence resulting in smaller linewidths. Benomar et al.
(2014) suggested using linewidths to measure mode inertias, which
could also be obtained from the asymptotic formalism of mixed

Figure 12. Linewidths as a function of frequencies for KIC 9512063 (top
panel) and Gemma (KIC 11026764, bottom panel), denoted by the filled
circles. The solid lines are the fits of equation (20), with KIC 9512063 using
the first two terms (the power law), and Gemma using the full terms. The
dashed line is the power-law component in Gemma’s fit. The shaded green
regions show 1σ and 3σ credible intervals for the fit. The red star symbols
around 900 μHz are the estimations of linewidth at νmax, obtained from the
MCMC samples.

modes (Shibahashi 1979; Goupil et al. 2013). Mosser et al. (2018)
introduced a stretch function ζ , which is the degree of mode trapping
characterized by the ratio of mode inertia inside the g-mode cavity
to that throughout the star. The linewidths of mixed modes, �1,
relate to those of radial modes, �0, as follows (Mosser et al. 2011,
2015, 2018; Vrard et al. 2016; Hekker & Christensen-Dalsgaard
2017):

�1 = �0(1 − ζ ), (22)

where

ζ (ν) =
[

1 + q

N (ν)

1

q2 cos2 θp(ν) + sin2 θp(ν)

]−1

, (23)

N (ν) = �ν

ν2��1
, (24)

and

θp(ν) = π

{
ν

�ν
−

[
np + l

2
+ εp − d0l + αp

2

(
np − νmax

�ν

)2
]}

,

(25)

Using the above definition of θp, together with equations (3) and 5,
we fitted the asympotic parameters {εp, αp, d01, �ν, ��1, εg}
to the dipole mode frequencies estimated from the peakbagging.
The value of ζ was then straightforwardly obtained. In Fig. 13,
we compare �1 with �0(1 − ζ ) and find good agreement. That is,
the widths of the dipole modes are smaller than those of the radial
modes, as expected. This suggests that the asymptotic theory agrees
well with the observation.
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Table 4. Fit parameters of the �–ν relation.

KIC �(νmax) α �α (μHz) ��dip (μHz) νdip (μHz) Wdip (μHz) FWHM (μHz) Adip (μHz−1)

2991448 0.73 ± 0.22 1.35 ± 1.38 56.96 ± 55.33 0.01 ± 0.01 1100 ± 11 1477 ± 93 311 ± 72 80 ± 87
3852594 4.42 ± 1.18 1.35 ± 0.64 5.95 ± 0.40 – – – – –
5607242 0.43 ± 0.16 4.24 ± 0.71 2.35 ± 1.17 0.12 ± 0.04 698 ± 7 898 ± 76 191 ± 60 8 ± 3
5689820 0.13 ± 0.05 1.71 ± 1.65 12.70 ± 30.15 0.01 ± 0.05 731 ± 67 2534 ± 1580 1029 ± 565 69 ± 233
5955122 1.67 ± 0.41 3.17 ± 0.94 11.83 ± 28.40 0.10 ± 0.12 874 ± 37 1729 ± 554 621 ± 298 10 ± 12
6064910 5.13 ± 1.33 0.16 ± 0.17 6.59 ± 0.38 – – – – –
6442183 0.64 ± 0.13 2.93 ± 0.41 2.79 ± 1.44 0.20 ± 0.07 1166 ± 12 1572 ± 181 350 ± 136 5 ± 2
6693861 0.59 ± 0.46 5.39 ± 2.75 42.11 ± 58.02 0.01 ± 0.03 838 ± 39 1529 ± 337 532 ± 195 71 ± 174
7174707 0.42 ± 0.22 1.70 ± 1.41 18.61 ± 39.44 0.02 ± 0.07 806 ± 27 1723 ± 473 613 ± 238 54 ± 211
7199397 1.15 ± 0.26 2.23 ± 0.34 1.41 ± 0.07 – – – – –
7747078 1.04 ± 0.16 3.15 ± 1.56 10.96 ± 34.76 0.09 ± 0.18 958 ± 66 2006 ± 751 753 ± 389 11 ± 20
7976303 1.76 ± 0.26 2.11 ± 1.09 8.63 ± 34.46 0.18 ± 0.28 933 ± 121 2790 ± 2583 1155 ± 1027 6 ± 9
8524425 0.60 ± 0.65 4.64 ± 1.13 2.97 ± 3.81 0.21 ± 0.13 1096 ± 35 1603 ± 284 447 ± 199 5 ± 3
8702606 0.31 ± 0.09 3.14 ± 0.95 12.17 ± 32.95 0.04 ± 0.10 660 ± 26 1547 ± 512 572 ± 239 23 ± 55
9512063 1.21 ± 0.63 1.75 ± 0.92 1.48 ± 0.18 – – – – –
10018963 2.37 ± 0.42 2.60 ± 0.22 2.37 ± 0.09 – – – – –
10147635 2.79 ± 0.73 3.71 ± 0.43 2.43 ± 0.16 – – – – –
10273246 1.68 ± 0.46 5.07 ± 1.08 8.51 ± 21.03 0.23 ± 0.31 1359 ± 695 5690 ± 2432 2919 ± 1719 4 ± 6
10593351 2.03 ± 0.64 3.04 ± 0.44 2.29 ± 0.17 – – – – –
10873176 3.26 ± 1.59 3.67 ± 2.10 3.42 ± 0.76 – – – – –
10920273 0.57 ± 0.25 8.48 ± 3.66 21.88 ± 44.10 0.03 ± 0.07 1082 ± 35 1577 ± 443 459 ± 311 33 ± 81
10972873 0.67 ± 0.14 3.69 ± 1.40 13.36 ± 38.59 0.05 ± 0.14 1062 ± 52 2204 ± 932 823 ± 483 18 ± 46
11026764 0.73 ± 0.17 2.17 ± 0.43 1.99 ± 0.36 0.31 ± 0.06 882 ± 10 1065 ± 51 183 ± 43 3 ± 1
11137075 0.53 ± 0.22 10.02 ± 1.98 49.24 ± 55.66 0.01 ± 0.01 1224 ± 25 1912 ± 173 601 ± 115 110 ± 173
11193681 0.86 ± 0.22 3.06 ± 0.37 1.20 ± 0.06 – – – – –
11395018 0.67 ± 0.15 1.72 ± 1.56 35.73 ± 51.69 0.02 ± 0.03 822 ± 21 1497 ± 200 469 ± 115 45 ± 70
11414712 0.69 ± 0.16 2.66 ± 0.26 0.94 ± 0.04 – – – – –
11771760 0.63 ± 0.17 0.79 ± 0.52 1.05 ± 0.07 – – – – –
12508433 0.27 ± 0.06 3.92 ± 1.66 26.15 ± 44.41 0.01 ± 0.03 796 ± 56 2294 ± 556 890 ± 230 73 ± 154

Figure 13. Linewidths of dipole mixed modes versus those of radial
modes modified with the stretch function ζ . The dashed line indicates
the 1:1 relation. The horizontal dotted line denotes the nominal frequency
resolution, 1/tobs, of KIC 9512063, which is around 0.1 μHz, the largest
among the sample.

6.2 Scaling relations for linewidths

Scaling relations for linewidths were studied only recently, focusing
on the linewidths around νmax, denoted by �(νmax). Chaplin et al.
(2009) used non-adiabatic pulsation computations and ground-
based observations to study the linewidths across different stages of
evolution. They showed that the linewidths scale with fundamental
stellar parameters, primarily Teff. This dependence on surface
properties is expected because damping mainly happens in the
superadiabatic regions near the surface (Goldreich & Kumar 1991).
The studies of CoRoT and Kepler targets also suggested that �(νmax)
correlates mainly with Teff, but only weakly depends on log g
(Baudin et al. 2011; Appourchaux et al. 2014; Vrard et al. 2018).

To estimate �(νmax), we used the MCMC samples from the fit of
the � – ν relation (Section 6.1) to draw the probability distribution
of � at νmax. This method assumes that � – ν follows the power-law
model (or the power law with a dip). Fig. 12 shows an estimation
for Gemma (KIC 11026764), marked by a red star around 700 μHz.

In Fig. 14, we show �(νmax) for our subgiant sample, together
with MS stars from Lund et al. (2017), and RGB and HeB stars from
Vrard et al. (2018). Note that Vrard et al. (2018) calculated �(νmax)
for the giants differently to how it was done for subgiants and MS
stars by averaging linewidths using three modes near νmax. Fig. 14
shows that �(νmax) mainly depends on Teff, and weakly correlates
with log g. To parametrize this relation, we fitted �(νmax) using

log(�/�0) = c1 log(Teff/5777 K) + c2 log(g/274 ms−1). (26)

We optimized the likelihood function:

ln L ∝ [ln �i − ln �(Ti, gi ; θ )]2 /
(
2σ 2

ln �i

)
. (27)
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Figure 14. Kiel diagram with colour-coded �(νmax). The measurements of
dwarfs and red giants are adopted from Lund et al. (2017) and Vrard et al.
(2018), respectively. The theoretical evolutionary tracks (Choi et al. 2016)
before and after the MS turn-off are shown in the dashed and solid lines,
respectively, with each track labelled with mass in solar units.

Table 5. Fit parameters of the �(νmax) scaling relation.

Phase �0 c1 c2

MS 1.10 ± 0.01 13.41 ± 0.10 0.05 ± 0.02
Subgiants 0.50 ± 0.04 13.71 ± 0.19 − 0.65 ± 0.06
RGB 0.25 ± 0.00 2.78 ± 0.09 0.09 ± 0.00
HeB 0.47 ± 0.02 1.70 ± 0.13 0.19 ± 0.01

Some previous works (Belkacem et al. 2012; Samadi, Belkacem &
Sonoi 2015) pointed out that �(νmax) depends on Teff and log g
differently in each evolutionary stage, which motivates us to fit
them separately as well.

The fitted parameters are shown in Table 5. From the table,
we conclude that �(νmax) primarily depends on Teff but with
significantly different power-law indices (c1) for red giants and non-
red giants. This could be attributed to different dominant damping
mechanisms, as some works suggested (e.g. Baudin et al. 2011).
However, it could also be an artefact while selecting modes to
compute �(νmax) for red giants (Belkacem et al. 2012). The power-
law index for log g (c2) in subgiants has a reversed sign compared
to MS stars and red giants. This effect could be slightly spotted in
Fig. 14.

7 MODE A MP LIT U D E S

7.1 Amplitudes as a function of frequency

The amplitudes of radial modes follow a roughly Gaussian distri-
bution centred on νmax, as we analysed in Section 4. The dipole
mixed modes have an added dependence on mode inertia, but are

Figure 15. Height of dipole mixed modes H1 versus those of radial modes
H0. The dashed line indicate the 1:1 relation, and the dotted line shows 1.5:1
relation. The factor of 1.5 shows the median value of our observed H1/H0,
which stems from a geometric effect.

still predictable using the stretch function: A2
1 = (1 − ζ )A2

0, with A0

being the radial-mode amplitudes (Benomar et al. 2014; Belkacem
et al. 2015; Mosser et al. 2018). Considering �1 = (1 − ζ )�0, we
obtained H1 = H0, suggesting similar mode heights. In Fig. 15,
we show H1 against H0. The points deviate from the 1:1 relation
because the height of dipole modes are influenced by a geometric
effect. Dividing H1 by H0, we get the visibility factor V 2

1 with a
median value equal to 1.5, similar to the one calculated using stellar
atmosphere models (Ballot, Barban & van’t Veer-Menneret 2011),
which is also around 1.5.

7.2 Scaling relations for amplitudes

Kjeldsen & Bedding (1995) first proposed a scaling relation for the
amplitudes of solar-like oscillations to scale from the Sun to other
stars, relating both radial velocity and photometric amplitude to
fundamental parameters L, M and Teff. It received numerous appli-
cation, e.g. for optimizing target selections (Chaplin et al. 2011b;
Schofield et al. 2019), and understanding how modes are excited
with different treatment for convection and excitation processes
(e.g. Goldreich & Keeley 1977; Balmforth 1992b; Samadi & Goupil
2001; Chaplin et al. 2005; Zhou et al. 2019). As we mentioned in
Section 4, while estimating νmax, we also measured the maximum
photometric amplitude expressed by Amax and the width of the
Gaussian-like envelopes. To compare Amax with scaling relations,
we used two results from Huber et al. (2011):

Amax

Abol,�
= cK

(
L

L�

)0.838 (
M

M�

)−1.32 (
Teff

Teff,�

)−1

, (28)

and Corsaro et al. (2013):

Amax

Abol,�
= 1.38cK

(
νmax

νmax,�

)−2.314 (
�ν

�ν�

)2.088 (
Teff

Teff,�

)0.365

,

(29)
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Figure 16. Top panel: Amax estimated using the radial mode amplitudes
versus Amax from the scaling relations. The dashed line indicates the 1:1
relation. Bottom panel: the absolute differences in the top panel.

where Abol, � = 3.6 ± 0.11 ppm and cK = (Teff/5934 K)0.8 (Huber
et al. 2011). There has been some discussions concerning the
exponent of each term (e.g. Houdek et al. 1999; Houdek 2006;
Samadi et al. 2007), and the above two papers set the exponents
free and calibrated with observations (see also e.g. Stello et al.
2011). Fig. 16 shows the comparison. In the regime of subgiants,
Huber et al.’s (2011) relation seems to fit better, with a correlation
coefficient of 0.55 against 0.49 from Corsaro et al. (2013). However,
both relations overestimate the amplitudes, by factors of 9 and
24 per cent, respectively. The scatter of the data points could be
caused by activity (Chaplin et al. 2011a) or an unaccounted metal-
licity effect (Yu et al. 2018). We also verified that the suppression
effect of non-radial modes seen in red giants (Mosser et al. 2012a;
Stello et al. 2016) does not affect the subgiants in our sample (Garcı́a
et al. 2014; Fuller et al. 2015).

In Fig. 17, we plot both Amax and the width against νmax. The
values of Amax increase and the widths decrease with decreasing
νmax, indicating that the Gaussian envelope becomes higher and
narrower as the star evolves. The points in Fig. 17 are also colour-
coded with mass, and we identify a weak correlation: at a given
νmax, Amax is smaller in higher mass stars, with the width being
larger. This phenomenon is also seen in the Kepler red giant sample
(e.g. Yu et al. 2018). We also analysed the effect of metallicity on
mode amplitude but due to the small size of our sample, we were
not able to draw any conclusions.

8 C O N C L U S I O N S

In this paper, we presented oscillation frequencies, linewidths and
amplitudes for 36 subgiants observed by the 4-yr Kepler mission.
We derived those parameters with uncertainties from MCMC fitting,
using an open-source software package SOLARLIKEPEAKBAGGING.
Significance tests and visual inspections were applied to ensure a
robust identification. Our main results are summarized as follows:

(i) With the long baseline of Kepler observations, the median
value for the frequency uncertainties of the subgiants is 0.180

Figure 17. Amax and width of the Gaussian envelope against νmax. The
colour denotes stellar mass.

μHz. For modes with S/N = 3, the typical uncertainty is 0.1
μHz, providing strong constraint on stellar models with these
data.

(ii) The asymptotic parameters εp, �ν, νmax, and δν0l were
derived using the mode parameters. We identified a Teff and log g
dependence for εp. We also revisited the C – D diagram and the
�ν – νmax diagram with a focus on subgiants. The subgiants deviate
slightly from the general trend, but could be explained using simple
scaling arguments or stellar models.

(iii) We presented two p – g diagrams, the γ 1 – �ν diagram for
less-evolved subgiants, and the ��1 – �ν diagram for more evolved
subgiants. Both diagrams were populated with Kepler observations
and can be used as a first simple estimation of stellar mass.

(iv) The linewidths of radial modes were analysed as functions
of frequencies, and the linewidths of dipolar mixed modes agree
well with asymptotic predictions. We verified the dependence of
�(νmax) on Teff and also observed a weak log g effect.

(v) The amplitudes of dipolar mixed modes also agree with
asymptotic predictions. The mass dependence of Amax and the width
is present both in subgiants and MS stars.

The unprecedented quality of asteroseismic data presented by this
sample is valuable for the study of stellar physics. The mode
frequencies are further used as modelling input in Paper II. The
linewidths and amplitudes derived in this work can be used to
study mode excitation and damping. In the observation data, one
missing piece that remains unexplored in this work is the rotational
splitting, which provides a golden opportunity to study the angular
momentum transport in subgiants. We will continue to study this
topic in this series of papers.
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APPENDIX A : POW ER SPECTRA O F 3 6
SUBGI ANTS

Left-hand panels: echelle diagrams. The blue circles (l = 0), red
upward triangles (l = 1), green squares (l = 2), and purple downward
triangles (l = 3) mark the extracted frequencies. Right-hand panels:
power spectra. The fitted power spectra (black) are overlaid on
the original power spectra (light grey) and the 1.0-μHz smoothed
spectra (grey).
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3 Core and envelope rotation rates of subgiant
stars

The paper produced in this chapter is in preparation and will be submitted to a peer-
review journal. It may be expanded to use rotating stellar models to constrain the effi-
ciency of angular momentum transport. The work is a collaborative effort. I performed
the observational data analysis and stellar modelling. I and Jamie Tayar contributed
to most experiments in this work. Jamie Tayar and Dennis Stello analysed the stellar
models. Daniel Huber and Simon Murphy interpreted the rotation results. Sébastien
Deheuvels contributed to the extraction of rotation rates. I wrote the manuscript, and
the other authors have not yet commented on it.

49



MNRAS 000, 1–6 (2015) Preprint 8 May 2023 Compiled using MNRAS LATEX style file v3.0

Core and envelope rotation rates of Kepler subgiants probed by
asteroseismology

Yaguang Li ,1? Jamie Tayar,2 Timothy R. Bedding,1 Dennis Stello,3 Daniel Huber,4

Simon J. Murphy5 and Sébastien Deheuvels6
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ABSTRACT

The angular momentum transport inside stars is a complex process that is not fully understood. Subgiants provide
an excellent opportunity to test different mechanisms, because stars in this phase begin to deviate from near solid-
body rotation. In this study, we measured the core and envelope rotation rates for 17 subgiants observed by Kepler ,

more than twice than previously measured stars. We used stellar models to determine the contribution of core and
envelope to the rotational splittings of mixed modes, and then we fitted the splittings in the power spectrum. Firstly,
we found that early subgiants exhibit similar core and envelope rotation periods, which fall within the range of 10
to 30 days. These rotation periods support the weakened magnatic breaking theory on the main sequence. Secondly,

we observed that strong differential rotation occurs around 800 Myr after the main sequence for stars with a mass
lower than 1.2 M�, and approximately 300 Myr for higher-mass stars. The variation in the core rotation rates is
not highly correlated with other stellar properties, while the envelops slow down significantly towards the red-giant

branch. These findings provide insight on the complex dynamics of angular momentum transport inside stars.

Key words: stars: rotation – stars: oscillations – stars: low-mass.

1 INTRODUCTION

Despite the significant progress that asteroseismology has
made in measuring rotation rates in stars at various evolu-
tionary stages, there remains a substantial knowledge gap in
understanding angular momentum (AM) transport in stellar
physics (Aerts 2021). Proposed processes for AM transport
have yet to account for these observations.

At birth, stars have different initial rotation rates. Mag-
netic breaking causes main-sequence stars with a mass below
1.2 M� to have synchronised rotation rates with age, result-
ing in a well-defined rotation-mass-age relationship (Meibom
et al. 2011; Barnes et al. 2016; Gruner & Barnes 2020). How-
ever, a weakened magnetic breaking disrupts this relationship
during the late main-sequence (Angus et al. 2015; van Saders
et al. 2016; Metcalfe & Egeland 2019; Metcalfe et al. 2020;
Hall et al. 2021). The envelope rotation rates in solar-like
main-sequence stars, as traced by p-mode splittings, are con-
sistent with surface rotation rates measured through spectro-

? E-mail: yaguang.li@sydney.edu.au

scopic linewidths or light curve spot modulations (Benomar
et al. 2015; Nielsen et al. 2017; Hall et al. 2021). This suggests
near solid-body rotation in the convective envelope during
the main-sequence phase. In stars with a mass larger than
1.2 M�, which do not exhibit convective envelopes, rotation
rates largely depend on the initial conditions when the stars
were born. Near-core rotation rates inferred from g mode pe-
riod spacing patterns generally agree with surface rotation
rates measured by p mode splittings, Zeeman splittings, or
spot modulations (Kurtz et al. 2014; Donati & Landstreet
2009; Van Reeth et al. 2018; Li et al. 2020a). These observa-
tions again support the notion of near solid-body rotation on
the main-sequence, for most intrinsically slow rotators.

Our understanding of how angular momentum (AM) is
transported inside evolved stars has been dramatically im-
proved by the use of p-g mixed modes, which allows to probe
both the core and envelope rotation rates. Early subgiants
have been observed to exhibit near solid-body rotation (De-
heuvels et al. 2020). On the red-giant branch (RGB), the
core rotates rapidly with a range of values between 10 and
20 days, whereas the surface rotates much more slowly (Beck

c© 2015 The Authors
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Figure 1. H–R diagram showing L vs. Teff for the subgiant stars
studied in this work, shown as circles colour-coded by metallicity.

The Sun is marked by the usual symbol. The theoretical evolution-
ary models, calculated with MESA using Yinit= 0.29, Zinit= 0.015,

and αMLT= 2.0, are shown in solid (main-sequence) and dashed

(post-main-sequence) lines, labelled with mass in solar units.

et al. 2012; Deheuvels et al. 2014; Ceillier et al. 2017; Triana
et al. 2017; Gehan et al. 2018; Fellay et al. 2021). During the
helium-burning phase (HeB), the core undergoes spin down
and rotates in the range of 30–200 days (Deheuvels et al.
2015; Mosser et al. 2012), with a gradual decrease over sur-
face gravity (Tayar et al. 2019).

Shear instabilities and meridional circulation have been
proposed as mechanisms for AM transport, but they have
not been able to account for the observed rotation rates in
stars (Marques et al. 2013; Eggenberger et al. 2012; Ceil-
lier et al. 2013). Other candidates including internal gravity
waves (Fuller et al. 2014; Pinçon et al. 2016), mixed modes
(Belkacem et al. 2015a,b), and magnetic fields (Cantiello et al.
2014; Eggenberger et al. 2019; den Hartogh et al. 2019; Eggen-
berger et al. 2022; Moyano et al. 2023) have been proposed
to explain the observations. During the evolution from early
subgiant to the RGB phases, stars undergo significant struc-
tural changes: the core contracts and the envelope expands.
Precise age measurements using mixed modes (Benomar et al.
2012; Li et al. 2020c) offer an opportunity to precisely con-
strain the timescales for AM transport. However, the rotation
rates of only a few subgiants have been measured (Deheuvels
et al. 2014, 2020). To bridge this knowledge gap, we extend
the work of Li et al. (2020b) and present new measurements
of the rotation rates of Kepler subgiants in this study.

2 DATA ANALYSIS

2.1 Sample selection

We collected the early subgiant sample (defined by the mixed-
mode density smaller than 1) with mode frequencies ex-
tracted by Li et al. (2020b). To expand beyond early sub-
giants, we also examined the sample of Mathur et al. (2022).
Combined with the 9 early subgiants from Li et al. (2020b),
our sample now consists of 17 stars with a minimum νmax

value of 300 µHz. The Hertzsprung–Russell diagram for our
sample is presented in Fig. 1.

2.2 Observations

In order to obtain a reference model for each star, we need
the observed mode frequencies νnl to constrain models. We
extracted the frequencies with the “peakbagging” approach
(Handberg & Campante 2011; Davies et al. 2016; Lund et al.
2017), using the same method as illustrated in Li et al.
(2020b). In brief, we fitted the power spectrum of a mode
associated with orders (n, l,m) with a Lorentzian profile:

Lnlm(ν) =
Elm(i)2A2

nl/(πΓnl)

1 + 4(ν − νnl +mνs,nl)2/Γ2
nl

, (1)

where νnl is the mode frequency, Anl the mode amplitude, Γnl
the mode linewidth, and νs,nl the splitting frequency, which
varies with n and l. The visibility function Elm(i) depends on
the inclination i and is given by

Elm(i) =
(l − |m|)!
(l + |m|)!

[
P
|m|
l (cos i∗)

]2
, (2)

where P
|m|
l are the Legendre functions (Gizon & Solanki

2003). At this step, we treated the rotational splittings νs,nl
included in the fit as completely free parameters, without
considering the connections between each mode. This is to
avoid any potential bias on mode frequencies νnl and their
associated uncertainties.

We derived the atmospheric parameters Teff and [Fe/H]
for the sample through spectroscopy using the Keck HIRES
spectrograph (Vogt et al. 1994) at the Keck-I 10-m telescope
on Maunakea observatory, Hawai‘i (Furlan et al. 2018). The
spectra were obtained and reduced by the California Planet
Search queue (CPS, Howard et al. 2010). We used the C5
decker and obtained spectra with a S/N per pixel of 80 at
∼ 600 nm and a spectral resolving power of R ∼ 60000. To
measure the metallicities, we utilized Specmatch-synth (Pe-
tigura 2015), which fits a synthetic grid of model atmospheres
and has been thoroughly validated through the California Ke-
pler Survey (Petigura et al. 2017; Johnson et al. 2017).

With Gaia DR3 (Gaia Collaboration et al. 2016, 2020), we
determined their luminosities, L, by combining the parallaxes
with the 2MASS K-band magnitudes. We used the “direct”
method implemented in the software ISOCLASSIFY (Huber
et al. 2017; Berger et al. 2020), combining with the Green
et al. (2019) dust map and the bolometric corrections from
MIST models (Choi et al. 2016).

2.3 Stellar models

We constructed a grid of stellar models with MESA (ver-
sion r15140; Paxton et al. 2011, 2013, 2015, 2018, 2019) and

MNRAS 000, 1–6 (2015)
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Figure 2. Probability distributions of the core rotation rate Ωcore,
the envelope rotation rate Ωenv, and the inclination angle i, for

KIC 3429205.

GRYE (version 6.0.1; Townsend & Teitler 2013). We refer
to Li et al. (2022) for a full description of the adopted in-
put physics. The grid spans a range of input parameters, in-
cluding stellar mass M ∈ (0.7, 1.8) M�, initial helium abun-
dance Yinit ∈ (0.22, 0.32), metallicity [M/H] ∈ (−0.5, 0.5), the
mixing-length parameter αMLT ∈ (1.3, 2.7), and core over-
shoot fcore ∈ (0., 0.02). We uniformly sampled these five pa-
rameters using a quasi-random Sobol sequence with a total
number of 16384 points (Bellinger et al. 2016). Each set of
parameters defines a distinct evolutionary track. At each time
step, we saved the stellar structure and solved for the radial
and dipole modes based on the adiabatic oscillation equa-
tions. The surface effect was corrected based on the methods
outlined in Ball & Gizon (2014); Li et al. (2022).

To determine the best-fitting model for each stars, we
utilised classical observables q = {Teff, [Fe/H],L}, and the
frequencies of radial (l = 0) and dipole (l = 1) modes. Our
approach involved minimising the χ2 function given by

χ2 =
∑

q

(qobs − qmod)2

σ2
q

+
∑

νnl

(νnl,obs − νnl,mod)2

σ2
νnl

. (3)

2.4 Measuring the core and envelope rotation rates

The rotational splitting of a mode could be described by
the following expression (Ledoux 1951; Unno et al. 1989;
Christensen-Dalsgaard & Berthomieu 1991; Goupil et al.
2013):

νs =
1

2π

∫ 1

0

K(x)Ω(x) dx, (4)

where x = r/R is the normalised radius, Ω(x) is the radial
rotational profile in angular frequency. K(x) is the rotational

kernel defined as

K(x) =
1

I

(
z2

1 + z2
2 −

2√
l(l + 1)

z1z2 − 1

l(l + 1)
z2

2

)
1

x
, (5)

z1 = (3ρ/ρ̄)1/2x3/2ξr/R, (6)

and

z2 =
√
l(l + 1)(3ρ/ρ̄)1/2x3/2ξh/R, (7)

where I is the mode inertia, ρ is the density, ρ̄ is the stellar
mean density, and ξr and ξh represents radial and horizontal
displacement eigenfunctions, respectively.

Furthermore, we can express Eq. 4 as a sum of two terms
corresponding to the rotational kernels in the core and enve-
lope regions, respectively, with characteristic rotation rates,
Ωcore and Ωenv:

νs = βcoreΩcore + βenvΩenv, (8)

where

βcore =

∫ xcore

0

K(x) dx, (9)

βenv =

∫ 1

xcore

K(x) dx, (10)

and

Ωcore =

∫ xcore
0

Ω(x′)K(x′) dx′∫ xcore
0

K(x′) dx′
, (11)

Ωcore =

∫ 1

xcore
Ω(x′)K(x′) dx′

∫ 1

xcore
K(x′) dx′

. (12)

Here, xcore = rcore/R is the upper turning point of the g mode
cavity.

Based on the reference model we obtained in Section 2.3,
we calculated βcore and βenv for all l = 1 modes. To obtain
estimates of Ωcore and Ωenv, we substituted Eq. 8 as the ex-
pression for νs,nl in Eq. 1, and then re-fitted the power spec-
tra. Fig. 2 shows an example of well-constrained posterior
distributions of Ωcore, Ωenv and the inclination i.

3 RESULTS AND DISCUSSIONS

3.1 Core and envelope rotation rates

Fig. 3 presents the core and envelope rotation periods as a
function of radius or log g, with stellar mass indicated by
colour. The envelope rotation periods for main-sequence stars
probed by p mode splittings (Hall et al. 2021) and the core
rotation periods for RGB stars probed by p-g mixed mode
splittings (Gehan et al. 2018) are also shown for comparison.
As the star evolve from the main sequence to the RGB, their
core rotation rates exhibit a wide range of values, typically
within 10 to 30 days. The envelops slow down significantly in
this process.

Our sample spans the subgiant phase and reveals a clear de-
velopment of differential rotation in this evolutionary phase.
To highlight this effect, we calculated the ratio of the core
and envelope rotation rates Ωcore/Ωenv as a function of mixed
mode density N , defined as ∆ν/ν2

max/∆Π1, where ∆ν, νmax

MNRAS 000, 1–6 (2015)
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Figure 4. Ratio of the core and envelope rotation rates vs. mixed

mode density as a proxy of evolutionary stage.

and ∆Π1 are the p-mode large separation, the frequency of
maximum power, and the g-mode period spacing, respec-
tively. Fig. 4 illustrates this relationship.
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Figure 5. Core and envelope rotation periods versus post-main-

sequence age in three separate mass bins.

3.2 Implications on gyrochronology

Early subgiants with R ∼ 2 R� or log g ∼ 3.9, display similar
rotation rates across the core and envelope, with rotation pe-
riods ranging from 10 to 30 days. Interestingly, these rotation
periods are in a similar range of old main-sequence asteroseis-
mic targets (Angus et al. 2015; Hall et al. 2021). This sug-
gests that the rotation rates of early subgiants can further
support the scenario of weakened magnetic braking during
the intermediate main-sequence (van Saders et al. 2016; Met-
calfe et al. 2020). This finding also supports the idea that
the core-envelope decoupling in subgiants is driven by the
development of radial differential rotation.

3.3 Timescales of the angular momentum transport

To investigate the time evolution of differential rotation,
we present the rotation periods as a function of post-main-
sequence age in Fig. 5, where we further divide the sample
into three mass bins. We define the termination of the main
sequence when the mass fraction of central hydrogen drops
below 10−5.

During the subgiant phase, the core contracts and the en-
velope expands. If there were no AM transport within stars,

MNRAS 000, 1–6 (2015)
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we would expect the core spin up and the envelope to slow
down, resulting in a growing contrast between the core and
envelope rotation rates. However, this is not observed in early
subgiants, indicating that there must be an efficient transport
mechanism taking place. Nevertheless, even though the AM
transport mechanisms at work are rather efficient, they are
not able to fully counteract the structrual changes that lead
to the development of differential rotation.

For stars with masses below 1.2 M�, differential rotation
typically develops around 800 Myr after the main-sequence
turn-off point. For intermediate-mass stars with 1.2 < M <
1.6 M�, differential rotation takes place earlier, at around 300
Myr after the turn-off point. By comparing our results with
rotating stellar models, we could obtain valuable constraints
on the timescales of AM transport in subgiants.

4 CONCLUSIONS

In this paper, we present an analysis of core and envelope ro-
tation rates for 17 subgiants observed by Kepler . Our results
provide important insights into the AM transport at work
inside stars. We summarise our findings as follows:

(i) Early subgiants have similar rotation rates in their
cores and envelopes, suggesting efficient transport of AM
within these stars.

(ii) Our measurements of rotation periods for early sub-
giants support the idea of weakened magnetic breaking dur-
ing the main sequence.

(iii) As subgiants evolve towards the RGB, we observed
a range of rotation rates in the core (10 to 30 days), and a
significant slowdown in the envelop.

(iv) We found that differential rotation takes place in sub-
giants at around 800 Myr after the main-sequence turn-
off point for M < 1.2 M� stars, and around 300 Myr for
M > 1.2 M� stars.
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4 Testing the intrinsic scatter of the astero-
seismic scaling relations

The paper produced in this chapter is published as Li, Yaguang et al. (2021). The
work is a collaborative effort. I performed the data analysis and compared the distri-
butions of stellar populations between Galaxia and Kepler. Tim Bedding provided the
initial idea. I and Tim Bedding contributed to most experiments in this paper. Sanjib
Sharma generated the Galaxia synthetic sample. Dennis Stello, Daniel Huber, and Si-
mon Murphy contributed to the interpretation of the results. I wrote the paper, and all
authors (especially Tim Bedding and Dennis Stello) commented on the manuscript.
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ABSTRACT
Asteroseismic scaling relations are often used to derive stellar masses and radii, particularly for stellar, exoplanet, and Galactic
studies. It is therefore important that their precisions are known. Here we measure the intrinsic scatter of the underlying seismic
scaling relations for �ν and νmax, using two sharp features that are formed in the H–R diagram (or related diagrams) by the
red giant populations. These features are the edge near the zero-age core-helium-burning phase, and the strong clustering of
stars at the so-called red giant branch bump. The broadening of those features is determined by factors including the intrinsic
scatter of the scaling relations themselves, and therefore it is capable of imposing constraints on them. We modelled Kepler stars
with a Galaxia synthetic population, upon which we applied the intrinsic scatter of the scaling relations to match the degree of
sharpness seen in the observation. We found that the random errors from measuring �ν and νmax provide the dominating scatter
that blurs the features. As a consequence, we conclude that the scaling relations have intrinsic scatter of ∼ 0.5 (�ν), ∼ 1.1
(νmax), ∼ 1.7 (M), and ∼ 0.4 per cent (R), for the SYD pipeline measured �ν and νmax. This confirms that the scaling relations
are very powerful tools. In addition, we show that standard evolution models fail to predict some of the structures in the observed
population of both the HeB and RGB stars. Further stellar model improvements are needed to reproduce the exact distributions.

Key words: stars: low-mass – stars: oscillations – stars: solar-type.

1 IN T RO D U C T I O N

The asteroseismic scaling relations for red giants have so far proved
to be an extremely useful tool to obtain stellar masses and radii.
A critical issue associated with the scaling relations is that their
limits are poorly understood (Hekker 2020). The intrinsic scatter of
the scaling relations, originating from potential hidden dependencies
not accounted for in the current relations, can cause a seemingly
random fluctuation. Testing the intrinsic scatter of these relations is
the aim of this paper.

The scaling relations rely on two characteristic frequencies in the
power spectra of solar-like oscillations. The first one is �ν, the large
separation of p modes, approximately proportional to the square root
of mean density (Ulrich 1986):

�ν

�ν�
≈

(
M

M�

)1/2 (
R

R�

)−3/2

. (1)

The second is νmax, which is the frequency where the power of the
oscillations is strongest. It relates to the surface properties g/

√
Teff

� E-mail: yali4742@uni.sydney.edu.au

(Brown et al. 1991; Kjeldsen & Bedding 1995):

νmax

νmax,�
≈

(
M

M�

) (
R

R�

)−2 (
Teff

Teff,�

)−1/2

. (2)

Using these, the mass and radius can be determined if the effective
temperature is known (Stello et al. 2008; Kallinger et al. 2010a):

M

M�
≈

(
νmax

νmax,�

)3 (
�ν

�ν�

)−4 (
Teff

Teff,�

)3/2

, (3)

R

R�
≈

(
νmax

νmax,�

) (
�ν

�ν�

)−2 (
Teff

Teff,�

)1/2

. (4)

From a theoretical point of view, a more accurate value for �ν can
be calculated from oscillation frequencies, given a stellar model;
thus, it is possible to map the departure of equation (1), as a
function of [M/H], M, Teff and evolutionary state (White et al. 2011;
Guggenberger et al. 2016; Sharma et al. 2016; Rodrigues et al. 2017;
Serenelli et al. 2017; Pinsonneault et al. 2018). Improvements are
seen when adopting this revised theoretical �ν over the standard
density scaling (e.g. Brogaard et al. 2018). However, there are some
degrees of uncertainty. Christensen-Dalsgaard et al. (2020) found
a 0.2 per cent spread in the theoretical departure stemming from
implementing the calculation with different codes, and the degree
of model dependence on physical processes has not been explored
extensively.

C© 2020 The Author(s)
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The νmax scaling relation is much harder to assess theoretically
because calculating νmax would require a detailed treatment of
non-adiabatic processes, via either 1D or 3D stellar models (e.g.
Balmforth 1992; Houdek et al. 1999; Belkacem et al. 2019; Zhou,
Asplund & Collet 2019). Some works concluded a possible departure
could correlate with, for example, the Mach number (Belkacem et al.
2011), magnetic activity (Jiménez, Garcı́a & Pallé 2011) and mean
molecular weight (Jiménez et al. 2015; Yıldız, Çelik Orhan & Kayhan
2016; Viani et al. 2017). In general, it is still impossible to accurately
predict νmax from theory.

Another way to test the scaling relations is by comparing with fun-
damental data from independent observations. This requires masses
and radii obtained by other means, such as astrometric surveys, where
radii are deduced using the Stefan–Boltzmann law, eclipsing binaries,
where masses and radii are derived from dynamic modelling. So far,
the radii tests based on parallaxes suggest agreement within 4 per cent
for stars smaller than 30 R� (Silva Aguirre et al. 2012; Huber et al.
2017; Sahlholdt & Silva Aguirre 2018; Hall et al. 2019; Khan et al.
2019; Zinn et al. 2019). With 16 eclipsing binaries, Gaulme et al.
(2016) found the asteroseismic masses and radii are systematically
overestimated, by factors of 15 and 5 per cent, respectively. This
result is in disagreement with Gaia radii, possibly because the binary
temperature is affected by blending (Huber et al. 2017; Zinn et al.
2019). Subsequent analyses indicate that the main source of departure
could come from the �ν scaling relation (Brogaard et al. 2018;
Sharma et al. 2019).

As we noted earlier, the random departures of the scaling relations
can be associated with unaccounted factors, for example, metallicity,
rotation, and magnetism, some of which are known to have a wide-
ranging distribution among red giants (e.g. Mosser et al. 2012; Stello
et al. 2016; Ceillier et al. 2017). They could be responsible for some
intrinsic scatter in these rather simple relations.

We propose a new approach to investigate the intrinsic scatter,
based on two sharp features in the H–R diagram observed among the
red giant population. The first feature is the accumulation of stars
at the bump of red giant branch (RGB). The second feature is the
sharp edge formed by the zero-age sequence of core-helium-burning
(HeB) stars. These features were known before seismic observations
became available.

The RGB bump is an evolutionary stage where a star ascending
the RGB temporarily drops in luminosity before again ascending
towards the tip of the RGB, causing a hump in the luminosity
distribution. This feature is prominent in colour–magnitude diagrams
of stellar clusters (Iben 1968; King, Da Costa & Demarque 1985).
The luminosity drop takes place after the first dredge-up and is
caused by a change in the composition profile near the hydrogen-
burning shell, leading to a decrease in mean molecular weight
outside the composition discontinuity point (Refsdal & Weigert
1970; Christensen-Dalsgaard 2015). Kepler data show that this bump
is also present in the distributions of �ν and νmax (Kallinger et al.
2010b; Khan et al. 2018).

After reaching the tip of RGB, stars strongly decrease in luminosity
and commence core helium burning, forming the red clump, also
commonly recognized as the horizontal branch in metal-poor clusters
(Cannon 1970; Girardi, Rubele & Kerber 2010). The low-luminosity
edge defines the beginning of the red clump and secondary clump
phase, which we we will refer to as the zero-age HeB (ZAHeB)
phase. This feature is also imprinted on seismic observables (Huber
et al. 2010; Mosser et al. 2010; Kallinger et al. 2010b; Yu et al. 2018)

The fact that the seismic parameters (�ν and νmax) preserve these
sharp features indicates that the seismic parameters must be tightly
related to the fundamental stellar parameters. Put another way, if there

Figure 1. Distributions of the SYD18 formal uncertainties of the νmax and
�ν measurements.

were a large intrinsic scatter in the scaling relations, the features in
the seismic diagrams would not be as sharp. Using this principle, we
can quantify the limits on the intrinsic scatter in the scaling relations.
That is the aim of this paper.

2 SAMPLE SELECTI ON

To create our sample, we used the red giants observed by Kepler,
with �ν and νmax measured by the SYD pipeline (Huber et al.
2009; Yu et al. 2018), and classifications of evolutionary stage
(RGB/HeB) from Hon, Stello & Yu (2017). We denote this sample
as SYD18, including 7543 HeB stars and 7534 RGB stars. A subset
of 2531 HeB and 3308 RGB stars with Teff and [M/H] from the
APOKASC-2 catalogue (Pinsonneault et al. 2018) was also used,
denoted as APK18. In Fig. 1, we show the distributions of the formal
uncertainties of νmax and �ν measured by SYD18. The SYD18
sample reports a typical formal uncertainty of 2.1 per cent on νmax

and 1.0 per cent on �ν in HeB stars, and 0.95 per cent on νmax and
0.3 per cent on �ν in RGB stars.

To model the observed population, we used a synthetic sample
produced by Sharma et al. (2019) with a Galactic model, Galaxia
(Sharma et al. 2011). Compared to a previous synthetic sample in
Sharma et al. (2016), the synthetic sample we used in this work adds
a metal-rich thick disc, which improves the overall match with the
Kepler observation (Sharma et al. 2019). Here we denote this sample

MNRAS 501, 3162–3172 (2021)
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as G19. The G19 simulated sample is about 10 times larger than
the SYD18 sample. Each star in the simulated sample is associated
with an initial mass, an age, and a metallicity, sampled from a
Galactic distribution function and passed through a selection function
tied to the Kepler mission. Other fundamental stellar parameters
(e.g. M, R, and Teff) were estimated via two different sets of
theoretical isochrones: PARSEC (Marigo et al. 2017) and MIST
(Choi et al. 2016). Both sets of isochrones include some mass-
loss along the RGB, using the Reimers (1975) prescription with
an efficiency of ηR = 0.2 (PARSEC) and 0.1 (MIST), consistent
with the asteroseismology of open clusters (Miglio et al. 2012). The
seismic parameters, �ν and νmax, were calculated through the scaling
relations (equations 1 and 2) without any corrections. By examining
the sharpness of the two features discussed above, and comparing
the Galaxia simulation with the observations, we are able to draw
conclusions about the intrinsic scatter of the scaling relations.

3 TH E R G B BU M P

In this section, we look at the RGB bump. In a traditional H–R
diagram, the bump is tilted so that the luminosity L of the bump
is a function of Teff and its shape can be parametrized by stellar
mass M, using L = L(M) and Teff = Teff(M). By introducing the
νmax scaling relation, we can obtain νmax ∝ ML−1T

7/2
eff . Therefore, a

narrow bump in the L–Teff plane will also show a bump due to this
M dependence in the νmax–Teff plane. If the νmax scaling relation has
some intrinsic scatter due to other dependences, such as metallicity,
then the observed bump in the νmax–Teff plane could be wider.

For �ν, the argument is similar. Fig. 2 shows the RGB bump for
both Kepler and Galaxia samples. Here we wish to model the width
of the RGB bump. We will start by investigating the features in the
�ν–Teff and νmax–Teff diagrams, and then in the M–R diagram.

We further note that the width of RGB bump strongly depends on
how the physical processes are modelled in the isochrones. This is
illustrated in Fig. 3, where the shapes of the RGB bump predicted
by the two sets of isochrones are inconsistent. The PARSEC models
predict that the stellar radii at the RGB bump should decrease with
masses for masses larger than ∼1.2 M�. However, the opposite
is observed in the Kepler samples, and this behaviour is correctly
described by the MIST models. It implies that the RGB bump may
not serve as a useful diagnostic for the scaling relations. We will
examine this caveat more extensively in Section 5.1.1. Nevertheless,
here we still use the RGB bump to introduce our method and we
analyse the G19 samples with the two sets of isochrones separately.

3.1 Modelling method

We used a forward-modelling approach by constructing synthetic
samples based on the G19 sample, and setting the intrinsic scatter
of the scaling relations, σ , as a free parameter. The width of the
bump was evaluated by measuring the distances of model samples to
the centre of the bump, and fitting their distributions to the APK18
sample.

The first step was to define the locations of the RGB bump in
the APK18 and G19 samples with straight lines in the νmax–Teff and
�ν–Teff diagrams, shown in Fig. 2.

We generated a synthetic population by adding random scatter to
the G19 sample. Each physical quantity x (one of �ν, νmax, M, or R)
for the ith star in the sample was

xi = xGalaxia,i(1 + σtotal,i). (5)

The quantity xGalaxia, i is the physical value without any perturbation.
For M and R, they were directly estimated from isochrones. Note
that M is the actual mass rather than the initial mass. Values for �ν

and νmax were determined via scaling relations (equations 1 and 2)
and further corrected using oscillation frequencies (�ν in particular;
see Section 3.2). We modelled the total scatter needed to reproduce
the width of the RGB bump, σ total, i, which was drawn from a normal
distribution with a standard deviation σ total.

To account for the scatter induced by the formal uncertainties of
the �ν and νmax measurements, we modelled each quantity x with

xi = xGalaxia,i(1 + σx,i + σSR,i), (6)

where σ x, i represents the fractional uncertainty of xGalaxia, i, and was
drawn randomly from the APK18 formal uncertainty distribution
of RGB bump stars. The intrinsic scatter in the scaling relation was
modelled via σ SR, i, drawn from a normal distribution with a standard
deviation σ SR.

We then calculated the distributions of distances to bump lines.
The bump lines, shown in Fig. 2, were picked so that the distances
to the line have the smallest standard deviation. For �ν and νmax,
we calculated the vertical distances in the �ν–Teff and νmax–Teff

diagrams, respectively. For M and R, we used the horizontal and
vertical distances in the M–R diagram. This procedure allowed us to
investigate the scatter in each relation separately because perturbing
the horizontal value will not change the vertical value, and vice
versa. In Fig. 4, we plot the distributions of those distances with two
representative choices for σ total. A larger value for σ total flattens the
hump, demonstrating the width of the bump itself provides a measure
of the intrinsic scatter in the scaling relations.

Next, we introduce our fitting strategy to enable the comparison,
which is to match the counts in each bin of the histograms. We first
identified a central region in the histograms of the APK18 sample by
fitting a Gaussian profile plus a sloping straight line, illustrated by the
dashed curves in Fig. 4. The central region was defined to be a range
centred around the Gaussian, with a width of six times the Gaussian
standard deviation. In Fig. 4, they are shown in grey-shaded areas. In
our fit described below, we matched the distributions in the central
regions only.

Because the G19 sample is larger than the APK18 sample, we
re-scaled the number of model samples by normalising according to
the APK18 sample in the central region. We also added a constant c
as a free parameter to the distance of the model samples, in order to
compensate for a possible offset of maxima, which could originate
from a bias in identifying the bump.

We optimized the likelihood function, assuming the distribution
of counts in each bin is set by Poisson statistics:

ln L =
∑

mj �=0

[
dj ln mj − mj − ln(dj !)

]
, (7)

where dj and mj are counts in the jth bins of the Kepler and model
distributions. This fitting method is commonly used in population
studies to constrain the star formation history, initial mass function
and binary properties (e.g. Dolphin 2002; Geha et al. 2013; El-Badry
et al. 2019). The posterior distributions of parameters c and σ were
sampled with uninformative flat priors, using a Markov chain Monte
Carlo (MCMC) method. We used 200 white walkers, burned in for
500 steps to reach convergence, and then iterated for another 1000
steps. The medians and 68 per cent credible uncertainties of the
parameters were estimated from the posteriors directly.
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Intrinsic scatter of the scaling relations 3165

Figure 2. L versus Teff (panels a–b), νmax versus Teff (panels c–d), �ν versus Teff (panels e–f), and R versus M (bottom g–h) for RGB stars in the APK18
sample (red) and the G19 sample (blue). The RGB bumps were defined using the black straight fiducial lines. The grey-shaded areas denote the uncertainty of
identifying the bump (see Section 5.1.2).
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Figure 3. Radius versus mass for RGB stars near the RGB bump, colour-
coded by metallicity. The PARSEC and MIST isochrones predict different
outcomes on the shape of the RGB bump.

3.2 Results

Our first step is to derive the total scatter responsible for the width
of the RGB bump, σ total, in equation (5). We obtained 0.61 (�ν),
2.89 (νmax), 4.05 (M), and 0.90 per cent (R), with PARSEC, and
5.74 per cent ± 0.80 per cent (�ν), 9.80 per cent ± 0.90 per cent
(νmax), 1.79 per cent ± 1.34 per cent (M), and 2.75 per cent ±
0.88 per cent (R) with MIST.

Next we took the formal uncertainties of the �ν and νmax

measurements into account and obtained the limits on the intrinsic
scatter of the scaling relations, σ SR, in equation (6). With PARSEC,
we obtained 0.88 (�ν), 2.00 (νmax), 2.26 (M), and 0.60 per cent
(R). With MIST, we obtained 5.97 (�ν), 9.76 (νmax), 1.89 (M), and
0.56 per cent (R). These numbers are plotted in Fig. 5. There is a
huge difference between MIST and PARSEC. We will discuss it in
Section 5.1.1.

4 TH E Z A H E B ED G E

Similar to the RGB bump, the zero-age sequence of HeB stars
(ZAHeB) also forms a well-defined feature in the H–R diagram
(Girardi et al. 2010; Girardi 2016). We note that the transition
from the red clump (low-mass stars that ignite helium in a fully
degenerate core) to the secondary red clump (higher-mass stars
that ignite helium in a partly or non-degenerate core) is smooth
and continuous (Girardi 2016). Given the scaling relations, there
should exist a close correlation between �ν and νmax for the
ZAHeB.

Figure 4. Distributions of distances to the bump features. The top two panels
are measured in the Teff–νmax and Teff–�ν diagrams, and the bottom two
panels are measured in the M–R diagram. The Kepler (APK18) distributions
are shown in red, fitted with a Gaussian model, denoted by the black dashed
lines. The synthetic G19 samples are shown in blue. The grey-shaded areas
denote the range used to compare the data.
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Figure 5. Intrinsic scatter of the scaling relations σ SR (yellow) and total
scatter σ total (blue), derived using the width of the RGB bump.

In Fig. 6, we show the HeB stars in the �ν–νmax and M–R
diagrams. The ZAHeB appears as a very sharp feature: All HeB stars
are located at only one side of the ZAHeB, forming a remarkably
sharp edge.1 Now we use the sharpness of this edge to quantify the
intrinsic scatter of the scaling relations.

4.1 Modelling method

To measure the sharpness of the ZAHeB edge, we used a modelling
method similar to that for the RGB bump in Section 3.1, but with
three important differences.

The first difference is related to defining the location of the feature.
For RGB stars, we used straight lines to denote the location of the
bump. For HeB stars, we used splines in the �ν–νmax and M–R
diagrams to define the ZAHeB edges. This is illustrated in Fig. 6,
where the edges are shown as black lines.

The second difference is how we calculated the horizontal and
vertical distances to the ZAHeB edge. In the �ν–νmax diagram, the
stars below the lowest point of the edge do not have a meaningful
horizontal distance. We therefore excluded them for the horizontal
distance calculation. The same strategy was also applied to all stars
that lie on the left of the leftmost point of the defined ZAHeB edge
when calculating vertical distances. Similarly, in the M–R diagram,
the stars above the highest point of the ZAHeB edge were not
considered in calculating horizontal distances. In Fig. 7, we plot
the distributions of those distances with two σ total. As for the RGB
bump, we see that a larger scatter σ total smooths the hump.

The third difference is that, in order to choose regions near each
edge to compare, we fitted a profile to the distributions for the SYD18
sample. The profiles, shown as the dashed lines in Fig. 7, consisted of
a half-Gaussian (left-hand panel) and a half-Lorentzian (right-hand
panel). The histogram region that we fitted was a range centred at the

1It has not escaped our attention that Fig. 6(a) bears a strong resemblance to
the logo of a major footwear manufacturer. We plan to investigate sponsorship
opportunities.

Gaussian’s centre, with a width of six times the Gaussian’s standard
deviation. These regions are shown as grey-shaded areas.

4.2 Results

We measured the total scatter σ total that contributes to
the broadening of the edges in the νmax–�ν and M–
R diagrams: 1.25 per cent ± 0.05 per cent (�ν), 2.23 per cent ±
0.12 per cent (νmax), 9.10 per cent ± 0.50 per cent (M), and
2.01 per cent ± 0.05 per cent (R) using the PARSEC models, and
1.56 per cent ± 0.04 per cent (�ν), 2.99 per cent ± 0.19 per cent
(νmax), 7.00 per cent ± 0.54 per cent (M), and 2.29 per cent ±
0.07 per cent (R) using the MIST models. These numbers are in
general agreement with the formal uncertainties of �ν and νmax

reported by SYD18 for HeB stars (Fig. 1), suggesting a main
contribution to the broadening of the ZAHeB edge.

Next, we tested whether we needed to add intrinsic scaling
relation scatter to the SYD18 measurement uncertainties in or-
der to reproduce the sharpness of the ZAHeB edge. We derived
σ SR with the PARSEC models: 0.13 per cent ± 0.18 per cent (�ν),
0.72 per cent ± 0.24 per cent (νmax), 2.34 per cent ± 1.38 per cent
(M), and 0.22 per cent ± 0.12 per cent (R). And with the
MIST models we obtained 0.89 per cent ± 0.11 per cent (�ν),
1.52 per cent ± 0.09 per cent (νmax), 0.28 per cent ± 0.32 per cent
(M), and 0.08 per cent ± 0.14 per cent (R). These numbers are plot-
ted in Fig. 8.

5 D ISCUSSION

5.1 Assessing uncertainties

5.1.1 The uncertainty of modelling the stellar population

Figs 5 and 8 present the total scatter σ total and the limits on the
intrinsic scatter of the scaling relations σ SR derived under various
assumptions. A feature become immediately obvious: The results
depend on how the synthetic stars are modelled.

We first discuss its impact on the RGB bump. The input physics has
significantly influenced the width of the RGB bump. As we already
illustrated in Fig. 3, the shapes of the RGB bump predicted by the
two isochrones are inconsistent. Furthermore, the PARSEC models
predict a wider bump than the observation, even when the quantities
were not perturbed with any scatter. In contrast, the MIST models
present a much narrower bump, and so a much larger scatter needs
to be added to match the observed width.

For some cases in Fig. 5, σ total exceeds σ SR, which is also a
signature that the shape of RGB bump predicted by models cannot
properly match the observation. For example, the G19 synthetic
samples overestimate the number of low-mass stars near ∼1 M�,
which can be seen from the panel h of Fig. 2. The mismatch was first
discussed by Sharma et al. (2016), and Sharma et al. (2019) used a
metal-rich thick disc to ease the tension, but the inconsistency still
exists.

The RGB bump is an important diagnostic for stellar physics.
Christensen-Dalsgaard (2015) linked the width of the RGB bump
with the magnitude of the hydrogen abundance discontinuity in
the vicinity of the hydrogen-burning shell, which depends on the
evolution history. The modelling of convection (e.g. mixing length
and overshoot) can also have an impact on the location of the bump
(see Khan et al. 2018 and references therein).

From the above discussion, we conclude that the RGB bump is
not useful for our purpose, unless an initial calibration of stellar
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3168 Y. Li et al.

Figure 6. νmax–�ν diagram (panels a–b) and M–R diagram (panels c–d) for HeB stars in the SYD18 sample (red) and the G19 sample (blue). The ZAHeB
edges were defined using splines, shown as the black lines. The grey-shaded areas denote the uncertainty of identifying the edges (see Section 5.1.2). The stars
around 20 R� in the G19 sample are at the asymptotic giant branch phase.

models is properly done. The calibration can be achieved by matching
luminosity distributions using benchmark data, and then the feature
can be compared in the seismic diagrams. This is beyond the scope
of this paper, and we defer it for future work.

Turning into the ZAHeB edge, we noticed the shape of the edges
is also model-dependent. A noticeable feature in Fig. 6 is that the
mass limit of the helium flash in models does not match with the
observation. The mass limit has been shown to be dependent on the
treatment of overshooting (Girardi 2016), which is often considered
as a free parameter in stellar modelling. Fig. 6 also shows a lack of
low-mass HeB stars in the G19 sample, likely because the synthetic
sample does not incorporate enough mass-loss.

Despite these model uncertainties, we found they are less sensitive
to the values of σ SR that we are interested in. This means that using
the ZAHeB edge to put a limit on the intrinsic scatter of the scaling
relations is a realistic approach in this work.

5.1.2 The uncertainty of identifying the features

The chosen ZAHeB edges and RGB bumps in the Kepler samples
might deviate from their real positions. Here we test its influence on
the inferred σ SR by shifting the locations in the observation samples.
We perturbed the points used to define the splines (ZAHeB edge)
and the straight lines (RGB bump) with an amount of s/

√
N . We

took s as the standard deviation of the Gaussian profiles fitted in
Figs 4 and 7, and N as the number of samples. This perturbation
is similar to the standard deviation of the sample mean, and should
provide a good approximation to the uncertainty of choosing the

centre of those features. In Figs 2 and 6, the grey-shaded areas show
the amount of uncertainty. We found the resulting σ SR agrees with
the reported values within 0.06 per cent for �ν, 0.1 per cent for νmax,
1.8 per cent for M, and 0.7 per cent for R. This result indicates that
the uncertainty of identifying the features is much smaller than σ total,
but is on a similar level of σ SR.

In addition, we note that there is a selection effect (will be shown
in Section 5.4 and Fig. 10) due to excluding HeB stars near the
ZAHeB edge when there were no horizontal or vertical distances. For
example, the obtained values for the mass relation are only applicable
to stars in the range of 0.8–1.1 M�, so the derived numbers for σ total

and σ SR are the averages for those specific subsamples, making the
numbers between each relations not directly comparable.

5.1.3 The uncertainty of measuring �ν and νmax

The limits we obtained for σ SR depend on how well the values for
�ν and νmax are measured. Up to now we focused our discussion
using the SYD pipeline, which measures �ν and νmax from a global
fitting of the power spectrum (Huber et al. 2009; Yu et al. 2018).
Although the global fitting method is more common, an alternative
approach is to only use the radial mode frequencies and avoid the
effect from mixed modes. An example is the CAN pipeline (Kallinger
et al. 2010b), which obtained a more precise measurements on �ν

and νmax. For stars near the ZAHeB edge, their typical formal
uncertainties are 0.6 per cent for νmax, and 0.3 per cent for �ν

(Pinsonneault et al. 2018). Using their reported uncertainties, we
show in Fig. 8, that the values for σ SR in the �ν and νmax relations
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Figure 7. Distributions of distances to the ZAHeB edges. The top two
panels are measured in the νmax–�ν diagram, and the bottom two panels
are measured in the M–R diagram. The Kepler (SYD18) distributions are
shown in red, fitted with a half-Gaussian, half-Lorentzian model, denoted by
the black dashed lines. The synthetic G19 samples are shown in blue. The
grey-shaded areas denote the range used to compare the data.

Figure 8. Intrinsic scatter of the scaling relations σ SR (yellow) and total
scatter σ total (blue), derived using the sharpness of the ZAHeB edge.

can greatly decrease. If the values for �ν and νmax are measured
in this way, the scaling relations can have much smaller intrinsic
scatter in principle. However, we also found the intrinsic scatter in
the M and R scaling relations does not decrease accordingly because
the uncertainty of Teff still dominates. In the rest of this paper, we
continue our discussion using the SYD pipeline values.

5.2 The intrinsic scatter of the scaling relations

Based on the discussion in Section 5.1, we estimate the final values of
the intrinsic scatter of the scaling relations, σ SR, by averaging them
from both RGB and HeB stars for the M and R relations, but only HeB
stars for the �ν and νmax relations because these values tend to show
less severe dependences on isochrones. We conclude that the intrinsic
scatter of the scaling relations have values of ∼ 0.5 (�ν), ∼ 1.1
(νmax), ∼ 1.7 (M), and ∼ 0.4 per cent (R), for the SYD pipeline,
keeping in mind that the systematic uncertainty of our method is on
a similar level. The values of σ SR are small in general, suggesting the
observational uncertainty typically exceeds the intrinsic scatter of the
scaling relations even with 4 yr of Kepler data for the SYD pipeline.

In our study, we separately located the ZAHeB edges in the Kepler
and Galaxia samples. This means that any systematic offset in the
scaling relations (for example, using a different set of solar reference
values) would not be reflected in σ SR. The intrinsic scatter in the
scaling relation can still be small compared to any systematic offset
in the scaling relations.

5.3 Correcting the scaling relations with theoretical models

It is interesting to test whether the common model-based correction
of �ν proposed by Sharma et al. (2016) can reduce the scatter in
the scaling relations. We calculated the departure of the �ν scaling
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Figure 9. Distributions of the correction factor f�ν for stars near the RGB
bump and stars near the ZAHeB edge (grey-shaded area in Fig. 4 and 7) in
both Kepler (red) and Galaxia (blue) samples.

relation, f�ν , for each star in both samples. We implemented the
corrected mass M ′ = f 4

�νM and radius R′ = f 2
�νR in the Kepler

sample, and the corrected p-mode separation �ν
′ = f�ν�ν in the

synthetic sample.
These �ν corrections made little difference to our results, for both

RGB stars (Fig. 5) and HeB stars (Fig. 8). The likely explanation is
that f�ν mainly corrects the systematic offsets in the scaling relations,
which affect the location of the RGB bump and ZAHeB edge, but has
a negligible influence on the intrinsic scatter of the scaling relations
(Fig. 9). The standard deviation of f�ν for stars near the ZAHeB edge
is below 0.5 per cent, and that for stars near the RGB bump is about
1.0 per cent.

5.4 The intrinsic scatter of the scaling relations as a function of
mass and metallicity

We expect the intrinsic scatter in the scaling relations to be a function
of stellar mass and metallicity, as we see in f�ν . To test whether this
dependence can be seen in our sample, we used HeB stars and divided
both the Kepler and Galaxia samples into bins with equal widths in
M and [M/H], and repeated the exercise in each bin. We note that for
�ν, νmax, and M, we could only test a limited range in mass, because
some points do not have vertical or horizontal distances. To study
the dependence on [M/H], we used the APK18 sample instead of the
SYD18 sample because the APK18 metallicities were derived from
a single instrument.

In Figs 10 and 11, we show σ total (dark blue regions) and σ SR

(dashed lines) as functions of M and [M/H], respectively. We find
no obvious change in the spread of points for �ν, νmax, and M,
possibly due to a direct consequence of the method uncertainty we
claimed in Section 5.1.2. The data also suggest that a higher mass
and higher metallicity may result in a larger intrinsic scatter for the
radius scaling relation. Whether this is a true statement can be found
by populating more stars in the high-mass and high-metallicity region
with upcoming space missions.

6 C O N C L U S I O N S

In this paper, we used a forward-modelling approach to match the
width of the RGB bump and the sharpness of the edge formed by
ZAHeB stars. Matching the broadening of those features between
the Kepler and Galaxia samples allowed us to constrain the intrinsic
scatter of the asteroseismic scaling relations.

Figure 10. Distances to the ZAHeB edge as a function of stellar mass for the
SYD18 sample (grey points). The solid black line traces the median values of
the distances in each mass bin. The light blue show the formal uncertainties
of �ν and νmax reported by the SYD pipeline, and the dark blue regions show
the intrinsic scatter of the scaling relations σ SR. The dashed black lines show
the total scatter σ total.

The main results are summarized in Figs 5 and 8. We found
that the observed broadening arises primarily from the measurement
uncertainties of �ν and νmax. By taking into account the uncertainty
reported by the SYD pipeline, the scaling relations have intrinsic
scatter have values of ∼ 0.5 (�ν), ∼ 1.1 (νmax), ∼ 1.7 (M), and
∼ 0.4 per cent (R). This confirms the remarkable constraining power
of the scaling relations. The above numbers are appoximate bacause
the systematic uncertainties of our method arising from identifying
the features is on a similar level. Although this result was obtained
using stars in a limited parameter space, we expect they are applicable
to a broader population spanning most low-mass red giants, provided
they have similar surface properties.

Moreover, we demonstrate that using the theoretically corrected
�ν does not reduce the scatter by a large amount. We also found
a marginal dependence of the intrinsic scatter of the radius scaling
relation on mass and metallicity. However, these interpretations are
limited by the systematic uncertainties of our method.
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Figure 11. Similar to Fig. 10 but shown as a function of metallicity, and
restricted to the APK18 sample.

Future work could include using more data from both asteroseis-
mology and spectroscopy to allow tests in more mass and metallicity
bins, especially improving the constraints for secondary clump stars.
Additionally, by considering the position of those features and
matching the exact distributions of stellar parameters (instead of
simply the distances to the edge), one could provide constraints on
physical processes such as convection and mass-loss, and potentially
on the offset of the scaling relations.

AC K N OW L E D G E M E N T S

We thank the Kepler Discovery mission funded by NASA’s Sci-
ence Mission Directorate for the incredible quality of data. We
acknowledge funding from the Australian Research Council, and the
Joint Research Fund in Astronomy (U2031203) under cooperative
agreement between the National Natural Science Foundation of
China (NSFC) and Chinese Academy of Sciences (CAS). This work
is made possible by the following open-source PYTHON softwares:
NUMPY (van der Walt, Colbert & Varoquaux 2011), SCIPY (Virta-
nen et al. 2020), MATPLOTLIB (Hunter 2007), CORNER (Foreman-

Mackey 2016), EMCEE (Foreman-Mackey et al. 2013), and SEABORN

(Waskom & the seaborn development team 2020) .

DATA AVAI LABILI TY

The code repository for this work is available on Github.2 The data
sets will be shared on request to the corresponding author.

REFERENCES

Balmforth N. J., 1992, MNRAS, 255, 603
Belkacem K., Goupil M. J., Dupret M. A., Samadi R., Baudin F., Noels A.,

Mosser B., 2011, A&A, 530, A142
Belkacem K., Kupka F., Samadi R., Grimm-Strele H., 2019, A&A, 625,

A20
Brogaard K. et al., 2018, MNRAS, 476, 3729
Brown T. M., Gilliland R. L., Noyes R. W., Ramsey L. W., 1991, ApJ, 368,

599
Cannon R. D., 1970, MNRAS, 150, 111
Ceillier T. et al., 2017, A&A, 605, A111
Choi J., Dotter A., Conroy C., Cantiello M., Paxton B., Johnson B. D., 2016,

ApJ, 823, 102
Christensen-Dalsgaard J., 2015, MNRAS, 453, 666
Christensen-Dalsgaard J. et al., 2020, A&A, 635, A165
Dolphin A. E., 2002, MNRAS, 332, 91
El-Badry K., Rix H.-W., Tian H., Duchêne G., Moe M., 2019, MNRAS, 489,
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Yıldız M., Çelik Orhan Z., Kayhan C., 2016, MNRAS, 462, 1577
Yu J., Huber D., Bedding T. R., Stello D., Hon M., Murphy S. J., Khanna S.,

2018, ApJS, 236, 42
Zhou Y., Asplund M., Collet R., 2019, ApJ, 880, 13
Zinn J. C., Pinsonneault M. H., Huber D., Stello D., Stassun K., Serenelli A.,

2019, ApJ, 885, 166

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 501, 3162–3172 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/3/3162/6043216 by D
AB The Librarian user on 13 January 2023



5 A prescription for the asteroseismic surface
effect

The paper produced in this chapter is submitted to Monthly Notices of the Royal As-
tronomical Society, and it is currently under the second review. The preprint version
is available as Li, Yaguang et al. (2022b). The work is a collaborative effort. I per-
formed the observational data analysis and stellar modelling. I and Tim Bedding con-
tributed to most experiments in this paper. Dennis Stello, Meridith Joyce, and Tanda Li
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ABSTRACT

In asteroseismology, the surface effect refers to a disparity between the observed and the modelled frequencies in stars
with solar-like oscillations. It originates from improper modelling of the surface layers. Correcting the surface effect

usually requires using functions with free parameters, which are conventionally fitted to the observed frequencies.
On the basis that the correction should vary smoothly across the H–R diagram, we parameterize it as a simple
function of surface gravity, effective temperature, and metallicity. We determine this function by fitting a wide range

of stars. The absolute amount of the surface correction decreases with luminosity, but the ratio between it and νmax

increases, suggesting the surface effect is more important for red giants than dwarfs. Applying the prescription can
eliminate unrealistic surface correction, which improves parameter estimations with stellar modelling. Using two open
clusters, we found a reduction of scatter in the model-derived ages for each star in the same cluster. As an important

application, we provide a new revision for the ∆ν scaling relation that, for the first time, accounts for the surface
correction. The values of the correction factor, f∆ν , are up to 2% smaller than those determined without the surface
effect considered, suggesting decreases of up to 4% in radii and up to 8% in masses when using the asteroseismic

scaling relations. This revision brings the asteroseismic properties into an agreement with those determined from
eclipsing binaries. The new correction factor and the stellar models with the corrected frequencies are available at
https://www.github.com/parallelpro/surface.

Key words: stars: solar-type – stars: oscillations (including pulsations) – stars: low-mass

1 INTRODUCTION

Correcting the asteroseismic surface effect has so far been a
troublesome procedure. Convection affects pulsation proper-
ties through turbulent pressure, opacity variations, and con-
vective energy flux (Houdek et al. 2017). Small-scale magnetic
fields can form layers that affect the propagation of pulsations
(Li et al. 2021b). All these processes are poorly modelled
in the near-surface convective atmosphere in most 1D stel-
lar models (Christensen-Dalsgaard et al. 1988; Dziembowski
et al. 1988). Improvements have been seen with the surface

? yaguang.li@sydney.edu.au
† tim.bedding@sydney.edu.au

layers replaced by 3D averaged atmospheric models, produc-
ing more realistic equilibrium structures (Rosenthal et al.
1999; Magic & Weiss 2016; Jørgensen et al. 2017; Trampedach
et al. 2017; Jørgensen et al. 2018, 2019; Mosumgaard et al.
2020), or with time-dependent 1D convection models, ac-
counting for the coupling between oscillation and convec-
tion (Balmforth 1992; Grigahcène et al. 2012; Christensen-
Dalsgaard 2012; Houdek et al. 2017, 2019; Belkacem et al.
2021; Philidet et al. 2021).

In practice, the surface effect is usually corrected em-
pirically with simple functions of frequency. Christensen-
Dalsgaard et al. (1989) provided a justification, based on a
perturbation to an asymptotic formalism of acoustic modes.

© 2021 The Authors
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Figure 1. H–R diagram showing the studied sample in this work.
The evolutionary tracks for four masses with Yinit = 0.29, [M/H] =

0.0, αMLT = 1.7 are shown in grey lines. Note these model param-
eters are approximate, not exact, since the tracks were generated

pseudo-randomly (see Sec. 3.2).

By rescaling the frequency correction obtained from the so-
lar standard model, Silva Aguirre et al. (2015) and Houdek
et al. (2019) applied it to other main-sequence stars. Several
other correction formula were also put forward (e.g. Kjeldsen
et al. 2008; Sonoi et al. 2015). In particular, Gough (1990)
suggested that the corrections are proportional to the cubic
and the inverse of frequencies scaled by mode inertia:

δν =
[
a3(ν/νmax)3 + a−1(ν/νmax)−1] /I, (1)

where a3 and a−1 are the free parameters to be determined.
The frequency of maximum power, νmax, is evaluated via
the scaling relation (Brown et al. 1991; Kjeldsen & Bedding
1995):

νmax

νmax,�
≈ g

g�

(
Teff

Teff,�

)−1/2

, (2)

where we adopt g� = 274 m/s2, Teff,� = 5777 K, and
νmax,� = 3090 µHz throughout this work. Since the cubic
term usually dominates the frequency correction, another cor-
rection form is written as

δν = a3(ν/νmax)3/I, (3)

where a3 is the free parameter.
These two functional forms have shown to match observa-

tions quite well. Ball & Gizon (2014, 2017) showed that they
work well for radial modes on the Sun and red-giant-branch
stars, albeit with some caveats for mixed modes (Ong et al.
2021a,b). Many works concluded the inverse-cubic form could
obtain an overall good fit (Schmitt & Basu 2015; Compton
et al. 2018; Nsamba et al. 2018; Jørgensen et al. 2020) and
correctly recover the dynamical stellar properties of binary
systems (Jørgensen et al. 2020).

The correction usually works as follows. Given a star with
a set of observational frequencies and a stellar model with a
set of theoretical frequencies, one can calculate the difference
between the two frequency sets. This difference is then fitted
to the right-hand-side of the frequency correction function
(Eq. 1 or 3) to determine the free parameters. The amount of
frequency correction is then calculated with the best-fitting
values and added to the theoretical frequencies.

One problem with this method is that the surface correc-
tion can only be determined with a fit to observed frequen-
cies. It does not allow us to estimate the surface terms for
any theoretical model without being close to the observed
star. More seriously, it can lead to a model with an unphys-
ically large (or small) surface correction that fits the data
well but is a poor representation of the star. In this paper,
we tackle these problems through a simple prescription for
the surface effect, assuming that it varies smoothly with stel-
lar parameters (Sec. 2). This variation is then constrained by
an ensemble fit to a wide range of stars (Sec. 3). Adopting
this prescription improves parameter estimations with stellar
modelling (Sec. 4). It further enables an improved correction
to the commonly-used ∆ν scaling relation (Sec. 5).

2 PRESCRIBING THE SURFACE CORRECTION

Since the surface effect originates from the model atmosphere,
it is reasonable to assume it is a smooth function of surface
parameters, i.e. surface gravity g, effective temperature Teff,
and metallicity [M/H]. This assumption is supported by 3D
atmospheric simulations (Sonoi et al. 2015; Manchon et al.
2018) and 1D non-adiabatic convection models (Houdek et al.
2019). These works suggested that the surface correction at
νmax, denoted by δνm, varies from star to star as a function
of Teff and g. Hence, we propose a prescription for δνm as
follows:

δνm = a · (g/g�)b · (Teff/Teff,�)c · (d · [M/H] + 1), (4)

where the free parameters to be determined are θs =
{a, b, c, d}. By construction, the parameter a is the amount of
surface correction at νmax for a solar model. If we adopt the
cubic formula, for each star we can directly use Eq. 4 to solve
the surface term a3 in Eq. 3 with ν equal to νmax. To obtain
the mode inertia I on the RHS of Eq. 3, we interpolated ν3/I
to the frequency νmax.

If we adopt the inverse-cubic formula to correct model fre-
quencies, another equation is needed since there are two sur-
face terms, a−1 and a3. We propose that the surface correc-
tion at s times of νmax, denoted by δν′m, also varies with the
surface parameters:

δν′m = a′ · (g/g�)b
′ · (Teff/Teff,�)c

′ · (d′ · [M/H] + 1). (5)

Together with Eq. 4, the free parameters in this prescription
are θs = {a, b, c, d, a′, b′, c′, d′}. By varying the value of s,
we found no obvious changes to the solutions of those free
parameters. Hence, we fixed s at 1.1, so that δν′m represents
the amount of surface correction at 1.1νmax. For each star,
we then used Eq. 4 and Eq. 5 to solve a−1 and a3 in Eq. 1
with ν = νmax and ν = 1.1νmax, respectively. To calculate
the RHS of Eq. 1, we interpolated ν3/I and ν−1/I to the
frequency νmax.

MNRAS 000, 1–12 (2021)
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Table 1. Stellar parameters of the studied sample.

Star L σL Ref(L) Teff σTeff
Ref(Teff) [M/H] σ[M/H] Ref([M/H])

Sun 1.0 0.02 — 5777 100 — 0.0 0.05 —

µ Her 2.54 0.08 2 5560 100 3 0.28 0.05 3

KIC10000547 12.68 0.51 0 4969 36 1 -0.26 0.05 6
KIC10001440 39.77 3.8 0 4773 42 1 -0.65 0.05 6

KIC10004825 42.35 3.34 0 4611 55 1 0.21 0.05 6

KIC10014893 68.69 4.67 0 4579 26 1 -0.13 0.05 6
KIC10014959 9.29 0.33 0 4813 29 1 0.11 0.05 6

KIC10018442 37.7 1.89 0 4781 41 1 -0.03 0.05 6
KIC10018811 27.11 1.41 0 4918 28 1 -0.29 0.05 6

Note: References for the stellar parameters: 0 (This work); 1 (Casagrande et al. 2021); 2 (Grundahl et al. 2017); 3 (Jofré et al. 2015);
4 (Furlan et al. 2018); 5 (Lund et al. 2017); 6 (Ahumada et al. 2020); 7 (Buchhave & Latham 2015). Only the first 10 lines are shown.

The full table can be accessed online.

3 DATA ANALYSIS

3.1 Observational sample

In order to constrain Eqs. 4 and 5, we need a sample of
stars spanning a sufficiently large parameter space. Our sam-
ple (see Fig. 1) consists of stars with measured individual
frequencies: the Sun (Broomhall et al. 2009), the SONG
subgiant µ Herculis (Grundahl et al. 2017), Kepler main-
sequence dwarfs (Lund et al. 2017), Kepler subgiants (Li
et al. 2020a) and Kepler red-giant-branch (RGB) stars with
∆ν > 2 µHz (Li et al. 2022). The RGB stars were distin-
guished from helium-burning stars by Bedding et al. (2011),
Stello et al. (2013), Mosser et al. (2014), Vrard et al. (2016),
Elsworth et al. (2017), and Hon et al. (2017).

We compiled metallicities [M/H] from various sources, in-
cluding HIRES spectra (see below), APOGEE DR16 (Ahu-
mada et al. 2020), Lund et al. (2017), and Buchhave &
Latham (2015) (listed in the order of priority) wherever pos-
sible. We collected metallicities for 36 stars measured with
HIRES spectrograph (Vogt et al. 1994) at the Keck-I 10-m
telescope on Maunakea observatory, Hawai‘i by Furlan et al.
(2018). We also obtained new HIRES spectra for 21 stars in
this work. The spectra were obtained and reduced as part
of the California Planet Search queue (CPS, Howard et al.
2010). We used the C5 decker and obtained spectra with a
S/N per pixel of 80 at ∼ 600 nm with a spectral resolving
power of R ∼ 60000. To measure the metallicities, we ap-
plied Specmatch-synth (Petigura 2015), which fits a synthetic
grid of model atmospheres and has been extensively vali-
dated through the California Kepler Survey (Petigura et al.
2017; Johnson et al. 2017). All metallicity measurements were
brought to the APOGEE abundance scale by adding constant
offsets, determined with the [M/H] measurements of same
stars. Because of the limited number of metal-poor stars, we
restricted our sample to have [M/H] > −0.8 dex.

We determined the effective temperatures, Teff, with Gaia
and 2MASS photometry, using the infrared flux method
(IRFM) calibrated by Casagrande et al. (2021). This Teff scale
was benchmarked against solar twins, Gaia benchmark stars,
and interferometry.

We determined luminosities, L, using Gaia DR3 (Gaia Col-
laboration et al. 2016, 2021). Gaia parallaxes are known to
have zero-point offsets, which we corrected using a model
from Lindegren et al. (2021). The reported parallaxes also
have underestimated uncertainties. Therefore we inflated
them by a factor of 1.3, according to external calibrations

(El-Badry et al. 2021; Zinn 2021; Máız Apellániz et al. 2021).
We then calculated the luminosities by combining the par-
allaxes with the 2MASS K-band magnitudes and using the
“direct” method in the software ISOCLASSIFY (Huber et al.
2017; Berger et al. 2020), which implements the Green et al.
(2019) dust map and the bolometric corrections from MIST
models (Choi et al. 2016).

Additionally, we used RGB stars from two Kepler clusters
as a test sample: NGC 6791 (Basu et al. 2011; McKeever et al.
2019; Brogaard et al. 2021) and NGC 6819 (Stello et al. 2010;
Corsaro et al. 2012; Handberg et al. 2017). These cluster stars
were not used for fitting the prescription, but for validating
the result (Sec. 4). We estimated their stellar parameters fol-
lowing the same procedure illustrated above. Table 1 lists
the stellar parameters used in modelling. Fig. 1 shows an
overview of our sample on the H–R diagram.

3.2 Stellar models

We calculated a grid of stellar models using Modules for
Experiments in Stellar Astrophysics (MESA, version r15140;
Paxton et al. 2011, 2013, 2015, 2018, 2019) to model stellar
evolution and structure, and GYRE (version 6.0.1; Townsend
& Teitler 2013) to calculate adiabatic frequencies from the
structure profiles computed from MESA.

Here, we summarise the input physics for the constructed
models. We used the Henyey et al. (1965) description of the
mixing length theory to formulate convection, with the mix-
ing length being one of the free parameters, since a solar-
calibrated mixing length can not fit stars with various stel-
lar properties (Tayar et al. 2017; Joyce & Chaboyer 2018a).
We set the convective overshoot with an exponential scheme
discussed by Herwig (2000). For core overshoot, we set the
efficiency parameter fov,core as a function of mass, accord-
ing to the calibration from eclipsing binaries (equation 2 of
Claret & Torres 2018). For envelope overshoot, we set fov,env

as 0.006, according to a solar calibration with our adopted
input physics.

We chose the current solar photospheric abundance as the
reference scale for metallicity: X� = 0.7381, Y� = 0.2485,
Z� = 0.0134 (Asplund et al. 2009, the AGSS09 scale). Hence
the metallicity is

[M/H] = log10(Z/X)− log10(Z�/X�). (6)

The opacity tables were accordingly chosen based on the
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AGSS09 metal mixture. MESA implements electron con-
duction opacities (Cassisi et al. 2007) and radiative opac-
ities from OPAL (Iglesias & Rogers 1993, 1996), except
low-temperature data (Ferguson et al. 2005) and the high-
temperature Compton-scattering regime (Buchler & Yueh
1976). The equation of state adopted by MESA blends from
OPAL (Rogers & Nayfonov 2002), SCVH (Saumon et al.
1995), PTEH (Pols et al. 1995), HELM (Timmes & Swesty
2000), and PC (Potekhin & Chabrier 2010). We adopted nu-
clear reaction rates from JINA REACLIB database. We only
considered a minimal set of elements specified in basic.net

of MESA. We did not account for atomic diffusion or gravi-
tational settling in the models.

For the surface boundary conditions, we used the grey
model atmosphere together with Eddington T − τ integra-
tion (Eddington 1926). We caution that by default, MESA

does not include the atmosphere in the output structure. The
resulting bias looks very similar to the surface effect, although
the amount of correction is larger. To avoid this, one should
specifically set add_atmosphere_to_pulse_data as .true.

The free parameters for the model grid are stellar mass
M ∈ (0.7, 2.3) M�, initial helium abundance Yinit ∈
(0.22, 0.32), metallicity [M/H] ∈ (−0.94, 0.56) (the corre-
sponding Zinit ranges from 0.0016 to 0.0522), and mixing-
length parameter αMLT ∈ (1.3, 2.7). These four parameters
were uniformly sampled in a quasi-random Sobol sequence
with a total number of 8191 (Bellinger et al. 2016). Each
set of parameters uniquely determines an evolutionary track.
Along each evolutionary track, we saved one structure model
at least every 0.3 µHz in ∆ν or 5 K in Teff. For each struc-
ture model, we calculated radial mode frequencies with GYRE

in a wide frequency range around νmax. We used the 6th-
order Gauss-Legendre Magnus method to solve the adiabatic
oscillations. We caution that a lower-order algorithm could
produce inaccurate frequencies, which differ by an amount
larger than the typical observational uncertainties. Although
a higher-order scheme is sensitive to abrupt changes in the
structure, we examined the variables (such as density, tem-
perature, sound speed and the first adiabatic index) in the set
of oscillation equations, and found they vary smoothly near
the atmospheres.

3.3 Fitting method

We now describe the fitting method to obtain the sur-
face parameters θs in the prescriptions. They determine
the amount of surface correction of each model θm =
{M,Yinit, αMLT, [M/H], age}. For each star i, we considered
three classical constraints q = {L, Teff , [M/H]} (e.g. Valle
et al. 2015; Joyce & Chaboyer 2018b; Duan et al. 2021; Jiang
& Gizon 2021):

χ2
classical,i =

∑

q

(qmod,i − qobs,i)
2

σ2
q,i

. (7)

The seismic constraints include radial mode frequencies. They
are normalised by the number of observed modes Ni, in order
to avoid unrealistically small error bars (Cunha et al. 2021;
Aguirre Børsen-Koch et al. 2022):

χ2
seismic,i =

1

Ni

Ni∑

n

(νmod,n,i + δνn,i − νobs,n,i)
2

σ2
mod + σ2

obs,n,i

. (8)

Normalising by the number of modes Ni in χ2
seismic,i is equiva-

lent to reducing the relative weight of χ2
seismic,i with respect to

χ2
classical,i and artificially inflating returned formal uncertain-

ties. Cunha et al. (2021) noted that this is a common prac-
tice in stellar modelling, but it is not statistically valid and
is sometimes unable to capture the systematic uncertainties
originating from stellar physics. In the above equation, δνn,i
is the amount of surface correction, and σmod is the system-
atic uncertainty of stellar model frequencies (Li et al. 2020b;
Ong et al. 2021b). To evaluate σmod, we identified the best-
fitting model (using the above χ2

seismic and treating σmod,i as
0) and calculated its root-mean-square difference between the
observed and corrected modelled frequencies. At this step, the
amount of surface correction for each mode, δνn,i, was deter-
mined by fitting Eq. 1 or 3 to the actual differences between
the uncorrected model frequencies νmod,n,i and the observed
frequencies νobs,n,i (i.e. the traditional star-by-star surface
correction). We then fitted the root-mean-square differences
as a function of νmax and Teff for the whole sample and used
this function to describe σmod, which gave

σmod/µHz = 1.65 · (νmax/νmax,�)1.45(Teff/Teff,�)2.30. (9)

The value of σmod is generally smaller than σobs in RGB stars
and comparable in main-sequence stars, hence the poorly-
and well-observed modes in one star are not weighted simi-
larly. For our final fitting, δνn,i was calculated using the pre-
scription described in Sec. 2.

To obtain the probability distributions of the surface pa-
rameters θs, we marginalised the probability over other model
parameters:

pi(θs) =

∫
exp

[
−
(
χ2

classical,i + χ2
seismic,i

)
/2
]

dθm. (10)

Since θm is sampled on a pre-computed model grid, in prac-
tice, we approximated this integration by taking the average
values of the integrated function for all eligible models. Fi-
nally, putting them together, we maximised the joint proba-
bility from all stars in the sample:

p(θs) =
∏

i

pi(θs) (11)

We used a gradient descent algorithm written with JAX and
OPJAX (Babuschkin et al. 2020) to optimise this function.
We adopted the uncertainties for the fitted parameters using
the diagonal elements of the covariance matrix, which was
constructed with the Hessian matrix for log p. Ensemble mod-
elling to constrain uncertain stellar physics has been used to
study the mixing length and helium abundance (Lyttle et al.
2021).

3.4 Fitting results

In addition to fitting the whole sample, we performed fits
in two classes of stars: pre-RGB (νmax>283 µHz) and RGB
(νmax<283 µHz). In Table 2, we show the best-fitting values of
the surface parameters in the prescriptions. Firstly, the best-
fitting parameters for the whole sample and the RGB sample
are similar, since RGB stars dominate the sample. Secondly,
the power indices for g, Teff, and [M/H] (b, c, and d) are
quite different for the RGB fit compared to the pre-RGB fit.
These parameters are also highly correlated, indicating that
their values could be poorly constrained, rather than highly
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Table 2. Best-fitting parameters in the surface correction prescriptions. The stellar models are calculated with T − τ integrated model
atmospheres using the Eddington relation.

Atmosphere Model Sample a b c d a′ b′ c′ d′

Eddington Cubic All −4.15± 0.13 0.95± 0.01 −5.48± 0.23 −1.10± 0.03 — — — —

Eddington Cubic Pre-RGB −4.19± 0.39 0.78± 0.07 −5.71± 0.58 −0.07± 0.13 — — — —
Eddington Cubic RGB −4.18± 0.13 0.96± 0.01 −5.64± 0.22 −1.11± 0.02 — — — —

Eddington Inverse-cubic All −3.74± 0.13 1.09± 0.01 −8.74± 0.23 −1.38± 0.02 −4.99± 0.14 1.05± 0.01 −8.15± 0.18 −1.32± 0.02

Eddington Inverse-cubic Pre-RGB −3.72± 0.40 0.61± 0.08 −1.68± 0.82 −0.08± 0.14 −5.55± 0.42 0.65± 0.06 −1.57± 0.62 −0.65± 0.11
Eddington Inverse-cubic RGB −3.84± 0.16 1.10± 0.01 −8.83± 0.24 −1.38± 0.02 −5.04± 0.17 1.07± 0.01 −8.33± 0.19 −1.33± 0.02

a b c d a′ b′ c′ d ′

a

b

c

d

a′

b′

c′

d ′

1.0

-0.3

-0.4

-0.2

0.9

-0.3

-0.5

-0.3

-0.3

1.0

-0.7

-0.4

-0.3

0.9

-0.5

-0.3

-0.4

-0.7

1.0

0.6

-0.4

-0.6

0.9

0.5

-0.2

-0.4

0.6

1.0

-0.2

-0.4

0.5

0.8

0.9

-0.3

-0.4

-0.2

1.0

-0.3

-0.4

-0.3

-0.3

0.9

-0.6

-0.4

-0.3

1.0

-0.7

-0.4

-0.5

-0.5

0.9

0.5

-0.4

-0.7

1.0

0.6

-0.3

-0.3

0.5

0.8

-0.3

-0.4

0.6

1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure 2. Correlation matrix of the fitted parameters for all sample
using the inverse-cubic model.

physically different. Fig. 2 shows the correlation matrix of the
fitted parameters for all sample using the inverse-cubic model.
Thirdly, although the reported uncertainties are small, we
observed strong correlations (correlation coefficient greater
than 0.5) between b and c, b′ and c′, c and d, c′ and d′, a and
a′, b and b′, c and c′, and d and d′. Fourthly, the inverse-cubic
and the cubic models show little differences. We discuss the
inverse-cubic model and the fit with the whole sample in the
rest of the paper.

To visualise our fitting result, we colour-coded the values
of δνm and δνm/νmax in Fig. 3 on the ∆ν–Teff diagrams. In
terms of the absolute value δνm (which is always negative),
the main-sequence stars have the largest amount of surface
correction. It decreases towards higher Teff (hotter F-stars)
and smaller ∆ν (more luminous red giants). Concerning the
relative value of δνm with respect to νmax, the trend is re-
versed. The main-sequences stars have smaller corrections,
and the surface effect becomes increasingly significant for
luminous red giants. Those trends are similar compared to
those found by Trampedach et al. (2017, Fig. 5 and 6), who
improved the mean atmospheric structure with 3D-averaged
models (the so-called “structural effect”).

Sonoi et al. (2015, Eqs. 9 and 10) also studied the struc-
tural effect, mainly for dwarfs and subgiants, and concluded
positive correlations between δνm and g or Teff. Houdek et al.
(2019, Fig. 5) studied the “modal effect”, which accounts for
the coupling between convection and oscillation, and reported
a similar correlation with their 1D time-dependent convec-

tion models. These works are qualitatively consistent with our
best-fitting parameters for dwarfs and subgiants (Table 2).

We emphasise that the values reported in Table 2 may not
be directly applicable to other stellar models, which could
have different outer boundary conditions. For example, in
Fig. 2 of Christensen-Dalsgaard et al. (1996) there are three
modifications to the solar atmosphere: one with an alternative
treatment of the convective flux, one with the inclusion of tur-
bulent pressure, and one with replacement from 3D averaged
models. Each one has a different value for the surface effect at
νmax, ranging from 5 to 17 µHz, suggesting that an alternative
atmosphere could differ by a factor of three from our fitted
values for the Sun. Moreover, the differences in the model
physics and even numerical treatment can change the fitted
values. To test this, we applied our prescriptions to a grid of
models calculated by Sharma et al. (2016). Even though they
set the same Eddington atmosphere with MESA as in this
work, we obtained unrealistically large corrections in their
models at high radial orders. Additionally, Appendix A ex-
amines an alternative atmosphere based on the Hopf T − τ
relation. We found that the fitted coefficients are drastically
different from those obtained using the Eddington relation.
Hence, to correctly implement our method, we recommend to
either use the stellar models corrected in this work or to re-fit
the prescriptions with stellar models of the user’s choice.

4 IMPROVEMENTS ON PARAMETER ESTIMATIONS

We now check whether applying our prescription introduces
bias in the estimated stellar properties. In Fig. 4, we show
the fractional differences of mass, radius, and age, between
modelling without and with the prescription. The differences
have medians fluctuating around 0, suggesting no systematic
bias.

Next, we demonstrate two major improvements by using
our method. Firstly, we note that adopting the prescriptions
reduces outliers when inferring parameters from stellar mod-
elling. For example, Fig. 4 shows some stars significantly away
from the median values. These data points correspond to a
poor fit due to the unconstrained surface correction. To con-
firm this, we show the differences between the modelled and
observed values of ∆ν in Fig. 5, where the former were ob-
tained from the best-fitting model. The model ∆ν values were
determined from the slope of a linear fit to the radial frequen-
cies versus the orders, with weights of each mode assigned by
a Gaussian envelope (centred around νmax; see White et al.
2011)

w = exp

[
− (ν − νmax)2

2σ2

]
, (12)
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where lnσ/µHz = 0.964 ln νmax/µHz − 1.715, which was es-
timated based on a fit to observations (Yu et al. 2018; Lund
et al. 2017; Li et al. 2020a). The values are similar to those
obtained by Mosser et al. (2012). For all models in this work,
we calculated the modes within 5σ of νmax.

By comparing the red points in the two panels, we noticed
that the differences are similar after the surface correction,
independent of whether using the prescription or not. This is
expected, since the corrected frequencies were constructed to
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Figure 6. Probability distributions of stellar ages for the RGB stars
within the Kepler open clusters NGC 6791 and NGC 6819. The age

probability for each star are shown in grey, while the joint probabil-
ity distribution is shown in black. Modelling with the prescription

(lower panels) shows a reduction of the scatter in age, compared

to modelling with a star-by-star surface correction (upper panels).

fit with the observed frequencies. However, when we compare
the grey points in both panels, which represent ∆ν calculated
from the uncorrected frequencies, the outliers are only present
in the case of star-by-star fit (top panel). These outliers are
eliminated when the prescription was applied in the ensemble
fit (bottom panel).

Secondly, we argue that adopting the prescriptions also re-
duces scatter in model-based parameters. This can be seen
from modelling stars in open clusters, members of which are
expected to have the same age. We examined the test sample
introduced in Sec. 3.1, namely the RGB stars in NGC 6791
and NGC 6819. In Fig. 6, we show the probability distribu-
tions of ages for each star (in grey lines), and compare them
with and without using our new prescription. It is evident
that the probabilities with the prescriptions applied display
smaller scatter overall. The root-mean-square values of indi-
vidual model-based ages reduces from 2.11 Gyr to 1.60 Gyr
for NGC 6791, and from 0.46 Gyr to 0.34 Gyr for NGC 6819.

On a side note, we compared our age estimates for the two
open clusters against recent studies in Table 3. Our estimates
occupy the lower end of the published ages. We attribute this
to our adopted observational constraints: the relatively high
metallicity for NGC 6791 ([M/H] = 0.36 dex), and the large
extinction value for NGC 6819 (mean E(B−V ) = 0.17). The
effect of extinction and metallicity on age can be seen from
Table 2 of Basu et al. (2011).

To allow easy-access to our stellar models and the surface-
corrected frequencies, we published them in an online repos-
itory (see Data Availability).

Table 3. List of ages for the two open clusters.

Age (Gyr) Methods References

NGC 6791

6.8 – 8.6 Seismology Basu et al. (2011)
7.68± 1.60 Seismology This work

8.2± 0.3 Seismology McKeever et al. (2019)

8.3± 0.8 Isochrone fitting Brogaard et al. (2012)
8.3 Binary Brogaard et al. (2021)

10.1± 0.9 Seismology Kallinger et al. (2018)

NGC 6819

1.57± 0.34 Seismology This work

2 – 2.4 Seismology Basu et al. (2011)

2.4 Isochrone fitting Jeffries et al. (2013)
2.4± 0.2 Eclipsing binary Brewer et al. (2016)

2.5 Isochrone fitting Balona et al. (2013)

2.62± 0.25 Eclipsing binary Sandquist et al. (2013)
2.9± 0.3 Seismology Kallinger et al. (2018)

3.1± 0.4 Eclipsing binary Jeffries et al. (2013)

5 CORRECTION TO THE P-MODE LARGE
SEPARATION FROM STELLAR MODELS

The scaling relation that relates the p-mode large separation
∆ν to stellar mean density, ∆ν ∝ √ρ (Ulrich 1986), is broadly
used (see Hekker 2020, for a review). This relation is only an
approximation and stellar models have been used to correct
it (White et al. 2011; Sharma et al. 2016; Guggenberger et al.
2016; Rodrigues et al. 2017; Serenelli et al. 2017; Pinsonneault
et al. 2018). Sharma et al. (2016, hereafter S16) introduced a
correction factor f∆ν to the standard ∆ν scaling relation:
(

∆ν

∆ν�

)
= f∆ν

(
ρ

ρ�

)0.5

, (13)

where ∆ν� = 135.1 µHz is the solar value of the large fre-
quency separation (Huber et al. 2011).

The correction factor f∆ν are used when estimating the
mass and radius via the usual scaling relations (Stello et al.
2008; Kallinger et al. 2010):

M

M�
≈
(

νmax

νmax,�

)3(
∆ν

f∆ν∆ν�

)−4(
Teff

Teff,�

)3/2

, (14)

and

R

R�
≈
(

νmax

νmax,�

)(
∆ν

f∆ν∆ν�

)−2(
Teff

Teff,�

)1/2

. (15)

To use Eq. 13 to determine f∆ν from models, we need to
know the model-predicted density and ∆ν, the latter of which
is usually calculated from radial oscillation frequencies. Since
the surface correction is negative, we expect that the model
∆ν value will decrease when the correction is applied (Kjeld-
sen et al. 2008). However, this correction was previously ig-
nored. Here, we investigate this change and analyse its im-
plication on stellar properties derived from the asteroseismic
relations.

5.1 Results

Firstly, we present the correction factor, f∆ν , calculated from
our stellar models and prescriptions. Fig. 7 shows f∆ν as a
function of Teff (left panels) and ∆ν (right panels), for three
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Figure 7. Correction factor for the ∆ν scaling relation, f∆ν , as
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metallicities and three masses. The values for f∆ν were derived

using stellar models with the surface correction considered. The

small fluctuations along the lines arise from the uncertainty in the
helium abundance and the mixing length parameter.

masses and three metallicities. The overall variations of f∆ν

resemble those calculated from models by White et al. (2011,
Fig. 4) and S16 (Fig. 4), neither of which included a surface
correction. However, our values for f∆ν are systematically
smaller compared to the work from S16, due to this correc-
tion. Fig. 8 shows the effect of surface correction on f∆ν . The
change of f∆ν is small for main-sequence stars, but is larger
on the RGB, showing an ∼2% reduction, where the surface
correction is relatively significant (see also Fig. 3b).

The revised correction factors can be used to estimate the
mass and radius via Eq. 14 and 15. Unlike the surface cor-
rections done in Sec. 3.3, these do not require any additional
model calculations by the user. They simply involve revising
the standard scaling relation. We provide a Python routine
to derive f∆ν given user-specified observables, based on the
models that are calibrated in this work. For a given star, the
user specifies observational constraints and their associated
uncertainties (e.g. L, Teff, [M/H] and νmax). Each model is
assigned with a χ2 (using Eq. 7). Next, the correction factor
f∆ν of the star is estimated by taking the average of model
f∆ν values, weighted by exp(−χ2/2).

We can also provide a simple fitting formula of f∆ν with
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Figure 8. Fractional differences of f∆ν between before and after the
surface correction.
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Figure 9. Comparison of Gaia radii and asteroseismic radii, using

f∆ν calculated in S16 and this work. The data points are binned
medians, and the error bars represent the standard errors of the

medians. The grey band highlights the 2% systematic uncertainties

(e.g. temperature scale) discussed by Zinn et al. (2019).

respect to stellar properties. We explored various functional
forms (linear, log-linear and polynomial) and included the
observed νmax, ∆ν, Teff and [M/H] as independent variables
to perform simple regressions. The following form obtains a
reasonably good fit (r2 = 0.85) and avoids over-fitting with
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Figure 10. Comparison of the dynamical and the asteroseismic
masses and radii using eclipsing binaries (Gaulme et al. 2016; The-

meßl et al. 2018; Brogaard et al. 2018; Benbakoura et al. 2021).

The asteroseismic properties were determined using f∆ν with and
without the surface correction, respectively.

higher orders (examined via cross-validation):

f∆ν = β0 + β1 log10(νmax/3090 µHz)

+ β2 log10(∆ν/135.1 µHz)

+ β3(Teff/5777 K)

+ β4(Teff/5777 K)2

+ β5(Teff/5777 K)3

+ β6[M/H],

for 0.8 < M/M� < 2.2, −0.8 < [M/H] < 0.5,

and pre-RGB tip (∆ν > 2.0 µHz).

(16)

The best-fitting parameters are β = {4.1027, 0.1706,−0.1863,
−10.5526, 11.8359,−4.3733, 0.0015}. Note that the above for-
mula does not predict f∆ν = 1 for solar properties, since we
did not require the formula to pass through the solar refer-
ence point. To obtain the most accurate estimations on f∆ν ,
we suggest using the provided Python routine.

Naturally, fitting formula would need to be tested before
applying outside the parameter ranges of our sample. Ex-
tending it to other ranges, such as metal-poor, high-mass,
and red-clump stars, requires more data and will be the sub-
ject of future work.

5.2 Comparisons to Gaia radii

To show how the surface corrected f∆ν affects stellar radii,
we compared the asteroseismic radii with the Gaia radii cal-
culated by Zinn (2021), using the APOKASC sample (Pin-
sonneault et al. 2018). The Teff and [M/H] from APOGEE
(Abdurro’uf et al. 2022) were used to derive Gaia radii for
bolometric corrections and converting from luminosities. We
calculated the asteroseismic radii through Eq. 15, where we
adopted the SYD pipeline values for ∆ν and νmax (Serenelli
et al. 2017; Yu et al. 2018), and Teff from APOGEE.

Fig. 9 shows the result. Without the surface correction con-
sidered, the f∆ν in this work (blue triangles) produce simi-
lar radii to S16 (black circles), despite the fact that the un-
derlying stellar models are different. Christensen-Dalsgaard
et al. (2020) reported a spread of only 0.2% in the values
of f∆ν from different stellar modelling code. In addition, we
found that differences in the mixing length can change f∆ν

by ∼1% (see Appendix B for more details). A larger discrep-
ancy emerges when we applied the surface correction (red
squares). Eq. 15 indicates that the seismic radius is propor-
tional to f2

∆ν . Since correctly accounting for the surface effect
reduces f∆ν by ∼2% for RGB stars (Fig. 8), this translates to
a systematic ∼4% decrease of the asteroseismic radius scale.
This is exactly what we see in Fig. 9. As summarized by Zinn
et al. (2019), the systematic uncertainties involved in this
comparison, such as uncertainties in bolometric correction
and extinction, the IRFM temperature scale, and asteroseis-
mic reference points, can add up to 2%. It is not yet possible
to conclude any disagreement between the asteroseismic and
Gaia radii with this precision.

There is a significant excursion of red squares at R > 10 R�
in Fig. 9 that cannot be explained by the causes discussed
above. The dip associated with the excursion is also present
when using the f∆ν without surface correction. The red clump
stars, which burn helium in the core, have radii around 10 R�
(see Fig. 6 of Li et al. 2021a). After exhausting core helium,
they become asymptotic-giant-branch (AGB) stars and are
difficult to be distinguished from RGB stars based on g-mode
period spacings alone (Kallinger et al. 2012; Dréau et al.
2021). Hence, the dip is probably a result of the contami-
nation from AGB stars in the sample. This is supported by
the excess of very low-mass stars above 10 R�, due to AGB
stars having lost more mass than RGB stars (see Fig. 2g of Li
et al. 2021a). The impact of this contamination on Galactic
population studies clearly deserves further investigation.

5.3 Comparisons to eclipsing binaries

Similarly, we can compare the asteroseismic radius and
mass with the dynamical properties determined from eclips-
ing binaries. We used the eclipsing binary sample studied
by Gaulme et al. (2016), Themeßl et al. (2018), Brogaard
et al. (2018) and Benbakoura et al. (2021), who determined
the dynamical masses and radii through radial-velocity and
lightcurve modelling. We calculated their asteroseismic radii
and masses through Eq. 14 and 15, using ∆ν, νmax, and Teff

reported in Benbakoura et al. (2021). Fig. 10 shows the re-
sulting comparison. Using the corrected f∆ν produces excel-
lent agreement of those properties determined from the two
independent means, while the f∆ν without correction tends
to systematically overestimate them. Although Benbakoura
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et al. (2021) did not consider the surface corrected f∆ν , they
also found agreement between the asteroseismic and dynam-
ical properties, through modifying the solar reference values
appearing in the scaling relations. Our results thus remove
the need to shift the reference values when the surface cor-
rection is taken into account. Moreover, the impact of surface
correction changes as a function of stellar properties (Fig. 8),
so it would be difficult to reconcile all stars if the reference
values are treated as a constant.

According to Eq. 14, the scaling mass is proportional to
f4

∆ν(e.g. Sharma et al. 2016). Hence, as a result of the change
in f∆ν , the seismic mass scale decreases by ∼8%. This could
have significant consequences for Galactic archaeology since
the ages of low-mass stars are critically dependent on their
masses.

6 CONCLUSIONS

We provide a prescription for the surface correction as a func-
tion of stellar properties, exploiting the fact that the correc-
tion should vary smoothly across the H–R diagram. Our main
findings are summarised as follows:

(i) The absolute values of the surface correction are larger
in main-sequence stars and smaller in RGB stars. For the
relative surface correction as a fraction of νmax, the trend is
reversed (Sec. 3.4 and Fig. 3).

(ii) Using the prescription, we were able to reduce scat-
ter and the number of outliers in stellar properties estimated
from stellar modelling (Sec. 4 and Figs. 5 and 6). This demon-
strates the power of our ensemble-based parameterization of
the surface correction.

(iii) We present our stellar models in an online repository.
The models include radial frequencies before and after apply-
ing the surface correction calibrated in this work.

(iv) Taking into account the surface correction, we present
a revised ∆ν scaling relation (Sec. 5.1 and Fig. 7). We pro-
vided a fitting formula (Eq. 16) and a Python routine to de-
termine f∆ν given user-specified observables.

(v) The values of f∆ν are smaller by up to 2%, after taking
into account the surface correction (Sec. 5.1 and Fig. 8). This
results in decreases of up to 4% in radii and up to 8% in
masses when using the asteroseismic scaling relations.

(vi) We showed that the mass and radius determined with
the revised f∆ν improve the agreement with those determined
from eclipsing binaries (Sec. 5.3 and Fig. 10).

For most readers, item (iv) will be the most useful. It de-
scribes a modification to the ∆ν scaling relation that, for
the first time, takes the surface correction into account and
we encourage its use when deriving masses and radii from
asteroseismic parameters.
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R. F., Trampedach R., 1999, A&A, 351, 689

Sandquist E. L., et al., 2013, ApJ, 762, 58

Saumon D., Chabrier G., van Horn H. M., 1995, ApJS, 99, 713

Schmitt J. R., Basu S., 2015, ApJ, 808, 123

Serenelli A., et al., 2017, ApJS, 233, 23

Sharma S., Stello D., Bland-Hawthorn J., Huber D., Bedding T. R.,
2016, ApJ, 822, 15

Silva Aguirre V., et al., 2015, MNRAS, 452, 2127

Sonoi T., Samadi R., Belkacem K., Ludwig H. G., Caffau E.,

Mosser B., 2015, A&A, 583, A112

Sonoi T., Ludwig H. G., Dupret M. A., Montalbán J., Samadi R.,

Belkacem K., Caffau E., Goupil M. J., 2019, A&A, 621, A84

Stello D., Bruntt H., Preston H., Buzasi D., 2008, ApJ, 674, L53

Stello D., et al., 2010, ApJ, 713, L182

Stello D., et al., 2013, ApJ, 765, L41

Tayar J., et al., 2017, ApJ, 840, 17

Tayar J., Claytor Z. R., Huber D., van Saders J., 2022, ApJ, 927,

31

Themeßl N., et al., 2018, MNRAS, 478, 4669

Timmes F. X., Swesty F. D., 2000, ApJS, 126, 501

Townsend R. H. D., Teitler S. A., 2013, MNRAS, 435, 3406

Trampedach R., Aarslev M. J., Houdek G., Collet R., Christensen-
Dalsgaard J., Stein R. F., Asplund M., 2017, MNRAS, 466, L43

Ulrich R. K., 1986, ApJ, 306, L37

Valle G., Dell’Omodarme M., Prada Moroni P. G., Degl’Innocenti
S., 2015, A&A, 579, A59

Vernazza J. E., Avrett E. H., Loeser R., 1981, ApJS, 45, 635

Virtanen P., et al., 2020, Nature Methods, 17, 261

Vogt S. S., et al., 1994, in Crawford D. L., Craine E. R., eds, Soci-

ety of Photo-Optical Instrumentation Engineers (SPIE) Con-

ference Series Vol. 2198, Instrumentation in Astronomy VIII.
p. 362, doi:10.1117/12.176725

Vrard M., Mosser B., Samadi R., 2016, A&A, 588, A87
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APPENDIX A: SURFACE CORRECTION WITH HOPF
ATMOSPHERIC MODELS

We carried out an additional set of stellar model calculation
using the solar-calibrated Hopf atmosphere (Paxton et al.
2013), which is equivalent to the fit provided by Sonoi et al.
(2019) to the VAL-C model (Vernazza et al. 1981). The re-
sults are presented in Table A1. Notably, there is a significant
discrepancy in the fitted coefficients between the pre-RGB
and RGB samples — especially for a, which represents the
amount of surface correction at νmax for a solar model. Con-
sidering the atmosphere is solar-calibrated, it may generalise
poorly on RGB stars. Further studies are needed to under-
stand its cause. To enhance the applicability of the surface
correction prescription proposed in this paper, we recommend
using the atmosphere calculated based on the Eddington T−τ
relation rather the Hopf atmosphere.

APPENDIX B: SYSTEMATIC UNCERTAINTIES OF THE
CORRECTION FACTORS

We can study two types of uncertainties arising from the cal-
culation of the correction factor f∆ν . The first type of error is
due to uncertain stellar physics. Using our surface-corrected
stellar models, we can quantify the spread of f∆ν due to the
changes of Yinit and αMLT, both of which are poorly con-
strained model parameters. We generated synthetic stars with
the following stellar properties: L, νmax, Teff, and [M/H],
along a 1 M�, solar metallicity, pre-RGB-tip evolutionary
track from MIST. We assumed 2% observational uncertain-
ties for L, 2% for νmax, 2.4% for Teff, and 0.1 dex for [M/H],
according to their typical values (e.g. Tayar et al. 2022; Yu
et al. 2018). Then we treated these properties as observational
constraints and estimated f∆ν , using the fitting routine in-
troduced in Sec. 5.1. In addition, we assigned Gaussian priors
on each model based on its Yinit and αMLT values, the results
of which are shown in the top and middle panels of Fig. B1.
Changing αMLT clearly has a bigger impact than Yinit. The
differences on the RGB and the main sequence are smaller
than 0.5%, and in the subgiant phase (νmax∼ 1000 µHz) they
can reach∼ 1%. However, the f∆ν itself presents a larger vari-
ation than these at most ∼ 1% uncertainties (see also Fig. 7),
indicating the necessity of making the correction to the ∆ν
scaling relation.

The second type of error concerns the range of modes that
are used to calculate the theoretical ∆ν. We compared two
approaches: one using the default range of modes involved
in our work, which is νmax ± 5σ, and another only using
the modes in the νmax ± 3∆ν range. From the bottom panel
of Fig. B1, we see negligible differences, indicating that the
range of modes considered (as long as larger than 3∆ν) is not
a major source of uncertainty.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Table A1. Best-fitting parameters in the surface correction prescriptions. The stellar models are calculated with T − τ integrated model
atmospheres using the solar-calibrated Hopf relation.

AtmosphereModel Sample a b c d a′ b′ c′ d′

Hopf Cubic All −3.06± 0.100.96± 0.01 −7.14± 0.20−0.88± 0.02 — — — —

Hopf Cubic Pre-RGB−4.25± 0.280.50± 0.06 −0.98± 0.49−0.49± 0.08 — — — —
Hopf Cubic RGB −2.90± 0.100.97± 0.01 −7.68± 0.22−0.91± 0.02 — — — —

Hopf Inverse-cubicAll −4.73± 0.400.45± 0.06 2.27± 0.43 0.66± 0.11−6.01± 0.38−6.01± 0.38−6.01± 0.38−6.01± 0.38

Hopf Inverse-cubicPre-RGB−4.73± 0.400.45± 0.06 2.27± 0.43 0.66± 0.11−6.01± 0.38−6.01± 0.38−6.01± 0.38−6.01± 0.38
Hopf Inverse-cubicRGB −1.45± 0.030.88± 0.01−10.16± 0.20−0.31± 0.02−2.31± 0.06−2.31± 0.06−2.31± 0.06−2.31± 0.06
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Figure B1. Changes of theoretical f∆ν due to the choices of priors
on αMLT and Yinit (top and middle panels) and the ranges of modes

to be included when calculating model ∆ν (bottom panel).
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6 Testing the νmax scaling relation with indi-
vidual frequency modelling

The paper produced in this chapter is in the final stage of preparation and will be
submitted to a peer-review journal. The work is a collaborative effort. I performed
the observational data analysis and stellar modelling. I and Tim Bedding contributed
to most experiments in this work. Dennis Stello and Daniel Huber interpreted the
results. I wrote the manuscript, and the other authors have not yet commented on it.

83



Draft version May 8, 2023
Typeset using LATEX twocolumn style in AASTeX631

Testing the νmax Scaling Relation with Individual Frequency Modelling

Yaguang Li (李亚光) ,1, ∗ Timothy R. Bedding ,1, † Dennis Stello ,2 and Daniel Huber 3
1

1Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006, Australia2

2School of Physics, University of New South Wales, 2052, Australia3

3Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA4

ABSTRACT5

The frequency of maximum power, νmax, in solar-like oscillations is thought to scale with the surface6

gravity and temperature as νmax ∝ g/
√
Teff, though the basis for this relation is not well understood7

due to a lack of knowledge on the excitation mechanism. In this study, we used individual frequency8

modelling to homogeneously derive the scaling νmax and compared it to the actual νmax observed from9

oscillation spectra. We found that there is a strong degeneracy between the model-derived scaling10

νmax and the mixing length parameter, which can be lifted using calibrations with the dynamical11

properties of eclipsing binaries. Remarkably, we discovered that the νmax scaling relation holds very12

well after accounting for this correlation, and it shows no significant dependency on metallicity within13

the observational uncertainties. We also discussed the implication for estimating stellar properties.14

Both νmax and individual frequencies can provide strong constraints on stellar mass and radius, with15

precision of 2% and 1%, respectively. Yet, individual frequencies are better at constraining age, with16

precision of 10% compared to 35% from using νmax. When both sets of information are combined, we17

are able to achieve precision of 0.5% for mass, 0.1% for radius, and 5% for age. This is a regime where18

systematic uncertainties may dominate the error budget.19

Keywords: stars: oscillations (including pulsations)20

1. INTRODUCTION21

Solar-like oscillations in solar-type stars and red giants22

are driven by near-surface convection. These oscillations23

manifest as peaks in the power spectrum of the star,24

with amplitudes that are modulated by a near-Gaussian25

envelope centred at a specific frequency known as the26

frequency of maximum power νmax.27

Since νmax varies across the Hertzsprung–Russel (H–28

R) diagram, it carries important information about stel-29

lar properties. The νmax scaling relation was first pro-30

posed by Brown et al. (1991) as a roughly fixed fraction31

of the acoustic cutoff frequency, νac, which in the stellar32

atmosphere, scales as νac ∝ g/
√
Teff , where g is the sur-33

face gravity and Teff is the effective temperature. In the34

solar photosphere νac is about 5500 µHz, whereas νmax35

is about 3090 µHz. Kjeldsen & Bedding (1995) further36

assumed that stars have similar structures as the Sun37

and scaled the relation using the solar values (see also38

∗ e-mail: yaguang.li@sydney.edu.au
† e-mail: tim.bedding@sydney.edu.au

Belkacem et al. 2011):39

νmax

νmax,�
≈

(
M

M�

)(
R

R�

)−2 (
Teff

Teff,�

)−1/2

, (1)40

where νmax,� = 3090 µHz, and Teff,� = 5772 K.41

One question that arises is whether the standard scal-42

ing relation holds true for all stars. In other words,43

does the ratio of the true frequency of maximum power,44

νmax,true to the frequency predicted by the scaling rela-45

tion, νmax,scaling deviate from unity? This deviation can46

be quantified by the factor fνmax
(Sharma et al. 2011),47

which is determined by the equation:48

νmax,true = fνmax
νmax,scaling. (2)49

Examining this fνmax
is the aim of this work. We de-50

rive νmax,scaling by modelling individual frequencies, and51

compare it with νmax,true, which is measured from ob-52

servations.53

2. DATA ANALYSIS54

2.1. Observations55



2 Li et al.

420044004600480050005200540056005800
Teff (K)

101

102

Lu
m

in
os

ity
(L
�

)

1.0 M�

1.4 M�

1.8 M�

2.2 M�

−1 0
[M/H]

Red-giant-branch stars
Eclipsing binaries

Figure 1. H–R diagram showing the sample used in this
work, colour-coded by metallicity.

We used the RGB sample observed by Kepler and56

APOGEE (Pinsonneault et al. 2018). We collected νmax57

extracted by the SYD pipeline (Yu et al. 2018), os-58

cillation frequencies (l = 0, 2) extracted by Kallinger59

(2019), l = 1 g-mode period spacings (∆Π1) from60

Vrard et al. (2016), Teff determined using the IRFM61

method calibrated by Casagrande et al. (2021), [M/H]62

from APOGEE (Abdurro’uf et al. 2022), and luminosi-63

ties determined with J -band magnitudes (Cutri et al.64

2003), Green et al. (2019) extinctions, Choi et al. (2016)65

bolometric corrections and Gaia DR3 distances (Bailer-66

Jones et al. 2021).67

2.2. Stellar models68

We constructed a new grid of stellar models with69

MESA (version r15140; Paxton et al. 2011, 2013, 2015,70

2018, 2019) and GRYE (version 6.0.1; Townsend &71

Teitler 2013), using the same input physics described in72

Li et al. (2022), except for two differences noted below.73

Firstly, the new models considered possible varia-74

tions in the convective overshoot. We set an expo-75

nential overshooting scheme for all convective bound-76

aries. Hence, in addition to stellar mass, metallicity,77

initial helium abundance, and mixing length parame-78

ter, the initial free parameters for the grid also include79

core overshoot fcore ∈ (0., 0.02) and envelope overshoot80

fenv ∈ (0., 0.008).81

Secondly, the new models calculated radial modes and82

decomposed pure p modes for quadrupolar modes (the83

so-called π modes) using the method introduced by Ong84

& Basu (2020). We considered the l = 2 modes because85

the spacing between l = 0 and l = 2 modes, or known86

as the small separation, correlates well with stellar mass87

and could provide crucial constraints on stellar proper-88

ties (Kallinger et al. 2012; Montalbán et al. 2010).89

2.3. Model fitting90

We used the same framework described in Li et al.91

(2022) to perform model fitting. We corrected the sur-92

face effect in an ensemble approach, with benefits of93

eliminating unrealistic surface correction and reducing94

scatter in model-derived properties. This was done by95

parameterising the amount of surface correction at νmax,96

δνm, and that at 1.1νmax, δν′m, as functions of stellar97

surface properties:98

δνm = a · (g/g�)b · (Teff/Teff,�)c · (d · [M/H] + 1), (3)99

and100

δν′m = a′ · (g/g�)b
′ · (Teff/Teff,�)c

′ · (d′ · [M/H] + 1), (4)101

The free parameters {a, b, c, d, a′, b′, c′, d′} were102

fitted to the stellar models used in this103

work and the best fitting parameters are104

{−6.11, 0.79,−5.04,−0.79,−7.69, 0.79,−4.59,−0.87}.105

These two equations were then used to deduce the sur-106

face terms in the inverse-cubic formula (Ball & Gizon107

2014).108

We used both classical constraints (L) and seismic109

constraints (l = 0 and 2 oscillation frequencies) to con-110

strain stellar models. The inferred parameters were de-111

termined from the marginalised probability functions.112

3. RESULTS AND DISCUSSIONS113

3.1. Degeneracies between the model-inferred scaling114

νmax and the mixing length115

Our results suggest that the uncertainty in the mix-116

ing length parameter (αMLT) limits the precision with117

which we can predict νmax. In Figure 2, we show the118

posterior probabilities for αMLT and scaling νmax esti-119

mated for one example star, constrained by [M/H], Teff,120

L, νl=0, and νl=2. The figure illustrates that there is a121

strong correlation between αMLT and νmax. Even when122

we added the constraint of the period spacing of dipole123

modes, ∆Π1, the correlation persisted. This leads us124

to conclude that the value of νmax cannot be accurately125

predicted from individual frequencies without knowing126

αMLT. This is likely because individual frequencies are127

sensitive to the interior of the star, where αMLT has less128

impact, compared to the surface.129

It is not surprising that αMLT is a challenge in stel-130

lar modelling. Previous studies have identified a cor-131

relation between αMLT and metallicity (Tayar et al.132
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The contours are the Gaussian kernel density estimate of
the probablity distributions with a bandwidth of 0.1 after
a min-max normalization. The stellar models used for this
estimate are shown in points. The star shown in this example
is KIC 12735851.
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Figure 3. Same as Fig. 2, but for KIC 10001167, modelled
using its dynamical properties from eclipsing binary mod-
elling.

2017), which, if left unaccounted for, can have signifi-133

cant implications for determining stellar ages. Joyce &134

Chaboyer (2018) also demonstrated that models with a135

solar-calibrated value of αMLT are unable to reproduce136

the observed properties of metal-poor stars. These find-137
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Figure 4. Mixing length parameter, αMLT, vs. [M/H] esti-
mated for the eclipsing binaries.

ings highlight the need for adapting the value of αMLT138

to different metallicities. Valle et al. (2019) suggested139

that the classical constraints (Teff, [M/H]) and global140

oscillation parameters (∆ν, νmax) are not sufficient for141

accurately calibrating αMLT. To complicate matters fur-142

ther, 3D hydrodynamic simulations of the stellar surface143

also indicate that αMLT should be adjusted, but the144

magnitude of the adjustment inferred from these sim-145

ulations differs significantly from that inferred from 1D146

models, suggesting that the values of αMLT inferred from147

these two approaches could be fundamentally incompat-148

ible (Trampedach et al. 2014; Magic et al. 2015).149

Here, we demonstrate that the dynamical properties150

of eclipsing binaries may provide a way to calibrate the151

mixing length parameter (αMLT). In Figure 3, we show152

the probabilities estimated for an eclipsing binary in our153

sample, with additional constraints on the mass and ra-154

dius obtained from its orbit. The strong correlation be-155

tween αMLT and νmax seen in Figure 2 is largely elim-156

inated, and the value of αMLT is well constrained. In157

Figure 4, we show the estimated value of αMLT as a158

function of [M/H] for all asteroseismic eclipsing binaries159

in our sample. Although our sample size is limited, we160

observe a positive correlation between αMLT and [M/H],161

which is consistent with previous findings (Tayar et al.162

2017; Viani et al. 2018). We provided a linear fit to this163

relation:164

αMLT = 0.56 [M/H] + 2.15. (5)165

We encourage future studies to establish this relation166

when more asteroseismic binaries are discovered.167

3.2. Testing the scaling relation168

Given the limitations discussed earlier, what can we169

conclude about the νmax scaling relation? In Figure 5,170

we show the revision factor of the νmax scaling relation,171

fνmax , as a function of mass, νmax, [M/H], and αMLT.172
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Figure 5. Deviation of the νmax scaling relation, fνmax , vs. mass, radius, [M/H], and αMLT. The top rows show the modelling
results without imposing informative priors on αMLT, and the bottom rows assuming the values of αMLT calibrated from the
eclipsing binaries.

The top row shows the relations using the directly re-173

turned fνmax
from the modelling. It appears that one174

might wrongly conclude that there is a dependency of175

νmax on [M/H], which can be explained by the degener-176

acy with αMLT shown in the rightmost panel. However,177

if we enforce the fitted relation from Equation 5, this178

dependence disappears, as shown in the bottom rows.179

Within the current observational uncertainties, the νmax180

scaling relation remains valid.181

Our results, which show no departure from the stan-182

dard scaling relation, are consistent with those of Coelho183

et al. (2015), who modelled stars using ∆ν, Teff, and184

[M/H] as input constraints. Zinn et al. (2019) also com-185

pared the radii derived from the scaling relation to Gaia186

radii and did not find any departure from the scaling187

relation at low metallicities. These studies suggest that188

the trend in metallicity reported in Epstein et al. (2014)189

may be due to an incorrect temperature scale in the190

metal-poor regime, potentially caused by a lack of Teff191

calibrations.192

However, our results are in some tension with theo-193

retical studies that have suggested that the νmax scaling194

relation should include a term for [M/H], based on the195

dependence of the acoustic cutoff frequency, νac, on the196

first adiabatic exponent and the mean molecular weight197

(Jiménez et al. 2015; Yıldız et al. 2016; Viani et al. 2017).198

These quantities depend on [M/H], leading to the pre-199

diction of a monotonic increase by more than 2% in νmax200

when changing [M/H] from -0.5 to 0.5 (Viani et al. 2017).201

This trend is not observed in our data. One possible ex-202

planation is that νmax may relate to νac in a way that203

has not been considered in previous studies.204

3.3. Implications on fundamental stellar properties205

As we discussed in Section 3.1, it is not possible to206

predict νmax with sufficient precision using only the in-207

dividual frequencies, due to the uncertainty in the mix-208

ing length parameter (αMLT). This finding also suggests209

that νmax carries information that is distinct from that210

contained in the individual frequencies. The question we211

now explore is: what are the implications for estimating212

fundamental stellar properties?213

In Figure 6, we show the median relative uncertainties214

obtained for mass, radius, and age using various com-215

binations of seismic constraints. Firstly, it is evident216

that there is a natural decrease in uncertainties when217

adding l = 2 modes and the l = 1 period spacings, due218

to the increased information content. Secondly, com-219

paring the combination of (νl=0, νl=2, ∆Π1) and the220

traditional grid-modelling method that is based on the221

∆ν and νmax scaling relation (∆ν, νmax), we notice that222

the uncertainties obtained for mass and radius are sim-223

ilar (3% and 1%, respectively), but the scaling-relation-224

based age uncertainty is around 30% while the individ-225

ual frequency-based age uncertainty is under 20%, and226

even reaches 10% when g-mode period spacing is con-227
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Figure 6. Median relative uncertainties of fundamental stel-
lar properties, estimated from different combinations of seis-
mic constraints indicated in the labels, in addition to the
usual classical constraints Teff, [M/H] and L.

sidered. This indicates that while the scaling relation228

is sufficient to derive mass and radius, the individual229

frequencies are much more useful for determining ages.230

Finally, by combining all seismic information available,231

the precision for mass, radius, and age all reaches min-232

imal levels, which likely exceeds the typical accuracy233

level that is dominated by systematic uncertainties aris-234

ing from calculations of model physics (Silva Aguirre235

et al. 2017; Tayar et al. 2022; Huber et al. 2022). Future236

investigations are need to characterise the level of these237

uncertainties.238

4. CONCLUSIONS239

In this paper, we tested the νmax scaling relation,240

νmax ∝ g/
√
Teff, using individual frequency modelling.241

Our main findings are summarised below:242

1. The prediction of scaling νmax from individual fre-243

quencies is limited by uncertainties in the mixing244

length parameter, which can be calibrated using245

the dynamical properties of eclipsing binaries.246

2. The value of νmax shows no departure beyond the247

standard scaling relation and no dependency on248

metallicity within the observational uncertainties.249

3. Both νmax and individual frequencies can provide250

strong constraints on stellar mass and radius, but251

individual frequencies are able to provide age with252

three times better precision compared to using the253

∆ν and νmax scaling relations.254

4. When both νmax and individual frequencies are255

used, we are able to achieve precision of 0.5% for256

mass, 0.1% for radius, and 5% for age.257
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A star expands to become a red giant when it has fused all 
the hydrogen in its core into helium. If the star is in a binary 
system, its envelope can overflow onto its companion or be 
ejected into space, leaving a hot core and potentially form-
ing a subdwarf B star1–3. However, most red giants that have 
partially transferred envelopes in this way remain cool on the 
surface and are almost indistinguishable from those that have 
not. Among ~7,000 helium-burning red giants observed by 
NASA’s Kepler mission, we use asteroseismology to identify 
two classes of stars that must have undergone considerable 
mass loss, presumably due to stripping in binary interactions. 
The first class comprises about seven underluminous stars 
with smaller helium-burning cores than their single-star coun-
terparts. Theoretical models show that these small cores imply 
the stars had much larger masses when ascending the red 
giant branch. The second class consists of 32 red giants with 
masses down to 0.5 M⊙, whose implied ages would exceed the 
age of the universe had no mass loss occurred. The numbers 
are consistent with binary statistics, and our results open up 
new possibilities to study the evolution of post-mass-transfer 
binary systems.

Mass loss in red giant stars remains one of the major uncer-
tainties in stellar physics. A hydrogen-shell-burning red giant 
branch (RGB) star will reach its maximum luminosity at the tip 
of the RGB, where substantial mass loss occurs4,5. It then starts 
the core-helium-burning (CHeB) phase at a much lower luminos-
ity. Recent studies suggest that the accumulated mass loss driven 
by pulsation and radiation on the RGB can reduce the stellar mass 
by up to 0.1 M⊙, on the basis of asteroseismic observations of field 
stars6,7 and open clusters8–10. In contrast, globular clusters tend to 
suggest a loss in mass of about 0.2 M⊙ on the RGB on the basis of the 
morphology of the horizontal branch on the Hertzsprung–Russell 
diagram11–13, although the accuracy of photometric masses is still 
being debated14. Even greater changes in mass can occur during 
binary interactions, via stable Roche lobe overflow, common enve-
lope ejection, or merging15.

The fate of an RGB star in a binary system can vary markedly, 
depending on the system’s dynamical properties and hence the 
mass-transfer rate. If the star loses its entire hydrogen-rich envelope 
before reaching the RGB tip, it leaves a bare non-burning helium 

core, forming a low-mass white dwarf16–18 (M/M⊙ < 0.5; M is the 
stellar mass). On the other hand, a stripped CHeB red giant could 
form a hot subluminous star of spectral type B (sdB) on the extreme 
horizontal branch2,3,19,20. Indeed, most sdB stars are found to be in 
binary systems with short periods21–23. Some stripped CHeB stars 
are found in binary systems with a Be star (B star with a circumstel-
lar disk) as the companion24–26, suggesting a mass-transfer history. 
However, there has been little success in finding CHeB red giant 
stars that have only partially transferred their envelopes, except in 
a few open clusters, where an anomaly in stellar mass is more easily 
identified10,27.

To find these post-mass-transfer CHeB stars among the 
red giants observed by Kepler, we used asteroseismology to 
derive stellar parameters and evolutionary phases (Methods). 
According to the asteroseismic scaling relations28–30, the 
so-called large frequency separation scales with the mean den-
sity, Δν ∝ M1/2R−3/2 (R is the stellar radius), and the frequency of 
maximum oscillation power is proportional to the surface prop-
erties, νmax ∝ g/√Teff ∝ MR−2Teff

−1/2 (g is the surface gravity, Teff the 
effective temperature). These two relations give stellar masses 
and radii to remarkable precision31. In addition, the non-radial 
oscillation modes of red giants (spherical degree l ≥ 1) are mixed 
modes, which result from coupling between gravity (g) waves in 
the core and acoustic pressure (p) waves in the envelope32–35. The 
period spacing of the l = 1 modes, ΔP, is a reliable indicator to 
distinguish CHeB from RGB stars36,37.

Figure 1 shows the parameters for 7,538 CHeB stars in our 
sample. Since both Δν and νmax depend on radius, we examine the 
quantity ν max

0.75/Δν in Fig. 1a (both νmax and Δν are in microhertz). 
According to the scaling relations, ν max

0.75/Δν is proportional to 
M0.25T eff

−0.375 and is approximately independent of radius37–39. The 
most notable feature in Fig. 1a is a hook-like structure with almost 
all stars sitting on one side of a well defined edge, which corresponds 
to the zero-age helium-burning (ZAHeB) phase31. This ZAHeB edge 
is very sharp because almost all ZAHeB stars with M ≲ 1.8 M⊙ share 
a common helium core mass of ~0.5 M⊙ (refs. 40,41), which was sup-
ported by electron degeneracy on the RGB (Extended Data Fig. 1). 
We calculated CHeB stellar models from 0.6 M⊙ to 2.0 M⊙ with solar 
metallicity and assuming single-star evolution (Methods), shown 
by the black lines. Overall, these models are consistent with the  
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majority of the CHeB population, especially considering the single 
metallicity and the neglect of convective overshoot42.

The group of stars in Fig. 1a that lie to the right of the ZAHeB 
edge cannot be explained by single-star evolution. They are smaller 
in radius, and hence lower in luminosity, than the main CHeB pop-
ulation with the same masses, implying that a smaller core is sup-
plying their energy. We refer to them as underluminous stars (see 
Extended Data Figs. 2 and 3 for an example).

Figure 1a also reveals a set of stars with masses down to 0.5 M⊙. 
Modelling of the individual frequencies confirms the low mass 
(Methods and Extended Data Fig. 4). The age of the universe, 
13.8 Gyr (ref. 43), puts a lower limit on the mass of a red giant 
without mass loss of approximately 0.8–1.0 M⊙. Specifically, in 
Fig. 2, we show this lower limit on mass as a function of [M/H], 
determined by theoretical models (Methods). Since stellar winds 
driven by radiation and pulsation can only remove up to 0.2 M⊙ 
on the RGB, those stars below the threshold must have undergone 
much more extreme mass loss (Extended Data Fig. 1). We refer to 

them as very low-mass stars (see Extended Data Figs. 2 and 3 for 
an example).

Figure 1b highlights the underluminous stars (red triangles) and 
the very low-mass stars (blue squares). We show the sample on the 
mass–radius diagram in Fig. 1c, calculated from Teff, Δν and νmax 
using the scaling relations, and on the Hertzsprung–Russell dia-
gram in Fig. 1d (refs. 31,44–46). The ZAHeB edge is still evident in the 
mass–radius plane (Fig. 1c), though less sharp, due to observational 
uncertainties in Teff. The ZAHeB edge is not visible in the luminos-
ity–Teff plane (Fig. 1d), presumably because Teff depends strongly on 
both mass and metallicity on the RGB. This reasoning is supported 
by the fact that the solar-metallicity evolutionary models in Fig. 1d 
are unable to cover the whole observed Teff range.

To understand the locations of the underluminous and very 
low-mass stars, we calculated stellar evolutionary models with vari-
ous amounts of mass loss due to binary stripping (Methods). They 
are shown by the tracks in Fig. 1b–d. First, the models with a pro-
genitor mass of 2.2 M⊙ that lose different fractions of their outer 
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envelopes (shown by orange lines) lie to the right of the ‘hook’ 
formed by the CHeB population, in the same location as the under-
luminous stars. This confirms that the underluminous stars were 
originally more massive on the RGB (1.8 < M/M⊙ < 3.6), where the 
central temperature rose quickly and the core started to collapse 
once it reached the Schönberg–Chandrasekhar limit47. This limit 
does not apply to the lower-mass RGB stars (M/M⊙ ≲ 1.8) because 
their dense cores are electron degenerate. Hence, at the end of the 
RGB, the higher-mass stars (1.8 < M/M⊙ < 3.6) initiated helium 
burning earlier and formed smaller helium cores than lower-mass 
stars (M/M⊙ ≲ 1.8).

Second, we show models with a progenitor mass of 1.5 M⊙ that 
lost different amounts of mass due to binary stripping (light-blue 
lines). Their locations are almost the same as those without mass 
loss (black lines). This is because, after losing part of their envelope, 
their structure in the CHeB stage is essentially identical to that of a 
star that began its life with this lower mass. It is therefore impossible 
to decipher how much mass a star has lost on the basis of its current 
Δν, νmax, luminosity and Teff if it was born with an initial mass below 
1.8 M⊙. However, the 0.6 M⊙ models without mass loss are older 
than the universe, while the mass-loss models produce realistic ages 
for the very low-mass stars.

On the basis of known binary distributions, we can calculate 
the number of Kepler red giants expected to undergo mass loss 
after filling their Roche lobes (Methods). The resulting fraction 
of underluminous stars with progenitor masses between 1.8 and 
3.6 M⊙ is predicted to be 0.13%. This is consistent with our observa-
tion, 0.09% ± 0.04%. The predicted fraction of post-mass-transfer 
stars with progenitor masses below 1.8 M⊙ is 2.01%—more than 
the 0.48% ± 0.09% of very low-mass CHeB stars we observed. This 
is to be expected, because post-mass-transfer CHeB stars with 
1.0 < M/M⊙ < 1.8 hide in the overall CHeB population (grey dots in 
Fig. 1).

Although the post-mass-transfer stars that now appear as regu-
lar CHeB stars are difficult to identify, future studies of chemical 

abundances may provide clues on mass transfer. One example is 
lithium (Li), an element that cannot survive in a high-temperature 
environment. In red giants, the expansion of the convective enve-
lope dilutes Li on the surface by bringing Li-deficient layers from 
below. Hence, Li enhancement (A(Li) = log10[n(Li)/n(H)] > 1.5 de
x, where n(x) is the number density of atom x) in red giant stars 
is unusual48–51. Among the underluminous stars (red triangles in 
Fig. 1), KIC 5000307 shows an unusually high abundance of Li52, 
with A(Li) = 2.8. Our result showing that this star has experienced 
considerable mass loss seems to suggest binarity as a Li production 
channel53,54.

Another group of interest is the α-process elements, which trace 
the stellar populations in the Galaxy. In particular, the α-rich popu-
lation is characterized by its old age55, mainly consisting of low-mass 
stars, as shown in Fig. 3a by the [α/M] > 0.15 sample. However, this 
population also contains the so-called young α-rich stars56,57, which 
appear old chemically but have large masses. They are suggested 
to be in wide binary systems and to have been recipients of mass 
transfer58–61. Studies of their companions may be a way to find more 
stripped CHeB stars.

The elemental abundances of individual stars depend on age and 
metallicity [M/H] (refs. 62,63), which means that stars within a spe-
cific [α/M] range share a common age distribution. Figure 3b shows 
the mass distributions of RGB and CHeB stars with [α/M] < 0.03. 
Almost all the RGB stars are more massive than 1 M⊙. Considering 
a maximum mass loss of 0.2 M⊙ on the RGB through radiation and 
pulsation, the M < 0.8 M⊙ CHeB stars with [α/M] < 0.03 must have 
transferred mass by other means. Chemical abundances allow us to 
identify more of these stars in this way.

Our discovery of the post-mass-transfer CHeB stars follows 
recent identifications of mergers on the RGB64,65 and demonstrates 
asteroseismology as a new way to find interesting binary systems in 
the red giant population. Expanding the current sample to brighter 
stars from the K2 and TESS missions will enable spectroscopic 
or astrometric measurements to solve the binary orbits, allowing 
detailed characterization of the systems and a better understand-
ing of the mass-transfer channel19. This is critical to investigate 
whether some of these stars are still undergoing mass loss and 
whether they will ultimately become sdB stars. Asteroseismology 
also opens up other possibilities, since by modelling individual 
frequencies we can derive accurate masses and ages, thereby pro-
viding crucial constraints to the system’s history. Furthermore, 
analysing the rotational splitting of oscillation modes probes the 
core rotation and angular momentum transport surrounding these 
binary interactions, filling the gap between sdB stars and regular 
CHeB stars66.

Methods
Sample selection and stellar parameters. We used the asteroseismic red giant 
catalogue by Yu et al.39. This sample provides measurements of Δν and νmax from 
the SYD pipeline67, compilations of Teff and [M/H], and masses and radii derived 
using the asteroseismic scaling relations68–73. It also compiles classifications of the 
evolutionary stage (RGB/CHeB) from previous work74–78. The CHeB stars and 
the low-luminosity RGB stars (νmax > 80 μHz) used in this work are all from this 
catalogue.

We cross-matched the sample with APOGEE DR1779 and the Large Sky Area 
Multi-Object Fiber Spectroscopic Telescope (LAMOST) DR580 to obtain the 
elemental abundances ([M/H] and [α/M]), replacing the values of [M/H] from 
Yu et al.39 wherever possible. The elemental abundances are used in Figs. 2 and 3. 
We also obtained radial velocities (RVs) from APOGEE DR1779 and the LAMOST 
Medium-Resolution Survey81.

We carefully remeasured the νmax values for the underluminous and very 
low-mass stars in our sample using the pySYD pipeline82 and found good 
agreement with the catalogue values. In addition, we extracted the radial mode 
frequencies for these identified stars83 and used them to redetermine their average 
Δν by adopting the slope from fitting a straight line to the frequencies as a function 
of the radial orders84. This allowed us to measure Δν more accurately because it 
is less affected by one or more strong modes. We calculated the correction factors 
for the Δν scaling relation according to Sharma et al.85. The masses and radii (and 
associated uncertainties) were then redetermined using the rederived Δν (with 
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the associated correction factors) and the revised Teff, while keeping all the other 
parameters the same as described by Yu et al.39. We determined luminosities via the 
Stefan–Boltzmann law L ∝ R2Teff

4. We also examined the classification results based 
on the ΔP to confirm the evolutionary stages. To do this, the power spectrum 
in the period was sliced into segments of equal width and vertically stacked to 
construct the so-called period échelle diagram. By optimizing the width, ΔP 
could be obtained, such that l = 1 modes align in a ‘zigzag’ pattern37. We checked 
the period spacings directly (rather than fitting with functions86) because the 
period spacings of CHeB and RGB populations (at similar νmax) differ by at least 
a factor of 4 and inspection of the échelle diagram is sufficient to assign the class 
of evolutionary stages86,87. Extended Data Fig. 2 shows the power spectra for three 
representative stars, including a regular CHeB star (a), an underluminous star (b) 
and a very low-mass star (c). The spectra show clear detections of l = 1 modes. 
Extended Data Fig. 3 shows the period échelle diagrams. Their period spacings are 
about 300 s, confirming them as CHeB stars. The main characteristics that set the 
post-mass-transfer stars apart are their values of νmax and Δν, and therefore their 
masses and radii.

Stellar evolutionary models. We calculated the stellar evolutionary models 
shown in Fig. 1 with MESA (Modules for Experiments in Stellar Astrophysics; 
version 15140)88–92 and GYRE (version 6.0.1)93. We used the Henyey formalism94 
of the mixing-length theory to describe convection, with the mixing-length 
parameter αMLT set to 2. Previous work in this mass regime suggests that 
fundamental parameters are not sensitive to the choice of αMLT at this observational 
precision95,96. We did not include convective overshoot. We adopted the current 
solar photospheric abundance measured by Asplund et al.97 as the metal mixture 
for our calculation: X⊙ = 0.7381, Y⊙ = 0.2485, Z⊙ = 0.0134. The opacity tables 
were accordingly set on the basis of the AGSS09 metal mixture. We used nuclear 
reaction rates from the JINA REACLIB database98 and only considered a minimal 
set of elements adopted from basic.net in MESA. We adopted the grey model 
atmosphere with Eddington T–τ integration99 as the surface boundary condition. 
MESA uses an equation of state blended from OPAL100, SCVH101, PTEH102, 
HELM103 and PC104. MESA implements electron conduction opacities105 and 
radiative opacities from OPAL106,107, except for low-temperature data108 and the 
high-temperature Compton-scattering regime109.

We implemented an instant (compared with the evolutionary timescales) mass 
loss to model a quick binary stripping process. When the model evolved to the 
CHeB stage, mass loss from the surface was switched on (with the ‘mass_change’ 
option in MESA) at a rate of 2 M⊙ Myr−1. Because the helium burning lasts about 
100 Myr for M < 2.2 M⊙ stars42,76, and the total amount of mass loss ranges from 
0.2 to 1.6 M⊙, the implemented mass loss spanned less than 1% of the total CHeB 
stage. Mass loss was turned off once the desired final mass was reached, and the 
evolution was continued until the exhaustion of core helium. Using these settings, 
we calculated evolutionary models with initial masses 1.5 and 2.2 M⊙ and final 
masses ranging from 0.6 to 2.0 M⊙ in steps of 0.1 M⊙. We also computed models 
without any mass loss spanning this mass range, for comparison.

Identification of the underluminous stars. To set expectations of the sharpness 
of the ZAHeB edge, we followed the previous method described by Li et al.31. This 
involved using a Galactic simulation sample generated by Galaxia110,111, which 
has been tied to the Kepler target selection function. In Extended Data Fig. 1a, 

we show the Galaxia CHeB population on the ν max
0.75/Δν–Δν diagram37–39. Next, 

we identified the theoretical ZAHeB edge using a spline (the black dashed line) 
interpolated between several anchor points (the green crosses). We focused on 
the vertical distances to the edge because the horizontal direction has negligible 
uncertainties (in Fig. 1b the error bars on the red triangles are smaller than 
the symbol size). In the inset of Extended Data Fig. 1a, we show the histogram 
of the vertical distances to the ZAHeB edge. Although the simulated sample 
forms a very sharp edge, it is still broadened by scatter in Teff and [M/H]. To 
determine the intrinsic broadening, we fitted the distribution with a half-Gaussian 
half-Lorentzian profile. The intrinsic broadening σintrinsic, measured by the standard 
deviation of the Gaussian profile, was 0.06.

We caution that the extremely metal-poor stars (e.g., [M/H] = −2 dex) could 
occupy the right-hand side of the edge, although they are very rare in our sample. 
As shown in Fig. 2, most Kepler CHeB stars have [M/H] > −1.0 dex. The identified 
underluminous stars (red triangles) have metallicities of >−0.5 dex. This means 
that the right-hand side of the edge is still a ‘forbidden’ zone for these stars.

Similarly, in Fig. 1b, we identified the observed ZAHeB edge for the Kepler 
sample with a spline and collected all stars that lay on the right of the edge. The 
statistical uncertainty was combined with σintrinsic in quadrature to represent 
the final uncertainty. The underluminous stars were selected as being at least 
1σ away from the observed ZAHeB edge in the vertical direction. We list the 
underluminous stars in Supplementary Information.

Identification of the very low-mass stars. The lowest possible mass of a CHeB 
star, limited by the age of the universe (13.8 Gyr; ref. 43), is critically dependent on 
the metallicity. Using stellar isochrones at 13.8 Gyr from MIST112, we extracted the 
model masses at helium-burning stage for different values of [M/H]. In Extended 
Data Fig. 1b, we show the simulated Galaxia population on the [M/H]–mass 
diagram. The simulated sample forms a very sharp edge that coincides with the 
theoretical limit on mass (denoted by the dashed line).

The theoretical limit on mass (the solid line) is also shown in Fig. 2, together 
with the observed Kepler sample. We assume that the mass loss driven by radiation 
and pulsation can at most lower this limit by 0.2 M⊙ (the dashed line). Hence, we 
identified the stars at least 1σ to the left of the dashed line as the very low-mass 
stars, which must experience enhanced mass loss, possibly due to a companion. We 
list the very low-mass stars in Supplementary Information.

Modelling of a very low-mass star. Since we rely on the scaling relations to derive 
stellar masses for the very low-mass stars, it is important to confirm the accuracy 
of the scaling relations in this regime. The Δν scaling relation can be checked 
with stellar models by calculating the mode frequencies and comparing with 
the density84,85,113–116. The models produce a correction factor, which is applied to 
observations. The problem lies in the νmax scaling relation, which does not have 
a solid theoretical basis. Zinn et al.117 found no obvious difference between the 
scaling-relation-based radii and the Gaia radii for stars smaller than R = 30 R⊙ 
within observational uncertainties. Li et al.31 used the sharpness of the ZAHeB 
edge to conclude that the νmax scaling relation has a very small intrinsic scatter of 
1.1%. However, the νmax scaling relation could perhaps have a systematic offset that 
biases stellar masses in this very low-mass regime. To examine this, we used stellar 
modelling to show that one of the very low-mass stars is indeed very low mass, 
by constraining stellar models using luminosity, metallicity, Teff and oscillation 
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mode frequencies. This does not use the information contained in the νmax scaling 
relation.

We chose the target KIC 8367834 because it has the best parallax among 
the very low-mass stars. We adopted the metallicity 0.19 ± 0.05 dex from 
APOGEE DR1779. We determined Teff to be 4,697 ± 100 K with the InfraRed Flux 
Method118. Using ISOCLASSIFY119,120, we derived trigonometric luminosities L, 
32.87 ± 1.22 L⊙, with the Gaia EDR3 parallax121,122, 2MASS J-band magnitudes, 
and extinctions from the dust map123. We extracted five radial frequencies83. They 
are 21.07 ± 0.03 μHz, 25.31 ± 0.02 μHz, 29.40 ± 0.02 μHz, 33.89 ± 0.02 μHz and 
38.25 ± 0.03 μHz.

We constructed a grid of stellar models by varying metallicities [M/H] from 
0.03 to 0.43 dex in steps of 0.05 dex (Z from 0.0152 to 0.0357), initial masses from 
0.8 to 1.4 M⊙ in steps of 0.2 M⊙ and final masses from 0.5 to 0.8 M⊙ in steps of 
0.02 M⊙. We first evolved models with various initial masses and metallicities 
until the onset of helium burning and saved these models. These models then lost 
their outer envelopes at a rate of 10 M⊙ Myr−1 until the desired final masses were 
reached. The total mass loss spans less than 1% of the helium-burning lifetime. The 
other model parameters were kept the same as the parameters we used to construct 
the models shown in Fig. 1. We calculated radial oscillation frequencies for all the 
models during the CHeB stage.

We optimized the stellar models using a maximum likelihood approach:

p ∝ exp(−χ
2/2), (1)

where

χ
2
= χ

2
classical + χ

2
seismic. (2)

The classical constraints include three stellar properties, q = {L, Teff, [M/H]}:

χ
2
classical =

∑

q

[qmod − qobs]2

σ2
q

. (3)

The seismic constraints include the extracted radial modes:

χ
2
seismic =

∑

n

[νmod,n − νobs,n]
2

σ2
νmod

+ σ2
νobs,n

, (4)

where σνmod is a systematic uncertainty due to the limited resolution of the model 
grid124,125. To evaluate σνmod, we first identified the best-fitting model (using 
equation (4) and treating σνmod as 0) and calculated its root-mean-square difference. 
We also corrected the theoretical frequencies due to the surface effect with the 
inverse-cubic formula126.

Extended Data Fig. 4 shows the stellar models within 3σ of the classical 
constraints, colour-coded with the probability. First, the most likely mass lies in 
the 1.5σ region determined from the scaling relations, validating the accuracy of 
the scaling relations. Second, and unsurprisingly, the frequency modelling yields 
the stellar mass to a even greater precision, suggesting a more accurate method to 
determine masses.

Rates of binary interactions. We estimated the number of stars that would be 
expected to have lost mass due to binary interaction on the RGB. We used the 
observed masses and [M/H] of Kepler CHeB stars as the mass (M1) and metallicity 
distributions of the primary stars in binary systems and calculated the maximum 
radius on the RGB, RRGB,max, with MIST stellar evolutionary tracks112. Assuming 
circular orbits, we randomly sampled binary fractions f, orbital periods P and mass 
ratios q = M1/M2 from observations of binary statistics127 and derived the radius of 
the L1 Lagrangian point128 according to

RL1 = a 0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, (5)

where a is the semi-major axis, which links to the orbital period,

P = 2π

√
a3

G(M1 + M2)
. (6)

The stars that expand their envelopes on the RGB beyond the L1 Lagrangian point, 
that is, RRGB,max > RL1, are subject to mass loss. The expected number of mass-loss 
stars is the sum of binary fractions f for the stars that satisfy the above condition.

Variations of RVs. Using multi-epoch RV data from APOGEE and LAMOST, 
we divided the maximal change |RVmax − RVmin| by the median of statistical errors 
eRV to represent RV variations129 (Supplementary Information). Only a few of 
the identified post-mass-transfer stars show significant RV variations. To better 
understand the distributions, we generated RV time series RVb at time t for the 
simulated binary sample with

RVb(t) = 2πa/P sin i∗ sin(2πt/P) + ϵRV, (7)

where i* is the inclination angle drawn from an isotropic distribution, and ϵRV is 
drawn from a normal distribution with standard deviation eRV. Both t and eRV used 
the observed RV measurements. Similarly, we generated RV time series for single 
stars with

RVs(t) = ϵRV. (8)

Using the same method, we estimated the RV variations for the simulated samples. 
The comparison between the observed and the simulated samples suggests that a 
significant RV variation (|RVmax − RVmin|/eRV > 10) may indicate a binary system, but 
a small RV variation does not necessarily exclude binarity. This explains the lack of 
RV variations in most stars identified in this work.

Data availability
We made use of publicly available data in this work. Kepler data are available from 
the MAST portal at https://archive.stsci.edu/access-mast-data, APOGEE data at 
https://www.sdss.org/dr16/, LAMOST data at http://dr5.lamost.org/v3/doc/vac 
and https://github.com/hypergravity/paperdata and Gaia data at https://gea.esac.
esa.int/archive/. The data needed to reproduce this work are available at GitHub 
(https://github.com/parallelpro/Yaguang_stripped_rg_repo). All other data are 
available from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Galaxia simulation of CHeB stars in the Kepler field. a, The seismic quantity ν0.75max/Δν versus νmax. The ZAHeB edge (the black 
dashed line) is represented by a spline (defined by the crosses). The inset of a shows the distribution of the vertical distances to the edge. The distribution 
is fitted by a half-Gaussian half-Lorentzian profile, shown by the green line. The standard deviation of the half-Gaussian profile represents the intrinsic 
broadening of the ZAHeB edge. b, The metallicity–mass diagram. The dashed line is the lowest mass a star can be without mass loss given a metallicity, 
determined with MIST models (see Methods).
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Extended Data Fig. 2 | Power spectra for three representative stars, including a regular CHeB star (a), an underluminous star (b), and a very low-mass 
star (c). The right panels show their locations on the mass–radius diagram marked by the star symbols. The power spectra (grey lines) are smoothed by 
0.06Δν (overlaid black lines). The integers 0–2 represent the angular-degree l. The locations of νmax are indicated by the arrows. The observed values  
of Δν and ΔP (see Extended Data Fig. 3) are represented by the lengths of the black line segments.
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Extended Data Fig. 3 | Period échelle diagrams for the regular CHeB star (a), the under-luminous star (b), and the very-low-mass star (c) that are shown 
in extended Fig. 2. The modes are marked by circles (l = 0), triangles (l = 1) and squares (l = 2). Error bars are not shown. The blue dashed lines connect 
the l = 1 modes in order. We adjusted the widths of the échelle diagrams such that the l = 1 modes form a “zigzag” pattern37. Those widths correspond to the 
period spacings of l = 1 modes, which confirm them as CHeB stars.
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Extended Data Fig. 4 | Stellar models for KIC 8367834 within 3σ of the classical constraints, colour-coded with probability using constraints from 
parallax, Teff, metallicity, and oscillation frequencies. a, The Hertzsprung–Russell diagram. b, The mass–radius diagram. c, The seismic quantity ν0.75max/Δν 
versus νmax. d, Mass versus νmax. The black boxes show the 1.5σ confidence regions, either directly from observations (L, Teff, νmax, Δν) or from the scaling 
relations (M, R).
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8 Conclusions and outlook

8.1 Conclusions

In this thesis, we have developed tools with asteroseismology to probe stellar interiors
and to enable the characterisations of stellar properties. Our main conclusions are
summarised as follows.

1. We extracted the oscillation parameters and the core and envelope rotation rates
of Kepler subgiants, in Chapter 2 and Chapter 3, respectively. We showed that
p-g mixed modes are potent probes of stellar ages. We found that the cores and
envelopes of early subgiants rotate at similar speeds, suggesting near solid-body
rotation on the main sequence and an efficient transport of angular momentum.
Differential rotation emerges between 300 and 800 Myr after the main sequence,
constraining the timescales of angular momentum transport.

2. We tested the validity of the asteroseismic scaling relations. In Chapter 4, we
measured the intrinsic scatter of the scaling relations to be a few percent, which
sets a fundamental floor for the precision. In Chapter 5, we showed the ∆ν
scaling relation has a 2% systematic bias if the surface effect is left uncorrected.
In Chapter 6, we found no noticeable deviation of the νmax scaling relation com-
pared to inferences from individual frequencies, providing a solid justification
for its application.

3. We proposed a new prescription to correct the stellar surface effect in Chapter 5.
This has been a troublesome problem in stellar modelling and involves using un-
constrained free parameters. By parameterising the surface correction to relate
with g, Teff, and [M/H], we were able to reduce the scatter of model-derived
stellar properties.

4. We discovered new types of post-mass-transfer helium-burning red giants in
Chapter 7. The first class comprises underluminous stars with smaller helium-
burning cores than their single-star counterparts, and the second class consists
of very low-mass stars, whose implied ages would exceed the age of the universe
had no excessive mass loss occurred.

8.2 Outlook

Stars are fundamental building blocks of the universe, and determining basic proper-
ties such as age, luminosity, and mass can unlock critical insights spanning the Galaxy,
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stars, and exoplanets. Despite recent advances, current techniques for determining
these properties have not been fully optimised. However, the power of asteroseismol-
ogy can be harnessed to take stellar characterisation to the next level. This can be
supported by two methods: detailed characterisation of individual frequencies and
ensemble modelling analysis. By further developing and utilising these methods, we
can make significant strides in understanding the properties of stars and their role in
shaping the cosmos.

Asteroseismology holds the potential for next-level accuracy due to its ability to pro-
vide more detailed information about stellar structure using individual frequencies,
which can significantly reduce uncertainties in age determination. Current determi-
nations of stellar properties often rely on the ∆ν and νmax scaling relations, which
reduce the asteroseismic information to only two parameters, resulting in typical age
uncertainties of 30%. In contrast, by characterising and modelling individual frequen-
cies, the age uncertainties can be reduced to 10%, dramatically increasing our ability
to resolve critical events in time (Montalbán et al., 2021).

Another powerful approach that is often overlooked is ensemble modelling analysis.
This method models many stars simultaneously, allowing for imposing correlations be-
tween parameters. For example, it can be used to describe poorly understood physical
processes as a function of stellar parameters, such as the convective efficiency de-
scribed by the mixing length αMLT. Additionally, ensemble modelling analysis can be
used to model all stars in a cluster or a binary system, taking advantage of the fact that
the stars are coeval, which can unlock accurate knowledge on ages and helium abun-
dances (McKeever et al., 2019). By accounting for potential correlations, the use of
ensemble modelling analysis can greatly improve the accuracy of inferred parameters.
We suggest the following projects for future work.

Moving beyond solar calibration with more realistic stellar models

When constructing stellar models, assumptions on stellar physics must be made, and
most of them are based on solar calibrations. However, differences in these assump-
tions can change mass by 5% and age by 20% for non-solar targets (Tayar et al.,
2022a), imposing a fundamental limit on the accuracy of the inferred stellar proper-
ties. One can essentially move beyond solar calibration and use benchmark stars to
calibrate the next generation of stellar models, bearing in mind that model physics
can vary from star to star consistently.

Calibrating empirical age-dating methods with asteroseismology

Stellar ages can be determined using empirical relations, which are indispensable tools
to access stellar ages where asteroseismology is not applicable. However, knowledge
of these relations primarily relies on a few clusters, which have limited coverage in
age and metallicity. These empirical age relations could be tied to the asteroseismic
age scale, using Gaia wide binaries (El-Badry et al., 2021) or the kinematic velocity
dispersion relation (Sharma et al., 2021) as the bridges.
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Settling the fundamental parameter scales of metal-poor stars

Metal-poor stars are the living fossils of the early Galaxy, but their fundamental prop-
erties are poorly determined. Recent studies show that their Teff could suffer from a
large systematic offset (Grunblatt et al., 2021), stemming from a lack of metal-poor
calibrators. The widely used νmax scaling relation could also break in the very-low-
metallicity environment (Epstein et al., 2014). One could use individual oscillation
frequencies and Gaia luminosities, a combination that has seldom been explored, to
infer the compatible Teff scale and test our ability to derive accurate masses and ages
for metal-poor stars.
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