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A B S T R A C T

Studying oceanography by using Lagrangian simulations has been adopted for a range of scenarios, such
as the determining the fate of microplastics in the ocean, simulating the origin locations of microplankton
used for palaeoceanographic reconstructions, and for studying the impact of fish aggregation devices on the
migration behaviour of tuna. These simulations are complex and represent a considerable runtime effort to
obtain trajectory results, which is the prime motivation for enhancing the performance of Lagrangian particle
simulators. This paper assesses established performance enhancing techniques from Eulerian simulators in light
of computational conditions and demands of Lagrangian simulators. A performance enhancement strategy
specifically targeting physics-based Lagrangian particle simulations is outlined to address the performance
gaps, and techniques for closing the performance gap are presented and implemented. Realistic experiments
are derived from three specific oceanographic application scenarios, and the suggested performance-enhancing
techniques are benchmarked in detail, so to allow for a good attribution of speed-up measurements to individ-
ual techniques. The impacts and insights of the performance enhancement strategy are further discussed for
Lagrangian simulations in other geoscience applications. The experiments show that I/O-enhancing techniques,
such as dynamic loading and buffering, lead to considerable speed-up on-par with an idealised parallelisation
of the process over 20 nodes. Conversely, while the cache-efficient structure-of-arrays collection yields a visible
speed-up, other alternative data structures fail in fulfilling the theoretically-expected performance increase.
This insight demonstrates the importance of good data alignment in memory and caches for Lagrangian physics

simulations.
1. Introduction

Simulating the particulate transport within the oceans, such as
plastics by Duncan et al. (2018), Everaert et al. (2020), van Se-
bille et al. (2020), plankton as in Nooteboom et al. (2019), Dämmer
et al. (2020), spilled oil particulates studied by Anguiano-García et al.
(2019), Calzada et al. (2021), or biota transport- and migration studied
by Scutt Phillips et al. (2018), Schilling et al. (2020), Lindo-Atichati
et al. (2020), Le Gouvello et al. (2020) provides quantitative insight for
ecological decision-making and for achieving goals of recently enacted
policies, such as the European Union’s Green Deal and the United
Nations’ Sustainable Development Goals. Estimating the distribution of
physical-, chemical- or biological quantities (e.g. heat, salinity) in the
oceans as well as the tracing of particulates can be done using either a
Eulerian- or Lagrangian computational framework.

∗ Corresponding author at: Department of Physics, Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands.
E-mail address: e.vansebille@uu.nl (E. van Sebille).
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2 Contributing author.
3 Research group leader.

Both approaches are viable study methods: Eulerian simulations are
based on mass-, momentum- and energy conservation and the flux
of water masses between finite-volume cells of a discrete Cartesian
grid (Batchelor, 2000), where tracer concentration is quantified within
the finite-difference scheme. In contrast, Lagrangian simulations trace
attributed particles along their trajectory (van Sebille et al., 2018),
where particles are advected by the background current taken in turn
from an Eulerian simulation. As a consequence, Lagrangian trajectories
require Eulerian simulations as input for the hydrodynamical forcing of
the (passive) advection by ocean currents and waves. Furthermore, La-
grangian simulations can trivially express particle ‘behaviour’ (floating,
sinking, etc.) in a conceptual manner.

The Eulerian- and Lagrangian approach differ in terms of their
computational characteristic. Eulerian simulations evaluate numerical,
vectorised equations on gridded data (Batchelor, 2000). They require
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only few externally stored information while most required data are in
memory. The major workload in Eulerian simulations comes from (i)
implicit address calculations and (b) the arithmetic operations. Both
operations are boosted by faster hardware processors and software
parallelisation (Anderson et al., 1990; Harris et al., 2020). On the other
hand, Lagrangian simulations evaluate simple equations per particle us-
ing auxiliary Eulerian data (van Sebille et al., 2018). The particle is part
of an unordered collection. Lagrangian simulations require substantial
external data beyond the memory capacity. Therefore, their major
workload is (i) accessing external data and (ii) perform interpolations
on external grids (Kehl et al., 2021). Those operations are significantly
less impacted by processor technology, but rather by high-speed storage
hardware interfaces and the employed data layouts.

The focus of this study is the development and assessment of
performance-enhancing techniques of Lagrangian simulations. Fluid
particle advection in computational fluid dynamics (CFD) has approaches
n various computational disciplines such as computer graphics &
isualisation (Post and Van Walsum, 1993; Harada et al., 2007; Harada,
007; Ribicic et al., 2013), scientific computing (Crespo et al., 2011;
orváth et al., 2016), as well as computational engineering- and
hysics (Kelager, 2006; Crespo et al., 2015; Lowe et al., 2019; Kanehira
t al., 2019; Morikawa et al., 2021). That said, Lagrangian physical
ceanography goes beyond plain particle advection: Physical models,
hich are combined with the advection, not only linearly interpolate
ttributes, but represent active particle behaviour. Moreover, physical
nd biochemical models introduce non-linear effects to the hydrody-
amic forcing that alter the particles’ motion and transport. This effect
as observed in studies on nearshore behaviour (Alsina et al., 2020),
eaching (Daily et al., 2021; Onink et al., 2021) and biofouling (Kooi
t al., 2017; Lobelle et al., 2021). Lastly, compared to demonstrated
pproaches in the literature, oceanographic simulations differ from
ommon dam break scenarios as particle motion is affected by chemical
nteractions and thermal forces in addition to kinetic forcing.

Several established compute systems are available to the oceano-
raphic community to simulate Lagrangian particle trajectories, which
iffer in terms the accepted Eulerian field input formats.
RACMASS (Döös et al., 2013), OpenDrift (Dagestad et al., 2018), AR-
ANE (Blanke and Raynaud, 1997) and parcels (Lange and van Sebille,
017; Delandmeter and van Sebille, 2019) are oceanographic frame-
orks that work with structured grids, both rectilinear and curvilinear.
hile parcels is a Python framework with on-the-fly 𝐶 kernel gener-

tion, TRACMASS is a 𝐶-written monolithic simulation programme.
iredrake (Rathgeber et al., 2016) and FESOM (Androsov et al., 2019)
dvect and trace particles on unstructured grids, which complicates
ield interpolations for the benefit of conserving memory. Both are
-developed programmes, whereas the recent OceanTracker (Vennell
t al., 2021) is a Python framework for particle tracking on unstruc-
ured grids.

This paper investigates the performance improvement of Lagrangian
cean simulations. A previous performance study on synthetic
ata (Kehl et al., 2021) indicated high I/O load as bottleneck for
agrangian simulations. Hence, this study quantifies the input/output
I/O) load on real oceanographic simulations. Different performance-
nhancing techniques for faster data access are presented based on
rior developments. The access-pattern enhancement introduced
y Kehl et al. (2021) is dependent on the kind of simulation be-
ng performed, thus we assess the impact of in-memory performance
mprovements in different oceanic simulation scenarios. Next to the
n-memory transactions, read-in and write-out operations consume a
ulk of simulation time. Techniques such as chunking and caching
heoretically boost external I/O operations. This manuscript also inves-
igates how those techniques impact specific oceanographic scenarios.
n conclusion to the assessment of individual techniques, we derive
ine-grained performance metrics that are generally applicable to all
ulerian- and Lagrangian simulations. Those metrics provide insight
2

nto the performance profile of one’s simulation.
. Methodology

The study in this paper discusses performance implications and im-
rovements in parcels, and their implications to comparable Lagrangian
imulators. Parcels is a Python framework which integrates particle
rajectories and tracers either in a Python-only (i.e. scipy by Virtanen
t al. (2020)) or a ctypes, just-in-time (JIT)-compiled 𝐶-mode (i.e. jit).
he framework is built around the concept of field sets and particle
ets (see Fig. 1, take from https://oceanparcels.org). A field set is an
ggregated vector of array buffers that stores the hydrodynamic- and
upplementary fields. A particle set is a data collection that stores the
urrent states of particles. During the integration, the timestamped
articles are written to temporary files per integration step, which
re later aggregated to NetCDF or zarr. The flexible particle set size
nd the constant read-in and write-out of data results in performance
eing capped by internal- (i.e. memory) and external (i.e. disk and
etwork) I/O operations and the related data throughput. The high
emory consumption, emerging from both the Eulerian hydrodynamic

ield data and the large particle set size, also mandates the use of
igh-performance computing (HPC) and cluster facilities to simulate real-
orld scenarios for particle tracing. Any performance optimisation
eeds to account for this computational setting of common use-cases.

The general performance characteristics in Section 1 proximally
erive a strategy for speeding up Lagrangian simulations. A previous
tudy by Kehl (2021) already presented memory- and time consump-
ion profiles on a per-function bases, which states the system’s the
ottleneck operations. As a result, this paper transcends the trivial
mprovement strategies, and instead transfers small-scale insights into
eal-case performance benefits.

In application-domain communities, the prevalent idea is to exploit
arallelism to achieve performance improvements (e.g. message pass-
ng via MPI, shared-memory via OpenMP). Lagrangian simulations are
ot easily parallelised and rapidly enter diminishing speed-up rates
ith an increase in processing units (PUs). The diminishing performance

improvement is most noticeable in scenarios with a dynamic particle
set size. The reason of the diminishing improvement is the cost of
data I/O as primary bottleneck. In an MPI-parallelised parcels setup,
particles are associated with a PU on start-up, which stays fixed over
the simulation runtime. Conversely, the sharp separation allows each
PU to only load a distinct field area, which is the actual cause of
runtime reductions. While this strategy works well at simulation start,
the runtime reduction vanishes in later simulation stages. As particles
are advected in the fluid, their positions change and thus, there is an
increasing overlap in the field areas each PU is loading. In a fully
stirred particle configuration, this load distribution has no speed-up
(see supplementary material S4). It is indeed this load distribution that
caps the performance improvement from parallelisation. Improving the
strategy requires excessive synchronisation and communication, which
limits the performance potential of parallelisation in general.

From the analysis of per-function runtime profiles (Kehl, 2021) with
synthetic in-memory fields (Kehl et al., 2021), the five most expensive
functions are two particle set loops (for adding and removing particles),
two transposed array-copy operations of the field set buffers, and the
actual kernel execution at each computation step. As a result, the
runtime load can broadly be split into compute- and I/O load. In terms
f computer architecture, the delay sources (Fig. 2) that are related to
/O have a major impact on performance.

Investigating the I/O load in detail, the simulations do not benefit
rom latest-generation parallel-processors because the load is governed
y data transfer delays on data access (Fig. 2). Therefore, the primary
oal for an I/O performance increase is to maximise data throughput
y avoiding or mitigating data access delays, specifically external I/O
elays, when moving data from disk or the network into memory. Mem-
ry buffers can hide external I/O delays resulting from the high latency
f I/O components. Installing those buffers physically on solid-state
drives (SSDs), leading to SSD buffers, may significantly boost high-I/O

https://oceanparcels.org
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Fig. 1. Official diagram of parcels internal structure that is exposed and accessible to the user, as available at https://oceanparcels.org. It clarifies the interconnection between
FieldSet, Kernel, ParicleSet and the ParticleFile.
Fig. 2. The diagram makes all active delay sources apparent in between issuing a data request DATA_REQ and having the data ready for calculation on the CPU. The impact of
the delay sources varies depending on the connection bandwidth. In practice, some of those delays may be hidden from the user by computer processes, but they still exist and
impact the computations. Certain delay-reducing shortcuts, such as the solid-state drives (SSDs), are optional in this pipeline.
applications, even though such hardware is rare on HPC node infras-
tructure. Dynamic data loading via chunks or slabs reduce loading time
by splitting the file-stored data in smaller, individually-loaded units. It
thus prevents loading entire large files when only a small data subset is
actually required. Both techniques – memory buffers and dynamic data
loading – work independently and can be concurrently implemented.
Next to external I/O delay mitigation, memory-related layout changes
reduce the internal I/O delay between memory and CPU. Interleaved- or
strided contiguous memory layouts (see Sedgewick and Wayne (2011),
Amiri and Shahbahrami (2020) and supplementary material in Kehl
et al. (2021)) for the particle sets are performance-enhancing changes
for reducing internal I/O delays. Furthermore, the array-like structure
3

(i.e. Numpy array (Harris et al., 2020)), as collection type of the particle
set, is not ideal for particle insertions and removals at random indices,
which are faster for list-like collections (see Sedgewick and Wayne
(2011)). Hence, implementing different particle set collections poten-
tially reduces those delays. This change has already been benchmarked
by Kehl et al. (2021) for pure particle advection scenarios, while this
paper investigates the I/O delay reduction in oceanographic scenarios
with more extensively attributed particles.

Within the performance improvement strategy laid out here, mea-
suring performance also exceeds a global runtime tracking, as still
prevalent in the geosciences. Tracking individual timings for compute-
, external I/O- and internal I/O operations is necessary to causally

https://oceanparcels.org
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attribute runtime reductions to individual enhancement techniques.
Moreover, in order to better split constant delay offset and scaling delay
costs, the chosen approach tracks the global runtime, the runtime per
kernel execution and the average per-particle runtime per timestep.
Combining those individual metrics into (i) internal-versus-external I/O
load ratio, (ii) compute-versus-internal I/O time ratio and (iii) compute-
versus-external I/O time ratio enables explicit performance statements
and provides performance guidance to individual flow scenarios.

Measuring the computational load with minimal systematic errors
is key. Trivial particle generation for dynamic insertion and removal
by generating 0 or 𝑁 particles does not preserve computational load.
nstead, the majority of timesteps would measure the processing of
egligibly-small particle sets. Therefore, we modified the sampling so
hat the overall integral ∫ 𝑡

0 |𝑝| = 𝑁𝑡𝑎𝑟𝑔𝑒𝑡. By this measure, 0 < 𝑁𝑚𝑖𝑛 <
𝑁𝑡𝑎𝑟𝑔𝑒𝑡 < 𝑁𝑚𝑎𝑥 = 𝑁 follows as a definition. The plots in supplementary
material S5 illustrate the concept with 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 =

√

3
2𝑁 . Conversely,

while the particle number linearly decreases by removal and linearly
increases by insertion, a constant set is fixed in its particles from 𝑡0 to
𝑥 with 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑁 , whereas a constantly kept set experiences both in-
ertion and removal while adhering to ∫ 𝑡

0 |𝑝| = 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 ≠ 𝑁 .

. Datasets

The oceanographic studies in this work rely on two Eulerian datasets
n terms of hydrodynamics, biochemistry and physical attributes, which
re covered in the NEMO dataset by Megann et al. (2014) and Yool
t al. (2013), and the Surface and Merged Ocean Currents (SMOC) dataset
y Drillet et al. (2019). For all scenarios, we access the daily snapshots
f each dataset in the period 2000–2010, with a periodic wrap in-time
or longer simulation timeframes.

.1. NEMO-MEDUSA dataset

The NEMO-MEDUSA dataset consists of hydrodynamic, physical, bi-
logical and biochemical Eulerian model data with a five-day temporal
esolution and a horizontal resolution of 0.083◦ × 0.083◦, as well as
0 vertical layers with an anisotropic layer thickness. The values are
tored on a curvilinear ORCA C-grid, which thus requires dedicated
nterpolation schemes in parcels (Delandmeter and van Sebille, 2019).
he grid uses a WGS84 coordinate system laterally, with depth stored

n metres.

.2. SMOC dataset

The SMOC dataset is a Eulerian hydrodymanic 2D flow model with
daily sample on a regular A-grid of 0.083◦×0.083◦ for the first 15 m at

he ocean surface (Drillet et al., 2019). It uses the WGS84 coordinate
ystem laterally, with a bathymetric depth attribute given in metres.

The dataset is used for large-area and near-shore studies, such as
he Galapagos case study. It provides hydrodynamic velocities of 𝑈 and

from NEMO (Gasparin et al., 2018), as well as the stokes-drift fluid
elocities at the sea surface, which are computed by the MeteoFrance
ave Action Model WaveWatchIII (Ardhuin et al., 2010), and tidal fluid

elocities from FES2014 (Carrere et al., 2015).

. Scenarios

In contrast to previous studies (Kehl et al., 2021), this article bench-
arks the technical developments in operational oceanic simulations.
he selected scenarios cover a range of computational conditions, as

llustrated and referenced below.
4

e

.1. Simulating the origin of sea level plastics around the Galapagos
rchipelago — Galapagos

The Galapagos Archipelago is home to one of the most iconic
nd unique ecosystems in the world, but it is also under pressure
rom human influences (Escobar-Camacho et al., 2021). In particular,
arge amounts of plastic wash up on some of the beaches around the
alapagos (Jones et al., 2021), carried by ocean currents from the
ainland (van Sebille et al., 2019). Once in the Archipelago, the com-
lex flow between the islands creates a pattern of capture-and-release
f plastic on different shores of the islands (Ypma et al., 2022).

In order to analyse the plastic transport, particle simulations on the
cean surface with high-resolution SMOC field grids were employed.
urthermore, the effect of Stokes drift (Onink et al., 2019) is added via
he WaveWatchIII data (Ardhuin et al., 2010).

A set of particles is released on a square grid around the Galapagos
slands, in the region bounded by (91.8W–89W, 1.4S–0.7N), and then
dvected for 14 days. A new set of particles is released every 7 days to
apture the time-varying flow.

.2. Simulating pathways and ocean surface origin locations of sedimentary
icroplankton — palaeo-plankton

Some near-surface living microplankton sink towards the ocean
ottom as a part of their life cycle, where their remains can be pre-
erved in sediments. As such, these sedimentary microplankton and
heir biogeochemical properties are representative of the climate at the
cean surface (Morey et al., 2005; Esper and Zonneveld, 2007). There-
ore, fossil remains from these sedimentary microplankton can be used
o make reconstructions of (near-)surface oceanographic conditions
n past climates. Contrary to the accepted assumption of near-nadir
inking, microplankton is laterally transported by ocean currents and
hus not representative for the overlying ocean surface conditions of
ts sediment location (Weyl, 1978; Nooteboom et al., 2022b).

Quantification of this advection bias effect (Nooteboom et al., 2019)
s possible via backwards Lagrangian particle advection (Nooteboom
t al., 2020). Within this palaeo-parcels Lagrangian method, plankton
articles are periodically released every ∼ 1 day at the ocean floor
or a few years. The particles are tracked back in time while being
dvected by the 3D hydrodynamic flow, accounting for the reversed
inking behaviour, until they reach the ocean surface. The environmen-
al variables (e.g. Sea Surface Temperature (SST), sea surface salinity
r primary productivity) are recorded during or at the end of transport,
nd compared to observations at the sedimentary release location. Once
particle reaches the ocean surfaces, it is removed from the particle set.

The palaeo-parcels method differentiates between microplankton
ypes, which may impact performance. For instance, planktic
oraminifera (van Sebille et al., 2015; Dämmer et al., 2020; Turney
t al., 2020) and molecules produced by e.g. alkenones or TEX86
Rice et al., 2022) typically sink faster compared to dinoflagellate
ysts (Nooteboom et al., 2019, 2022a). Moreover, the required field
ariables depends on the type of microplankton and the environmental
ariables that are reconstructed. The simulation accesses all field
ariables via the NEMO-MEDUSA dataset.

.3. Microplastics biofouling and its migration in the water column —
iofouling

The biofouling simulations studies how plastic particles mix through
he water column, and the resulting effect on horizontal transport in the
lobal ocean. The most commonly used polymer types for consumer
lastics, such as polyethylene, polypropylene, and polystyrene, are
uoyant within seawater (Bond et al., 2018). However, an algae layer
an grow on top of the plastic items over time. This can induce sinking
f the plastics, as the biofilm is typically denser than seawater (Kooi

t al., 2017). The biofouling simulations investigates how the realistic
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Fig. 3. Performance comparison of the different scenarios in terms of (a) per-particle total runtime, (b) compute load vs. I/O load, (c) compute time vs. internal (i.e. memory)
I/O time, and (d) external- vs. internal I/O time.
algae growth on plastic particles, based on Fischer et al. (2022), affects
the global dispersion of plastics. The simulations are done forward-in-
time, focusing on the large spatial scales (i.e. global) and long time
scales (i.e. months to years). Particles are seeded uniformly across
the globe at varying depth levels in the ocean. In total, each partial
simulation is run for a month with 2.3 million particles.

At first, a biofilm develops through collisions with algae in the
water column, which is based on the algae concentrations, the par-
ticle’s size, and particle’s settling velocity. The algae concentrations
is captured in two fields, one for diatom concentrations and one for
nanophytoplankton concentrations. Then, the accumulated biofilm can
grow. This growth is a function of the primary productivity, provided
as NEMO-MEDUSA field, in the water column. In the end, the loss of
algae is captured in the model via respiration. This is a function of the
particle’s accumulated algae and the seawater temperature, obtained
from the fieldset. The combined growth and loss of algae leads to an
oscillatory movement of particles in the water column, as discussed
in Kooi et al. (2017), Fischer et al. (2022). The particle’s settling
velocity is a function of the particle’s size, its density (Dietrich, 1982),
and the seawater density. The seawater density is calculated using the
relation from Roquet et al. (2015), based on the seawater salinity-
and temperature field data. Furthermore, the particles experience ver-
tical mixing through turbulence (Onink et al., 2022b), captured by
a vertical turbulent diffusivity field. All the required fields are part
5

of the NEMO-MEDUSA dataset and its biochemical components (see
Section 3.1).

5. Results

This section presents the benchmark results, split up according to
each of the three introduced performance-enhancing techniques: (a)
different collection data structures to store the particle set, (b) dynamic
data loading via Dask, and (c) external data buffers on SSD drives.

Initially, the three individual scenarios of Section 4 are compared
so to form a discussion baseline and make subsequent measurements
comparable. The simulation runtimes for the default setting of all three
scenarios differ significantly due to a mismatch e.g. in particle numbers.
Hence, comparing the scenarios in a meaningful way can only be done
via ratios and per-particle metrics.

5.1. Assessing general performance characteristics of oceanographic scenar-
ios

The palaeo-parcels case is hereby slightly slower than the Galapagos
case, despite both simulations operating on a comparable area. The
required fields alone would suggest a larger gap between both the
biofouling- and the palaeo-plankton scenario. In contrast, due to the
field data demands and the involved computational complexity of the
kernel, the biofouling case exceeds the runtimes of the Galapagos- and
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Fig. 4. Performance comparison of the three different compute platforms on the Galapagos scenario in terms of (a) average kernel runtime, (b) per-particle compute- and (c) I/O
time, (d) compute time vs. internal (i.e. memory) I/O time, and (e) external- vs. internal I/O time.
palaeo-plankton scenario by two orders of magnitude. In further detail,
the overall compute-to-I/O ratio (Fig. 3(b)) shows the expected be-
haviour: the comparably small number of fields results in a comparably
high ratio for the Galapagos case, despite the simple advection kernel.
The palaeo-plankton case requires more field data while having an
equally simple kernel, and thus dropping the load ratio. The biofouling
case has only a few more fields than the palaeo-plankton case, but
a more complex computing kernel, thus its compute-to-I/O ratio is
higher. Considering bottlenecks and delays (Figs. 3(c) and 3(d)), the
palaeo-plankton scenario spends excessive time in data rearrangement
due to particle deletion, which the other scenarios do not require. The
high compute ratio compared to internal I/O for biofouling is rooted in
the kernel, which is also visible because the external I/O time is four
orders of magnitude higher than internal data procedures. The external-
to-internal I/O ratio also shows that internal data rearrangement of the
palaeo-plankton scenario is offset by its higher external I/O demands
when comparing it to the Galapagos scenario.

Furthermore, the gathered benchmarks can utilise different high-
performance-, cluster- and distributed computing platforms. The GEM-
INI platform is a commodity cluster with a variable compute node
hardware setup, running a non-preemptive Sungrid Engine (SGE) job
scheduler with internal swap-space access. The SNELLIUS supercom-
puter is a homogeneously-equipped many-node platform with up to
256 GB per node. The supercomputer implements a preemptive SLURM
job scheduler without swapping. While SNELLIUS is more strict in its
usage policy, correct job preemption and the guarantee of data being
in system memory makes the platform more reliable. The LORENZ
cluster is the newest computing environment available. The cluster’s
setup is the same as for SNELLIUS, with the exception of the installed
SSD buffer- or cache space on each compute node. In order to gauge
6

the relative performance of all three platforms, Fig. 4 displays their
runtimes for the Galapagos scenario using a jit-compiled kernel and an
array-of-structure (AoS) particle set layout, similar to Kehl et al. (2021).

5.2. Impact of collection data structures and internal memory

This section’s experiments follow the Galapagos case, as this is the
quickest scenario and the one easiest to reproduce. A first glance on
the difference between the three collection structures of AoS (i.e. de-
fault option), structure-of-arrays (SoA) and the double-linked node-
based list (i.e. nodes) is given with simulations of jit-based kernels
and a constantly-held pool of 144 particles. The average kernel time
(Fig. 5(a)) shows that the SoA collection is fastest for the computation,
despite particle insertions- and removals at regular intervals, whereas
the dynamic node-list is the slowest collection. A reason for this can
be seen in the compute-to-I/O load (Fig. 5(b)), where SoA can allocate
more time to actual computation, whereas the nodes incur a significant
overhead for memory management. The interface binding to ctypes also
imposes an overhead to the internal memory time. This hypothesis is
supported by the per-particle compute- and I/O times (Figs. 5(c) and
5(d)): for SoA, the ctypes interface binding occurs during the kernel
evaluation, thus raising the time consumption of SoA. Conversely, for
node-based lists, the ctypes binding is part of the particle creation
process, thus counting into the I/O time budget. That said, binding
an array into ctypes is faster than binding individual elements, hence
the per-particle binding process is overall slower. This is validated by
compute-to-memory I/O (Fig. 5(e)) and external-to-internal I/O ratios
(Fig. 5(f)), where the internal I/O delay per particle that occurs for
nodes and AoS significantly limits the performances when compared
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Fig. 5. Performance comparison of the three different collection data structures using jit on the Galapagos scenario in terms of (a) average kernel runtime, (b) compute load vs.
I/O load, (c & d) per-particle compute- and I/O time, (e) compute time vs. internal (i.e. memory) I/O time, (f) external- vs. internal I/O time.
to SoA. Another contributing hypothesis supported by previous studies
the impact of SoA’s cache-effective layout, as discussed in Section 2.

The costs of the ad-hoc or per-particle ctypes binding emerge when
comparing the jit experiment above with an experiment just using
Python and SciPy. As evident from the kernel runtime (Fig. 6(a)),
the nodes is the most runtime-efficient collection, as expected from
7

theory (Sedgewick and Wayne, 2011). In the compute-to-I/O ratio
(Fig. 6(b)), we can see that without the explicit ctypes bindings, the AoS
structure has the least management overhead, allowing for a maximum
of computations, even though the computation itself proceeds slower.
Furthermore, the overhead of the nodes is minimal when compared
to SoA. The overhead for managing the list without ctypes bindings
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Fig. 6. Performance comparison of the three different collection data structures using SciPy on the Galapagos scenario in terms of (a) average kernel runtime, (b) compute-to-I/O
load, (c) per-particle compute- and (d) I/O time, and (e) speed-up (relative to AoS).
for each node is smaller than the recurrent array re-allocations for
SoA structures (see the per-particle I/O time in Fig. 6(c)), and it
is mitigated by the more-efficient list traversal for small collections
(emerging from the per-particle compute time in Fig. 6(d)). Considering
the absolute speed-up of node lists and SoA over AoS (Fig. 6(e)), the
actual difference for a small particle set of 144 elements is minimal,
with the speed-up of the node-based list being at 1.065 and the one of
SoA being at 1.025.

Considering the performance behaviour for larger datasets using the
jit-interface for kernel evaluation, certain trends are clearly emerging:

1. the average kernel runtime of node-list particle sets rises ex-
ponentially with the number of particles, whereas array-like
collections exhibit a linear runtime behaviour (Fig. 7(a));

2. object-organised structures (i.e. nodes and AoS) asymptotically
approach a compute-to-I/O load of 0.8, whereas the array-
organised SoA structure is more computationally efficient with
an exponentially increasing compute-to-I/O ratio even beyond
the 1.0 threshold (Fig. 7(b)), which has technical performance
implications (e.g. vectorisation and parallelisation) for the fu-
ture;

3. the ratio of compute-to-memory I/O stays constant for larger
datasets for object-organised structures, whereas the portion
of compute-operations rises linearly for SoA collections (see
logarithmic plot in Fig. 7(c));

4. the impact of external file access overhead decreases linearly for
all presented collection types (Fig. 7(d));

5. the double-linked node list does not deliver a consistent speed-
up (Fig. 7(e)) compared to AoS, whereas SoA collections pay off
8

with speed-ups rising linearly beyond 1.0 from a particle set size
of 1500.

5.3. Impact of dynamic data loading via dask chunking

In order to judge the impact of chunking, a smallest running ex-
ample with a pre-computed Bickley jet (Hadjighasem et al., 2017)
flow field is compared to the Galapagos scenario with few (i.e. four)
fields and the biofouling case with a large field number. Each of those
scenarios is benchmarked in terms of overall runtime with disabled
chunking (i.e. nochk), user-defined chunksizes (i.e. dchk) and auto-
chunking (i.e. achk). As all three scenarios differ in particle set size
and simulation timespan, it is advisable to compare the scenarios in
terms of relative gains. The Bickley jet is the comparison baseline due to
its simple 2D A-grid structure, representing the simplest case of external
data access patterns in theory.

For this Bickley jet (Fig. 8), chunking in any form leads to a speed
increase in the simulation. The speed-up of a user-defined chunksize is
minimal compared to the automatically-derived chunksizes.

For a common application scenario, chunking introduces an over-
head in computation. For a computationally simple advection case
with few memory access-related interpolations, this overhead is not
compensated by a computational enhancement. This can be seen in
the runtime measurements for the Galapagos scenario in Fig. 9(a).
Moreover, it is visible that the performance difference between a
memory-optimised chunksize, as it is resulting from auto-chunking,
and a suboptimal chunksize, as result of user-defined chunksizes, is
significant in terms of simulation runtime. Inspecting the simulation in
depth, the chunking process measurably rearranges previously stored
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Fig. 7. Performance study of the three different collection data structures using jit on the Galapagos scenario for an increasing number of average simulated particles per kernel
timestep in terms of (a) average kernel runtime, (b) compute-to-I/O load, (c) per-particle compute- and (d) I/O time, and (e) speed-up.
Fig. 8. Performance comparison on simulation runtime for the Bickley Jet synthetic fieldset scenario for no active chunking (light grey), user-defined chunksizes (dark grey) and
auto-chunking (black).
data grids into a tree of chunked virtual cells for each field file on
each file opening operation. This offset can only be compensated if
the resulting chunks are small enough to reduce the loaded data,
while equally being large enough so that the number of chunks do not
require excessive parsing within its managing tree structure. It can be
observed from the Bickley jet- and the Galapagos scenario that 2D flow
computations benefit from larger, possibly non-chunk cells to reduce
the parsing overhead.

The large, 3D field set scenario of the biofouling simulation behaves
differently in terms of chunksizes and chunk setups (see Fig. 9(b)).
A user-defined chunksize trims the runtime to only 37.14% of the
same simulation without any chunking. Letting the memory-observant
auto-chunking define the chunk boundaries trims this further down
9

to only 12.54% of the user-defined chunksize runtime. Thus, overall
the optimal auto-chunking procedure has a speed-up of 21.47 over the
non-chunked simulation.

5.4. Impact of external data buffers

The introduction of external file buffers on high-throughput hard-
drives has shown negligible benefit to the actual performance enhance-
ment across all platforms for the Galapagos case. Actual measure-
ments comparing a regular, low-throughput cluster (i.e. GEMINI) with
a high-throughput cluster (i.e. LORENZ) can be found in supplementary
material S1 to S3.
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Fig. 9. Performance- and runtime comparison on simulation runtime for the Galapagos- (a) and biofouling (b) scenario with a large field set for the cases of no active chunking
(light grey), user-defined chunksizes (dark grey) and auto-chunking (black).
6. Conclusions

The experiments analysed three different performance enhancing
techniques. Using alternative data collection structures, such as a
double-linked node-based list or an SoA layout of particles within
NumPy arrays, has a significant impact on the runtime. As all evaluated
advection kernels are computationally similar in their instruction com-
position, runtime differences in Section 5 are rooted in the effectiveness
of internal- and external I/O procedures. In a jit kernel evaluation,
the data need to be linked to the ctypes backend. This is very quick
for array collections, whereas the node collection needs to link and
refresh each element, imposing a considerable runtime overhead. Thus,
in jit-based evaluations, the SoA structure outperforms the other two
collection structures, which also scales well with an increasing number
of particles (see Fig. 7(e)). In a SciPy setup, the need for special
connections to any background framework is omitted. In this case, the
measured performance follows theory, meaning that node lists outper-
form SoA- and AoS collections in a dynamic scenario of inserting and
removing particles. A scalability study was out of scope of the displayed
experiments. That said, all available information, including available
previous studies (Kehl et al., 2021), suggest that this behaviour scales
proportionally with the number of particles.

The other major time expense of external I/O, namely the inter-
face to the Eulerian fields, can be reduced using dynamic loading
procedures (i.e. Dask chunking). In the presented experiments, it is
evident that the impact and runtime reduction achievable via chunking
depends on the number and size of the required fields for each sce-
nario. For scenarios with few and small fieldsets, only comprising the
hydrodynamic velocities for advection, the performance improvement
is negligible. For large-scale scenarios with multiple supplementary
fields and high resolution (see supplementary material S3), the attain-
able performance improvement is significant and also unattainable by
other means (e.g. parallelisation), with a speed-up ≥ 21 compared to
non-chunked simulations.

At last, the introduction of SSD buffers for faster local data access
does not show any performance improvement. There is no evidence for
a specific reason why this performance enhancement strategy is not
effective.

7. Discussion

The experimental results have implications for other Lagrangian
simulations as well as I/O-bound process in general. Overall, the ex-
periments validate that performance enhancement proceeds differently
for compute-bound and I/O-bound processes and simulations. For I/O-
bound processes, the data access delays need to be fully mitigated
before compute-related enhancement techniques, such as parallelisa-
tion, yield any scalable speed-up. A deeper analysis of the performance
10
profile also validates that runtime delays need to be profiled, and that
a split between internal- and external I/O delay is beneficial to ade-
quately address the delays. In this study, the experiments on alternative
collection data structures (Section 5.2) demonstrated the response of
internal I/O delays on the different collection data structures. In the
related experiments, the external I/O time remains constant, and thus
only the internal I/O delays affect the simulation runtime differences.
Conversely, the dynamic loading and data buffering only affects the
external I/O interface of fieldsets while internal I/O delays remain
unaffected.

The experiments demonstrate that I/O-bound processes in general
can be sped-up significantly with I/O reduction techniques, while
parallelisation of the computing processes yields little to no benefit
in terms of performance. Conversely, this result also demands from
domain experts to comprehend the software characteristics, analyse the
compute-to-I/O ratio for their individual compute scenarios, and base
their performance enhancement strategy on this analysis.

This study analysed techniques for I/O optimisation for enhanced
simulation performance. Alternatively, the constraining I/O delays can
also be mitigated by simply raising the computational load of the
simulation, with the goal to obtain more output data within the same
simulation timeframe. Conversely, this approach is yet bound by the
overall memory budget available to the simulation. In the presented
realistic oceanographic scenarios, the available memory budget is ex-
hausted at a significantly lower limit that what is needed to achieve a
compute-to-I/O ratio of ≥ 1.0.

The chunking technique and the performance insights demonstrated
here have recently been adopted by Kaandorp et al. (2022) to calcu-
late the global, three-dimensional distribution of plastic litter in the
oceans, including and merging the kernels of the Galapagos case (van
Sebille et al., 2019) and the biofouling case (Lobelle et al., 2021).
Additionally, the introduced SoA collection and the insights on particle
set dynamics facilitate the modelling of particle–particle interaction in
the oceans, which is applied by Nooteboom et al. (2023) for modelling
tuna swarm motion around fish-aggregating devices. Most recently,
the insights on particle dynamics facilitates speedy in-kernel particle-
split and particle–particle-merge approaches in the future, which are
essential for modelling plastic particle fragmentation on an oceanic
scale. This research is ongoing, extending recent workflows by Onink
et al. (2022a).
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