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The existence of persistent midlatitude atmospheric flow regimes with time-scales larger than 5–10

days and indications of preferred transitions between them motivates to develop early warning indi-

cators for such regime transitions. In this paper, we use a hemispheric barotropic model together

with estimates of transfer operators on a reduced phase space to develop an early warning indicator

of the zonal to blocked flow transition in this model. It is shown that the spectrum of the transfer

operators can be used to study the slow dynamics of the flow as well as the non-Markovian charac-

ter of the reduction. The slowest motions are thereby found to have time scales of three to six

weeks and to be associated with meta-stable regimes (and their transitions) which can be detected

as almost-invariant sets of the transfer operator. From the energy budget of the model, we are able

to explain the meta-stability of the regimes and the existence of preferred transition paths. Even

though the model is highly simplified, the skill of the early warning indicator is promising, suggest-

ing that the transfer operator approach can be used in parallel to an operational deterministic model

for stochastic prediction or to assess forecast uncertainty. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4908174]

The transfer operator of a model of the atmosphere is

used to isolate and detect persistent atmospheric regimes

and to define an early warning indicator of transitions

between these regimes. The methodology is expected to

have application potential to general dissipative chaotic

systems.

I. INTRODUCTION

The midlatitude atmospheric flow is considered to be a

chaotic dynamical system for which predictability is lim-

ited.1,2 Although the behavior of this flow is dominated by

weather systems on short time scales caused by baroclinic

instability, strong variability on time scales longer than 5–10

days, with a predominantly barotropic structure, is also

observed.3 It has been argued that at least part of the observed

low-frequency variability can be explained by recurrent and

persistent atmospheric regimes4–6 such as the North Atlantic

Oscillation (NAO) and blocking events.7,8

Many studies identifying atmospheric regimes use algo-

rithms relying on the recurrence property of these regimes

such as the k-means4,9 and the Gaussian mixture algo-

rithms.6,10 Other studies make use of persistence properties,

for example, leading to Hidden Markov Models.11,12 Most of

these techniques rely on the reduction of the high-dimensional

phase space to a few dimensions.

The existence of weather regimes in General Circulation

Models (GCM) and in reanalysis has been questioned for

some time.13–15 Using the Integrated Forecast System (IFS)

of the European Centre for Medium-Range Weather

Forecasts (ECMWF), it was shown16–18 that it was necessary

to use a spatial resolution of T1279 (16 km), or to include sto-

chastic parametrizations, in order for the atmospheric regime

behavior to occur. This suggests that although the atmos-

pheric regimes are large-scale low frequency motions, the

faster small-scale motions (either explicitly resolved or

included as random perturbations) are important to simulate

them.

The barotropic structure of midlatitude low-frequency

variability has motivated early studies using low-order baro-

tropic models. Charney and DeVore19 have shown that such

regimes could manifest themselves in highly truncated spec-

tral barotropic models as stable fixed points representative of

different solutions of a standing Rossby wave over topogra-

phy. Flow regimes and spontaneous transitions have been

observed in laboratory experiments using rotating annulus

experiments for a barotropic fluid with topography20 and for

a two-layer shear flow.21–24 In Ref. 20, a zonal flow and

blocked flow were found for different values of the Rossby

number, and spontaneous transitions between the two were

observed for intermediate values of the Rossby number.

They suggested that these transitions were associated with

the existence of two basins of attraction connected by hetero-

clinic orbits.

A scenario of chaotic itinerancy25,26 permitted by heter-

oclinic connections is supported by the study of Crommelin

et al.27 using a 6-mode barotropic model. For specific values

of the forcing parameter, the two stable fixed points of the

zonal and blocked regimes merge with a periodic orbit (due

to barotropic instability), yielding a heteroclinic connection.

Although such a specific situation is unlikely to exist in the

real atmosphere, Crommelin28 found evidence of ruins of

such a heteroclinic connection in a hemispheric barotropica)a.j.j.tantet@uu.nl
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model with realistic topography and forcing,29 manifested by

the presence of preferred transition paths. Regime behavior

was also found in more realistic barotropic28,30,31 and multi-

layer quasi-geostrophic models.9,26 Because these models

exhibit chaotic behavior, the regimes are no longer identified

by stable fixed points but rather as neighborhoods in the

phase space where trajectories tend to persist, motivating

their denomination as meta-stable regimes.

In the laboratory experiments by Williams,21 it is the

inertia-gravity waves which are responsible for the regime

transitions when the flow is baroclinically unstable. Such

waves and barotropic disturbances occur in the real atmos-

phere together with baroclinically unstable synoptic weather

systems, so that it is not yet clear if one disturbance is more

important than the other in inducing certain regime transi-

tions. All these possible mechanisms suggest, however, that

the variability of the midlatitude atmospheric circulation can

be captured by a deterministic model with multiple basins of

attraction “forced” by random perturbations representative

of high-frequency eddies.

This multi-scale property of the climate system moti-

vates a stochastic-modeling approach32 to climate variabili-

ty.33 Stochastic climate modeling often relies on a time-scale

separation where the state vector is decomposed into a slow

climate component and fast weather fluctuations. These fast

fluctuations are not resolved explicitly but their aggregated

effect is represented by a noise term. The system is thus

modeled by a Stochastic Differential Equation (SDE)32 with

in general non-linear deterministic terms and additive and/or

state-dependent noise terms.34–37 When the time-scale sepa-

ration assumption is violated, the Mori-Zwanzig formalism

shows that a non-Markovian term representative of the mem-

ory effect induced by past interactions between the resolved

and the unresolved variables has to be added.38–41 Stochastic

modeling has been applied to many problems in climate sci-

ence, such as subgrid-scale parametrization, uncertainty

quantification, and data assimilation.37,42

When randomness is present in a dynamical system,

whether it is because of uncertainty in the initial state of cha-

otic systems or because of a stochastic forcing, it is of inter-

est to study the evolution of probability densities in phase

space by the flow rather than that of individual trajecto-

ries.43,44 This evolution is given by the transfer operator

whose point spectrum, the Ruelle-Policott resonances,45–49

give valuable information on the slow dynamics of the sys-

tem. For mixing dissipative systems, these resonances are

associated with a slow correlation decay and the manifesta-

tion of meta-stability.44

The main purpose of the present study is to develop an

early warning indicator of transitions between atmospheric

flow regimes. A traditional method that gives an early warn-

ing of a sudden transition is the use of the critical slow down

of the system when it gets close to a bifurcation point.50

However, in a high-dimensional model such as that used in

Ref. 28, it is too simplistic to reduce the topology of the sys-

tem to one or more stable fixed points. Recently, it was

shown that complex networks can reveal information on

nearby simple bifurcations in high-dimensional dynamical

systems.51 Near bifurcation points, the topology of the

network changes drastically and early warning indicators for

transitions were developed based on these topological

changes.52–54

In this study, we base the early warning indicator on the

evolution of probability densities with respect to meta-stable

regimes in a reduced phase space of the barotropic model

used in Crommelin.28 To study the slow dynamics in this

phase space and to evaluate the effect of memory induced by

the reduction, the spectrum of transfer operators estimated

for different lags is analyzed. Meta-stable regimes are subse-

quently detected from the transfer operator at a carefully

chosen lag. An early warning indicator of transition to the

blocked regime is developed from the transfer operator mak-

ing use of the existence of preferred transition paths between

the regimes. To test the quality of the early warning indica-

tor, a traditional method employing the Peirce skill

score55–57 is used. Finally, a study of the energy budget of

the barotropic model is performed, where particular attention

is given to the conversion of mean kinetic energy to eddy ki-

netic energy by Reynolds’ stresses, to provide a physical

background to the early warning indicator.

II. REDUCTION OF THE T21-BAROTROPIC MODEL

A. Model and data

Transitions between zonal and blocked regimes of the

northern hemisphere atmospheric circulation are here inves-

tigated using a barotropic model.28,29,36 The dimensionless

equation of the model, expressed in terms of the streamfunc-

tion w (representing the non-divergent flow) and using the

mean radius of the Earth and the inverse of its rotation rate

as horizontal and temporal scale, is given by the barotropic

vorticity equation (BVE)

@r2w
@t
¼ �J w;r2wþ f þ hb

� �
� k1r2wþ k2r8w

þr2w�; (1)

where J denotes the Jacobian operator, f the Coriolis param-

eter, hb the scaled orography, k1 the Ekman damping coeffi-

cient, k2 the coefficient of scale-selective damping, and

r2w� the prescribed vorticity forcing. The non-dimensional

orography hb is related to the one of the real Northern

Hemisphere h0b by

hb ¼ 2A0

h0b
H

sin /0; (2)

where /0 ¼ 45�N, A0¼ 0.2 is a factor determining the

strength of the surface winds that blow across the topogra-

phy, and H is a scale height of 10 km.

The BVE is projected onto spherical harmonics, triangu-

larly truncated at the 21st mode (T21). The spherical har-

monic coefficients are chosen such that the model is

hemispheric with no flow across the equator, resulting in a

system of 231 Ordinary Differential Equations (ODE), which

are integrated using a fourth order Runge-Kutta numerical

scheme. Following Ref. 29, the Ekman damping time scale

and the scale-selective damping time scale were chosen as
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15 days and 3 days (for wavenumber 21), respectively, so as

to adequately reproduce the observed mean and variance of

the 500 hPa Northern-Hemisphere 10-day mean relative vor-

ticity. The vorticity forcing r2w� is calculated from

ECMWF reanalysis data of wintertime 500 hPa relative vor-

ticity from 1981 to 1991, in order for the first two moments

of the simulated relative vorticity to be as close as possible

to the observed relative vorticity. The term r2w� is calcu-

lated29,58 according to

r2w� ¼ J ðwcl;r2wcl þ f þ hbÞ þ k1r2wcl � k2r8wcl

þ J ðw0;r2w0Þ; (3)

where wcl is the mean of the observed streamfunction. The

quantity w0 is the deviation of the 10-day running mean

observed streamfunction from wcl. The present study relies

on a 500 000-day-long simulation using an integration time-

step of 30 min, with daily output and a spin-up of 5000 days

removed.

B. Phase-space reduction

In order to investigate the presence of meta-stable

regimes and preferred transition paths, it is important to

define a proper reduction of the 231-dimensional phase

space. This is usually done by projecting the state vector on

a low-dimensional basis of orthogonal vectors such that the

variance of the projected state vector is maximized. In prac-

tice, this can be achieved by an Empirical Orthogonal

Function [EOF, e.g., Ref. 59] analysis of the streamfunction

normalized by the kinetic energy norm.28,36 The streamfunc-

tion patterns of the three leading EOFs are represented in

Figure 1 and explain 36.7% of the total variance. The first

EOF is related to the Arctic Oscillation (AO), blocking

events, and the strength of the polar vortex.28 As it shows a

dipole-like pattern over the Atlantic basin, the third EOF has

been associated with the NAO.

For the purpose of this study, special care must be given

to the choice of the EOFs used to define the reduce phase

space. Indeed, the presence of meta-stable regimes and the

transitions between them should not be hidden by the projec-

tion. Furthermore, for the sake of time-scale separation

between the motions in the reduced phase space and the unre-

solved ones, it is important for the principal components of

the selected EOFs to show decorrelation times as large as pos-

sible compared to the other principal components. These

decorrelation times, defined as the time scale after which the

autocorrelation function has decayed to 1/e of its value at lag

0, are plotted in Figure 2 for the 20 leading principal compo-

nents. Largest decorrelation times are found for principal

components 1, 2, and 3 (41, 18, and 15 days, respectively),

while other principal components have a decorrelation time

shorter than 10 days (with many smaller than 5 days).

Because Crommelin28 has shown that meta-stability was

mainly visible on the first principal component (pc1), while

transition between the meta-stable regimes occurred through

low and high values of principal component pc3, we have cho-

sen to define the reduced phase space Y as the ðEOF1;EOF3Þ
plane. The projection of the state vector x 2 X on the reduced

phase space Y is then given by the observable y obtained by

h : xt 7!yt ¼ ðpc1ðtÞ; pc3ðtÞÞ.
The two-dimensional normalized histogram of pc1 and

pc3 for the 500 000-day-long simulation is (cf. Figure 3) simi-

lar to Figure 7 in Ref. 28. To estimate the histogram, principal

components pc1 and pc3 were normalized by their respective

standard deviations and the ðEOF1;EOF3Þ plane was discre-

tized into a grid G of 50� 50 boxes spanning a [�3, 3]� [�3,

FIG. 1. Dimensionless streamfunction of the three leading EOFs of the baro-

tropic model. EOF 1 (a), EOF 2 (b), and EOF 3 (c) that explain 21.4%,

8.5%, and 6.8% of the variance, respectively.
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3] square. Grid boxes at the boundary are extended so that all

realizations belong to the grid. Furthermore, if a box contains

no realization, it is removed from the grid, as it is not likely to

support part of the projection of the attractor. This resulted in

a grid of m¼ 1577 boxes containing on average 314 realiza-

tions and such that 80% of the boxes contain at least 20 real-

izations. The components Hi of the normalized histogram H
for grid-box Bi are then calculated as the likelihoods

P̂ðyt 2 BiÞ ¼ #fyt 2 Big=#fyt 2 Gg, where #fyt 2 Big is

the number of realizations of the observable y in box Bi and

#fyt 2 Gg is the total number of realizations.

The histogram in Figure 3 shows two local maxima in-

dicative of the presence of recurrent or persistent regimes.

These regimes will be precisely defined in Sec. IV C. For

now, following Crommelin,28 we associate the local maxi-

mum for negative pc1 to the blocked regime (since it corre-

sponds to high pressure over north-western Europe) and the

maximum for positive values of pc1 to the zonal regime.

Crommelin28 also showed that the transitions from the zonal

to the blocked regime were preferably going through negative

values of pc3, interpreted as the positive phase of the NAO.

The dynamics of the state vector x of the barotropic

model on the phase space X are deterministic and

Markovian. However, application of the Mori-Zwanzig for-

malism38,39,41 indicates that in a closed model of the dynam-

ics of observable y, memory terms accounting for past

interactions between the resolved and the unresolved varia-

bles have to be included together with an, in general non-

white, noise term. Under the assumption that the time scales

of the resolved variables are slower by several orders of

magnitude than those of the unresolved variables, these

memory terms can be neglected.35,60 As can be seen in

Figure 2, the decorrelation time of the unresolved variables

pc2 is not smaller that the one of the resolved variables pc1

and pc3 and hence time-scale separation does not apply and

memory effects should be considered. In Secs. III and IV, we

show how transfer operator techniques can provide detailed

information on this issue.

III. TRANSFER OPERATORS, RESONANCES,
AND THEIR ESTIMATION

The spectrum of transfer operators giving the evolution

of densities induced by the flow can provide valuable infor-

mation on the time scales of the dynamics; in this section,

we show how these operators can be approximated on a

reduced phase space.

A. Transfer operators of dissipative dynamical
systems

We consider an autonomous dissipative dynamical sys-

tem (DDS) governed by the ODE

_x ¼ FðxÞ; x 2 X; xð0Þ ¼ x0; (4)

where X ¼ Rd is an Euclidean vector space and F : X! X a

smooth vector field with associated flow fSsgs�0. The evolu-

tion of a distribution f of D0 (Ref. 61) induced by the flow

fSsg is described by a family of linear operators fLsgs�0,

namely, the Perron-Frobenius operators or transfer opera-
tors, such that

hLsf ; gi ¼ hf ; g � Ssi; for all g 2 C1; (5)

where � is the composition operator and hf,gi is the action of

the distribution f on the smooth function g. The family

fLsgs�0 is a one-parameter semigroup, that is,

Ls1þs2
¼ Ls1

Ls2
; L0 ¼ I: (6)

While the more intuitive transfer operators acting on

(integrable) probability densities [Chap 7.4 in Ref. 43] will be

considered in Secs. III B–V, it has been shown that the statis-

tical properties, such as the decay rate of correlations, of sev-

eral mixing dissipative systems are related to the point

spectrum of transfer operators acting on (larger) spaces of dis-

tributions.48,62 Such statistics are provided by an ergodic

invariant measure. A measure l of a measurable space

ðX;BðXÞÞ is invariant under the flow Ss if lðS�1
s ðAÞÞ ¼ lðAÞ

FIG. 2. Decorrelation times (in days) of the 20 leading principal

components.

FIG. 3. Normalized histogram of the first and third leading principal compo-

nents normalized by their respective standard deviations and discretized

using 50� 50 grid boxes.
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for all sets A in BðXÞ. It is ergodic if all invariant sets A are

trivial subsets of X (lðAÞ ¼ 0 or lðAÞ ¼ 1). Moreover, a

dynamical system is mixing if limt!1lðA \ S�1
s ðBÞÞ

¼ lðAÞlðBÞ, in which case the correlation function

qf ;gðsÞ ¼
ð

fg � Ss �
ð

f

ð
g for f 2 L1; g 2 L1; (7)

converges to zero as the lag s goes to infinity [Chap 4.4 in

Ref. 43].

In the case of a DDS for which the attractor has Lebesgue

measure zero, it is important to choose a physical invariant

measure for which spatial and temporal averages of continu-

ous observables are identical for an initial set of positive

Lebesgue measure.63,64 It has been shown, for Anosov flows,

that a physical measure of Sina€ı-Ruelle-Bowen (SRB) type64

exists and that an appropriate Banach space B can be defined

on which the semigroup of transfer operators is bounded and

strongly continuous [Chap. 1.5, Ref. 65], with its point spec-

trum PrðLsÞ located inside the complex unit-disk.48

Whether the system considered in this study is Anosov

is a difficult question. However, it has been observed that

many-particle systems with sensitive dependence to initial

conditions “behave” as Anosov.66 We will follow this so-

called chaotic hypothesis and assume that the transfer opera-

tors fLsgs�0 associated with the flow fSsgs�0 constitute a

strongly continuous semigroup and that there exists a unique

SRB measure (i.e., 1 is the only eigenvalue of the transfer

operators located on the unit disk, the system is mixing).

For a bounded and strongly continuous semigroup, there

exists an infinitesimal operator A, namely, the generator of

the semigroup, and uðsÞ ¼ Lsf is the unique solution ð8s �
0Þ of the following Cauchy problem [Chap. 2.6 in Ref. 65]:

_uðsÞ ¼ AuðsÞ ; uð0Þ ¼ f : (8)

For transfer operators, the linear system (8) is the Liouville
equation which replaces the non-linear problem (4) at the

expense of having to deal with a Partial Differential

Equation (PDE).

The Spectral Mapping Theorem (SMT) [Chap. 4.3.7,

Ref. 65] allows us to relate the point spectrum PrðAÞ of the

generator of a strongly continuous semigroup to the point

spectrum PrðLsÞ of the semigroup operators, according to

PrðLsÞnf0g ¼ esPrðAÞ: (9)

A vector / is called an eigenvector associated with the

eigenvalue k in PrðLsÞ if Ls/ ¼ k/.

The SMT will be used in Sec. IV A to associate the spec-

trum of the transfer operators to motions of different time-

scales. To fix the ideas, let us take an eigenvector / (possibly

a distribution) associated with a non-zero eigenvalue k of

PrðLsÞ. For any observable g (a smooth test function)

h/; g � Ssi ¼ hLs/; gi (10)

¼ kh/; gi: (11)

Applying the SMT, there exists an a in PrðAÞ such that

k ¼ eta, so that (11) becomes

h/; g � Ssi ¼ etReðaÞeitImðaÞh/; gi: (12)

Thus, the term h/; g � Ssi converges exponentially fast to

zero at the rate �ReðaÞ > 0. Loosely speaking, the point

spectrum of the generator A close to the imaginary axis (cor-

respondingly, the point spectrum of Ls close to the unit circle)

is responsible for a slow rate of decay of correlations in the

direction of their eigenvectors. This point spectrum, called the

Ruelle-Pollicott (RP) resonances,45–47 is therefore a candidate

for a mathematical explanation of the observed low-frequency

variability such as induced by meta-stability. This important

fact motivates the estimation of the RP resonances to study

the dynamics associated with meta-stable regimes in Sec. IV.

In Secs. III B–IV, we present how these resonances can be

calculated from approximations of the transfer operators on

the reduced phase space.

B. Estimation of transfer operators on the reduced
phase space

For Anosov systems, the stability of the SRB measure,67,68

the transfer operators,69 and the dominant part of their spec-

tra70,71 to perturbations, has motivated the discrete approxima-

tion of transfer operators using Ulam-type methods.49,68,69,72

For low-dimensional systems, Ulam’s method relies on a

Galerkin approximation of the infinite-dimensional transfer

operators by finite-dimensional matrices.68,73,74 For this pur-

pose, the phase space is discretized into a grid G ¼ fBig1�i�m

of m grid boxes defining an orthogonal basis of characteristic

functions. The transfer operator Ls is then approximated by a

time-homogenous Markov chain with transition matrix Ps

whose elements are the transition probabilities

ðPsÞij ¼ Pðxtþs 2 Bjjxt 2 BiÞ (13)

of a trajectory of x in box Bi to pass through Bj after a lag s.

These probabilities can be estimated from a long time-series

fxtg1�t�N of x using the Maximum Likelihood Estimator

(MLE)

P̂s

� �
ij ¼ P̂ xtþs 2 Bjjxt 2 Bi

� �
¼ #f xt 2 Bið Þ� xtþs 2 Bjð Þg

#fxt 2 Big
;

(14)

where #fxt 2 Big is the total number of realizations of x in Bi

and #fðxt 2 BiÞ� ðxtþs 2 BjÞg is the number of realizations

of x in box Bi ending in Bj s-time later. As N goes to infinity,

ðP̂sÞij converges to ðPsÞij with an error of order OðN�1=2Þ.75

Because, the high dimensionality of the phase space of

the barotropic model (d¼ 231) prohibits the direct approxi-

mation of Ls and because, as described in Sec. II B and in

Crommelin,28 the dynamics relevant to transitions between

meta-stable regimes predominantly occur in the reduced

phase space Y ¼ ðEOF1;EOF3Þ, we instead estimate the

transition probabilities of a Markov process associated with

the dynamics in the reduced phase space Y,49 by replacing x

in (13) and (14) by the observable y ¼ hðxÞ. Markov opera-

tors approximated by these transition probabilities cannot be

expected to give the transfer of densities in the reduced

phase space as induced by the flow Ss. Nonetheless, it has
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been shown by Chekroun et al. [Ref. 49, Theorem A], for

systems with a unique SRB measure and a continuous

observable h, that the transition probabilities in the full

phase-space X, are related to the transition probabilities of

the Markov process on the reduced phase-space Y by

Pðytþs 2 Bjjyt 2 BiÞ ¼Pðxtþs 2 h�1ðBjÞjxt 2 h�1ðBiÞÞ: (15)

Hence, the transition probabilities in X restricted to pairs

ðh�1ðBiÞ; h�1ðBjÞÞ are exactly the transition probabilities in Y
for pairs (Bi, Bj). As a consequence, the estimated transition

matrices fP̂sg contain information on the transfer operators

fLsg and their RP resonances as filtered by the observable.

Accordingly, we have discretized the reduced phase

space Y using exactly the same 50� 50 grid as for the histo-

gram as in Sec. II B. Then, the matrices fP̂sg were estimated

from the 500 000-day-long time-series of y and for different

lags s. Importantly, fP̂sgs�0 need not be a semigroup

because (i) the partial observation of the system introduces

memory effects,38,39 (ii) the Galerkin approximation adds

numerical diffusion,76 and (iii) the estimation of transition

probabilities from a time-series of limited length is prone to

sampling errors (cf. Sec. IV below).

Before to study in detail the spectral properties of the

transition matrices, we remark that these matrices are row sto-

chastic, implying that their eigenvalues satisfy jkj � 1. In our

case, there exists necessarily a unique eigenvalue equal to 1

because the transition matrices fP̂sg, by construction from a

unique time series, represent irreducible Markov chains.77

The uniqueness of this eigenvalue in turn implies that its asso-

ciated eigenvector ~p ¼ fp1; :::; pmg, or fixed point, is in fact

identical to the normalized histogram H of Figure 3.

Indeed, the following calculation shows that the histo-

gram H is invariant for any P̂s:

HP̂s

� �
j ¼

Xm

k¼1

Hk P̂s

� �
kj

¼
Xm

k¼1

#fyt 2 Bkg
#fyt 2 Gg �

#f yt 2 Bkð Þ� ytþs 2 Bjð Þg
#fyt 2 Bkg

¼
Xm

k¼1

#f yt 2 Bkð Þ� ytþs 2 Bjð Þg
#fyt 2 Gg

¼ #fytþs 2 Bjg
#fyt 2 Gg ¼ Hj:

Thus, each component pi yields the likelihood P̂ðyt 2
BiÞ for realizations of the observable to be in Bi. It is straight-

forward to associate to any m-dimensional vector on the grid

G the corresponding density it approximates.78 Not doing the

distinction between a probability vector and the correspond-

ing probability density should thus not lead to any confusion.

IV. SPECTRAL PROPERTIES, MEMORY
AND ALMOST-INVARIANT SETS

A. Spectral properties and slow dynamics

We now apply the SMT in order to approximate the RP

resonances (the dominant eigenvalues of the generator) from

the estimated transition matrices P̂s, as filtered by the

observable h. For this purpose, we first solve, for each esti-

mated transition matrix in fP̂sg, the eigenvalue problem

~eiðsÞP̂s ¼ kiðsÞ~eiðsÞ for i 2 f1; :::;mg; (16)

where ~eiðsÞ is the left-eigenvector associated with the ith
eigenvalue kiðsÞ of P̂s. The spectrum of P̂s changes with the

lag s. However, if fP̂sgs�0 was a semigroup with generator

Am, the spectrum faig of Am would be independent of s and

applying the SMT would give

ri ¼ �Re aið Þ ¼ �
1

s
log jki sð Þj

for s > 0 and for i 2 1; :::;mf g; (17)

where ri would be the exponential rate of decay of correla-

tion of any observable in the reduced phase-space with the

eigenvector associated with ki.

However, as noted in Sec. III B, the transition matrices

fP̂sgs�0 do not necessarily inherit from the semigroup prop-

erty (6) of the transfer operators fLsgs�0. Thus, no generator

may exist and the rates ri in (17) may depend on the lag s.

Nevertheless, calculating the rates riðsÞ for each lag allows

(i) to give an approximation of the dominant RP resonances

with a control on the lag and (ii) to test the semigroup prop-

erty (6).

For this purpose, we calculated the rates riðsÞ by solving

the eigenvalue problem (16) and applying (17) for s ranging

from 1 to 39 days. The leading rate equals 0, since it is asso-

ciated to the unit-eigenvalue. The rates corresponding to the

10 leading eigenvalues different from unity of each P̂s are

represented in Figure 4 with the lag s as abscissa and the

(cyclic) coloring distinguishing the rank of the rate. A com-

plex pair of conjugate eigenvalues is represented by one

square for the two conjugates. The error bars represent 99%

confidence intervals estimated from a thousand surrogate

transition matrices by applying the bootstrap method

described in Appendix A.

Our first observation concerns the small width of the

confidence intervals (some are even hidden by the marker

size). These intervals evaluate the robustness of the estimates

to the limited length of the time-series. The largest intervals

occur when two rates almost overlap, so that one of them

may appear or disappear in the surrogates, resulting in a

change of rank for all higher-rank rates. In our case, large

confidence intervals are thus usually indicative of an uncer-

tainty in the existence of two close but distinct rates or of

only one (as for the leading rates at s¼ 7 or 8, for example).

Moreover, Appendix A shows that at least the three leading

rates are very robust to changes in the grid resolution, rang-

ing from a 10� 10 grid to a 100� 100 grid, compared to the

original 50� 50 grid.

Being confident on the robustness of the rates to the

sampling as well as to the grid resolution, we now turn to a

detailed analysis of the results in Figure 4. First, we can see

that the two rates closest to zero, the leading rates in red and

green, are well separated from the rest of the spectrum after

a lag between 5 and 10 days. One of these rates derives from
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a real eigenvalue (the circle), the other represents a pair of

complex conjugate eigenvalues (the square); they exchange

rank at a lag of 8 days. We can calculate an indicative time

scale associated with each rate as the inverse of the rate.

Whether this time scale corresponds, to a good approxima-

tion, to a decorrelation time is not the matter of this study.

For a lag of 15 days, the first rate (in green) and the second

rate (in red) correspond to a time scale of 40 and 23 days,

respectively. Furthermore, the second rate is separated from

the third (in cyan) by a gap of 13 days. This time-scale sepa-

ration suggests that the reduced dynamics are slowly mixing

due to the presence of meta-stable regimes responsible for

low-frequency variability.49,79,80 This confirms the work on

meta-stable atmospheric regimes in this model by

Crommelin;28 we will see in Sec. IV C how such regimes

can be more objectively detected.

The second important feature, relevant to the problem of

stochastic prediction of Sec. V B, is the relative constancy of

the two leading rates for lags larger than 8 days. We can say,

that the slow dynamics associated with these rates “behave

as Markovian,” by which we mean that looking only at these

rates, one cannot disprove the semigroup property (6), even

though the dependence on the lag of the other rates is clearly

indicative that fP̂sgs�0 cannot constitute a semigroup. Thus,

the two leading rates do not seem to be affected by memory

effects due to the partial observation of the system or by esti-

mate errors, since one would not expect them to be constant

otherwise.

From the separation of the two leading rates from the

other rates as well as their relative independence on the lag s
for lags larger than 8 days, we expect 8 days to be the mini-

mum lag for which the transition matrix P̂s¼8 is likely to pre-

dominantly resolve the dynamics associated with the meta-

stable regimes. Consequently, the following developments

will rely mostly on the transition matrix P̂s¼8. Such strategy

for the choice of the lag is similar to the one of DelSole81

and Berner,82 who look directly at the decorrelation rate of

their time series to infer for which lag they should estimate

the drift and diffusion coefficients of the Fokker-Planck

equation they want to approximate. In our case, however, all

the rates associated with the dominant eigenvalues of the

transfer operators are considered and not only the decorrela-

tion rate of the time series alone. Let us also acknowledge

that the SMT has been used in Crommelin and Vanden-

Eijnden83 to estimate the spectrum of the generator associ-

ated with a Fokker-Planck equation, in Froyland et al.76 to

compare approximates of transfer operators and generators

of low-dimensional dynamical systems and in Franzke

et al.12 to test the meta-stability of Hidden Markov Models.

However, we do not know other studies using the SMT to

test the “Markovianity” of reduced systems, even though the

s-test in Ref. 84 serves a similar purpose in the context of

linear inverse modeling.

B. Further validation of the semigroup property

We further test to which extent the semigroup property

(6) is violated for special cases of powers k of P̂s and the cor-

responding matrices P̂k�s. Rather than directly calculating a

distance between the matrices ðP̂sÞk and P̂k�s, we prefer to

calculate, for an initial density f0, the distance between the

density f pow
ks ¼ f0ðP̂sÞk transferred by the kth power of P̂s

and the density f long
ks ¼ f0P̂k�s transferred by P̂k�s. We use

the distance dðf ; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 piðfi � giÞ2
q

, which is a sum of

squared errors between the components of f and g, weighted

by the likelihoods P̂ðyt 2 BiÞ, so that errors in grid boxes

less likely to be reached by the Markov process are given

less weight. The distances dðf pow
ks ; f long

ks Þ have been calculated

for a set of m initial densities associated with each grid-box

in {Bi}, so that the density associated with box Bj integrates

to 1 in Bj and to zero elsewhere. The distances are repre-

sented in Figures 5(a) and 5(b) for a lag s of 8 days and for a

multiplicator k of 2 and 4, respectively (dark colors indicate

small distance).

To explain the nature of the violation of the semigroup

property (6), let us recall that there exist only three possible

candidates, namely, (i) the partial observation of the dynami-

cal system, (ii) the coarse-graining induced by the Galerkin

approximation, and (iii) sampling errors. Furthermore, it is

shown in Appendix B, that the distances plotted in Figure 5

are not affected by the use of twice as more samples and that

they only decrease slightly when the resolution increases

(and vice versa). Thus, we can say, that positive distances in

Figure 5 are mostly the consequence of memory effects

induced by the partial observation of the high-dimensional

barotropic model.

We can observe that these memory effects are mostly im-

portant where the stationary density is small (Figure 3) and

thus, where trajectories are less likely to pass by. The denser

regions which are associated with meta-stability, as will be

seen Sec. IV C, seem to be less affected by memory effects.

This result is in agreement with the relative constancy with

lag of the leading rates, also associated with meta-stability.

Such memory effects, as well as the dependence on the lag of

FIG. 4. Rates riðsÞ corresponding to the 10 leading eigenvalues different

from unity of each P̂s, with the lag s as abscissa and the (cyclic) coloring

giving the rank of the rate. A complex pair of eigenvalues is represented by

one square for the two conjugates. The error bars represent 99% confidence

intervals estimated from a thousand surrogate transition matrices by apply-

ing the bootstrap method described in Appendix A.
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the spectral gap between the leading rates, should be put in

perspective with stochastic modeling with SDE and based on

time-scale separation.34,35,37 Indeed, in such models, one

seeks a reduced basis for the decorrelation time of the

resolved variables to be much longer than the one of the unre-

solved variables, in order to be able to neglect the memory

effects made explicit by the Mori-Zwanzig formalism.38,39 If

the transition matrices on the reduced phase space do not

directly help in the choice of the basis on which the dynamical

system can be optimally reduced, their rates can give insights

on the impact of the reduction on the resolved variables.

C. Meta-stable regimes as almost-invariant sets
of the transfer operator

We have seen, in Sec. IV B, that the two leading rates of

Figure 4 are close to zero and that a large spectral gap sepa-

rates them from the rest of the rates, a configuration indica-

tive of the presence of meta-stable regimes. This

characteristic of meta-stability or persistence allows to for-

mally define these regimes as almost-invariant sets.79,80 We

now give an extension of the definition of almost-invariant

sets to sets in the reduced phase space and present an algo-

rithm to detect them from a transition matrix P̂s.

A set A of the phase space X is almost-invariant if

S�1
s ðAÞ � A, so that

Pðxtþs 2 Ajxt 2 AÞ � 1: (18)

Reformulating, the probability for a trajectory starting in a

set A to leave this set after a lag s is almost-zero. These sets

are thus associated with persistent or meta-stable regimes.

In the case of almost-invariant sets in the reduced phase

space, we are interested in sets E of Y, almost-invariant with

respect to the transition probabilities Pðytþs 2 Ejyt 2 EÞ,
such that

Pðytþs 2 Ejyt 2 EÞ � 1: (19)

However, applying (15) [Ref. 49, Theorem A] we have that

Pðytþs 2 Ejyt 2 EÞ � 1

() Pðxtþs 2 h�1ðEÞjxt 2 h�1ðEÞÞ � 1: (20)

This important result states that if a set E is almost-invariant

in the reduced space Y, its pre-image h�1ðEÞ in X is almost-

invariant to the flow Ss. In other words, almost-invariant sets

in the reduced phase space are images of almost-invariant,

yet coarser, sets in the full phase space. Of course, these

coarse-grained almost-invariant sets may not be optimal, in

the sense that other, more strongly almost-invariant sets

(with respect to (19)) may exist but are filtered out by the

observable h in the same way RP resonances can be filtered

out by h.

Based on these considerations, the transition matrix P̂s¼8

was used to define the meta-stable regimes objectively. For

the detection of almost-invariant sets [see also Refs. 78–80]

we use an optimal Markov chain reduction85,86 with respect

to the relative entropy rate.87 This type of Markov chain

reduction is particularly well suited for the detection of dense

almost-invariant sets (highly recurrent), since it attempts to

minimize the distance between a density transferred by the

reduced transition matrix (giving the transition probabilities

between the almost-invariants, see below) and the same den-

sity transferred by the original transition matrix. The optimi-

zation was implemented using the greedy algorithm from

network theory,88 where the grid-boxes are iteratively merged

to give coarser and coarser almost-invariant sets.

In accordance with the bimodality of the histogram

(Figure 3), we have chosen to look for a number of almost-

invariant sets p of 2. These two sets are plotted in Figure 6,

such that all grid boxes in green belong to the first almost-

invariant set and all grid boxes in blue belong to the

second one. For the family of almost-invariant sets fEbg, the

2 � 2 reduced transition matrix Q̂s¼8;, such that ðQ̂s¼8Þbc
¼ P̂ðytþs 2 Ecjyt 2 EbÞ, and its stationary density g, such

that gb ¼ P̂ðyt 2 EbÞ, are found to be

Q̂s¼8 ¼
0:79 0:21

0:14 0:86

� �
; g ¼ 0:27

0:73

� �
; (21)

the second almost-invariant set (in blue) being almost three

times as dense as the first one (in green).

The algorithm is designed to find almost-invariant sets

whose union covers the entire grid. However, in view of the

early warning problem discussed in Sec. V, we need to find a

restriction of the definition of the regimes fRbg to smaller

FIG. 5. The value at each grid-point represents the distance, for an initial

density of 1 at this grid-point, between the density f pow
8k transferred by the

kth power of P̂8 and a density f long
8k transferred by P̂k�8 for (a) k¼ 2 and (b)

k¼ 4.
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regions of the grid so that the likelihood P̂ðyt 2 RbÞ to be in

any regime Rb becomes smaller than one.89 To do so, we

selected, for each almost-invariant set Eb, their grid-boxes Bi

maximizing the likelihood P̂ðyt 2 Bi; ytþs 2 Eb; yt�s 2 EbÞ
of a realization of y to be in Bi and to come from and go to

the same almost-invariant set Eb, until a sufficiently large

number of boxes have been attributed to the regime Rb to

have P̂ðyt 2 RbÞ ¼ P̂ðyt 2 EbÞ=2 (until half of the almost-

invariant set has been selected in terms of stationary density

p). These restrictions are plotted in dark green and dark blue

(Fig. 6) and define the blocked and zonal regimes, respec-

tively. The probability to stay in the so-defined blocked and

zonal regimes after 8 days is of 66% and 70%, respectively.

It is shown in the Appendixes A, B, and C that these

regimes are relatively robust to the limited length of the time

series, to the grid resolution, and to the lag, respectively.

Their definition together with the transition matrices fP̂sg is

used in Sec. V to define an early warning indicator of a tran-

sition to the blocking regime.

V. PREFERRED TRANSITION PATHS AND EARLY
WARNING

A. Preferred transition paths

Having defined the regimes, we now study the transi-

tions between them. Following Branstator and Berner,90 we

first plot the mean tendencies of the normalized principal

components pc1 and pc3. The tendencies were calculated for

each principal component using a finite difference scheme

such that DpciðtÞ ¼ ðpciðtþ DtÞ � pciðtÞÞ=Dt, where Dpci is

the approximate tendency of the ith principal component and

Dt is the time step. An estimate of the mean tendency for

each grid box was then calculated by averaging over all the

realizations of y in this grid box.

The mean tendency for a time-step Dt of 8 days is plot-

ted in Figure 7. It can be seen as a composition of a clock-

wise rotation and two sinks. This result corroborates both the

meta-stability of the regimes and the existence of preferred

transition paths between them, reminiscent of a pseudo-

periodic orbit.7,28 Indeed, the rotation is such that typical

trajectories leaving the zonal regime (blocked regime) to go to

the blocked regime (zonal regime) transit through negative

values (positive values) of pc3. Furthermore, the correspon-

dence between the sinks with low-values of mean tendency

and the regimes is striking, in particular, for the zonal regime.

We have seen in Sec. IV B that the memory effects are rela-

tively weak in the region of the regimes. In the limit when

these effects can be neglected, the reduced dynamics can be

modeled by an SDE and the mean tendency gives an approxi-

mation of the drift term involved in the Fokker-Planck equa-

tion [together with diffusion, not calculated here32,82] which

generates the semigroup of transfer operators associated with

the SDE. The correspondence between weak tendency and

almost-invariance is thus not coincidental.

To further support the existence of preferred transition

paths from one regime to the other, we have calculated, for

each grid box, the likelihood P̂ZB ðP̂BZÞ that a trajectory

starting in the zonal regime (blocked regime) and passing

through this grid box reaches the blocked regime (zonal re-

gime) before the zonal regime (blocked regime).

The resulting likelihoods are plotted in Figure 8. In

agreement with the tendency, the trajectories going from the

zonal to the blocked regime are more likely to do so through

low values of the 3rd principal component; while trajectories

going from the blocked to the zonal regime favor high values

of the 3rd principal component.

B. Early warning indicator

The presence of preferred transition paths from the zonal

to the blocked regime, as well as the weak mixing associated

with the existence of rates close to zero (cf. Sec. IV A), sug-

gests that there is potential skill in predictability of transi-

tions to the blocked regime. Note that more than trying to

predict when a trajectory will leave the zonal regime, we

want to use the fact that trajectories leaving the zonal regime

are more likely to go to the blocked regime if they transit

through negative values of pc3. We therefore use the

FIG. 7. Mean tendency of the normalized principal components calculated

using centered differences for Dt¼ 8 days. Arrows represent the direction

and the colors represent the magnitude (in standard deviation per day). As

for the following figures, the black contours delimitate the blocked regime,

marked by the letter B, and the zonal regime, marked by the letter Z.

FIG. 6. Two almost-invariants sets and their restrictions (in dark colors) cor-

responding to the blocked and the zonal regime, respectively.
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transition matrices for different lags to provide an approxi-

mation of the transfer of densities in the reduced phase space

by the flow and to build an early-warning indicator of transi-

tions to the blocked regime.

The quality of the indicator will depend on (i) the pre-

dictability of the full system (in terms of sensitive depend-

ence to initial conditions or rate of decay of correlations) and

(ii) the validity of the Markov approximation for the reduced

dynamics. While the former is determined by the dynamical

system alone, the latter depends on the choice of the observ-

able. We have seen in Sec. IV that the violation of the semi-

group property indicates that the reduced dynamics are

overall non-Markovian. However, the constancy of the lead-

ing rates also indicates that motions associated with the

meta-stable regimes behave as Markovian, suggesting that

densities transferred by the estimated transition matrices

could be used to give a probability of reaching one of the

regimes.

The early-warning indicator is thus designed as such.

Whenever the observed trajectory (in our case, the simula-

tion) leaves the zonal regime, we define an initial density

fBi;s¼0, integrating to 1 over grid-box Bi to which the last ob-

servation belongs and to zero elsewhere (one could instead

define an initial density spreading over several boxes to

account for uncertainties in the observation). Next, the

Markov approximation fBi;s¼1 of the transfer of fBi;s¼0 by the

flow after a lag s of 1 day is calculated as fBi;s¼0P̂s¼1. We

then calculate the likelihood P̂ðys¼1 2 Rblockjy0 2 BiÞ ¼P
Bj2Rblock

ðfBi;s¼1Þj for a realization ytþ1 to belong to the

blocking regime knowing that yt belongs to grid-box Bi. If

this estimated probability exceeds a given critical probability

pc, an alarm of transition to the blocked regime after a lag

salarm of 1 day is given. Otherwise, the same process is

repeated for s ¼ 2; 3; ::: until an alarm is given or a limit lag

smax is reached, after which we wait for the next observation

to run the forecasting system.

To illustrate this process, we show in Figure 9 the trans-

ferred density for grid box 314 marked as a blue square and

lying in the region of preferred transition paths between the

zonal and the blocked regimes. This initial density fBi¼314;s¼0

is plotted alone panel (d). The densities fBi¼314;s¼4; fBi¼314;s¼8,

and fBi¼314;s¼16 transferred using the transition matrices

P̂s¼4; P̂s¼8, and P̂s¼16 are plotted in panels (a), (b), and (c),

respectively. The densities fBi¼314;s¼2�4 and fBi¼314;s¼2�8 trans-

ferred using the square of the transition matrices P̂s¼4 and

P̂s¼8 are also plotted in panels (e) and (f), respectively, to

show how the semigroup property can be violated. The corre-

sponding likelihoods to reach the blocked regime are written

in the top left of each panel.

We can see that if a critical probability pc of 0.3 would

be chosen, an alarm of transition to the blocking regime

would be raised for s¼ 8 days (Figure 9(b)), as described in

the previous paragraph. Figure 10 shows the grid boxes for

which an alarm would be given if a critical probability pc of

0.3 was used and the respective lag salarm after which the

transition is predicted to occur. In this case, alarms are

mainly flagged for trajectories passing through grid boxes

close to the blocked regime or in the region of low principal

component pc3.

The quality of the early warning indicator of transition

to the blocked regime was tested over all trajectories starting

when leaving the zonal regime and ending when reaching

any of the regimes. In order to take into account sampling

errors in the estimation of the transition matrices, the test

was performed on a second 500 000-day-long simulation

which was ran taking as initial state the last state of the origi-

nal simulation from which the transition matrices were esti-

mated. Out of the 11 759 trajectories starting from the zonal

regime, 1993 reached the blocked regime, which we call an

occurrence event (O), while 9766 reached the zonal regime,

which we call a non-occurrence event ð�OÞ.
When testing a forecast system, one is interested in how

many alarms (A) were given when the event actually

occurred, the number of so-called hits, and how many did not

occur, the number of so-called false alarms. In the case of a

hit, the event occurs at a given time socc after the alarm is

given, so that not only the occurrence of the event should be

forecasted but also when it will occur. For easy reference, the

different cases are shown in Table I. For example, a forecast

that a blocking event will occur in a month although it will

truly occur only a week later is not of much help. For the pur-

pose of assessing, the skill of a forecast not only in terms of

occurrence but also in terms of precision of the forecasted

FIG. 8. Likelihood, for each grid box, to reach (a) the blocked regime before

the zonal regime and (b) the zonal regime before the blocked regime.
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date of occurrence, we need to define a tolerance �, in days,

such that a hit (H) is granted only when an alarm is given

with a prediction time salarm such that socc � � � salarm

� socc þ �. If, however, the event is predicted to happen too

early ðsalarm < socc � �Þ, it is counted as a false alarm of type
II (FA2), while if the event is predicted to happen too late

ðsalarm > socc þ �Þ, it is counted as a missed alarm of type II
(MA2). When the event did not occur and no alarm ð�AÞ was

given, we count a correct rejection (CR). When an event

occurs but no alarm is given, we count a missed alarm of type
I (MA1) and when an event is predicted but does not occur,

we count a false alarm of type I (FA1).

To assess the skill of the forecasts based on the catego-

ries defined in Table I, we adapted the original Peirce skill

score (PSS)55,56 to forecasts including the time of occur-

rence. In our case, we define the PSS as

SPeirceðpcÞ ¼ HRðpcÞ � FAR1ðpcÞ;

FIG. 9. Markov approximation fBi¼314 ;s

of the transfer of the initial density

fBi¼314 ;s¼0 for a lag s of (a) 4 days, (b) 8

days, and (c) 16 days. The initial den-

sity is plotted in panel (d), integrating

to one over box Bi¼314 and to zero else-

where. The densities transferred using

the square of P̂s¼4 and of P̂s¼8 are

plotted in (e) and (f), respectively. The

corresponding likelihood to reach the

blocked regime are written in the top

left of each panel.

FIG. 10. Predicted time of transition to the blocked state salarm, in days, for

each grid box where an alarm is given for a critical probability pc of 0.3.

TABLE I. Overview of the different cases which can occur depending on

the alarm given and the event occurring.

A A A �A

sf < so � � jsf � soj � � sf > so þ �
O FA2 H MA2 MA1
�O FA1 FA1 FA1 CR
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where HRðpcÞ ¼ HðpcÞ=OðpcÞ is the hit rate, defined as the

ratio of the number of hits over the number of occurrences,

and FAR1ðpcÞ ¼ FA1ðpcÞ=�OðpcÞ is the false alarm rate of

type I. The hit rate gives the likelihood of giving an alarm

when the event occurs, while the false alarm rate of type I

gives the likelihood that an alarm is given but the event does

not occur. If the hit rate exceeds the false alarm rate, the PSS

is positive and the forecast has skill. A PSS of 1 is reached

for a perfect forecast, when alarms are only raised when an

event will actually occur and with the right predicted time of

occurrence.

The PSS is plotted in Figure 11 versus the critical proba-

bility pc and for different tolerances �. A tolerance of 1
means that the precision of the predicted date of occurrence

is not taken into account in the skill score. It is evident that as

the tolerance increases, the skill score increases as well. The

PSS reaches a maximum for a critical probability around 0.5,

depending on the tolerance. Such scores have to be put in per-

spective with the predicted time of occurrence salarm. Indeed,

a successful prediction of occurrence of a blocking event 1

day ahead is counted as a hit, but is not of much practical use.

For this reason, we have also represented the average predic-

tion time salarm as a black dashed line in the same Figure 11.

It is of around two weeks for a critical probability of 0.3 and

around one week for a critical probability of 0.45. Thus,

depending on the final purpose of the forecast system, a com-

promise has to be found between the skill of the forecast sys-

tem and how many days ahead an event is predicted on

average. Choosing a critical probability of 0.3 would give a

reasonably good skill score of 0.4 (better than a no-skill fore-

cast) with an average prediction time of 2 weeks.

To summarize, the main advantage of a forecast system

relying on the transfer of densities is that it constitutes a very

cheap way to account for the sensitive dependence on initial

conditions of a chaotic dynamical system.

VI. ENERGETICS OF THE TRANSITIONS

In this section, we focus on the remaining question on

how the dynamics of the barotropic model can explain (i) the

persistence of each regime and (ii) the preferred transition

paths from the zonal to the blocked regime through high val-

ues or pc3.

To help clarifying these issues, the hemispheric energy

budget of the model is studied. First, the fields are decom-

posed in a �s ¼ 8 days running mean and a deviation from it.

This decomposition yields for the streamfunction

w ¼ �w þ w0 with �w ¼ 1

�s

ðtþ�s=2

t��s=2

w dt0: (22)

Inserting (22) into Eq. (1) and applying the running mean

gives the equation of the mean relative vorticity

@r2 �w
@t
þ J �w;r2 �w þ f þ h

� �
þ J w0;r2w0

� �

¼ �k1r2 �w þ k2r8 �w þr2w�: (23)

Subtracting (23) from (1) gives the equation of the deviation

from the running mean as

@r2w0

@t
þ J �w;r2w0

� �
þ J w0;r2 �w þ f þ h

� �

þJ w0;r2w0
� �

� J w0;r2w0
� �

¼ �k1r2w0 þ k2r8w0:

(24)

In order to obtain the equation of the hemispheric aver-

age of the mean kinetic energy �E ¼ h�u2þ�v2

2
i, with h	i denoting

the hemispheric average 1
2p

Ð 2p
0

Ð p=2

0
	 cos / d/ dk, Eq. (23) is

multiplied by �w and averaged hemispherically, giving

@ �E

@t
¼ h�wJ w0;r2w0

� �
i � 2k1

�E � k2h�wr8 �wi � h�wr2w�i:

(25)

The first term on the right hand side is equal to the opposite

of the sum of Reynolds’ stress terms which represent a con-

version of mean to eddy kinetic energy. Finally, multiplying

(24) by w0, applying the running mean and averaging over

the hemisphere gives the equation of the global eddy kinetic

energy E0 ¼ hu02þv02
2
i

@E0

@t
¼ �h�wJ w0;r2w0

� �
i � 2k1E0 � k2hw0r8w0i: (26)

The terms in Eqs. (25) and (26) were calculated from the

model simulation results and we could verify that the calcu-

lated tendencies equated the sum of the right hand side terms

but for a small error of up to 13% of the standard deviation

of the tendencies due to the running average of a deviation

not being exactly zero.

The energetics of the transitions can be studied by plot-

ting the kinetic energies (Fig. 12) and the terms in the energy

budget (Fig. 13) averaged for each grid box of the reduced

phase space. To these plots, a 200 days long trajectory tran-

siting smoothly from the zonal to the blocked regime is

added in green, starting with a black square and ending with

a black triangle. It is first interesting to notice that low values

FIG. 11. Peirce skill score of the probability forecast of reaching the blocked

regime versus the critical probability pc for different tolerances � (straight

lines). The average time lag in days for which an alarm is given is also plot-

ted in black dashed line.
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of E0 coincide rather well with our definition of the regimes

(Fig. 12(b)). The fact that the eddies are weak in the neigh-

borhood of the regimes is mostly explained by low values of

conversion to eddy kinetic energy (Fig. 13(c)), in particular,

for the zonal regime, and additionally by a negative forcing

for the blocked regime (Figs. 13(c) and 13(d)). This stabili-

zation of the flow in the region of regimes is a good physical

candidate to explain their persistence.

We have seen (Sec. V) that typical trajectories from the

zonal to the blocked regime transit through the region of

negative pc3. Figures 12 and 13 allow us to give a typical

scenario for such a transition. Each step of the following sce-

nario is marked in Figures 12 and 13 by the corresponding

number.

(1) Starting in the zonal regime, the Reynolds’ stress terms

are small and the mean flow is stable. However, the posi-

tive forcing induces an increase of the mean kinetic

energy �E.

(2) As �E increases and the forcing persists, the trajectory

evolves to lower value of pc3 and eventually leaves the

zonal regime.

(3) The trajectory then reaches a region of pc1 close to zero

and low pc3. The forcing is still strong but the Reynolds

stress terms begin to increase because the strongly

sheared flow becomes barotropically unstable for lower

values of pc3, so that the total eddy kinetic energy E0

continues to increase.

(4) As the trajectory reaches lower values of pc1, the forcing

reverses but the Reynolds’ stress terms continue to

increase as the barotropic eddies which emanated at the

previous step develop, so that �E is converted to E0 which

continues to increase.

(5) The trajectory then goes to larger values of pc3 where

the forcing is negative and energy is removed both from

the mean flow and from the eddies so that the barotropic

eddies decay.

(6) The trajectory eventually reaches the blocked regime for

lower values of pc1 where E0 decreases due to the nega-

tive forcing coincident with relatively small Reynolds’

stress terms. The mean flow is once again relatively sta-

ble, although not as much as for the zonal regime, as can

be seen for the relatively large Reynolds stress terms in

the region of largest pc1 inside the blocked regime.

FIG. 12. (a) Hemispheric mean kinetic

energy �E in J m–2. (b) Hemispheric

eddy kinetic energy E0 in J m–2. The

green line, starting with a black square,

and ending with a black triangle, repre-

sents a 200 days long trajectory transit-

ing from the zonal to the blocked

regime.

FIG. 13. (a) Tendency of the hemi-

spheric mean kinetic energy in J m–2

day–1, (b) Tendency of the hemispheric

eddy kinetic energy in J m–2 day–1.

(c) Hemispheric Reynold’s stresses

(conversion from mean to eddy kinetic

energy when positive) in J m–2 day–1.

(d) Sum of hemispheric forcing and

dissipation in J m–2 day–1. The green

line, starting with a black square, and

ending with a black triangle, represents

a 200 days long trajectory transiting

from the zonal to the blocked regime.
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This scenario is consistent with the mechanisms of cha-

otic itinerancy,26 heteroclinic connections,20,28 and almost-

invariant sets bounded by invariant manifolds.78 Indeed,

when the reduced state is in the zonal regime, the flow is rel-

atively stable as it belongs to what would be the basin of

attraction of the zonal regime. However, as it moves towards

the neighborhood of positive forcing, energy is given to the

mean flow, the horizontal shear increases, and the flow

becomes unstable to small perturbations. The increasing

Reynolds’ stress term indicates that the perturbation grows,

starts to interact with the mean flow, and enables the state to

leave the basin of attraction of the zonal regime.

VII. SUMMARY, DISCUSSION, AND CONCLUSIONS

Using concepts of transfer operators of dissipative dy-

namical systems, stochastic reduction, and meta-stable

regimes, we developed an early warning indicator of midlati-

tude atmospheric regime transitions. It was applied here to

the transitions between a zonal and blocked flow in a baro-

tropic hemispheric atmosphere model.

Transfer operators yield the evolution of densities

induced by the flow. Markov operators have been estimated

on the reduced phase space to approximate the point spec-

trum of the generator of the transfer operators, namely, the

Ruelle-Pollicott resonances. Their approximation for differ-

ent lags has been used to assert the presence of slow dynam-

ics associated with meta-stable regimes and the impact of

memory effects on these motions. The presence of rates

close to zero and separated from the rest of the spectrum sup-

ports the existence of almost-invariant sets associated with

meta-stable regimes and with time scales of three to six

weeks. Furthermore, the relative constancy of these rates

showed that memory effects are weak in the meta-stable

regimes and along the transition path from the zonal to the

blocked regime.

In order to objectively define these regimes, we have

developed an algorithm for the computation of almost-

invariant sets based on earlier work in Refs. 68, 78, and 80,

as well as on optimal Markov chain reduction85,86 and

greedy optimization in networks.88 The algorithm attempts

to minimize a measure of the distance between the reduced

Markov operator (giving the transition probabilities between

the almost-invariants) and the original one and allows the

detection of sets which are both recurrent and persistent. The

algorithm has enabled us to robustly define the blocked and

the zonal regimes.

Compared to spectral almost-invariant detection algo-

rithms such as developed earlier by Refs. 68 and 78–80,

which are based on the decomposition of the leading eigen-

vectors of the transfer operator into characteristic functions

supporting the almost-invariant sets, our algorithm is

expected to perform better in the detection of more than two

almost-invariant sets, since the latter uses an aggregative

implementation rather than a divisive one like the spectral

algorithms. For example, a similar algorithm86 has been used

for the detection of a dozen of communities, associated with

spatial patterns of variability, in a correlation network of sea

surface temperature.91 In this study, we were only interested

in the bi-partition problem and our algorithm showed compa-

rable performance in terms of invariance with respect to that

in Ref. 78.

The transfer operator based algorithms are also compa-

rable to Hidden Markov Models (HMM),11,12 with the differ-

ence that the former are non-parametric (no assumption is

made on the distribution of the reduced states). Contrary to

HMM, our algorithm detects hard clusters (non-overlapping

sets) and takes as input the transfer operator rather than

directly the time series of the observable. In theory, it would

be possible to adapt the algorithm to soft clustering (to allow

overlapping between the clusters) but the optimization prob-

lem would become harder as it would necessitate another

algorithm than the (combinatorial) greedy algorithm.

The energy budget of the model showed that striking

similarities exist between regions of low EKE and regions of

almost-invariance, weak tendency, and small memory

effects. Low EKE is indicative of stability of the mean flow

and thus of almost-invariance, low tendency as well as

weaker memory effects due to the small amplitude of the

faster unresolved variables.

The early warning indicator is based on a forecasting

scheme involving the evolution of densities by the estimated

transfer operator in a two-dimensional reduced phase space

spanned by two EOFs of the model. It relies on the Markov

approximation of the evolution of an initial density in the

neighborhood of the latest observation of the system and on

the estimation of the probability to reach the blocked regime.

A warning is broadcasted for a lag salarm if this probability

exceeds a prescribed critical probability. The quality of the

early warning indicator, as measured by the Peirce Skill

Score, is highest for a critical probability of about 0.5 but a

smaller critical probability of 0.3 allows to emit warnings

two weeks ahead of the event, on average. A next step is to

investigate how this promising indicator would perform for

more realistic models of atmospheric flow transitions.

While the model here has obvious deficiencies (e.g., the

lack of the representation of baroclinic instability), it is one

of the midlatitude atmospheric models for which regime

transitions are found and hence forms a nice test model for

the development of the early warning indicator. The compu-

tational procedure can, in principle, be carried out with a

General Circulation Models (GCM) exhibiting regime

behavior,16,18 if sufficiently long simulations can be per-

formed. Note that in our case, we used a 500 000-day-long

simulation (
1300 years) to assure the significance of our

statistics. However, the dominant part of the spectrum was

found to be robust to the use of only 50� 365 samples which

is the typical size of an operational GCM or a reanalysis re-

cord. The question remains if the transfer operator based

early warning indicator would perform well with nearly

Gaussian GCM or observational data,11,16,18 where it is not

clear whether preferred transition paths between the meta-

stable regimes exist.

Another application could be to estimate transfer opera-

tors from a long run of an operational weather prediction

GCM and use these operators in parallel with a deterministic

run of the GCM, in order to account for both uncertainty in
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the deterministic forecast,92 and to give an early warning in-

dicator of transition to a new meta-stable regime.

Finally, the early warning indicator presented here cer-

tainly extends those based on critical slowdown,50 such as

the increase in variance and lag-1 autocorrelation, which def-

initely have problems in high-dimensional phase space. Even

the network based indicators51–54 are not readily extended to

high-dimensional systems. It is therefore hoped that the tech-

niques in this paper will find application in many types of

chaotic high-dimensional systems as found in physics and

engineering.
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APPENDIX A: BOOTSTRAP APPLIED TO TRANSITION
MATRICES

This Appendix is concerned with the limited length of

the record used to estimate the transition matrices fP̂sg
defined in Sec. III B. This statistical inference problem can

result in errors, notably in the rates and the regimes calcu-

lated from fP̂sg in Secs. IV A and IV C, respectively, and

requires an estimation of confidence intervals.

Following Chekroun et al.,49 we use a version of the non-

parametric bootstrap,93,94 adapted to the estimation of transi-

tion matrices as done in Ref. 95. It starts from the matrix Ts

counting the transitions of {yt} from one grid box to another,

before the normalization has been applied to get the transition

probabilities. From Ts, Ns surrogate count matrices

fT�s;sg1�s�Ns
are generated. This is done, for each row i, by

taking with replacement ni target grid boxes among the ni

transitions starting from grid-box Bi of Ts. This accounts for

drawing ni times from a Multinomial distribution with vector

of probabilities fðP̂sÞilg1�l�m. From these Ns surrogate count

matrices, the transition matrices fP̂�s;sg1�s�Ns
are then calcu-

lated by normalizing their rows. These matrices can then be

used to estimate the sampling error of any functions of the

transition matrix P̂s.

A thousand surrogate matrices fP̂�s;sg1�s�Ns
are used to

compute 99% confidence intervals for the rates represented

in Figure 4. For each lag s, the leading rates have been calcu-

lated for every surrogate transition matrix in fP̂�s;sg1�s�Ns
.

For each rate riðsÞ one gets a distribution of surrogate rates

fðriðsÞÞ�sg1�s�Ns
. After sorting these distributions, the

ð0:005 � NsÞth and the ð0:995 � NsÞth values are taken to

give the lower bound and the upper bound, respectively, of

the confidence interval for rate riðsÞ.
In this study, we added a bias correction to the intervals

because the described construction of the surrogate matrices

introduces a bias towards lower values for rates, in particu-

lar, for the secondary rates. We give an example to explain

this bias. Assume that only two transitions start from a box

Bi, with targets Bk and Bl. In the surrogate, the probability to

pick two different transitions (Bk and Bl) will be of 1/2, while

the probability to pick two of the same transitions (twice Bk

or twice Bl) will also be of 1/2. Thus, a bias is introduced

towards a weaker mixing resulting in lower values of the

rates (in particular, to the secondary ones more sensitive to

such details). This bias was removed by centering the mean

of the surrogate rates fðriðsÞÞ�sg1�s�Ns
to the value of the

original rate riðsÞ being tested.

The surrogate transition matrices fP̂�s;sg1�s�Ns
can also

be used to test the robustness of the regimes to the sampling

by running, for each P̂
�
s;s, the regime detection algorithm

described in Sec. IV C. The membership of a grid box to a

regime can be given by a membership matrix Mib such that

Mib ¼ 1 if grid box Bi belongs to regime Eb, and is zero oth-

erwise. Confidence intervals are not well suited for statistics

FIG. 14. The value at each grid box represents the fraction of surrogate

regimes for which the grid box belongs to (a) the blocked regime or (b) the

zonal regime out of a 100 surrogates. The surrogate regimes were detected

by applying the algorithm of Sec. IV C to the bootstrap surrogate transition

matrices.
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taking logical values. Instead, we compute, for each grid-box

Bi, the fraction of surrogates for which Bi belongs to regime

Eb. These fractions are plotted in Figures 14(a) and 14(b) for

the blocked and the zonal regime, respectively, using

Ns¼ 100 surrogates.

We can see that the core of the regimes are very robust

to the sampling, as indicated by the amount of grid boxes in

each regime for which a fraction close to a 100% of the

boxes of the surrogates have been attributed to the same re-

gime. However, boxes along the path of the transition from

the zonal to the blocking regimes are less robust to the sam-

pling. Such exit-region and entering-region for the zonal and

the blocked regime, respectively, are indeed harder to attrib-

ute to a regime, since they correspond to regions where the

invariance is weak. A possibility would be to add a simulated

annealing step in the almost-invariant sets detection algo-

rithm as has been used, for example, in Rosvall and

Bergstrom.86

APPENDIX B: ROBUSTNESS TO GRID RESOLUTION

The robustness of the rates and the regimes to the grid

resolution for which the transition matrices are estimated is

tested next.

Figures 15(a) and 15(b) represent rates calculated from

transition matrices estimated on a grid of 10� 10 and

100� 100 boxes, respectively, to be compared with Figure 4

of Sec. IV A. We can see that at least the 3 leading rates in

green, red, and cyan are not much affected by the grid reso-

lution so that the analysis of Sec. IV A remains valid under

changes of the grid in this range. This robustness to the grid

of the leading rates is in agreement with the fact that they

represent slow large-scale motions less likely to be affected

by small perturbations of the transition matrices.

Figures 16(a) and 16(b) represent regimes detected from

transition matrices estimated on a grid of 20� 20 and

200� 200 boxes, respectively, to be compared with Figure 6

of Sec. IV C. It can be seen that in both cases the regimes are

very much alike to the one plotted in Figure 6 for the grid of

50� 50 boxes. The quality of the regimes deteriorates for

grids coarser than 20� 20 (not represented here) but remains

relatively good for resolutions as refined as 200� 200 (Fig.

16(b)). This robustness of the regimes to very refined resolu-

tions can be explained by the aggregative nature of the

almost-invariant sets detection algorithm. Indeed, one expects

the estimates of the transition probabilities between grid boxes

to deteriorate as the grid becomes thinner and as the number

of samples by grid box decreases. However, because the algo-

rithm iteratively agglomerates grid boxes into clusters, the

transition probabilities between these coarser and coarser clus-

ters become less and less sensitive to the sampling as the num-

ber of samples by clusters increases with their size.

FIG. 15. Rates riðsÞ as in Figure 4 but calculated from estimates of transition

matrices on a (a) 10� 10 grid and (b) 100� 100 grid.

FIG. 16. Almost-invariant sets and their regimes as for Figure 6 but for a

grid of (a) 20� 20 and (b) 200� 200.
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APPENDIX C: ROBUSTNESS OF THE REGIMES
TO THE TIME LAG

In addition to the robustness test of the regimes to the

grid resolution, we next test their robustness to the choice of

the time lag of the transition matrix from which they are

detected. Regimes detected for lags s of 7 and 50 days are

plotted in Figures 17(a) and 17(b), respectively, to be com-

pared to Figure 6 of Sec. IV C. In this range, we can see that

the quality of the regimes is robust to the lag.

For lags shorter than 7 days, however, the algorithm is

not able to distinguish the transition path between the zonal

and the blocked regime from the regimes themselves (not

shown here). Such result is in agreement with the fact that

for lags smaller than 7 days, the complex pair of rates repre-

sented by green squares in Figure 4, more likely to be associ-

ated with the transition, is dominant over the real eigenvalue

represented by red circles and likely to be associated with

the meta-stability of the regimes. Thus, the motions associ-

ated with the transition appear to be dominant over the meta-

stability of the regimes for such short lags.

The deterioration of the regimes for lags larger that 50

days is to be expected due to the fact that, as seen Sec. IV A,

the leading rates of Figure 4, associated with meta-stability,

have time-scales not larger than 40 days; so that for longer

lags, the motions associated with the meta-stable regimes are

likely to decorrelate and cannot be detected by the

algorithm.

APPENDIX D: TEST OF THE SEMIGROUP PROPERTY

In this Appendix, we justify that the distances plotted in

Figure 5(a) in Sec. IV A, between densities transferred by a

power of 2 of P̂8 and densities transferred by P̂2�8, are

mostly explained by memory effects rather than by the

Galerkin approximation or by the sampling.

To do so, we first represent the same distances but calcu-

lated from transition matrices estimated from time series of

only 250 000 realizations and as much as 1 000 000 realiza-

tions (Figs. 18(a) and 18(b), respectively), compared to the

500 000 realizations from which the distances represented in

Figure 5 have been calculated. We can see that neither plots

seem to be affected by the short or long length of the time-

series. One has to go to record lengths shorter than 200 000

realizations to start to see a difference in the distances (not

shown here). Thus, the distances represented in Figure 5 are

not likely to be due to the limited length of the time-series

from which the transition probabilities have been calculated.

FIG. 17. Almost-invariant sets and their regimes as for Figure 6 but for a lag

of (a) 7 days and (b) 50 days.

FIG. 18. As for Figure 5, the value at each grid-point represents the distance,

for an initial density of 1 at this grid-point, between the density f pow
8k trans-

ferred by the kth poser of P̂8 and a density f long
8k transferred by P̂k�8 for

k¼ 2. However, the transition matrices have been estimated from a time se-

ries of (a) 250 000 days and (b) 1 000 000 days, compared to the 500 000 of

Figure 5.
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Second, to test the effect of the Galerkin approximation

on the distances, we have again reproduced in Figure 5,

using 500 000 realizations, but with a grid of 20� 20 and

100� 100 (Figs. 19(a) and 19(b), respectively). While for

the 20� 20 grid, the distances get larger, indicating that this

increase is due to the Galerking approximation, the distances

for the 100� 100 grid resolution (Fig. 19(b)) are very much

alike the one for the 50� 50 resolution (Fig. 5). Note that

this is also true when a record length of 1 000 000 realiza-

tions (not shown here), so that the similarities between the

plots is not likely to be due to a compensating effect between

the grid resolution and the number of samples per grid point.

We can thus conclude that the distances represented in

Figure 5 for P̂
2

8 and P̂2�8 are mostly due to memory effects

introduced by the only partial observation of the barotropic

model.
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