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We study the generation of resonantly growing mean flow by weakly nonlinear
internal wave beams. With a perturbational expansion, we construct analytic solutions
for three-dimensional internal wave beams, exact up to first-order accuracy in the
viscosity parameter. We specifically focus on the subtleties of wave beam generation
by oscillating boundaries, such as wave makers in laboratory set-ups. The exact
solutions to the linearized equations allow us to derive an analytic expression for
the mean vertical vorticity production term, which induces a horizontal mean flow.
Whereas mean flow generation associated with viscous beam attenuation – known as
streaming – has been described before, we are the first to also include a peculiar
inviscid mean flow generation in the vicinity of the oscillating wall, resulting from
line vortices at the lateral edges of the oscillating boundary. Our theoretical expression
for the mean vertical vorticity production is in good agreement with earlier laboratory
experiments, for which the previously unrecognized inviscid mean flow generation
mechanism turns out to be significant.
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1. Introduction

Internal waves are ubiquitous in stratified and/or rotating fluids, such as the oceans.
Typical occurrence of internal waves includes oblique beams that propagate at a fixed
angle with respect to the horizontal, the angle θ = arctan
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controlled by the wave frequency ω0, the natural buoyancy frequency of the ambient
stratified fluid N0 and the Coriolis frequency f0. It has been recognized that internal
waves play an important role in mixing the abyssal oceans (Wunsch & Ferrari 2004)
and marginal seas (Lamb 2014). Whereas the primary generation mechanism of
internal waves through tidal conversion at rough topography is fairly well understood
(Garrett & Kunze 2007), it is still debated as to which mechanisms dissipate the
internal waves (Staquet & Sommeria 2002; Dauxois et al. 2018).
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An important dissipation mechanism of internal waves can be the generation of
mean flow (Bühler 2010), and in particular horizontal mean flow associated with
mean vertical vorticity, here referred to as vortical induced mean flow, sometimes
called strong mean flow (Bordes et al. 2012; Dauxois et al. 2018). The hallmark
of the potentially strong vortical induced mean flow is the persistent, cumulative
transfer of energy from the wave field. By contrast, the typically weak buoyancy
advection-induced mean flow (Kistovich & Chashechkin 2001; Tabaei & Akylas
2003), comprising the induced mean horizontal vorticity, is strongly suppressed by the
background stratification. The buoyancy advection-induced mean flow vanishes in the
absence of viscosity except where internal wave beams intersect (Thorpe 1987; Tabaei,
Akylas & Lamb 2005). We emphasize that the buoyancy advection-induced mean flow
is absent in inviscid internal wave packages, which are instead accompanied by the
well-studied modulation-induced mean flow (Bretherton 1969; Tabaei & Akylas 2007),
also known as Bretherton flow (van den Bremer & Sutherland 2018). Modulations
of the internal wave field – not considered in this body of work – may contribute to
the vortical induced mean flow (Kataoka & Akylas 2015).

A prominent class of underlying mean flow generation mechanisms for internal
wave beams is the so-called streaming (Lighthill 1978), which entails mean
flow generation associated with viscous attenuation through nonlinear wave–wave
interaction, similar to streaming by acoustic waves, and analogous to mean flow
generation by surface waves (Longuet-Higgins & Stewart 1964). As reviewed
by Riley (2001), streaming also occurs in a large variety of homogeneous fluid
configurations. Key ingredients for mean vertical vorticity production through
streaming by internal waves beams – and hence vortical mean flow generation –
are both viscous attenuation and horizontal cross-beam variations of the wave beam
amplitude. Several recent studies investigate vortical mean flow generation through
streaming in truly three-dimensional (3D) settings, both numerically (King, Zhang &
Swinney 2010; Grisouard & Bühler 2012; van den Bremer 2014; Zhou & Diamessis
2015; Raja 2018) and experimentally (Grisouard 2010; Bordes et al. 2012; Grisouard
et al. 2013; Semin et al. 2016; Kataoka et al. 2017).

Over long time scales, the vortical induced mean flow may become sufficiently
energetic such that wave–mean flow interactions eventually lead to a breakdown
of the internal wave itself. This breakdown mechanism is referred to as streaming
instability if the underlying generation mechanism is associated with irreversible
energy conversion from the wave to the mean field (Dauxois et al. 2018). This
differs from self-acceleration, which refers to inviscid modulation-induced mean flow
advecting the waves until they become convectively unstable (Sutherland 2006).

An approximate expression for the mean vertical vorticity production through
streaming for monochromatic internal wave beams was derived by Bordes et al.
(2012), and extended to slowly time-varying wave beams by Kataoka & Akylas
(2015) and to nearly monochromatic wave packages by Fan, Kataoka & Akylas
(2018). Their analyses rely on scale separation in the along-beam velocity, u, and the
horizontal cross-beam velocity, v, which limits the applicability of their asymptotic
results. We find that this scale separation is not always justified in the vicinity of an
oscillating boundary.

In this study, we construct analytical solutions for 3D internal wave beams,
exact up to first-order accuracy in the viscosity parameter, generated by oscillating
boundaries, such as wave makers (Gostiaux et al. 2007). The velocity field satisfying
the linearized equations also includes purely horizontal wave motion associated with
vertical line vortices at the edges of the wave maker. Our analytic expression for the
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mean vertical vorticity production term includes the well-known streaming as well
as a peculiar inviscid mean flow generation in the neighbourhood of the oscillating
boundary associated with the vertical line vortices. The relative strengths of the line
vortices – and hence the relative importance of the associated mean flow generation
– strongly depends on the mathematical representation of the oscillating boundary.
For this reason, we present a detailed derivation of an appropriate mathematical
representation of a small-amplitude wall oscillation, which differs from popular
representations in numerical simulations. Our analysis suggests that streaming and
inviscid mean flow generation by the line vortices are equally important in energizing
the vortical induced mean flow in the laboratory experiments by Bordes et al. (2012).
Our theory cannot describe the long-term mean flow evolution, as we ignore the
feedback of the growing mean flow on the beam evolution.

The paper is organized as follows. We first present preliminaries in § 2 and derive
an appropriate mathematical idealization of small-amplitude boundary oscillation in
§ 3. Analytical expressions for monochromatic 3D internal wave beams solving the
linearized equations for the oscillating boundary representation are constructed in § 4,
and used in § 5 to determine the associated mean vertical vorticity production. Then
§ 6 is devoted to a thorough comparison of our new theoretical insights with the
laboratory experiments by Bordes et al. (2012). A discussion of our results, as well
as suggestions for insightful analysis of experimental internal wave field data, can be
found in § 7.

2. Preliminaries
We consider a uniformly stratified incompressible Boussinesq fluid with Brunt–

Väisälä frequency N0 > 0 on an f -plane in Cartesian coordinates (x, y, z), rotating
around the vertical axis z with half the Coriolis frequency f0 > 0, and where gravity
points along the negative z-direction. In such rotating stratified fluids, inviscid internal
waves with frequencies ω0 > 0 propagate at angle θ = arctan
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2
0)

with respect to the horizontal if either f0 < ω0 < N0 or N0 < ω0 < f0. For localized
energy sources oscillating at frequency ω0, this leads in two dimensions to the
well-known St Andrew’s Cross (e.g. Sutherland (2010), also sketched in figure 1a),
and in three dimensions to double cones (Voisin 2003). Throughout this article,
we consider boundary forcings at a vertical sheet, oscillating at frequency ω0,
representative of small-amplitude wall oscillations, such as sketched in figure 1(b).
The precise oscillating boundary formulation is described in § 3.

We shall work with dimensionless variables, employing some characteristic
wavelength L0 as length scale, 1/ω0 as the time scale and U0 = a0ω0 = εL0ω0 as
the velocity scale, where a0 is the dimensional wave amplitude and ε = a0/L0� 1 is
the Stokes number.

The governing equations for the non-dimensional velocity vector u= [u, v, w], the
buoyancy b and the pressure p with dimensionless Brunt–Väisälä frequency N=N0/ω0
and Coriolis frequency f = f0/ω0 in subscript-derivative notation are

ut + ε(u · ∇)u+ f ẑ∧ u=−∇p+ ϑ1u+ ẑb, (2.1)
bt + εu · ∇b=−N2w, (2.2)

∇ · u= 0. (2.3)

Here, ϑ = ν/(ω0L2
0), with ν the kinematic viscosity constant, and ϑ/ε is the inverse

Reynolds number. We assume both ε and ϑ to be small, allowing us to perform a
perturbational expansion in these parameters.
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FIGURE 1. (Colour online) (a) Schematic snapshot of a St Andrew’s Cross generated
by vertical oscillation of a line force (point source in (x, z)-plane); cp and cg indicate
phase and group velocities. (b) Two wave beams generated by horizontal wave maker
oscillations. We impose the horizontal velocity, ȧ, of the oscillating wave maker (red line)
at the centreline, x= 0 (thick black line).

We proceed by employing the wave/vortex decomposition for the horizontal flow
(Staquet & Riley 1989; Voisin 2003). The Helmholtz decomposition thus reads

u=∇hφ + ẑ∧∇Ψ + ẑw, (2.4)

where φ is the potential (wave), and Ψ is the streamfunction (vortex) of the horizontal
velocity. The usefulness of this decomposition relies on the absence of vertical
vorticity (Ω z

= 1hΨ ) for internal gravity wave fields, i.e. the vortex streamfunction
Ψ is not associated with internal wave motion. The decomposition (2.4) transforms
the continuity equation (2.3) into

1hφ +wz = 0. (2.5)

The lower index h denotes horizontal components only, i.e. ∇h = [∂x, ∂y, 0], 1h =∇
2
h .

The curl of the horizontal momentum equations in (2.1), ẑ∧∇, reduces to

(∂t − ϑ1)1hΨ + f1hφ = εR, (2.6)

where

R = ((u · ∇)u)y − ((u · ∇)v)x
= J(w, φz)︸ ︷︷ ︸

wave–wave

+ J(Ψ , 1hΨ )︸ ︷︷ ︸
vortex–vortex

+wz1hΨ−(∇hw) · (∇hΨz)−(∇hφ) · (∇h1hΨ )−w1hΨz︸ ︷︷ ︸
wave–vortex

,

(2.7)

and J(A,B)=AxBy−BxAy is the horizontal Jacobian. The vertical curl of the nonlinear
horizontal advection terms, R, constituting the mean vertical vorticity production upon
time averaging over the wave period, is analysed in detail in § 5.

Similarly, the divergence of the horizontal momentum equations becomes

(∂t − ϑ1)1hφ − f1hΨ =−1hp+O(ε). (2.8)

This allows us to relate the pressure p to the horizontal wave and vortex components,
φ and Ψ , respectively, through

p=−(∂t − ϑ1)φ + fΨ +Ψ cf
+O(ε), (2.9)
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where curl-free streamfunction Ψ cf is a harmonic gauge, satisfying 1hΨ
cf
= 0, and

determined by appropriate boundary conditions.
Expressing the vertical momentum equation in terms of w and φ by employing the

buoyancy equation (2.2), (2.6) and (2.8) gives

[(∂t − ϑ1)
2
+ f 2
]∂t∂z1hφ − [(∂t − ϑ1)∂t +N2

](∂t − ϑ1)1hw= 0+O(ε). (2.10)

Using the continuity equation (2.5), we can reduce (2.10) to

[(∂t − ϑ1)
2∂t1+ f 2∂t∂

2
z +N2(∂t − ϑ1)1h]w= 0+O(ε). (2.11)

Next, we discuss and specify boundary constraints representative of small-amplitude
wall oscillations, for which we derive analytic solutions to (2.11) and (2.6) up to
O(ϑ, ε0) accuracy in § 4.

3. Mathematical representation of oscillating boundary forcing
The aim is to formulate an appropriate mathematical description of a boundary

value problem which is (i) representative of a small-amplitude horizontally oscillating
boundary, such as a wave maker in the laboratory set-up by Bordes et al. (2012),
and (ii) suitable to solve the linearized equations (2.1)–(2.3) analytically. Reasonable
simplifications are necessary because it is notoriously difficult to compute the wave
field with velocity vector u satisfying the impermeability boundary condition at the
oscillating wall,

d
dt
(x− εa(t, y, z))= 0 ⇐⇒ n · u|x=εa(y,z,t) = ȧ(y, z, t), (3.1)

where d/dt = ∂t + εu · ∇ is the material derivative, and n = (1, −ε∂ya, −ε∂za) is a
vector normal to the oscillating boundary, x= εa(y, z, t).

For computational convenience we restrict our analysis to temporally monochromatic
wall oscillations, with non-dimensional frequency ω= 1. (For the ease of dimensionalizing
our expressions, we denote the frequency 1 by ω everywhere. For dimensional
expressions, simply replace ω by ω0 and ϑ by ν everywhere.) A straightforward
generalization of our results to almost-periodic wave fields follows by the theory
developed in Krol (1991). We consider the phase propagation (cp) of the oscillating
wall to be primarily upwards, such that the group velocity (cg) of the generated
wave field is primarily downwards, as sketched in figure 1(b). Purely upward
phase propagation is atypical for laboratory experiments; the relative strength of
the upward-propagating field component for primarily downward-propagating beams
is discussed in the appendix, § A.2.

A key simplification, valid for all small-amplitude oscillations (ε� 1), consists of
prescribing the impermeability constraint (3.1) at x= 0 instead of at x= εa(y, z, t). If,
additionally, the forcing in the vertical sheet is spatially smooth (∂ya, ∂za∈O(1)), then
the constraint (3.1) at O(ε0) accuracy reduces to

u|x=0 = ȧ(y, z, t). (3.2)

The physical wave makers in laboratory set-ups, which we want to mimic mathematically,
typically have sharp edges, where ∂ya� 1, possibly ∂ya > 1/ε. This means that the
constraint (3.1) cannot be simplified to (3.2), i.e. the product of ε(∂ya) and v|x=0
in (3.1) is non-negligible. Recall that the monochromatic wall motion, ȧ, generates
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a wave field which oscillates predominantly at frequency ω = 1. This means that
the product of ∂ya with the dominating first harmonic of v|x=0 (both oscillating at
frequency ω) results in a mean and/or second harmonic, which cannot be balanced by
ȧ or the first harmonic of u. An unphysical blow-up of mean and/or second harmonics
at the lateral edges of the wave maker is only circumvented if v|x=0=0 where ∂ya�1,
and we are forced to add this condition as a constraint. While the impermeability
constraint (3.1) cannot be reduced to constraint (3.2), we can reduce it to

u|x=0 = ȧ(y, z, t) everywhere, and v|x=0 = 0 where ∂ya� 1. (3.3a,b)

Similarly, we remark that where ∂za blows up, the vertical velocity should vanish
(w|x=0 = 0). Treatment of this additional boundary forcing constraint is neglected
because it is irrelevant for the main objective of the present analysis. (Large ε∂za
corresponds to a horizontal line source, generating a St Andrew’s Cross, as sketched
in figure 1(a), and discussed in §§ A.2 and 6. No separate treatment of ε∂za� 1 is
required because the present analysis, focusing on the vortical induced mean flow
generation, is unaltered by the weak upward-propagating branch of the St Andrew’s
Cross.) We emphasize that the constraint on v in (3.3) belongs to the impermeability
constraint, i.e. it does not specify a stress (no-slip) boundary condition for the
along-wall velocity. This is important, because it implies that, even though v points
along the wall x = 0 in our approximate description, we may not use a Stokes
boundary layer solution for v to satisfy (3.3).

Let us first discuss two common approaches to implement (3.2), before we discuss
our implementation of (3.3).

The first approach consists in prescribing constraint (3.1) or a related formulation.
This approach is popular in simulations because its numerical implementation is
straightforward. For an idealized wave maker with no-stress boundary conditions,
Raja (2018) prescribes u(x = 0) = ȧ(t). Using no-slip boundaries, Brouzet et al.
(2016) prescribe w(x = 0) = −ȧ(t) tan θ , which is equivalent to u(x = 0) = ȧ(t) for
two-dimensional (2D) inviscid wave beams that propagate under an inclination tan θ .
These representations of a wave maker generate an accurate internal wave far field,
i.e. at sufficient distance from the energy input. However, our analysis in § 4 reveals
that these implementations fail to describe the wave field components related to
vertical line vortices, which are inevitably generated at the lateral edges of the wave
maker. Those line vortices do play a significant role in the mean vertical vorticity
production, and are thus essential for our analysis.

The second common approach consists in prescribing a momentum body forcing
F= x̂ä(y, z, t)δ(x), where δ is the Dirac delta. This approach is popular in theoretical
studies because Green’s functions of the governing equations are often known. For
numerical implementations of this momentum-forcing approach, the Dirac delta is
typically replaced by a sharp Gaussian. Although one can easily find equivalent body
forcing formulations for forced boundary constraints for 2D problems, it appears
non-trivial to do so for 3D problems.

We first solve the traditional boundary value constraint (3.2) approximately in terms
of the wave potential (φ), such that we can subsequently construct a streamfunction
Ψ to satisfy the additional constraint in (3.3) exactly. Although we are primarily
interested in the half-open domain, x > 0, we naturally extend the analytical
expressions to R3 by taking u and v even in x, and w odd in x, as sketched in
figure 1(b).
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3.1. Wave maker representation
Throughout the remainder of this study, we consider

a(y, z, t)=−E(y, z)e−iωt with E(y, z)=
1

4π2

∫
∞

−∞

∫
∞

0
Ê(ky, kz)eikyy+ikzz dkz dky, (3.4)

where the Fourier spectrum Ê of the normalized wall oscillation envelope is assumed
to be negligible for all negative vertical wavenumbers kz to guarantee upward phase
propagation, an assumption that can be dropped whenever needed. We work with
complex expressions; physical quantities always correspond to the real part. For wave
makers of height 2lz, width 2ly and vertical wavenumber k?z , we take

E(y, z)=Πcy,ly(y)Πcz,lz(z) exp[ik?z z], Πc,l(s)=
tanh[c(s+ l)] − tanh[c(s− l)]

2
,

Ê(ky, kz)=
π2

cycz

(
sin[kyly] csch

[
kyπ

2cy

])(
sin[(k?z − kz)lz] csch

[
(k?z − kz)π

2cz

])
,


(3.5)

where the chosen smoothing parameters cy and cz must be sufficiently large, as
discussed in detail in § 6, with the discontinuous edges corresponding to cy → ∞

and cz→∞. The exact solutions to the linearized equations, constructed in the next
section, do not rely on this particular envelope choice, and thus are far more general.

4. Three-dimensional propagating internal wave beams
In this section, we construct analytic expressions for 3D internal wave fields

generated by the oscillating boundary constraint, (3.3). Writing

Ŵ(x, ky, kz)=

∫
∞

−∞

∫
∞

−∞

w(x, y, z, t) exp[−ikyy− ikzz+ iωt] dy dz, (4.1)

the governing equation (2.11) reduces to

Ŵxx + (k2
zµ

2
− k2

y)Ŵ = 0, (4.2)

where

µ2
=

ω(−iω+ ϑk2)2 +ωf 2

(ω2 + iωϑk2 −N2)(ω+ iϑk2)

= tan2 θ + iϑk2

(
ω2N2

+ f 2(N2
− 2ω2)

ω(N2 −ω2)2

)
+O(ϑ2),

k=
kz

cos θ
.


(4.3)

In deriving (4.2), we neglected O(ϑ2) terms by approximating the Fourier-transformed
Laplace operator with −k2

=−k2
z/cos2 θ whenever the Laplace operator is associated

with viscous dissipation. The validity of this approximation will be apparent from the
solution presented below, for which the Fourier-transformed Laplace operator becomes
−(k2

x + k2
y + k2

z )=−(µ
2
+ 1)k2

z =−k2
+O(ϑ), with µ given in (4.3).
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The homogeneous solution of the 1D Helmholtz equation (4.2), which is bounded
for x > 0, is proportional to exp[ikxx], where kx =

√
k2

zµ
2 − k2

y . This shows that the
potential φ can be written as

φ(x, y, z, t)=
1

4π2

∫
∞

−∞

∫
∞

0
φ̂(ky, kz) exp[ikxx+ ikyy+ ikzz− iωt] dky dkz, (4.4)

with the spectrum φ̂(ky, kz) related to Ŵ(x, ky, kz) (by the continuity equation (2.5))
through

φ̂(ky, kz)=
i

µ2kz
Ŵ(x, ky, kz) exp[−ikxx]. (4.5)

Without yet specifying the spectrum φ̂(ky, kz), we can readily write the 3D wave beam
velocity field, which we denote by ub, in terms of φ alone (up to O(ϑ) accuracy):

ub
=

ub

vb

w

=
 ∂x

∂y

−tan2 θ ∂z

 φ + iϑβ

 0
0
∂zzz

 φ, β =

(
ω2N2

+ f 2(N2
− 2ω2)

ω(N2 −ω2)2 cos2 θ

)
.

(4.6a,b)

The aim is to find a solution approximating the boundary forcing constraint (3.3).
We start by considering constraint (3.2) and approximate u|x=0 by ik?xφ|x=0, hence
imposing

φ̂ =−
ω

k?x
Ê(ky, kz), (4.7)

where k?x = tan θ k?z is the horizontal wavelength imposed by the wave maker. While
approximating u|x=0 by ik?xφ|x=0 does imply a slight violation of the (already
approximated) boundary constraint (3.3), it happens to come with the benefit
of removing an unphysical singularity in ∂xv at (x, y) = (0, ±ly). (We remark
that replacing u|x=0 by ik?xφ|x=0 also neglects the contribution from the curl-free
streamfunction, Ψ cf , determined below. Effectively, replacing u|x=0 by ik?xφ|x=0 boils

down to approximating ikx + |ky| = i
√

tan2 θ k2
z − k2

y + |ky| by i tan θ kz, valid for all
sufficiently small ky, and then replacing kz by the imposed vertical wavenumber, k?z .
The sharp spectral peaks at ky = 0 and kz = k?z justify these simplifications.) Avoiding
a singularity in ∂xv at (x, y)= (0,±ly) is essential because v has to be continuous at
(x, y)= (0,±ly) in order to vanish at these edges.

Figure 3 illustrates the spatial structure of the (inviscid) x-velocity component, ub,
for the smoothed wave maker forcing profile depicted in figure 2.

The beam decays in the along-beam direction due to horizontal diffraction at rate
(1/cos θ) Im[

√
k2

z tan2 θ − k2
y], which is dominated by those transverse wavenumbers

ky that are slightly larger (in absolute value) than µkz= sin θ k+O(ϑ). This means that
part of the generated internal waves, namely those associated with the wavenumber
pairs (ky, kz) satisfying |ky/kz| > tan θ , cannot leave the forcing plane, x = 0, due to
diffraction. On the contrary, diffraction is practically absent if the imposed spectrum
Ê(ky, kz) at x=0 practically vanishes for ky> kz tan θ , which is the case for transversely
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x = 0

Phase Phase

t = 0

y = 0

x = 0

y = 0

t = π/(2ø)

(a) (b)

FIGURE 2. (Colour online) Sketch of the imposed boundary oscillation in the forcing
plane x = 0, at two instances in time, (a) t = 0 and (b) t = π/(2ω), for the smoothed
wave maker envelope given by expression (3.5) with cy= cz= 2.5, ly= lz= 1 and k?z = 2π.
The blue box indicates the wave maker domain, (y, z) ∈ [−1, 1] × [−1, 1]. The solid and
dashed lines show contours of ȧ(y, z, t) at 0.25 intervals.

1.0
0.5

0
-0.5
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l y
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y/ly

-1.0
-1.5
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-2.5

0 2 4 6 8 10 12 14 16
-5

0
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0.6
0.4
0.2
0
-0.2 ub

-0.4
-0.6
-0.8

FIGURE 3. (Colour online) The inviscid (ϑ = 0) non-dimensional x-velocity component,
ub, of a 3D diffracting internal wave beam in three horizontal planes (z/ly = 0.3, −1.2
and −2.7), for the smoothed wave maker forcing depicted in figure 2. For clarity, values
|u|< 0.05 are invisible. The four blue diagonal dashed lines indicate the centre wave beam
region (set by forcing region (y/ly, z/ly) ∈ [−1, 1] × [−1, 1]). Owing to diffraction, the
wave beam widens in the y-direction with increasing distance to the source at x= 0.

very wide, quasi-2D beams. Interestingly, the diffraction decreases with angle θ ,
i.e. quasi-horizontal propagating beams diffract much stronger than quasi-vertically
propagating beams.

The viscous attenuation rate per unit distance along the beam, i.e. the real part of
ikx cos θ at viscous order O(ϑ), is given by ϑk4 sin θ/(2Nkx cos θ). For 2D beams
satisfying kx = k sin θ +O(ϑ), we recover the viscous attenuation rate ϑk3/(2N cos θ)
(Thomas & Stevenson 1973; Lighthill 1978; Voisin 2003), which equals 1/(2λH cos θ)
in the notation of Bordes et al. (2012).
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What remains to be solved is the vorticity equation (2.6) for the horizontal
streamfunction Ψ , such that v = ∂yφ + ∂xΨ vanishes at the sharp vertical edges
of the wave maker, at (x, y)= (0,±ly). Straightforward analysis gives

Ψ (x, y, z, t)=Ψ rot
+ sΨ sb

+ (1− s)Ψ cf , (4.8)

consisting of rotational, Stokes boundary layer and curl-free streamfunctions, with the
relative contribution of the latter two determined by the parameter s, as discussed
below. The rotational streamfunction,

Ψ rot
=−

i f
ω+ iϑk2

φ =
f
ω2
(−iω− ϑk2)φ +O(ϑ2), (4.9)

solves (2.6) at O(ε0) for given φ. In contrast to the other streamfunction components,
this is the only vortex component directly linked to the propagating wave beam
(φ), and it may be attributed to the internal wave field. Evidently, the rotational
streamfunction vanishes for non-rotating fluids, to which we restrict the analysis in
§ 5.

The Stokes boundary layer streamfunction,

Ψ sb
=

ω2

4π2k?x

∫
∞

−∞

∫
∞

0

kyÊ(ky, kz)

ksb
x (ω+ iϑk2

z )
exp[iksb

x |x| + ikyy+ ikzz− iωt] dky dkz,

ksb
x =

√
i
ω

ϑ
− k2

y − k2
z ,

 (4.10)

is the solution of the viscous vertical vorticity equation (2.6), i.e.

(∂t − ϑ1)Ω
sb
= 0, Ω sb

=1hΨ
sb, (4.11)

with Ω sb the associated vertical vorticity, and satisfying ∂xΨ
sb
|x=0 =−∂yφ|x=0 +O(ϑ).

Similarly, the curl-free streamfunction,

Ψ cf
=

iω
4π2k?x

∫
∞

−∞

∫
∞

0
sign[ky]Ê(ky, kz) exp[ikyy− |ky|x+ ikzz− iωt] dky dkz, (4.12)

is the solution to

1hΨ
cf
= 0 satisfying ∂xΨ

cf
|x=0 =−∂yφ|x=0. (4.13)

For the wave makers with sharp edges (envelope (3.5) with cy = cz =∞), expression
(4.12) reduces to

Ψ cf
=−

ω

2πk?x
(log(r−)− log(r+)) exp[ik?z − iωt] for |z|< lz,

r± =
√

x2 + (y∓ ly)2 for x> 0.

 (4.14)

Note that this curl-free streamfunction can be interpreted as originating from two
vertical line vortices at y=±ly.

The undetermined parameter s in (4.8) weighs the relative contribution of the
(viscous) Stokes boundary layer and (inviscid) vertical line vortices. The y-velocity
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component associated with the Stokes boundary layer, vsb
= ∂xΨ

sb, takes amplitude
O(ϑ−1/2) at the vertical sheet, x = 0, i.e. large for weak viscosity. If we impose
a no-slip boundary constraint on v at x = 0, then svsb must be balanced by other
O(1) velocity components, implying s ∈ O(ϑ1/2). For a free-slip (no-stress) boundary
condition on v, the parameter s must be zero, because a Stokes boundary layer
cannot be established at stress-free boundaries. This illustrates that representing the
oscillating boundary by a free-slip or no-slip surface is insignificant for the mean
flow generation, allowing us to choose s = 0 and neglect viscous boundary layer
effects for simplicity.

From here onwards, we restrict ourselves to non-rotating fluids ( f = 0). Rotational
effects on the generation of mean flow are worth investigating in a separate paper.

5. Streaming and inviscid mean flow generation
We are interested in the generation of mean flow, driven by the time-averaged

nonlinear terms in the governing equations (2.1)–(2.3), known as the mean Reynolds
stresses. The mean Reynolds stresses at O(ε) arise from the products of O(ε0)
solutions. This process is also referred to as ‘streaming’ when related to viscous
attenuation of the wave field (Lighthill 1978), in analogy to acoustic streaming, or as
‘rectification’ when pertaining to the mean field produced by periodic waves, as in
tidal rectification (see § 6.6 in Grisouard & Bühler (2012) and references therein).

The question we want to answer is the following. Which wave field components are
essential in forcing the potentially energetic vortical induced mean flow? As mentioned
earlier, the vortical induced mean flow is associated with mean vertical vorticity, which
is the only vorticity component which can accumulate energy in the presence of
stratification. Conveniently, the (accelerating) vortical and (non-accelerating) buoyancy
advection-induced mean horizontal flow components can be disentangled through a
Helmholtz decomposition,

ū= φ̄x − Ψ̄y, v̄ = φ̄y + Ψ̄x, (5.1a,b)

where the overbar denotes time averaging over one wave period, T = 2π/ω. The
vertical velocity component, w̄, is attributed entirely to the buoyancy advection-
induced mean flow. We briefly discuss the buoyancy advection-induced mean flow,
before analysing the generation mechanisms driving the resonantly growing vortical
induced mean flow.

5.1. Buoyancy advection-induced mean flow
Balancing the time-independent terms in the buoyancy equation (2.2), one readily finds
at O(ε) the buoyancy advection-induced mean vertical flow,

w̄=−
ε

N2
Re[u] ·Re[∇b] =−

ε

2N2
Re[u · ∇b∗] =−

ε

2ω
Im[u · ∇w∗], (5.2)

where ∗ denotes complex conjugate, and we used b=−i(N2/ω)w+O(ε). Remarkably,
the buoyancy advection-induced mean flow may also be non-zero for 3D inviscid wave
beams, apparent from substituting (4.6) into (5.2),

w̄ =
ε tan2 θ

2ω
Im
[(
−∇h

tan2 θ ∂z

)
φ · ∇φ∗z

]
+O(ϑ)

=
ε

2ω
Im[tan2 θ (uu∗z + vv

∗

z )−ww∗z ] +O(ϑ). (5.3)
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This emphasizes the fundamental difference with 2D wave beams, which satisfy w=
tan θ u + O(ϑ), v = 0, and hence solve the nonlinear equations identically in the
absence of viscosity (McEwan 1973; Tabaei & Akylas 2003).

In the appendix, § A.1, we show that, not surprisingly, this Eulerian vertical mean
flow is exactly opposed by the vertical Stokes drift, such that the net (Lagrangian)
vertical particle transport vanishes.

The continuity equation relates the vertical induced mean flow to the horizontal
buoyancy advection-induced mean flow, [φ̄x, φ̄y],

1hφ̄ =−w̄z. (5.4)

For 2D internal wave beams in the (x, z)-plane, we recover the 2D induced mean
flow, (ū, w̄)= (Qz,−Qx), with Q=−

∫
w̄ dx the mean streamfunction, corresponding

to equation (2.10) of Kistovich & Chashechkin (2001), as well as equation (3.10) of
Tabaei & Akylas (2003). (Note that, confusingly, Kistovich & Chashechkin (2001)
refer to the induced mean flow as Stokes drift. The apparent factor of 4 difference
in their expression results from a slightly different definition of the streamfunction.)
The mean perturbation on the background stratification, equation (2.12) of Kistovich &
Chashechkin (2001) and equation (3.11) of Tabaei & Akylas (2003), is more generally
given by

b̄= ε Re[u] ·Re[∇w] =
ε

2
Re[u · ∇w∗]. (5.5)

For a 3D wave beam, the expression (5.2) for w̄ depends on the transverse coordinate
y, and the 2D Poisson equation (5.4) must be solved. The scalar field φ̄ inherits the
O(ε) amplitude from w̄, and is thus weak at all times for weakly nonlinear internal
wave beams.

5.2. Vortical induced mean flow

We now turn to the vortical induced mean flow, [−Ψ̄y, Ψ̄x, 0], which is confined to
the horizontal plane. It evolves slowly over the slow time scale τ = εt, governed by
time-averaged vertical vorticity equation (2.6) for f = 0:(

∂τ −
ϑ

ε
1

)
1hΨ̄ = R. (5.6)

As argued in § 4, we can neglect the contribution from a Stokes boundary layer. An
additional term (1/ε)f w̄z appears on the right-hand side of (5.6) if rotation ( f 6= 0)
is included, resulting in considerably more complicated dynamics by coupling the
buoyancy advection-induced mean flow (w̄) with the vortical induced mean flow (Ψ̄ ).

5.2.1. Streaming in the absence of rotation
For wave fields in non-rotating fluids (Ψ rot

= 0), the mean vertical vorticity
production resulting from beam–beam interactions associated with viscous dissipation
is given by

Rb
= J (Re[w],Re[φz])=−ϑβ̃J (Im[φzzz],Re[φz])+O(ϑ2)

= ϑ
β̃

2
Im[ub

z
∗

vb
zzz − v

b
z
∗

ub
zzz] +O(ϑ2), (5.7)
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where β̃ = tan2 θ/(ω cos4 θ)= β for f = 0. Physically, the generation of mean vertical
vorticity can be understood as slight tilting of the purely horizontal wave beam
vorticity vector by the wave beam velocity field. An illustrative discussion of vortex
tilting (also known as vortex twisting) can be found in Hoskins (1997).

For internal wave beams with a dominant vertical wavenumber, say k?z , we may
replace ∂z→ ik?z , reducing (5.7) to

R̄b
=−ϑβ̃k?z

4
(ub(T/4)vb(0)− ub(0)vb(T/4))+O(ϑ2), (5.8)

where [ub(t), vb(t)] = Re[∇hφ]. This expression is particularly useful for laboratory
experiments, where k?z is imposed by the wave maker, and for which time series
of the horizontal velocity field, [u(t), v(t)], in a horizontal plane are typically
acquired using particle image velocimetry (PIV). (PIV is an optical method of
flow visualization, which detects the displacement of particles suspended in a fluid.
If the particles are sufficiently small (in the sense of negligible particle inertia time
scale with respect to the smallest relevant time scale of the experiment), then the
particle motion is identical to the fluid parcel motion, and experimental PIV velocity
fields correspond to the Lagrangian velocity of the fluid. PIV measurements only
represent the Eulerian velocity field if the Stokes drift is negligible.) The wave
beam velocity field [ub(t), vb(t)] can be extracted from [u(t), v(t)] by filtering at
the forcing frequency and applying a (discrete) Helmholtz decomposition. Note that
expression (5.8) is valid for truly 3D wave fields. For quasi-2D wave fields, for which
kx ≈ k? sin θ = k?z tan θ , valid if |ky| � k?z tan θ , we can interchange ∂z with cot θ ∂x,
reducing (5.7) to

R̄b
=−

ϑk?3

2N cos2 θ
∂yU2
+O(ϑ2), (5.9)

where U =
√
φxφ∗x is the x-velocity amplitude of the wave beam. This approximate

expression is identical with the mean vertical vorticity production term in equation
(2.16) of Fan et al. (2018). An expression proportional to the mean vertical vorticity
production derived by Bordes et al. (2012) is found upon assuming variations of U
to be purely due to viscous attenuation, with rate ϑk?3/(2N) in the x-direction, equal
to 1/(2λH) in their notation. (The mean vertical vorticity production term in (A 18) in
Bordes et al. (2012) is a factor of 2 smaller as compared to our expression and the
expression by Fan et al. (2018).)

Whereas previous derivations (Bordes et al. 2012; Kataoka & Akylas 2015; Fan
et al. 2018), resulting in an expression similar to (5.9) for quasi-2D wave beams,
only stress the importance of horizontal cross-beam variations (∂yU 6= 0), our more
general expression (5.8) links streaming to the elliptical wave motion in the horizontal
plane. This new insight implies that streaming is maximized for (nearly) circular wave
motion, when u and v are of similar magnitude and out of phase. Strong streaming
may thus be expected where two internal wave beams (both propagating upwards
or downwards) intersect obliquely, for example two beams with propagation in,
respectively, the x- and y-directions. Configurations of truly oblique intersections
of wave beams, where the angle between the horizontal propagation directions is
not 0◦ or 180◦, have not yet been studied, although it seems plausible that oblique
interactions of wave beams, generated at and scattered by nearby topographic features,
are common in the 3D oceans.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

22
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.22


316 F. Beckebanze, K. J. Raja and L. R. M. Maas

x

z
y

x = 0

y = 0Line vortex at y = −ly

Line vortex at y = ly

√cf < 0

√cf > 0
Propagating

wave beam

2π/k�
x

cp

FIGURE 4. (Colour online) Schematic snapshot of the downward-propagating wave beam
(solid and dashed phase lines in centre plane, y = 0, and a horizontal plane) and the
velocity vcf

= Ψ cf
x (red and blue areas), associated with the vertical line vortices at the

edges (y = ±ly) of the wave maker (grey shading at x = 0 gives E, the strength of
forcing F). Mean vertical vorticity production through R̄cf , dominated by (1/2)Re[w∗xv

cf
z ],

occurs primarily in the red and blue shaded areas. The strength of R̄cf
∝ sin(k?xx)/x decays

radially from the wave maker edges, with sign changes imprinted by the horizontal beam
wavenumber, k?x .

5.2.2. Inviscid mean flow generation associated with vertical line vortices
We now focus on the interaction of the curl-free streamfunction Ψ cf with the wave

beam, possible only through the second wave–vortex interaction term in (2.7), and
given by

R̄cf
=−(∇hw) · (∇hΨ

cf
z )= tan2 θ Re[ub

zv
cf ∗
z − v

b
z ucf ∗

z ] +O(ϑ), (5.10)

where we used wx = −uz tan2 θ + O(ϑ) and wy = −vz tan2 θ + O(ϑ) for the second
expression. This mean vertical vorticity production is particularly interesting, because
it may be non-zero even in the absence of viscosity (ϑ = 0). For wave beams with
dominant vertical wavenumber, k?z , we can further simplify (5.10) to

R̄cf
= k?z

2 tan2 θ
∑

t∈{0,T/4}

(ub(t)vcf (t)− vb(t)ucf (t))+O(ϑ), (5.11)

where [ucf (t), vcf (t)] = Re[−Ψ cf
y , Ψ

cf
x ]. As with (5.8), this expression is also useful

if the horizontal velocity field, [u(t), v(t)], is known in a horizontal plane, such
as is often the case for laboratory experiments. For an experimental dataset, it is
important to verify whether [ucf (t), vcf (t)], extracted from ω-filtered [u(t), v(t)] through
a Helmholtz decomposition, is indeed vertical-vorticity-free (within measurement
uncertainty).

For wave makers with sharp edges at y = ±ly, such as sketched in figure 4,
the velocity field associated with the line vortices decays inversely proportional to
the distance to the wave maker edges (see also explicit streamfunction solution
Ψ cf , equation (4.14)). Variations of the wave beam velocity field in a horizontal
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E(y,0)(a) (c)(b) ™yE(y,0)

kz/k�
x

-2 -1 1 2 3 4

FIGURE 5. (Colour online) (a) The horizontal wave maker profile E(y,0), defined in (3.5);
and (b) its derivative, ∂yE(y, 0) (normalized by its maximum), for cy =∞ (black, solid),
our choice cy = 15l−1

y (blue, dot-dashed), and the choice by Kataoka & Akylas (2015)
and Fan et al. (2018) cy = 2.5l−1

y (red dashed). The vertical lines in (b) illustrate Dirac
deltas; the horizontal line illustrates the relative wave maker excursion, 2a0/ly = 0.27, in
Bordes et al. (2012). (c) The spectrum Ê(0, kz) with k?z = 3π/lz for cz=∞ (black, solid),
cz = 15/lz (blue, dot-dashed, almost indistinguishable) and cz = 2.5/lz (red, dashed).

plane (and within the beam) are dominated by the horizontal beam wavenumber,
k?x = k?z tan θ . As a consequence, the mean vertical vorticity production near the edges
y = ±ly, dominated by R̄cf

≈ (1/2)Re[w∗xv
cf
z ], is characterized by the sinc function

(sin(k?xx)/(k?xx)), changing sign with increasing distance to the wave maker at rate
π/k?x . This is unlike streaming, which does not change sign along the x-direction,
decaying with distance to the wave maker only due to the (weak) decay of the
wave beam strength. This suggests that, near the line vortices, inviscid mean flow
generation associated with the line vortices prevails, whereas streaming dominates at
sufficient distance from the wave maker.

6. Comparison with Bordes et al. (2012)
In this section, we compare our theoretical results with the experimental observations

by Bordes et al. (2012). We adopt their parameter values, and specifically the wave
frequency ω0/N0 = 0.26 and wave maker amplitude a0 = 1 cm corresponding to the
experiments presented in their figures 2 and 3. We account for the wave maker
inefficiency (Mercier et al. 2010) by reducing the wave maker amplitude for the
theoretical expressions by 25 %. The associated Stokes number, ε= 0.2, is sufficiently
small for our perturbational expansion to be valid.

Imperfections in the laboratory set-up justify smooth approximations of the
rectangular-shaped wave maker, i.e. finite smoothing parameters (cy <∞, cz <∞) in
envelope function (3.5). A smooth envelope function E(y, z) is needed to avoid the
Gibbs phenomena when numerically integrating the wave beam field, expression (4.4).
We find cy = cz = 15l−1

y justifiable, because ∂yE(y, 0) ∝ ∂yΠcy,ly(y) then consists of
two peaks with widths comparable to the wave maker excursion, 2a0 (see figure 5b).
This is not the case for the choice cy = 2.5l−1, made by Kataoka & Akylas (2015)
and Fan et al. (2018), also illustrated in figure 5. (Whereas the rectangular-shaped
wave maker was horizontally highly smoothed for numerical convenience, Kataoka
& Akylas (2015) and Fan et al. (2018) did use sharp vertical envelopes, respectively
cz =∞ and cz = 7.5/lz. It should be noted that they use Y for the vertical and Z for
the transverse horizontal coordinate.)
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FIGURE 6. (Colour online) Snapshot of inviscid (a,b) and viscous (c,d) wave field velocity,
u(t)= Re[u] at t = π, in mm s−1, with contours representing the amplitude (|u|). Panels
(a,c) present the side view (y=0, dashed line in b,d) and panels (b,d) present the top view
(z=0, dashed line in a,c). The plots are prepared so as to facilitate direct comparison with
the experimental results in figure 2(a,b) of Bordes et al. (2012). The idealized wave maker
envelope (cy = cz = 15l−1

y ) is indicated by the black lines. Grey area: extent of oscillating
wave maker in laboratory set-up.

6.1. Velocity fields of wave beam and line vortices

We present the x-velocity component u= φx − Ψ
cf

y in figure 6, for an inviscid beam
(panels a,b) and a viscous beam (panels c,d), both including the inviscid contribution
from the vertical line vortices (Ψ cf

y ). In agreement with the experimentally observed
beam by Bordes et al. (2012), their figure 2(a,b), we find that our theoretical
viscous beam decays along the propagation direction due to viscous dissipation.
The comparison of the viscous and inviscid beams illustrates that viscosity especially
smooths the upper and lower edges of the beam, which feature strong shear in the
inviscid case. The intensity of the inviscid beam also decays in the along-beam
direction. This highlights that a considerable part of the decay in the along-beam
direction is due to (inviscid) diffraction, i.e. cross-beam widening. Consequently, the
theoretical assumption by Bordes et al. (2012) that the decay of the beam is purely
due to viscous dissipation might be inappropriate for their experimental set-up.

The attentive reader may spot weak upward-propagating wave beams in figure 6(a,c),
originating from the lower and upper edges of the wave maker. These wave field
components, also visible in the experimental data, figure 2(a) of Bordes et al. (2012),
are associated with the negative part of the spectrum, Ê(0, kz) for kz < 0, visualized
in figure 5(c) and also discussed in § A.2. As opposed to the lateral edges of the
wave maker, the upper and lower edges function as two line sources of internal
waves, generating St Andrew’s crosses (also illustrated in figure 1a), with the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

22
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.22


Mean flow generation by 3D nonlinear internal wave beams 319

0 0.05 0.10 0.15 0.20
x (m)

(c)

y 
(m

)

0.1

0

-0.1

0 0.05 0.10 0.15 0.20

(a)
y 

(m
)

0.1

0

-0.1

0 0.05
0.05 mm s-1

0.10 0.15 0.20
x (m)

(d)
0.1

0

-0.1

0 0.05 0.10 0.15 0.20

(b)
0.1

0

-0.1

0.4

0.2

0

-0.2

-0.4

0.04

0.02

0

-0.02

-0.04

FIGURE 7. (Colour online) Transverse horizontal (y) velocity components in top view (z=
0) of (a) the wave beam, vb, (b) the line vortices, vcf , and (c) their sum, v, in mm s−1 at
t=π, with contours representing their amplitude. All parameter values are as in figure 6.
The colour bar shown in (b) applies to (a) and (c) too. The wave maker extent (grey
area) is transparent, to visualize the singularities of vb and vcf at the edges, absent for v.
Panel (d) presents the net Stokes drift in the x-direction, ūS, with arrows indicating the
horizontal Stokes drift field, [ūS, v̄S], possibly representing the initially observed jet that
Bordes et al. (2012) refer to, as discussed in the text.

downward-propagating components absorbed in the wave beam (and intensifying
the lower and upper beam edges in the inviscid case).

The beam’s y-velocity component, vb
= φy, the y velocity associated with the line

vortices, vcf
=Ψ cf

x , and their sum, v, are presented in figure 7. Whereas the maxima
of vb and vcf are located at the edges of the wave maker, we find that their sum, v,
peaks at around 6 cm from the wave maker. Moreover, v vanishes at x= 0, consistent
with the requirement for the (idealized) wave maker discussed in § 3. The maxima of
vb and vcf become singularities for cy→∞, signifying that only their non-singular
sum v is physically feasible. This affirms the importance of taking the vertical line
vortices into account.

It is important to realize that the experimental velocity field is observed with PIV,
detecting the motion of suspended particles. The particle sizes (approximately 8 µm)
are sufficiently small such that their motion coincides with the Lagrangian velocity
field, representing the Eulerian field only if the Stokes drift is negligible. The Stokes
drift, discussed in § A.1, is secondary to the wave field, but may dominate the time-
averaged field, i.e. the observed mean flow. The net theoretical Stokes drift, ūS, is
plotted in figure 7(d), exceeding values of 0.05 mm s−1, able to transport particles
more than 5 cm over the course of the experiment. Bordes et al. (2012) report that the
(Lagrangian) observed mean flow is initially located close to the wave generator. We
speculate that they initially observed the Stokes drift, which appears instantaneously
within the beam, dominating the linearly growing (Eulerian) induced mean flow during

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

22
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.22


320 F. Beckebanze, K. J. Raja and L. R. M. Maas

0 0.05 0.10 0.15 0.20
x (m)

(c)

y 
(m

)

0.1

0

-0.1

0 0.05 0.10 0.15 0.20

(a)
y 

(m
)

0.1

0

-0.1

0 0.05 0.10 0.15 0.20
x (m)

(d)
0.1

0

-0.1

0 0.05 0.10 0.15 0.20

-1

0 (s
-

2 )

1

(÷ 10-4)
(b)

0.1

0

-0.1

FIGURE 8. (Colour online) The theoretical mean vertical vorticity production associated
with (a) streaming, R̄b

0, (b) interaction of the vertical line vortices with the beam, R̄cf
0 , and

(c) their combined production. The mean vertical vorticity increase, ∂tΩ̄ , experimentally
observed by Bordes et al. (2012) and presented in their figure 3(a), is reproduced in
panel (d).

the first couple of wave periods. Towards the end of the experiment (after ∼50 wave
periods), the Stokes drift constitutes only 10 % of the Lagrangian mean flow, justifying
treating the Lagrangian PIV observation as an Eulerian field.

6.2. Mean vertical vorticity production

We present the mean vertical vorticity production through streaming (R̄b), associated
with the vertical line vortices (R̄cf ), and their sum (R̄) in figure 8(a–c). For comparison,
we reproduce the mean vertical vorticity increase observed by Bordes et al. (2012)
in figure 8(d). The similarity of figure 8(c,d) strongly suggests that both viscous
streaming and inviscid mean vertical vorticity production associated with the line
vortices are significant for this particular experimental set-up. This supports our
new hypothesis that inviscid mean flow generation near the edges of wave makers
in laboratory set-ups cannot be neglected. It is unclear why the experimentally
observed mean vertical vorticity is not symmetric around the centre, y = 0. Our
analysis suggests that the dipolar vortex centred around 9 cm from the wave maker
results from streaming, whereas the dipolar vortex closer to the wave maker, at
x= 3 cm, is caused by interaction of the line vortices with the beam. Consistent with
the conclusions by Kataoka & Akylas (2015), the similarity between experimental
results with our predictions – excluding mean flow generation associated with beam
modulations – suggests that modulation effects are not essential for the experiments
by Bordes et al. (2012).

The mean vertical vorticity associated with the horizontal net Stokes drift, [ūS, v̄S],
instantaneously produced, may be imprinted on the experimental mean vertical
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vorticity increase if one approximates ∂tΩ̄L(t)≈ Ω̄L(t)/t, where Ω̄L= ∂xv̄L− ∂yūL is the
Lagrangian mean vertical vorticity. We verified that this Stokes mean vertical vorticity
is only relevant over the first wave period, and insignificant for the experimental data
reproduced in figure 8(d).

It may be argued that the efficiency of the wave maker in generating a wave beam
and vertical line vortices differs. If the line vortex generation efficiency is slightly less
as compared to the beam generation inefficiency (estimated at 75 %), then we find that
the mean vertical vorticity production (not shown) corresponds strikingly well with the
experimental mean vertical vorticity increase (figure 8d). We propose to estimate the
strengths of the line vortices experimentally, similar to the study on the efficiency to
produce wave beams performed by Mercier et al. (2010).

7. Concluding remarks

Our analysis has once again confirmed that the propagation of 3D internal gravity
wave beams differs fundamentally from their 2D counterparts. In agreement with the
results by Bordes et al. (2012) and Kataoka & Akylas (2015), we find that the finite
width of 3D internal gravity wave beams is essential in producing mean vertical
vorticity through streaming, resulting in a strong horizontal mean flow.

Our results are primarily useful for the understanding of laboratory experiments on
internal waves, or, reversely formulated, for avoiding misinterpretation of experimental
results. As such, our work may contribute to correct and insightful extrapolations of
experimental results to oceanic circumstances.

Importantly, we find that the vertical line vortices at the lateral edges of the wave
maker contribute to the mean vertical vorticity production at leading order, and can
therefore not be neglected. Moreover, this vertical vorticity production changes sign
with increasing distance to the wave maker, the rate being imprinted by the horizontal
beam wavelength. It is this sign change which results in the quadrupolar structure of
the mean vertical vorticity production, which was also observed experimentally.

One may wonder why the quadrupolar vertical vorticity production leads to a
dipolar induced mean flow (evident in figures 1(b) and 2(d) of Bordes et al. (2012)),
rather than a quadrupolar induced mean flow. The answer is surprisingly simple.
The stress of the wave maker on along-boundary mean flow produces a boundary
layer with thickness

√
νt (see e.g. Schlichting & Gersten 2000), reaching 1 cm

thickness within four wave periods and almost 4 cm by the end of the experiment.
This means that the dipole associated with the vertical line vortices eventually ends
up inside the boundary layer of the vortical induced mean flow, and is thus strongly
damped by wall friction. The good agreement of the simulated induced mean flow by
Kataoka & Akylas (2015) with the experiments stems from the circumstance that the
near-field induced mean flow (associated with the wave–line vortex interaction and
ignored in their theory) quickly reaches a state in which its energy input matches
the wall-friction dissipation rate, whereas the far-field induced mean flow (forced by
streaming) accumulates mean vertical vorticity throughout the entire experiment.

A standard paradigm (also known as non-acceleration theorem) widely used in
fluid dynamics says that the resonantly growing induced mean flow can only arise
when and where waves are (A) dissipated or (B) generated (e.g. Andrews & McIntyre
1978). In our setting, streaming belongs to the dissipative processes (A), which may
occur anywhere in space, whereas the inviscid generation mechanism associated with
the vertical line vortices only occurs in the vicinity of the energy source (B). The
notion of ‘vicinity’ is obviously problem-dependent, ranging from a few centimetres
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in laboratory set-ups to possibly dozens of kilometres in oceanographic settings.
Although counterexamples are known (Bühler & McIntyre 2005), this paradigm
nevertheless forms a suitable conceptual classification of the two vortical mean flow
generation mechanisms discussed here.

The Helmholtz decomposition has proven extremely useful in many studies on fluid
dynamics (see e.g. the review by Bhatia et al. (2013)), including recent developments
for internal wave data analysis (Bühler, Kuan & Tabak 2017). Once more, we find
that disentangling the wave horizontal wave field with a Helmholtz decomposition
into propagating internal wave (φ) and non-propagating oscillation (Ψ ) is essential
in determining the mean vertical vorticity production contributions. It is now a
standard procedure to disentangle experimental wave field data in vertical planes into
field components propagating in different vertical directions through Hilbert filtering
(Mercier, Garnier & Dauxois 2008). We propose to extend the experimental wave
field decomposition procedure with a (discrete) Helmholtz decomposition applied
to the horizontal velocity field in horizontal planes to disentangle wave and vortex
components.

Possibly most importantly, our analysis in § 3 illustrates that an appropriate
mathematical representation of the wave maker is essential in studies on mean flow
generation. The numerical code by Sibgatullin & Kalugin (2016), used in several
studies involving wave makers, and the numerical code employed by Grisouard et al.
(2013) and Raja (2018), for simulations of mean flow generation upon reflection at
inclined bottoms, do not capture the vertical line vortices at the edges of the wave
makers. While the absence of the vertical line vortices in simulations may be of no
concern for the far field, one must be aware that the vertical line vortices are intrinsic
to laboratory experiments, and may impact the nonlinear dynamics in the vicinity of
the wave maker. Brouzet et al. (2016) find mean flow generation in their numerical
simulations, possibly related to streaming in the boundary layer at the rigid walls.
A similar study by Pillet et al. (2018) places a wave maker in a much wider tank,
resulting in lateral spreading of the internal wave field. Based on our analysis, we
expect mean flow generation associated with the line vortices at the edges of the wave
maker in the laboratory, this being absent in the corresponding numerical simulation.
The strengths of our theoretical study is that we can ‘switch’ on and off the vertical
line vortices, thereby investigating whether incorporating the line vortices may be
important for more complicated configurations that can be tackled only numerically.

This work also forms the basis for further research on the effect of rotation ( f 6= 0)
on strong mean flow generation. Numerical simulations by Raja (2018), as well as
recent work by Wagner & Young (2015) and Fan et al. (2018), indicate mean flow
generation to be strongly influenced by rotation. Using the wave maker representation
derived in § 3, it is straightforward to incorporate the effect of rotation on streaming,
soon to be presented in a separate paper.
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Appendix A
A.1. (Lagrangian) induced particle transport

The motion of fluid parcels is described in the Lagrangian framework, which follows
a parcel as it moves through space and time. Experimental mean flow fields derived
with PIV correspond to the Lagrangian mean flow. This section briefly discusses
the relation between Lagrangian and Eulerian wave fields, which is needed for the
comparison of our theory (in Eulerian framework) with the experimental results (in
Lagrangian framework) by Bordes et al. (2012) in § 6. We denote field variables in
the Lagrangian framework with subscript L, i.e. uL for the x-velocity component. The
Lagrangian velocity field uL is related to the Eulerian velocity uE through

uL = uE + uS, (A 1)

where uS is the so-called Stokes drift (see e.g. Bühler 2010), and u may be replaced
by any field variable. (If u in (A 1) is replaced by a field variable other than a velocity
component, i.e. by the buoyancy b, then bS is referred to as the Stokes correction.) The
description of the Stokes drift, which is in fact defined by equation (A 1), is in general
non-trivial. Mean field quantities in the Lagrangian framework are in the most general
setting described by the generalized Lagrangian mean theory, developed by Andrews
& McIntyre (1978). For sufficiently small Stokes number (ε� 1) and over sufficiently
short times t− t0, we can conveniently express the Stokes drift at position x0 for times
t> t0 as

uS(x0, t)= ε(x(t) · ∇)uE +O(ε2), (A 2)

where

x(t)=
∫ t

t0

uE(x(t′), t′) dt′ =
∫ t

t0

uE(x0, t′) dt′ +O(ε) (A 3)

is the fluid parcel displacement at time t with respect to the initial particle position
x(t0)= x0 at time t= t0. The small Stokes number ε =U0/L0ω0� 1 appears in (A 2)
because uS is non-dimensionalized with U0= εL0ω0, while x(t) is non-dimensionalized
by U0/ω0. The Stokes drift averaged over one wave period, ūS, can thus be expressed
at O(ε) accuracy as

ūS = ε

(∫ t

t0

uE(x0, t′) dt′ · ∇
)

uE =
ε

2ω
Im[(u · ∇)u∗], (A 4)

assuming that the time average of uE = Re[u] vanishes at leading order O(1), i.e.
ū = 0 + O(ε). The (theoretical) horizontal Stokes drift components, [ūS, v̄S], are
presented in figure 7(d) for the experimental parameter values by Bordes et al.
(2012). We find that the vertical Stokes drift, w̄S, is identical in magnitude and
opposite in sign to the vertical induced mean flow, w̄E = w̄ in (5.2), such that

w̄L = w̄E + w̄S = 0 (A 5)

up to O(ε) accuracy. This means that internal waves cannot transport mass vertically
through streaming, a result which has been well known for a long time for
monochromatic 2D internal waves (Wunsch 1971; Ou & Maas 1986), and may
be expected based on the conservation of the prescribed stratification. To the best
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of our knowledge, we are the first to explicitly verify this for monochromatic 3D
internal waves. Our analysis can easily be extended to time-periodic internal waves
(i.e. superposition of monochromatic beams whose frequency ratios are rational).

In 2D, the absence of vertical Lagrangian mean flow, equation (A 5), together with
mass conservation (continuity equation) implies the absence of Lagrangian mean flow
altogether. This is not necessarily the case for 3D internal wave beams, stressing once
again the importance of considering truly 3D internal wave configurations.

The numerical investigation by Binson (1997) predicts wave-induced chaotic mixing
of particles (fluid parcels) for the superposition of at least three monochromatic
inviscid 3D internal waves. Their analysis neglects the generation of (Eulerian) mean
flow, which oversimplifies matters as shown by our perturbational analysis; the
absence of net vertical particle transport evidently inhibits any particle mixing in the
vertical direction. Nevertheless, wave-induced chaotic particle mixing may still occur
in the horizontal plane, even for 3D inviscid internal wave beams.

A.2. Internal wave slit experiment
As a side remark, we want to mention that the non-vanishing of the wave maker
envelope spectrum Ê(ky, kz) for kz < 0 in expression (3.5) may explain an unsolved
diffraction problem by Mercier et al. (2008). Using a similar laboratory set-up as
Bordes et al. (2012), Mercier et al. (2008) generate an upward-propagating internal
wave beam impinging onto a slit. Their slit experiments reveal that the transmitted
internal waves propagate upwards and downwards; the relative strengths of the
downward-propagating wave increases with decreasing slit height, s0. The downward
propagation may appear surprising, because classical ray theory (e.g. Lighthill 1978)
predicts that all transmitted internal waves should continue propagating upwards. No
theoretical explanation of the experiment has yet been provided.

We claim that the explanation of the slit diffraction problem is surprisingly simple.
The width of the spectral peak at kz= k?z in figure 5(c) increases with decreasing wave
beam height, 2lz. For sufficiently large lz, such as in figure 5(c), and for the impinging
internal wave beam in Mercier et al. (2008), the peak width is relatively thin, and
wave propagation is predominantly upwards (for the peak at kz = k?z ) or downwards
(for the peak at kz =−k?z ). For the transmitted internal waves in the slit experiment,
one must replace lz in expression (3.5) by s0/2, half of the slit height. For the smallest
slit heights used by Mercier et al. (2008), the width of the peak at kz = −k?z (not
shown) becomes much wider than 1, hence the transmitted wave energy is split almost
equally into upward- and downward-propagating components.
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