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ABSTRACT
We propose a new approach for constructing the underlying
map from trajectory data. Our algorithm is based on the
idea that road segments can be identified as stable subtra-
jectory clusters in the data. For this, we consider how sub-
trajectory clusters evolve for varying distance values, and
choose stable values for these. In doing so we avoid a global
proximity parameter. Within trajectory clusters, we choose
representatives, which are combined to form the map. We
experimentally evaluate our algorithm on vehicle and hiking
tracking data. These experiments demonstrate that our ap-
proach can naturally separate roads that run close to each
other and can deal with outliers in the data, two issues that
are notoriously difficult in road network reconstruction.

CCS Concepts
•Information systems→Geographic information sys-
tems; •Theory of computation→ Computational ge-
ometry;

Keywords
Trajectories, map construction, clustering, geometric algo-
rithms

1. INTRODUCTION
Technology–in particular, the global positioning system

(GPS)–has made tracking the location of a large number
of moving entities feasible. As a result, vast amounts of
trajectory data exists today. In a large proportion of this
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trajectory data, the moving entity is restricted to move on an
underlying network. Consider, e.g., a car driving on roads,
or a person walking along hiking trails. Recent research aims
to reconstruct this underlying network from the trajectory
data to aid in the construction of maps and detection of
changes in the underlying networks; see [3, 4] for surveys.
This, however, has turned out to be a challenging task.

One of the main problems is to determine to which can-
didate edge, road or path in the network, a subtrajectory
corresponds to. Many of the proposed approaches deal with
this by introducing a global spatial parameter modeling the
road width; when the subtrajectory is within some distance ε
of a candidate edge, it is assigned to this edge. The prob-
lem is, however, that in real data sets, no global value ε
accurately captures the road width of all roads in the net-
work [17]. For some road segments, we may need a much
larger distance threshold than for others. For example, if the
road or path is in a canyon, and GPS reception is poor, the
trajectories deviate more from the actual underling road seg-
ment, or simply if a highway is much wider than a back-alley
in the center of a city. Even if, after much manual parame-
ter tweaking, the algorithm can be configured to produce a
reasonably accurate map on a given data set, the same pa-
rameter values often do not give the best map on a different
data set. Hence, more manual work is again required.

Figure 1: Example of bundle detection, with different col-
ors indicating different bundles (left) and map construction
(right) of part of the Athens data set.
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We propose a new approach for map construction with the
aim to alleviate this problem. In particular, our approach
does not require a global parameter to model the road width.
Instead, we find the desired road width for each edge in the
network from the trajectory data itself.

More specifically, our algorithm consists of two phases:
First, the algorithm clusters input (sub)trajectories into what
we call bundles, or groups of entities (trajectories) that are
close together for a sufficiently long time. Each such bundle
may have a different size, length, and spatial “proximity”.
The algorithm finds appropriate values for these parameters
by considering when the size and length of a bundle change
significantly as a function of the spatial parameter ε. Sec-
ond, the algorithm constructs the actual map (road network)
from the bundles. Here, we use a simple greedy approach
that constructs the map, starting from the largest bundle.

Our main contribution is the clustering of the trajectories
into bundles and automatically selecting relevant bundles.
This allows our algorithm to successfully reconstruct net-
work edges of various widths and under noise for both vehicle
and hiking tracking data. The algorithm succeeds in sepa-
rating close, parallel roads under moderate noise. Based on
subtrajectory clustering rather than point clustering, our al-
gorithm can also handle data of varying sampling rates. See
Figure 1 for an example.

Related Work. Several different approaches have been
proposed in the literature for constructing street maps from
trajectory data; see Ahmed et al. [3, 4] for an overview.

Point clustering algorithms [18, 21, 32] consider the input
as a point cloud and then cluster these points in different
ways to obtain intersections or street segments. For exam-
ple, several algorithms use neighborhood complexes for the
input point set [1, 12, 14, 20]. Density-based algorithms [2,
7, 13, 15, 25, 28, 29] first compute a density function over
the set of input points, and then extract a roadmap from
ridges in this density. The recent algorithm by Wang et
al. [31] utilizes discrete Morse theory to construct a high
quality map. These algorithms, however, generally do not
fully exploit the continuous traversal information contained
in the input trajectories. Incremental track insertion algo-
rithms [5, 10, 26, 27] insert the trajectories one at a time into
an initially empty map, often making use of map-matching
ideas. In these algorithms, the order in which the trajec-
tories are added may affect the resulting map. Intersection
linking algorithms [19, 23] follow a two-step approach, by
first detecting intersection nodes and in a second step using
the trajectory data to connect the intersections. Karagior-
gou and Pfoser’s algorithm [23] identifies intersection nodes
by detecting changes in movement (speed and direction) and
clustering the resulting locations. Trajectory portions be-
tween locations in corresponding intersection nodes are then
bundled together to form edges.

Our concept of bundles builds on the subtrajectory clus-
tering algorithm of Buchin et al. [8]. There are various other
notions and algorithms for subtrajectory clustering, e.g., the
TRACLUS framework [24] and its many variants.

Problem Statement and Organization. Let T be a set
of trajectories, that is, sequences of time-stamped locations.
We assume that the entities that generated these trajecto-
ries moved on a fixed network, represented by an embedded
graph G. Given the trajectories T , we wish to reconstruct
the part of G that the trajectories in T used.

In Section 2, we present our map-construction algorithm.
First we show how to compute relevant clusters of subtra-
jectories, called bundles, in T , then we show how to combine
the clusters to construct a network. In Section 3, we evalu-
ate our algorithm on vehicle and hiking tracking data.

2. ALGORITHM
Our algorithm consists of two main phases: extracting

relevant bundles and constructing the network from these
bundles. In the first phase (Section 2.1), we cluster the
(sub)trajectories into bundles, and extract the most rele-
vant bundles. We say that a set B is a bundle on T , if it is a
set of similar subtrajectories from trajectories in T . If sub-
trajectories come from the same trajectory, they should not
overlap in time (except possibly at their start/end points).

We consider bundles parameterized by their size, their
length, and their spatial proximity. Specifically, a (k, `, ε)-
bundle, is a bundle with at least k subtrajectories, of which
the longest subtrajectory has length ` and the pairwise dis-
tance between the subtrajectories is at most ε. As distance
between subtrajectories, we use the Fréchet distance [6]. In
our implementation, we use a variant that requires mono-
tonicity only on vertices, not within segments [30]. In the
colloquial Fréchet distance man-dog metaphor, they are al-
lowed to backtrack but only within a segment. We choose
this variant because it is easy and fast to compute.

Our goal is to reconstruct the map irrespective of direc-
tion, and for this, we allow traversing subtrajectories in ei-
ther direction. To take direction into account, one could
determine the direction of edges in a post-processing step.
Alternatively, one could take directions into account already
when computing the bundles. This, however, only makes
sense if there is sufficient data to form bundles in both di-
rections. Also, it would require an extra step of identifying
edges of the same road in opposite directions.

We consider bundles for increasing distance parameter ε
and select those that are relatively stable with respect to ε,
as well as maximal in size and sufficiently large. We realize
that stay points, subtrajectories that remain within a small
area for a relatively long time, can create artificial bundles.
To avoid this, the data should be pre-processed to remove
stay points, which can be achieved by either explicitly re-
moving stay points or by simplification. The latter will also
reduce the size of the data and hence speed up calculation.

In the second phase (Section 2.3), we combine the relevant
bundles to construct the network G. Each bundle has a rep-
resentative subtrajectory with low distance to all the subtra-
jectories in the bundle. The algorithm stitches together the
representatives of relevant bundles to obtain the network.

2.1 Relevant Bundles
Recall that a (k, `, ε)-bundle is a cluster of size at least k,

length `, and distance at most ε of similar subtrajectories.
Clearly, every subset of trajectories forms a (k, `, ε)-bundle,
for some, or even several, combinations of parameter values.
Not all of these bundles are useful to construct a map; in-
stead, we want to consider only“relevant”bundles. Next, we
consider three properties that relevant bundles should have,
that is to be maximal, stable and large, and describe a way
to obtain such bundles. Also, we require that all subtrajec-
tories within a (k, `, ε)-bundle have length at least ε or are
the complete trajectory. This avoids short artificial bundles
and ensures that for large ε we have one maximal bundle.



Maximal bundles. Consider k parallel and horizontal line
segments of length `, spaced ε apart. Any subset of k′ < k
trajectories (line segments) forms a (k′, `, ε)-bundle. In fact,
a (k′, `′, ε)-bundle can be found for any length `′ ≤ ` by
looking at sub-trajectories. However, in this example, the
only “relevant” bundle seems to be the one consisting of all k
trajectories, and length `. To capture this, we introduce
subbundles and maximal bundles.

We say that a bundle B1 is a subbundle of B2 if every tra-
jectory T1 ∈ B1 is the subtrajectory of a trajectory T2 in B2.
We also say that B2 dominates B1. For example, the blue
bundle in Figure 2 (left) is a subbundle of the red bundle.

We note that bundle B1 could fail to be a subbundle of B2

by just a small margin, for example, as in Figure 2 (right).
Such a small margin may not be relevant; hence, we consider
B1 as an “approximate” subbundle of B2. More formally, we
say that T1 is a λ-subtrajectory of T2, if and only if

len(T1) ≤ len(T1 ∩ T2) + λ,

where len(T ) denotes the length of (sub)trajectory T . Hence,
only a section of T1 of length λ is not part of T2. We ex-
tend this notion to λ-dominates and λ-subbundle. We now
consider only (λ-)maximal bundles: bundles that are not a
λ-subbundle of another bundle.

Note that λ governs the allowed distance between the end-
points of the trajectories involved. Hence, letting λ be a
function of ε is a natural choice, so we simply set λ = cε,
for some small constant c, when comparing bundles for the
same ε. We use c = 2 in our implementation; this essentially
allows an error of ε on both sides of the bundle. For bundles
of different ε by transitivity of (λ-)subbundles the larger ε
is used as error margin.

Stable bundles. We consider only bundles that are “rel-
atively” stable, with respect to variation in ε. That is, we
have to increase ε by a large amount before new trajectories
are added to the bundle. We give a more formal definition
below. First, we note that bundles are monotone in ε in the
sense that any (sub)trajectory that is present for parame-
ter value ε will also be present as (sub)trajectory for any
parameter value ε′ ≥ ε. Note that this still holds when we
require a minimum length ε of the subtrajectories within a
bundle, because the length of (sub)trajectories in the bundle
will increase as much as ε up to their total length.

The motivation behind using stability as a measure of rel-
evance is that we expect stable bundles to be “complete”,
meaning that no additional trajectories should be added to
them unless we drastically change scale. With respect to
map construction, such stable bundles may represent roads
for the current scale. These bundles should be more im-
portant than bundles that are “incomplete” and still could
collect additional trajectories at the current scale by slightly
increasing ε. Note that each bundle (set of trajectories) may

Figure 2: Examples of subbundles. Left: the red bundle
completely covers the blue bundle; thus, the blue bundle is
a subbundle of the red bundle. Right: the red bundle covers
the blue bundle, except for a small margin in length. Here,
the blue bundle is a λ-subbundle of the red bundle.
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Figure 3: A bundle B and its length lenB as a function of ε.

have its own value(s) of ε for which it is stable, as each road
may have its own road width.

Fix a set of trajectories B and consider the length of the
bundle formed by the entities in B as a function of ε. More
formally, let lenB(ε) = ` if and only if ` > 0 is the largest
value for which the entities in B form a (|B|, `, ε)-bundle.
This function is monotonically increasing in ε. See Figure 3
for an example. In practice, we compute bundles for a dis-
cretized set of ε-values, up to some large upper bound on the
scale at which we consider bundles (in our experiments, we
use 100m for the hiking data and 200m for the vehicle data).

The trajectories in B now form a maximal bundle on
an interval I = [ε, ε′]. The interval starts at a value ε at
which B is born as a maximal bundle, and ends at a value ε′

for which B becomes a sub-bundle of another bundle (and
hence dies as a maximal bundle). We refer to the length of
this interval as the lifespan of (this instance of) bundle B.
Furthermore, we define (ε′ − ε)/ε = ε′/ε− 1 as the relative
lifespan of (this instance of) bundle B. We use relative lifes-
pan rather than absolute lifespan, since we expect a bundle
that lives for instance between ε = 5 and ε = 10 to be more
relevant than one that lives between ε = 30 and ε = 35.

We consider each maximal bundle (interval) that has a
large relative lifespan (larger than 1) to be stable: we have
to increase ε significantly before the set of trajectories in the
bundle changes. Next, we need to determine the value of ε
associated with such a maximal stable bundle, which also
determines the exact length of the bundle. Intuitively, we
pick ε minimal such that the bundle obtained its (close to)
maximal length. For this, we again use the function lenB .
For instance, in Figure 3, we would pick a ε at the indicated
value at which the bundle has approximately reached its
final length. Also, we require an absolute minimum lifespan
L for the bundles to get rid of noise in the input data.

Large bundles. A final property that we want from our
bundles is that they are large enough, since we want to have
a sufficient number of “witnesses” before adding an edge to
the network. Since smaller bundles do not influence larger
bundles, we do not explicitly avoid them when constructing
the network, but simply filter out the corresponding network
edges in a postprocessing step. (In our experiments, we
removed edges with only one or two subtrajectories.)

2.2 Generating bundles
To implement our algorithm, we discretize the range of

ε-values by picking equally spaced values ε1, ε2, ... (in our
experiments, we use multiples of 5m). For each such value
εi, we fix generate all maximal length bundles of size k (and
distance parameter εi) using a slightly modified version of
the subtrajectory clustering algorithm by Buchin et al. [8].
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Figure 4: B1 is a λ-subbundle of B2, and B2 is a λ-subbundle
of B3. However, B1 is not a λ-subbundle of B3.

The clustering algorithm [8] detects clusters (bundles) of
similar subtrajectories, where all subtrajectories within a
bundle have at most a given distance ε to a representative
subtrajectory within the cluster. The algorithm requires ei-
ther a minimal size or length of a cluster and optimizes for
the other. The algorithm detects clusters in the free space
diagram, the geometric data structure used to compute the
Fréchet distance [6]. It concatenates all input trajectories
to one trajectory T and uses the free space diagram of T
with itself. Its main insight is that a cluster of size k with
representative subtrajectory from vertex i to j of T can be
detected in the free space as k non-overlapping monotone
curves between vertices i and j. To detect these the algo-
rithm sweeps two vertical lines over the free space, search-
ing for such k non-overlapping monotone curves. The right
sweep line is moved as far as possible as long as k curves
exists. If these no longer exist the left sweep line is moved
towards the right one.

We modify this algorithm in order to find all maximal
length bundles rather than a (single) maximum length bun-
dle, and to detect only bundles for which also the shortest
trajectory is sufficiently long. To report all maximal bun-
dles, we simply report a bundle every time before the left
sweep line is moved. The clustering algorithm builds a la-
beled graph for searching between the sweep lines.

Rather than fixing a value for the size k, we start with
k = 1 and increase by one until no more bundles are found.
Once we have generated all bundles Bi for εi, we remove
all bundles that are λ-dominated by another bundle in Bi.
Hence, we obtain a set of bundles that are maximal with
respect to the other bundles in this set.

Since the λ-subbundle (and thus the λ-dominated) rela-
tion is not transitive, the order in which we remove subbun-
dles matters; see Figure 4. We consider the bundles in order
of decreasing size (and decreasing length in case of ties).
This makes sure that we remove subbundles only if they are
a subbundle of a bundle that is selected in the set.

Once we have generated the sets of maximal bundles for
all εi, we link bundles for different εi in order to determine
their lifespan. To do so, we determine for each fixed εi,
which maximal bundles are a continuation of a bundle for
εi−1, or arise from merging of bundles for εi−1, or are new
bundles. With this information we can compute the lifespan
of each bundle [22].

Parameters. Our approach uses one main distance pa-
rameter ε, the distance of subtrajectories within a bundle.
However, this parameter is used only internally, i.e., it does
not need to be set by the user. Instead, it is varied to detect
bundles at different scales (distances). As external param-
eters we use only λ = cε as error margin for subbundles,
where c is a small constant (which we pick as c = 2), and

some simple thresholds on the minimum size and lifetime of
bundles. This avoids picking up small noise as bundles. So
our approach is essentially free of distance related parame-
ters.

2.3 Constructing the Map
Once we have found all stable maximal bundles we use

an incremental greedy algorithm to construct the map. We
start from an empty map and consider the bundles in order
of decreasing size k (recall that k is the number of trajec-
tories represented in the bundle), adding them as edges to
the map in order. In addition to adding edges to the map,
every time we add a bundle B, we update all the others that
overlap with B. Next, we elaborate on these two steps.

Each bundleB contains a set of subtrajectories that match
to a common path in the (unknown) network. Recall that
when the bundles are generated, each bundle is assigned a
representative subtrajectory that represents this path. Let
pstart(B) and pend(B) be the endpoints of the representative
subtrajectory of bundle B.

A bundle can overlap with other bundles, see for example
Figure 5. In particular, larger bundles often overlap with
longer ones that contain fewer subtrajectories. Therefore,
when we add a bundle B we remove the subtrajectories that
form B from the remaining bundles. Let B′ be a bundle
that has subtrajectories that share parts with those of B.
We update B′ as follows.

We subtract from B′ the parts of the subtrajectories in
common with B, possibly shortening B′. Every time a bun-
dle B′ gets shortened, its endpoints pstart(B

′) and pend(B′)
are updated by connecting the end of the representative sub-
trajectory of B′ to the closest of pstart(B) and pend(B), using
a line segment. This is done to guarantee that connectiv-
ity is preserved. Furthermore, if one of the subtrajectories
in common was the representative of B, we make it also
representative for B′.

It can also happen that when the parts in common in B
and B′ gets substracted from B′, B′ becomes disconnected.
In this case, we replace B′ by two new bundles B′1 and B′2,
and proceed similarly to before.

Figure 5 shows an example with three bundles, one in
red, one in blue, and one comprised of red and blue sub-
trajectories (highlighted in purple). The edge for the purple
bundle is added first, breaking the red and blue bundles into
two new bundles each. The edges for these new bundles
connect to the endpoints of the edge of the purple bundle,
as shown by the dashes.

Finally, it remains to consider the case of having to update
a bundle B′ that only partially overlaps B, that is, there is
some trajectory in B that has no intersection with B′, and
vice versa. In this case, we preserve connectivity by adding
all such trajectories to the bundles that get shortened or
to the new bundles. For more details on this, we refer the
reader to [22].

3. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of

our algorithm. We base our evaluation on two recent cross-
comparisons of map construction algorithms [3, 17]. The
main difference between both comparisons is that the first
one is based on urban vehicle data, while the second one
uses hiking trajectories.



Figure 5: Three sets of stable bundles, blue, red, and purple,
(left), where the purple bundle overlaps the red and blue,
and the resulting map (right).

For the vehicular data, we use two data sets from [3],
namely Athens-small and a randomly selected subset of tra-
jectories of Chicago. The data set Athens-small has 129
trajectories and –after preprocessing, see below– 1955 ver-
tices. The subset of the Chicago consists of 140 trajectories
with a total of 1716 vertices (after preprocessing). Since the
goal of the experiments is to evaluate the quality of the re-
sults obtained by the bundling approach, we have not yet
optimized our implementation for scalability and therefore
do not test it on the complete Chicago data set.

For the hiking data, we use subsets of the four data sets
from [17]. They consist of trajectory data obtained from the
trajectory-sharing website Wikiloc.com from four different
areas in Catalonia, Spain. Two areas, Delta and Aiguamolls,
are rather flat, while the other two, Garraf and Montseny,
cover parts of mountain ranges. The Delta and Aiguamolls
are mostly agricultural lands with little vegetation, while
Garraf is mainly shrubland, and Montseny is covered by
dense forest. In our experiments, we chose subsets of the
different hiking data sets that contain interesting or difficult
cases. The subsets had between 20 and 80 trajectories, and
consisted of at most 2261 vertices (after preprocessing).

Preprocessing. For both the vehicular and the hiking data,
we use a simple line simplification algorithm [16] to remove
stay points and further simplify the input trajectories. For
the vehicular data, the allowed error in the simplification is
set to 10 meter, and for the hiking data to 5 meter.

3.1 Urban Road Networks
In this section we describe the results obtained with the

two urban data sets, and comment on some interesting fea-
tures of the generated maps.

Athens. Figures 6a and 6b show the bundles and the re-
sulting map. The result has several noteworthy features.
First, the algorithm is able to properly deal with different
densities in trajectories and road widths. In Figure 6c, we
have a large road with 59 trajectories, of which six branch
off to a smaller road. Both roads are properly represented
in the map. Only two out of the seven algorithms evaluated
in [3] produced comparable results in this situation.

Secondly, by having a proximity parameter for each bun-
dle, the algorithm is able to identify intersections as loca-
tions where bundles meet, represent intersections even if the
trajectories within the bundles are more spread apart. An
example of this is shown in Figure 6d. By having appropriate
values for the proximity parameter we have bundles for the
different directions, which allows us to have the intersection
represented. Only one out of the seven algorithms evaluated
in [3] produced comparable results in this situation.

Chicago. Figures 7a and 7b show the bundles and resulting
map for the Chicago data set. We note that the algorithm is
able to deal with trajectories that still stay relatively close
to the actual road, but show clearly noisy parts, see for
example Figures 7c and the vertical edge in 7d. For very
noisy data, for example the horizontal trajectories at the
bottom of Figure 7d, multiple small bundles are detected.

3.2 Hiking Networks
In the following paragraphs, we briefly discuss how our

algorithm deals the main issues reported in [17] that concern
the behavior of previous map construction algorithms for
hiking data. The issues are illustrated in Figure 8.

Noisy trajectories. Noise is one of the most important is-
sues that a map construction algorithm must be able to han-
dle well. A frequent but difficult situation arises when mul-
tiple trajectories follow the same path, but the error causes
the trajectories to be displaced around the actual path, be-
ing relatively far from each other. In hiking data sets with
narrow paths through areas with poor GPS reception, like
dense forest, this occurs rather often; see Figure 8a. For our
algorithm, widespread trajectories are not a problem if we
allow the bundle-specific ε to be large enough to cover them
all; see Figure 9.

Zig-zags, sharp turns and bifurcations. Zig-zagging
paths are one of the most challenging situations in hiking
data, as witnessed for all algorithms tested in [17]. In partic-
ular, proximity thresholds (common to many network recon-
struction algorithms) do not work well with zig-zags. Most
algorithms either tend to add a large number of shortcuts
or to merge the paths close to the turns, as for example in
Figure 8b. In contrast, our algorithm uses bundles to recon-
struct the different paths, and each bundle is represented by
a part of an input trajectory, so the geometry of a zig-zag
or winding path is mostly reconstructed; see Figure 10.

Generally, sharp turns cause issues for many algorithms.
For instance, in Figure 8c the parts of the path before and
after a turn were collapsed into one. However, sharp turns
are not unusual in hiking data. Typically, they occur as part
of a zig-zag along a path. As shown in Figures 10 and 11,
our algorithm succeeds in detecting and retaining such zig-
zags, rather than collapsing them into a single edge, as is
done by some of the other algorithms.

Similarly, many previous algorithms have trouble with bi-
furcations (see Figure 8d). Our algorithm has no problem
in dealing with this situation (see Figure 12).

Irregular sampling rate. The heterogeneous hiking data
sources used in [17] resulted in very irregular sampling rates,
something that causes problems for many algorithms. One
such problem is that two parallel trajectories, even at a short
distance from each other, can be considered far apart based
on vertex-based distances. Our algorithm deals successfully
with this issue by clustering subtrajectories using a similar-
ity measure (a variant of the Fréchet distance as discussed in
Section 2) that treats the trajectories as continuous objects
rather than as discrete point sets.

Missing trajectory parts. The use of proximity thresh-
olds has the risk of ignoring whole parts of trajectories when
they are too close to others, as in Figure 8e. In our algo-
rithm, the bundles cover all input trajectories in their en-
tirety. The only way for a trajectory not to be fully repre-
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Figure 6: The input trajectories and detected bundles (a), and the constructed map (b) for the Athens-small data set. The
corresponding map from OpenStreetMap is displayed in gray. We see that roads with different densities in the trajectories are
properly represented in the map (c), and that many intersections are identified correctly, even if the trajectories are spread
apart (d).

(a)

(b)

(c)

(d)

Figure 7: The detected bundles (a), and the constructed map (b) for the Chicago data set. Detail on two situations that are
difficult for most existing algorithms: noisy trajectories turning at an intersection (c) and a relatively short edge between two
parallel roads combined with noise (d).



(a) noisy, same path (b) zig-zag (c) longer zig-zag

(d) bifurcation (e) nearby, connected (f) nearby, parallel

Figure 8: Challenges for map construction algorithms on hiking data (figures from [17]). The blue paths indicate input
trajectories, and the red paths the generated map edges from one of the previous algorithms.

Figure 9: Bundles and map for the trajectories in situation
similar to that of Figure 8a. The edges of the map are
colored according to the size of the supporting bundle. As
the size of the bundles increases, the colors become darker,
i.e. small bundles are yellow, large bundles are black.

Figure 10: Bundles and map for zigzagging trajectories like
in Figure 8b.

Figure 11: The bundles and map for the trajectories on the
high-curvature path whose detail is shown in Figure 8c.

Figure 12: The bundles and map for the trajectories shown
in Figure 8d.

sented in the map is to have all bundles containing it con-
sidered not significant. This should only occur if there are
very few trajectories at that location. Therefore, the situa-
tion of Figure 8e is correctly handled by our algorithm (see
Figure 13).

Algorithms that require a minimum number of trajecto-
ries along each edge of the map have the risk of producing
maps with missing edges or fragments. See Figure 8f. In our
algorithm, each bundle is represented by a single path. As
long as we have a single bundle covering all the relevant tra-
jectories for a given path, we can find get a single, connected
path in the constructed map (see Figure 14). It may, how-
ever, happen that there are multiple bundles on the same



Figure 13: The bundles and map for the trajectories shown
in Figure 8e.

Figure 14: The bundles and map for two sets of parallel
trajectories similar to the situation shown in Figure 8f. Our
algorithm correctly detects two separate edges.

path, on both sides of some bottleneck on that path, some-
thing that could lead to two disconnected edges in the final
map. Therefore, the bundle-specific ε must be large enough
to cover these (small) bottlenecks.

Figure 15 shows the trajectories, detected bundles, and
map generated by our algorithm for a large set of trajectories
of the Garraf hiking set. In this data set several of the
challenges highlighted in the small samples show up, such
as zig-zags, bifurcations, noisy data, and different densities.

3.3 Limitations
The bundling approach of our algorithm is able to deal

successfully with many situations that are extremely diffi-
cult for previous algorithms. Nevertheless, some situations
remain challenging for the current implementation of our
algorithm. These challenges are mostly related to how we
construct the map from the bundles, rather than from the
detection of the bundles themselves.

One of the remaining issues can be seen in Figure 7d,
where a lot of noise in the trajectories causes us to detect
many small bundles that are all sufficiently different from
each other. This causes our algorithm to draw many edges
in the map. Our algorithm may also draw many map edges
in a small region when the underlying trajectories end, but
at quite different positions; see Figure 16 for example. In
this case, we cannot find a bundle that bundles the ends
of these trajectories together nicely. Instead, we get many
smaller bundles grouping trajectories together that end at
more or less the same location. Since we have an edge for
each bundle, we get many edges instead of a single one. It
may be possible to fix such artifacts by a post-processing
step in which we would merge edges at the end of different
paths when their end-points are close together.

When constructing the map from the bundles (see Sec-
tion 2.3), we keep track separately of the two locations be-
tween which a path should appear, and its representation.
After multiple bundles have been processed, the endpoints
of the representative may no longer coincide with the desired
start and end points. We handle this by connecting the ends
of the representative to the desired end points with straight
edges. As is visible in Figure 7c this sometimes leads to small
visual artifacts at the vertices: we may get small Y-shaped
T-crossings and “Z/N-shapes” may appear in places where
edges produced by different bundles are joined. A better way
for connecting the representatives of the different bundles to
each other could probably alleviate this issue.

Since we use a portion of an input trajectory as a way to
represent edges or paths on the map geometrically, any noise
that appears on that trajectory may also appear in our re-
sulting map. For example, in Figure 17, the blue trajectory
that has been chosen as a representative contains a small
dent. This dent also shows up in our drawing of the map.

A possible solution for this problem is to choose a differ-
ent representative. Our current implementation chooses the
“cluster center” produced by the bundling algorithm. How-
ever, there are various other possible representative trajec-
tories [9, 11]. We ran some initial experiments using the
simple median defined by Buchin et al. [9]. While this gives
improved results in some situations, the complexity of the
median may be high (see Figure 18). This makes the draw-
ing of the map look cluttered. Hence, an other simplification
step may be required.

4. CONCLUDING REMARKS
We presented a map construction algorithm based on sub-

trajectory clustering. The focus of our work was on auto-
matically selecting relevant bundles. As demonstrated in
the experimental evaluation, this successfully allows us to
address key challenges in map construction. Specifically, by
working with subtrajectories rather than points, the algo-
rithm easily handles irregular sampling rates and manages
to separate roads that are close in proximity, but separate.
By looking for stable clusters, we avoid common problems of
map construction algorithms that use a global spatial prox-
imity parameter.

Our algorithm does not explicitly consider outliers, but
successfully identifies outlier (sub)trajectories, since these
result in bundles of small size, allowing us to easily prune
outliers. This pruning currently requires an additional pa-
rameter, namely, the minimum size of a relevant bundle.
The open problem remains as to how (or if) one could auto-
matically choose this parameter. For instance, small bundles
that are fairly close to a large bundle may be considered less
relevant than a small bundle with no other bundles nearby.

Currently, we generate many (maximal) candidate bun-
dles, and then test for λ-subbundles. To generate the candi-
date bundles, we modified the clustering algorithm [8], which
has a runtime of roughly O(n2), where n is the size of the
complete data set. On small data sets this works reasonably
well, but for larger data sets we need a more efficient algo-
rithm. Hence, one of the main topics for future work would
be to design and implement a more efficient algorithm that
directly computes the set of maximal stable large bundles
that we are interested in.

For hiking data, pedestrians usually use the same path in
both directions; whereas, in vehicular data, the range of pos-



Figure 15: The bundles and map for a subset of 140 trajectories, and a total of 7469 vertices, of the Garraf hiking data set.

Figure 16: Many trajectories ending on the same road at
different positions, giving multiple small bundles instead of
a large one (left). This leads to many edges for each bundle
(right).

Figure 17: Error in the representative of a bundle is reflected
back in the map

sibilities is wider and it is not uncommon to find one-way or
bi-directional single- or multi-lane streets. Some of the pre-
vious algorithms make strong assumptions (e.g., right-hand
traffic with one-way lanes) and produce artifacts when deal-
ing with other settings. Our algorithm is capable of working
with the one-way or two-way trajectory directions by just
adding the reversed trajectories appropriately. It would be
interesting to explore how the direction of movement could
be used more explicitly in the setting of hiking data.

Finally, our algorithm stitches together relevant bundles
to obtain the map. For this, we use a relatively simple greedy
strategy. The portion of the map corresponding to a bundle
is represented by one of the subtrajectories in the bundle. In

Figure 18: The median (right) in comparison to the repre-
sentative of the bundles (middle) avoids outliers, but also
adds more vertices, in particular making paths less straight.
Input trajectories on the left.

most cases, this works well, due, in part, to the fact that the
algorithm for subtrajectory clustering naturally computes
a representative for each bundle. However, as noted in the
previous section, the representative itself may contains noise.
Understanding (both theoretically and experimentally) the
implications of using different algorithms for choosing a bun-
dle representative is another direction of future research. In
the stitching process, we do not explicitly handle road cross-
ings, resulting in small dents at T-crossings. Crossings in
principle result in bundles of subtrajectories of large size
but small length. Currently, we do not make use of these
bundles, but leave this to future research.

Acknowledgments
This research was initiated at a research visit of some of the

authors in Barcelona in 2015. The research was continued at

the Dagstuhl seminar 16022 “Geometric and Graph-based Ap-

proaches to Collective Motion”, the McGill-UVic-INRIA Work-

shop on Geometry and its Applications, and Dagstuhl Seminar

17072 “Applications of Topology to the Analysis of 1-Dimensional

Objects”. We thank all organizers for providing the environ-

ment for these research discussions. K.B. is supported by the

Netherlands Organisation for Scientific Research (NWO) under

project no. 612.001.207. V.S. and R.S. are partially supported by

projects MTM2015-63791-R (MINECO/FEDER) and Gen. Cat.

DGR2014SGR46. R.S. is also supported by MINECO through

the Ramón y Cajal program. C.W. is supported by NSF CCF-

1637576. F.S. was supported by the Danish National Research

Foundation under grant nr. DNRF84.



5. REFERENCES
[1] M. Aanjaneya, F. Chazal, D. Chen, M. Glisse, L. J.

Guibas, and D. Morozov. Metric graph reconstruction
from noisy data. In Proc. 27th ACM Symp. on Comp.
Geometry, pages 37–46, 2011.

[2] M. Ahmed, B. T. Fasy, M. Gibson, and C. Wenk.
Choosing thresholds for density-based map
construction algorithms. In Proc. 23rd Int. Conf. on
Geographic Information Systems, page 24. ACM, 2015.

[3] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk.
A comparison and evaluation of map construction
algorithms using vehicle tracking data.
GeoInformatica, 19(3):601–632, 2015.

[4] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk.
Map Construction Algorithms. Springer, 2015.

[5] M. Ahmed and C. Wenk. Constructing street networks
from GPS trajectories. In Proc. 20th Ann. European
Symp. on Algorithms, pages 60–71, 2012.

[6] H. Alt and M. Godau. Computing the Fréchet
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