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Abstract. We derive general equations of motions for highly-confined particles

that perform quasi-two-dimensional motion in Hele-Shaw channels, which we solve

analytically, aiming to derive design principles for self-steering particles. Based on

symmetry properties of a particle, its equations of motion can be simplified, where we

retrieve an earlier-known equation of motion for the orientation of dimer particles

consisting of disks (Uspal et al., Nature communications 4 (2013)), but know in

full generality. Subsequently, these solutions are compared with particle trajectories

that are obtained numerically. For mirror-symmetric particles, excellent agreement

between the analytical and numerical solutions is found. For particles lacking mirror

symmetry, the analytic solutions provide means to classify the motion based on particle

geometry, while we find that taking the side-wall interactions into account is important

to accurately describe the trajectories.

Submitted to: J. Phys.: Condens. Matter

1. Introduction

Micro-fluidic devices offer a vast variety of applications [1–6], where in many cases

control over the position of immersed particles is offered via the channel geometry

[4, 7–11] or via external fields [2, 12]. Alternatively, however, the position of the

immersed particles can be controlled via the particle shape [13–16]. With techniques

such as continuous-flow lithography [17], particles of quasi-two-dimensional shape can

be produced in Hele-Shaw-type channels, opening possibilities to make these particle

‘self-steering’, following a desired trajectory.

In previous work [18], we have developed the numerical machinery to resolve the

trajectories of particles that are confined in a Hele-Shaw cell, which may be of arbitrary

quasi-2D shape, either by solving the hydrodynamic equations in full detail or via an

effective quasi-2D description offered by the Brinkman equation. Using this framework,
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we can obtain insight in the shape-dependence of the particle motion, in order to

‘engineer’ the trajectories, i.e. to create particles that are able to self-steer in the

channel.

In this work, we gain further insight by analytically solving the equations of

motion that govern the quasi-2D motion of the confined particles in Hele-Shaw channels

[19, 20]. These solutions are novel and serve as a means of classification of the possible

trajectories based on a few geometry-dependent parameters. Moreover, based on

symmetry arguments, we rederive the angular equation of motion of a dimer-shaped

particle that was earlier derived by Uspal et al. [15], but now in a general fashion by

showing that it holds true for any mirror-symmetric particle.

From the analytical solutions that we construct in the wide-channel limit, we

find that every particle shape admits a stable orientation in the external background

flow. Independent of the initial orientation, the particle will therefore eventually align

asymptotically with the stable orientation; as a result, periodic rotation cannot occur

in this system unless it is due to interactions with the side walls. For mirror symmetric

cases, the equations of motion simplify, allowing us to solve the transversal trajectory

of the particle analytically as well.

Subsequently, we compare our analytic results with the trajectories that are

obtained numerically [18]. We do this for a large variety of mirror-symmetric particles

such as dimers consisting of various shapes, and symmetric trimers, and show that the

motion, and its dependence on e.g. the initial orientation, is accurately captured by the

analytical solution. Subsequently, we consider deviations from the mirror-symmetric

shapes in a controlled fashion by considering asymmetric trimers. There, we find that

the stable orientation can be tuned by varying the size ratio of the two legs of the tripod.

Moreover, by varying this size ratio, the tripod particle can be focused to a non-central

position along the y-axis. We find that the analytical solutions are accurate when the

particle is far enough from the side walls, but that they fail to describe the motion

accurately when the particle approaches the side wall, as is the case for the asymmetric

trimers.

2. General equations of motion and solutions

We start by considering a solid particle of any given shape, at a position denoted by

the reference point rp = (xp, yp, zp), e.g. the center of mass, in a Hele-Shaw cell, as

illustrated in Fig. 1. This particle may for instance be produced using ‘continuous

flow lithography’ [17]. Here, we will use the typical dimensions that appeared in the

experiments described in our previous work [18]. The symmetry and strong confinement

in the z-direction restrict the motion of the particle to the xy-plane (i.e. zp = 0).

Moreover, the small height H of the microfluidic device, H ≈ 30 µm, combined with the

typical fluid flow velocity (U0 ≈ 50 µm s−1) and viscosity (η = 55× 10−3 Pa s), imply

that the Reynolds number is of the order 10−4 [15]. As a result, the fluid flow may

be described by either the Stokes equation [21–25] or the Brinkman equation [26, 27],
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both of which are supplemented with no-slip boundary conditions on the (moving)

particle surface and (stationary) sidewalls, while the flow at the in- and outlet (far

away from the particle) must comply with the externally imposed Hele-Shaw flow

U0 = 3
2
(1− 4z2/H2)U0x̂ in the three-dimensional (Stokes) description, or U0 = U0x̂ in

the z-averaged two-dimensional Brinkman description.

Due to the linearity of the Stokes and Brinkman equations, and the overdamped

nature of the particle motion and the absence of external forces, one can show [18] that

the particle velocity Up and angular velocity ωp obey the equations of motion(
F

T

)
= −ηR

(
Up

ωp

)
+

(
F0

T0

)
=

(
0

0

)
, (1)

where F = (Fx, Fy) and T = Tz denote the total hydrodynamic force and (the z-

component of the) torque on the particle, F0 and T0 denote the force and torque on

the particle when it is held fixed subject to the externally imposed flow, and R is a

symmetric 3 × 3 resistance tensor. As we have shown in [18], these quantities, and

from them the force- and torque-free velocity and angular velocity, may be determined

numerically from solutions to either the Stokes or the Brinkman equation, albeit with an

extra term that accounts for the friction from the top and bottom plate in the latter case.

However, the structure of the equation of motion (1) is identical for both formalisms,

and so are the results.

The second term of the right-hand side of Eq. (1) describes the force and torque

on the particle when it is held stationary in the channel, subject to the external flow

U0. Invoking the argument of linearity, we derive that this term must be linear in the

external flow U0:  F0,x

F0,y

T0

 = ηR0

(
U0,x

U0,y

)
, (2)

where R0 is a 3× 2 tensor. Note that in the channel frame, we only consider a uniform

external flow U0 = (U0, 0), but in the analysis below we also wish to use the particle

coordinate frame, which is related to the channel frame by a rotation, such that the

external flow may have both components non-zero. With this definition of R0, the

diagonal elements of R0 are positive, while the sign of the off-diagonal may depend on

the particle geometry and choice of particle coordinate frame.

2.1. Explicit equations of motion and solutions

Let us explicitly write out the general equations of motion for a particle moving in

the channel, Eq. (1). First, we assume that we have (numerically) determined the

(components of the) resistance tensors R(= Rf +Rw) and R0 described above, in some

fixed coordinate system x′, y′ relative to the particle, either from the 3D or the quasi-2D

description. Furthermore, let us assume that the particle is oriented with an angle θ

with respect to the external background flow U0x̂, i.e. the coordinates x′, y′ differ from
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Figure 1: Geometry of a particle in a Hele-Shaw channel (top view). The lab or channel

frame coordinates are denoted x, y, such that the external flow is given by U0 = U0x̂.

The particle frame is oriented at an angle θ with respect to the channel frame and has

coordinates x′, y′.

the lab coordinates x, y by a rotation over angle θ, as illustrated in Fig. 1. Lastly, we

assume that the particle is in the center of the channel (y = 0), such that we can ignore

any hydrodynamic interactions with the side walls for the moment.

Then, we can explicitly write out the equations of motion (1) (see Eq (A.2) in

Appendix A), which can be solved to obtain the velocities Up,x, Up,y and ωp. The equation

for θ, with ωp ≡ θ̇, has the form

θ̇ =
1

τ1

sin θ +
1

τ2

cos θ, (3)

where the timescales τ1 and τ2 are determined completely in terms of the components of

R and R0 in Appendix A. Note that these τi may be negative. We can write the linear

combination of sine and cosine in Eq. (3) as a single sine with a phase shift, ∆,

θ̇ =

√
τ−2

1 + τ−2
2 sin(θ + ∆), (4)

where the phase shift ∆ is given by

∆ = arg(1/τ1 + i/τ2). (5)

Eq. (4) is solved by

θ(t) = −∆ + 2 arctan

[
tan

(
θ0 + ∆

2

)
exp(t

√
τ−2

1 + τ−2
2 )

]
, (6)

where θ0 = θ(0) is the initial orientation, see Appendix A. Recalling that

limx→±∞ arctan = ±π/2, we find the long-time asymptotic solutions

lim
t→∞

θ(t) = −∆± π, (7)

where the two solutions (±) represent the same physical stationary orientation. In fact,

θ = −∆ is another stationary solution of Eq. (4), which corresponds, however, to an

unstable state.
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To proceed, we solve Eq. (A.2) for the transversal velocity Up,y ≡ ẏ, which is

written as
ẏ

H
=

1

τy,1
sin2 θ +

1

τy,2
sin θ cos θ +

1

τy,3
cos2 θ, (8)

where explicit expressions for the timescales τy,i(i = 1, 2, 3) in terms of the components

of R and R0 are again given in Appendix A. Given the solution (6), we can integrate

Eq. (8) to find y(t). Although this procedure does lead to a closed expression for the

solution y(t), this solution is too lengthy in general to provide us further insight at this

point. However, we do observe from the asymptotic long-time limit of the solution (6)

that we may find an asymptotic velocity limt→∞ Up,y(t) = U∞p,y 6= 0 in general, such that

the particle persists in moving at an angle with respect to the external flow. It will

therefore always enter a regime where side-wall effects (y ∼ ±W/2) begin to play a role.

The main conclusion we can draw from this analysis is that any particle for which

τ−1
1 and τ−1

2 are not both zero, will orient asymptotically towards a stable orientation

determined by the two timescales. Below, we will consider situations where we take the

limit of one or both τi →∞.

3. Mirror symmetric particles

The dumbbell particles described by Uspal et al. [15] and our work [18] possess an

additional symmetry apart from the xy-symmetry, namely, the plane spanned by the

axis connecting the centers of the two disks and the z-axis. In an unbounded fluid, the

existence of this symmetry plane forces certain elements of the resistance tensor to be

zero [22]:

R12 = R21 = R13 = R31 = 0. (9)

This is understood as follows. Let us assume that a nonzero particle velocity Ux in

the x-direction would generate a non-zero frictional force Fy in the y-direction. This

system is invariant under a reflection in the x-axis, however, Fy → −Fy under this

reflection, as illustrated in Fig. 2. Hence, this force Fy = 0 and we must conclude that

Rf,12 = R12 = 0.

Note that this symmetry argument assumes that the fluid around the particle is

unbounded, which is only accurate if the particle is far enough from the side walls, as

is for instance the case for the reorienting motion that is described in Ref [15] and [18]

and below in Section 5. Finally, we can repeat this symmetry argument to find that

R0,12 = R0,21 = R0,31 = 0. (10)

To proceed, we assume as before that the particle, has an orientation θ with respect

to the external background flow, as illustrated for the symmetric trimer particle in Fig.

3. Then, we choose an orthogonal coordinate system x′, y′ such that the x′ axis coincides

with the symmetry line of the particle.

After imposing the symmetry constraints Eqs. (9) and Eq. (10) on the resistance

tensors, we can again solve Eq. (1) to obtain the particle velocities. For the angular
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Figure 2: The system of a mirror-symmetric particle (dumbbell) translating in the x-

direction. This system is invariant under reflection in the x-axis, while a non-zero force

Fy in the y-direction is mapped to −Fy under this reflection. Hence Fy = 0.

Figure 3: Geometry of a mirror symmetric particle, here a trimer or trumbbell, in a

Hele-Shaw channel. As before, the lab or channel frame coordinates are denoted x, y,

such that the external flow is given by U0 = U0x̂. The particle frame is oriented at an

angle θ with respect to the channel frame and has coordinates x′, y′.

equation, again with ωp ≡ θ̇, we find

θ̇ =
1

τ
sin θ, with (11)

τ−1 = U0
R0,22R23 −R0,23R22

R22R33 −R2
23

. (12)

Alternatively, one may obtain this equation directly from (3) by setting the appropriate

components of R(= Rf + Rw) and R0 to zero, which in turn sets 1/τ2 = 0. In that

case, Eq. (5) implies ∆ = 0 ∨ ∆ = π, depending on the sign of τ . Interestingly, Eq.

(11) is exactly the same equation of motion for the orientation of a dumbbell as derived

in [15] based on the simplification that considers only the two disks. Here, it is derived

in full generality and is shown to hold for any mirror symmetric particle in the channel!

We should point out that the sign of τ depends on the choice of coordinates and

origin. For instance, for the dimer particles described below, the origin was chosen in

the center of the larger disk, and the equation of motion showed a negative τ . Should

we have chosen to set the origin in the center of the smaller disk for instance, then the
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off-diagonal terms in R and R0 will change sign, such that τ becomes positive, leading

to an asymptotic orientation θ = π, which now corresponds to the larger disk behind,

as one would expect.

Eq. (11) can be solved to give

θ(t) = 2 arctan
[
tan(θ0/2)et/τ

]
, (13)

which can be obtained from Eq. (6) by setting ∆ = 0 or ∆ = π, depending on the sign

of τ . As before, θ0 = θ(0) denotes the initial orientation at time t = 0. Furthermore,

we can solve for the velocity in the y-direction:

Up,y = U0 cos θ sin θ

× R0,23R11R23 −R0,22R11R33 +R0,11(R22R33 −R2
23)

R11(R22R33 −R2
23)

, (14)

which we may write, with Up,y = ẏ, as

ẏ

H
=
Up,y
H

=
1

τy
sin 2θ. (15)

Given the solution (13), we can integrate Eq. (15) to find

y(t)

H
=

2τ sin θ0

τy

(
1

cosh(t/τ) + sinh(t/τ) cos θ0

− 1

)
, (16)

where we assumed the initial position to be y(0) = 0. Details are given in Appendix A.

3.1. Asymptotic behaviour, zeros and critical points

From (13) we can investigate the asymptotic orientation of mirror-symmetric particles

by taking the limit t→∞. Depending on the sign of τ (which depends on the particle

geometry), we find

lim
t→∞

θ(t) = 0 ∨ π, (17)

which is in agreement with setting θ̇ = 0 in (11). The asymptotic y-position is easily

seen to be y/H = −2τ sin θ0/τy. Also, by finding the roots of the solution (16), we

can determine where the particle crosses the x-axis, which occurs at time t/τ = 0

(since we set y(0) = 0 as mentioned below solution (16)), or at tc/τ = log 1−cos θ0
1+cos θ0

, if

|θ0| > π/2. Furthermore, for |θ0| > π/2, we can derive that the particle reaches the

maximum transversal amplitude y(tm/τ) = 2τ
τy

(1− sin θ0) at time tm = tc/2. Note

that this precisely corresponds to θ(tm) = π/2, which is easily seen from Eq. (15) as

the right-hand-side changes sign for θ = π/2. Details of these derivations are given in

Appendix A.

These results show that the motion of mirror-symmetric particles is completely

characterised by the initial orientation θ0 and the time scales τ and τy, which in turn

are determined by the particle geometry. The analytical solutions provide us a recipe to

directly tune the particle trajectories by varying these geometric parameters or initial

conditions.



8

4. Particles with two symmetry axes

Finally, we consider the case that the particle has yet another axis of mirror symmetry

which is perpendicular to the symmetry axis described above. For convenience, we take

this axis to be the y′ axis in the particle frame, and choose the origin in the intersection

of these two axes. Using the same arguments based on mirror symmetry as before [22],

we find that R is diagonal in this case. Similar arguments then give us that R0,32 = 0.

Writing down Eq. (1) explicitly again and solving for the angular velocity, we find that

the rotational motion completely decouples from the translation, as we find θ̇ = ωp = 0,

since the off-diagonal resistance components vanish. Alternatively, one can obtain this

from (11) by setting the appropriate components of R to zero, to find 1/τ = 0. Hence,

the particle will not rotate at all and every orientation is stable. Interestingly, the

particle will still move in the transversal direction, as this velocity is solved by

ẏ = Up,y = U0
R0,11R22 −R0,22R11

R11R22

cos θ sin θ (18)

Hence, for θ 6= kπ/2 with integer k, we find that the particle moves transversely.

Examples of shapes with two axes of symmetries are rods or the symmetric dumbbells

considered by Uspal et al. [15]. They observed indeed that the symmetric dumbbells

move transversely in the channel without rotating. This motion is continued until the

dumbbells are reflected by the side walls (that are not incorporated in this analysis).

Note that if the particle has fourfold symmetry, i.e. the shape is invariant under

a rotation by π/2, then this will force R11 = R22 and R0,11 = R0,22, setting Up,y = 0.

In other words, the transversal motion in (18) is directly related to the mismatch in

resistance coefficients: R11 6= R22, a remark often made in the literature, in the context

of slender-body theory and in the description of for instance sedimentation of rod-like

particles [23].

5. Comparison with numerical results

After having established the analytical results of Sections 2 and 3, we now compare these

to numerical and experimental data. The agreement or disagreement of our analytical

results with the numerically obtained trajectories will provide us information about the

assumptions we made in the derivations above, such as ignoring the influence from the

side walls.

Below, we will stick to the experimental dimensions of Ref. [15] as much as possible.

Specifically, the channel height H = 30 µm is taken as a unit of length; the experimental

channel width W = 500 µm is therefore set at W/H = 16.67, unless specifically

mentioned otherwise. The particle height corresponds to a gap h/H = 0.06 between the

particle and top and bottom wall. Moreover, we consider composite particles consisting

of disks or other shapes, of typical size Ri (usually disk radius), connected by cuboid

parts of length s/H = 2.09 and width w/H = 0.456. The size ratios Ri/Rj will be
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varied below, while the smallest size is fixed at Ri/H = 0.625 (the choice of i depends

on the specific particle geometry, as will become clear below).

5.1. Mirror symmetric particles

We have considered a large variety of mirror symmetric shapes that can be fabricated

with continuous flow lithography. Specially, next to the earlier-considered dimers of

disks with different radii, we have investigated the behavior of dimers consisting of

triangles and squares, of different aspect ratios R1/R2, where these radii refer to the

radii of circumscribed disks. Also, we have investigated trimer (or trumbbell) particles,

consisting of three connected disks of similar dimensions as the earlier considered

dumbbells, where the middle disk has a larger radius R2 > R1 = R3, as illustrated

in Fig. 3. The angle between the two legs is denoted by φ, as shown in Fig. 8.

The mirror symmetric shapes described here all have in common that one of the

parts of the dimer, or the middle disk of the trimer, is larger than the other part.

Choosing the origin of the particle frame in the center of the larger part (as we have

done before in the case of the disk dimers), it is easy to see that the nonzero off-diagonal

elements of R must be negative: translation in the positive y-direction will generate a

positive torque (corresponding to a counterclockwise rotation) and vice versa. Similarly,

an external flow in the y-direction (in the particle frame) will generate a negative torque

(hence clockwise rotation). Taking this together, we conclude that all these shapes obey

Eq. (11) with a negative sign, such that they orient in the external flow with the larger

part behind. Hence, all these shapes will show a qualitatively identical trajectory,

fully characterized by the geometry-dependent timescale τ that is to be determined

numerically. In Fig. 4, we illustrate this point by showing snapshots of the reorienting

motion of different shapes with different size ratios at different times t/τ . We show:

(a) a dimer of squares with aligned edges (which we define as type I) and R1/R2 = 1.25,

at t/τ = 0;

(b) a dimer of squares with aligned diagonals (def. type II) and R1/R2 = 1.5), at

t/τ = 1;

(c) a dimer of triangles with aligned edges (def. type I) and R1/R2 = 1.75, at t/τ = 2;

(d) a dimer of triangles with the triangles pointing towards each other (def. type II)

and R1/R2 = 2.0, at t/τ = 3;

(e) a trimer of disks with R1/R2 = R3/R2 = 1.5 and φ = 50◦ at t/τ = 4; and

(f) a dimer of disks with R1/R2 = 3.0, at t/τ = 5.

Around the particles, we show in Fig. 4 isobars of the disturbance pressure field p−p0(x)

created by the particle, with p0 the pressure field corresponding to an undisturbed

external flow U0 in the channel, i.e., p0(x) = (x − L/2)∇p, −L/2 < x < L/2, with L

the length of the channel, such that U0 = −H2∇p/(12η).

In Fig. 5, we plot the orientation θ as a function of rescaled time t/τ , for the

different shapes illustrated in Fig. 4. Indeed, we clearly observe that the angular motion
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Figure 4: Snapshots of isobars of the disturbance pressure field around different mirror

symmetric particles in the micro-fluidic channel, all performing a qualitatively similar

reorienting motion. Shown are (a) a dimer consisting of: two squares with one edge

parallel and R1/R2 = 1.25 at t/τ = 0, (b) two squares with diagonals parallel and

R1/R2 = 1.5 at t/τ = 1, (c) two triangles with one edge parallel and R1/R2 = 1.75 at

t/τ = 2, (d) two triangles pointing towards each other with R1/R2 = 2.0 at t/τ = 3.

Here, the radii correspond to the radius of a circumscribed disk. Moreover, we show (e)

a trimer with R1/R2 = R3/R2 = 1.5 and opening angle φ = 50◦ at t/τ = 4, and (f) a

dumbbell with R1/R2 = 3.0 at t/τ = 5.

is perfectly described by the solution (13), as all the data collapse on the analytical

curve once time is rescaled by τ (which differs for each shape). Moreover, we compare

our analytical results for the motion in the y-direction with the numerically obtained

trajectories in Fig. 6, where we rescaled the position by a factor τy/τ , and find that the

data collapse on the analytical solution. In particular, this confirms that our analytical

results for the time and height of the maximum and the time for which y = 0 are

correct. We observe that initially, the particles move in the direction opposite to their

final position: ẏ(t < tm) > 0, while ẏ(t > tm) < 0, as was already noted in Section
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Figure 5: Orientation θ as a function of rescaled time t/τ , for the different shapes

illustrated in Fig. 4, all starting with θ(0) = 5π/6.

Figure 6: The transversal trajectories y(t), rescaled by the two geometry-dependent

timescales τ/τy, that appear in the Eq. (11) and Eq. (15), for disk dimers of varying

shape parameter R̃ = R1/R2. In the inset we show another scaling of the y-position in

units of the channel width W , as a function of time.

3.1. We can compare this qualitatively to the sedimenting rod example, mentioned in

section 4, which moves upwards when π/2 < θ < π, and downwards when 0 < θ < π/2.

As an example, an animation of the motion of a triangle trimer can be found in the

supplementary material (Appendix B).
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Figure 7: The orientation θ (a) and y-coordinate (b) as a function of time t/τ , for a disk

dimer particle with R1/R2 = 2.0, for different initial angles θ0. The points show the

numerically integrated trajectories, while the solid lines show the analytical solutions.

In all cases, y(0) = 0.

At a later stage of the trajectory (t > 5τ), we see a deviation from the analytical

curve that is caused by hydrodynamic interactions with the sidewall of the channel.

This effect is more pronounced for R1/R2 = 1.25, since this shape moves further from

the channel center and closer to the sidewall, as can be see in the inset of Fig. 6, where

we show the position y relative to the channel width W , as a function of time.

Next, we investigate the dependence of the solutions (13) and (16) on the initial

angle θ0. The results are shown in Fig. 7, where we show the orientation θ (Fig. 7(a))

and the y-position (Fig. 7(b)) as a function of time, for a disk dimer with R1/R2 = 2.0.

The data points are obtained by numerical integration of Eq. (1), while the analytic

solutions are shown by the solid lines. We observe perfect agreement between the two

results. Only for later times, we observe again that the interaction with the side walls

will push the particle slowly towards the center of the channel (y = 0).

Interestingly, we can influence the direction and magnitude of the y-motion by

varying the particle shape. Specifically, for the symmetric trimers, we find that the

timescale τy can change sign when the angle φ between the legs is varied. In Fig. 8, we

show the timescales τ (red) en τy (blue) as a function of φ, for a trimer particle consisting

of three disks with ratios R2/R3 = R2/R1 = 1.5, R2 being the ratio of the larger middle

disk. Fig. 8 shows that τy is discontinuous and changes sign around φ = 60◦. This

can also be seen in Fig. 9, where the y-position as a function of time t is shown, for

trimers with different opening angles φ. We observe that for φ < 60◦, the particles

first move in the positive y-direction to a maximum y(tm)/H = 2τ
τy

(1− sin θ0) > 0 at

tm/τ = 1
2

log 1−cos θ0
1+cos θ0

, as determined above, and subsequently cross y = 0 to reach an

asymptotic position y = −τ/τy < 0. For φ > 60◦, this motion is precisely reversed:

y(tm) < 0 and an asymptotic position y/H = τ/τy > 0. For φ = 60◦, we observe

almost no transversal motion, consistent with τ−1
y ≈ 0. In the inset of Fig. 9, we show

the position y rescaled by τ/τy, for the trimers with different opening angles (φ = 60◦

excluded), and observe that the data collapse on the analytical solution (16). Finally,
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Figure 8: The timescales τy (blue) and τ (red) as a function of the angle φ between the

legs of the trimer, with R2/R1 = R2/R3 = 1.5.

Figure 9: The transversal position y (in units of the channel width W ), as a function of

time t/τ , for trimers of varying opening angle φ, starting at y(0) = 0 and θ(0) = 5π/6.

In the inset we show y(t) (φ = 60◦ excluded) but rescaled by Hτ/τy.

we point out again that we observe that interactions with the side walls will eventually

push the particles towards the center of the channel.
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5.2. Broken mirror symmetry

All particle shapes we have considered so far possess a mirror symmetry, which forces

them to a stable orientation of θ = 0 or θ = π and a terminal velocity that is parallel

to the external flow, albeit with a slow motion in the direction of the center of the

channel due to the interaction with the side walls. This means that if we are interested

in steering the particles away from the center, we should break the mirror-symmetry.

In this section, we break the mirror symmetry in a controlled fashion by considering

asymmetric trimer particles, in which the disk at one of the legs is larger than the other.

To be specific, we fix R2/R3 = 2.0 and φ = 50◦ and vary R1/R3. With R2 > R1, R3, we

still expect the particle to orient with the larger disk behind, but since R1 > R3 we will

have 1/τ2 6= 0, which implies (as is seen from Eq. (6)) that θ(→∞) 6= 0. We point out

that for shapes with R1/R3 > 1.8, a small area (of fluid) is enclosed between the three

disks of the dimer, which leads to instabilities in our numerical calculations. Therefore,

we will only consider shapes with 1 < R1/R3 ≤ 1.8 for now.

In order to compare with our analytical solutions, we first consider the case without

side wall interactions, i.e., we make the channel very large compared to the particle by

setting W/H = 200. In Fig. 10, we show the orientation θ as a function of time, for

the different trimer shapes. The data points indicate the numerically solved trajectories

from Eq. (1), and the solid lines show the analytical solution, with the timescales τ1

and τ2 obtained numerically from Eq. (3). We observe perfect agreement between the

two results. Moreover, we clearly observe that for increasing R1/R3, the asymptotic

orientation θ(t→∞) increases and deviates from 0, as is also shown in the inset of Fig.

10.

In turn, the non-zero angle in the long-time limit has an effect on the transversal

motion, which is shown in Fig. 11 for the trimer particles. Initially, the particles show

motion qualitatively similar to the mirror-symmetric case, with a positive peak ym > 0

and crossing y = 0 at some later time. However, rather than a constant asymptotic

position, the particles attain a negative asymptotic velocity such that y(t→∞) = −∞
in the case where W → ∞. Even without knowing all three τy,i in Eq. (8), we can

already gain some insight by comparing with the mirror-symmetric case. The fact

that we have a maximum y(tm) > 0 implies that τy,2 < 0 and either τy,1, τy,3 < 0 or

|τy,1|, |τy,3| < |τy,2|. Then, as θ(t→∞) > 0, we find that Up,y(t→∞) < 0.

These results change when the side wall interactions are taken into account. In

Fig. 12, we show the orientation of trimer particles with different R1/R3, with the

original channel dimensions (W/H = 16.7). Let us first discuss the shapes with

1 ≤ R1/R3 ≤ 1.6. For these shapes we find that, initially, the reorientation is correctly

described by the analytical solutions, although a deviation occurs due to sidewall effects.

Specifically, we observe that the long-time limit of θ is negative for each particle (except

for the symmetric particle with R1/R3 = 1.0), whereas we expect a positive asymptotic

orientation from the analytic solutions. Recall that the fluid moves slower close to

the no-slip side-walls, leading to a clockwise rotation when the particle is close to the
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Figure 10: The orientation θ as a function of time t, for trimer particles with

R2/R3 = 2.0, φ = 50◦ and varying R1/R3. The initial orientation is θ0 = 5π/6. The

points show the numerically obtained trajectories and the solid lines show the analytical

solutions. Here, the channel side walls are placed at y = ±W/2 = ±100H. The inset

shows the long-time limit orientation θ∞ = θ(t→∞).

Figure 11: The transversal position y as a function of time t, for trimer particles

with R2/R3 = 2.0, φ = 50 degrees and varying R1/R3. The initial orientation is

θ0 = 5π/6 and the initial position is y(0) = 0. Here, the channel side walls are placed

at y = ±W/2 = ±100H.
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lower side wall at y = −W/2. Thus, we observe that a competition between the shape-

determined asymptotic orientation (which is positive) and the side-wall effects (rotating

the particle clockwise), leads to a stable orientation, which is negative.

For R1/R3 ≥ 1.65, the interactions with the side walls lead to very different (and

complicated) trajectories. Initially, we see that the particles reorient according to the

analytical solution, as is also observed in the inset of Fig. 12, where we show an enlarged

plot of the θ(t) data for 0 < tU0/H < 400. However, at a later time (tU0/H ≈ 300),

the particle moves very close to the upper side wall at y = W/2 (see also Fig. 13),

causing the particle to reverse its rotation. The no-slip boundary condition on the

side wall, u(y = W/2) = 0, forces the fluid velocity to be low near this side wall,

while the fluid velocity away from the side wall is much larger, naturally leading to a

rapid counterclockwise rotation of the particle near this side wall. Subsequently, for

the shapes with 1.65 ≤ R1/R3 ≤ 1.75 we observe a slower reorientation determined

by a complicated interplay of their shape-determined reorientation and the side-wall

interactions. In the long-time limit, these shapes reach a negative stationary stable

orientation, similar to the shapes R1/R3 ≤ 1.6. The trajectory of R1/R3 = 1.8

is even more complicated, as another rapid reorientation (clockwise) is observed at

tU0/H ≈ 800. Subsequently, the particle qualitatively performs the reorienting motion

as dictated by its shape, after which another encounter with the side wall at y = −W/2
at tU0/H ≈ 2000 rotates the particle clockwise (see also Fig. 13).

In Fig. 13, we show the transversal position y as a function of t for the different

trimer particles, again for W/H = 16.7. For 1.2 ≤ R1/R3 ≤ 1.6, we clearly observe that

the particles move to the lower half of the channel (y < 0) at later times (t > tc,

in the notation of Section 3.1). This is consistent with our findings without the

effects from the side walls, as shown in Fig. 11. However, in the long-time limit, the

particles move parallel to the side wall. Clearly, a competition between the effects of a

negative transversal velocity once the stable orientation is attained, and the repulsive

hydrodynamic interaction with the sidewalls, forces the particles to move at a fixed

distance from the side walls. This is also true for the particles with 1.65 ≤ R1/R3 ≤ 1.75,

for which we observe a stable position in the long-time limit, after a period of oscillating

motion due to the interplay between the shape-determined motion and side-wall effects.

For R1/R3 = 1.8, we observe even more oscillations, as the particle moves very close

to the side walls at times tU0/H ≈ 300, 800 and 2000, where a rapid counterclockwise

reorienting motion takes place as we observed in Fig. 12. Due to this reorientation,

the particle acquires a large transversal velocity, such that it moves to the other side

wall where another reorientation takes place. This motion is in fact very similar to the

oscillating motion of the symmetric dumbbell particles discussed in Ref. [15], which do

not rotate due to shape, but do acquire a transversal velocity (see Section 4). However,

after a long time tU0/H ≈ 6000 (not shown) also this shape attains a stable orientation

and y-position. This is shown more clearly in Fig. 14, where we show the particle

trajectory in the (θ, y) phase space, where time is running along the curves as indicated

by the arrows. There, we clearly see that all shapes with R1/R3 > 1 will move to a
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Figure 12: The orientation θ as a function of time t, for trimer particles of varying size

ratio R1/R3, with R2/R3 = 2.0 and φ = 50◦, for a channel width W/H = 16.7 (that

matches the experiments of Ref [15]). Here, θ(0) = 5π/6 and y(0) = 0. The points

show the numerically obtained particle trajectories, the solid lines show the analytical

solutions. In the inset, the numerical and analytical curves of θ(t) are enlarged for

0 < tU0/H < 400, for the trimers with R1/R3 ≥ 1.6.

stable position y ≈ −0.3W at a slightly negative angle in the long-time limit, while the

symmetric trimer (R1 = R3) attains a limit orientation θ ≈ 0 and a y-position close to

the center at y = 0. Animations of the motion of a few of these trimer particles can be

found in the supplementary material (see Appendix B).

Thus, we have observed that the presence of side walls strongly affects the motion

for these asymmetric particles. However, our analytical solutions can still provide a

qualitatively prediction of the motion: the particles with 1 < R1/R3 ≤ 1.8 will all move

to the lower half of the channel (y < 0), consistent with the analysis without side walls.

In fact, when we consider particles with R3 > R1, our previous analysis immediately

gives us that the trajectories will be the mirror image of Fig. 13: these particles will

move towards y > 0, in which case the side wall interaction will lead them to move

parallel and close to the upper side wall (at y = W/2). We summarize these conclusions

in a ‘state diagram’ in Fig. 15, which, with the goal of engineering trajectories in mind,

can be read a set of preliminary ‘design rules’. There, the black lines indicate symmetric

particles with R1 = R2 (symmetric dimers), R1 = 0 or R3 = 0 (symmetric dimers) that

move to the center of the channel, while the red and blue areas indicate shapes with

a long-time y-position that is close to the lower (y = −W/2) and upper (y = W/2)
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Figure 13: The transversal position y as a function of time t, for trimer particles

of varying size ratio R1/R3, with R2/R3 = 2.0 and φ = 50◦ and channel width of

W/H = 16.7. The data is obtained from numerically solving the particle trajectories.

As before, θ(0) = 5π/6 and y(0) = 0.

boundary, respectively. More research is needed to complete this diagram in the future.

6. Summary and Outlook

We have derived analytical solutions to the equation of motion of general particles that

undergo strongly confined quasi-2D motion in Hele-Shaw cells. Making use of symmetry

arguments, these equations were simplified and the angular differential equation from

Ref. [15] is recovered, not only for dimers of disks but in fact even for any particle

with a mirror symmetry. Our analytical solutions were compared extensively with

the numerically obtained trajectories, and excellent agreement between these results

was found. With these analytical results, we are able to fully predict the particle

trajectories of any mirror-symmetric shaped particle, by only determining the two

geometry-dependent time-scales τ and τy that follow from the resistance tensor. For non-

symmetric shapes, we also found excellent agreement, where we found that asymmetric

trimers will assume a terminal velocity at an angle with respect to the external flow.

For these particles, the interactions with the side walls become important eventually,

as this forces the particles (for certain disk size ratios R1/R3) to move parallel to the

sidewalls at an orientation that differs from the analytically predicted value.

These results provide a further step towards engineering the particle motion in
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Figure 14: Particle trajectories in the (θ, y) phase space, where the direction of time

is indicated by the arrows, for trimer particles with R2 = 2R3 = 2H and varying

1 ≤ R1/R3 ≤ 1.8. Initially, θ(0) = 5π/6 and y(0) = 0 for every trimer particle.

Figure 15: State diagram of the long-time y-position of trimer particles, consisting of

three disks with radii Ri (R2 corresponding to the middle disk) . The black lines indicate

symmetric particles with R1 = R2 (symmetric trimers) and R1 = 0 or R3 = 0 (dimers),

which move to the center of the channel. The red triangle indicates shapes that have

a long-time y-position close to the lower boundary at y = −W/2, the blue triangle

indicates shapes with a long-time y-position close to the upper boundary at y = W/2.
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confined geometries. Our analytical results allow us to determine the particle trajectories

by only calculating a few geometry-dependent quantities from numerical solutions of the

Stokes (or Brinkman) equation. This in turn opens the door towards further tailoring

the particle trajectories to any given demand or design by making use of optimisation

schemes, e.g., genetic optimization algorithms [28].

In future research, it will be very interesting to further investigate the interaction

with the sidewalls. Specifically, we could further investigate the dependence of the

(strength of) the side wall interaction on the particle geometry, and for which particle

geometries this is possible (completing the state diagram in Fig. 15). In this way, we

hope to discover a mechanism to engineer the asymptotic y-position of the particles in

the channel, by further tuning the particle geometry, and thus making a step forward in

designing self-steering particles. Moreover, comparison of our analysis and results with

experiments is being pursued at the moment.
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Appendix A. Detailed derivations

In this appendix, we present some of the explicit solutions and calculations.
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Appendix A.1. Explicit derivation of the equation of motion and expressions for the

timescales.

We can explicitly write out the equations of motion (1) as 0

0

0

 = −

 R11 R12 R13

R12 R22 R23

R13 R23 R33


 U ′p,x

U ′p,y
ωp


+

 R0,11 R0,12

R0,21 R0,22

R0,31 R0,32

( U ′0,x
U ′0,y

)
(A.1)

= −

 R11 R12 R13

R12 R22 R23

R13 R23 R33


 Up,x cos θ + Up,y sin θ

−Up,x sin θ + Up,y cos θ

ωp


+

 R0,11 R0,12

R0,21 R0,22

R0,31 R0,32

( U0 cos θ

−U0 sin θ

)
, (A.2)

where the primed and unprimed velocities are with respect to the particle and channel

frame coordinates, respectively. We solve this linear equation to obtain the velocities

Up,x, Up,y and ωp. Solving this equation for ωp ≡ θ̇, gives

θ̇ =
1

τ1

sin θ +
1

τ2

cos θ, (A.3)

where the timescales τ1 and τ2 are given by

τ−1
1 = U0

(
−R0,32R

2
12 +R0,22R12R13 +R0,32R11R22

−R0,12R13R22 −R0,22R11R23 +R0,12R12R23

)
×(

R2
13R22 − 2R12R13R23 +R2

12R33 +R11(R2
23 −R22R33)

)−1

, (A.4)

τ−1
2 = U0

(
−R0,21R12R13 +R0,11R13R22 +R0,31R

2
12

−R0,31R11R22 +R0,21R11R23 −R0,11R12R23

)
×(

R2
13R22 − 2R12R13R23 +R2

12R33 +R11(R2
23 −R22R33)

)−1

. (A.5)

Next, we solve Eq. (A.2) for the transversal velocity Up,y ≡ ẏ, which results in

ẏ

H
=

1

τy,1
sin2 θ +

1

τy,2
sin θ cos θ +

1

τy,3
cos2 θ, (A.6)
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with timescales τy,i(i = 1, 2, 3) given by

τy,1 = U0C
−1

{
−R0,32R13R22 +R0,32R12R23 +R0,22R13R23

−R0,12R
2
23 −R0,22R12R33 +R0,12R22R33

}
, (A.7)

τy,2 = U0C
−1

{
R0,32R12R13 −R0,22R

2
13 +R0,31R13R22

−R0,32R11R23 −R0,31R12R23 +R0,12R13R23

−R0,21R13R23 +R0,11R
2
23 +R0,22R11R33

−R0,12R12R33 +R0,21R12R33 −R0,11R22R33

}
, (A.8)

τy,3 = U0C
−1

{
−R0,31R12R13 +R0,21R

2
13 +R0,31R11R23

−R0,11R13R23 −R0,21R11R33 +R0,11R12R33

}
, (A.9)

C =

(
R2

13R22 − 2R12R13R23 +R2
12R33 +R11(R2

23 −R22R33)

)
. (A.10)

Appendix A.2. Analytic solution of the angular equation

In this section, we derive the analytical solution (6) of Eq. (4). We can separate the

variables to find√(
1

τ1

)2

+

(
1

τ2

)2 ∫ t

0

dt′ =

√(
1

τ1

)2

+

(
1

τ2

)2

t (A.11)

=

∫ θ

θ0

dθ′

sin(θ′ + ∆)
=

∫ θ+∆

θ0+∆

dθ′′

sin θ′′
(A.12)

Next, we use the famous tangent half-angle substitution, x = tan(θ/2), which allows us

to write the Jacobian and the trigonometric functions as

dθ =
2dx

1 + x2
, sin θ =

2x

1 + x2
, cos θ =

1− x2

1 + x2
. (A.13)

Plugging this in, we find√(
1

τ1

)2

+

(
1

τ2

)2

t =

∫ x

x0

dx′

x
= log x− log x0 (A.14)

= log tan
θ + ∆

2
− log tan

θ0 + ∆

2
. (A.15)

We invert this relation to find

θ(t) = −∆ + 2 arctan

[
tan

(
θ0 + ∆

2

)
exp

(
t

√
τ−2

1 + τ−2
2

)]
. (A.16)
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Appendix A.3. Integration and further analysis of the transversal motion in the mirror

symmetric case

Knowing the solution (A.16) for θ, we can proceed to solve Eq. (15) for the transversal

motion:

ẏ/H =
−1

τy
sin

(
4 arctan

[
tan

θ0

2
e−t/τ

])
, y(0)/H = 0. (A.17)

To integrate, we use double angle formulas for the sine and consine and that

sin(arctan(x)) =
x√

1 + x2
, cos(arctanx) =

1√
1 + x2

. (A.18)

Applying the double angle formulas twice, we obtain

sin(4 arctan z) = 4 sin(arctan z) cos(arctan z)

×
(

cos2(arctan z)− sin2(arctan z)
)

(A.19)

= 4
z√

1 + z2

1√
1 + z2

( 1

1 + z2
− z2

1 + z2

)
=

4z(1− z2)

(1 + z2)2
(A.20)

Next, abbreviating tan(θ0/2) = α and leaving the integration boundaries for a moment,

we can integrate:∫
dtUy(t) =

−τ
τy

∫
dt′ sin

(
4 arctan

[
α e−t

′
])

(A.21)

=
−4τ

τy

∫
dt′
αe−t

′
(1− α2e−2t′)

(1 + α2e−2t′)2
(A.22)

=
4τ

τy

∫
dq

1− q2

(1 + q2)2
(q = αe−t, dq = −αe−tdt) (A.23)

=
4τ

τy

q

1 + q2
=

4τ

τy

αe−t/τ

1 + α2e−2t/τ
=

4τ

τy

αet/τ

α2 + e2t/τ
. (A.24)

Now, we reenter α = tan(θ0/2) = sin θ0/(1 + cos θ0):∫
dtUy(t) =

4τ

τy

tan θ0/2e
t/τ

tan2 θ0/2 + e2t/τ
=

4τ

τy

sin θ0e
t/τ

sin2 θ0
1+cos θ0

+ (1 + cos θ0)e2t/τ
(A.25)

=
4τ

τy

sin θ0e
t/τ

(1− cos θ0) + (1 + cos θ0)e2t/τ
(A.26)

=
4τ

τy

sin θ0e
t/τ

(1 + e2t/τ ) + (e2t/τ − 1) cos θ0

(A.27)

=
2τ

τy

sin θ0

cosh(t/τ) + sinh(t/τ) cos θ0

. (A.28)

Requiring that y(t = 0) = 0, we find:

y(t)/H =
2τ sin θ0

τy

(
1

cosh(t/τ) + sinh(t/τ) cos θ0

− 1

)
. (A.29)



24

Note that although we have derived this solution for the case of a minus sign in Eq. (11),

the solution corresponding to the opposite sign can, as before, be obtained by simply

substituting τ → −τ .

To determine whether the time at crossing y = 0 agrees between the analytical

solution and the numerically calculated trajectories, we calculate the time tc at which

y = 0: setting y(tc) = 0 leads to

cosh(t/τ) + sinh(t/τ) cos θ0 = 1 (A.30)

→ t/τ = log
1± cos θ0

1 + cos θ0

(A.31)

→ t/τ = 0 ∨ t/τ = log
1− cos θ0

1 + cos θ0

. (A.32)

We can also find the position of the maximum, by setting the velocity to zero:

0 = sin

(
4 arctan

[
tan

θ0

2
e−t/τ

])
→ tan

θ0

2
e−t/τ = tan

kπ

4
, k ∈ Z. (A.33)

Since the lefthand side is positive for 0 < θ0 < π, we see that the k = 4l, l ∈ Z solutions

correspond to the asymptote t→∞, while the other solution gives us the maximum

tm/τ = log

(
tan

θ0

2

)
= log

(
sin θ0

1 + cos θ0

)
=

1

2
log

(
sin2 θ0

(1 + cos θ0)2

)
(A.34)

=
1

2
log

(
1− cos θ0

1 + cos θ0

)
=
tc/τ

2
, (A.35)

Note that this actually requires π/2 < θ0 < π. For 0 < θ0 < π/2, there is no maximum.

For π/2 < θ0 < π, the height of the peak is given by

y(tm)/H = (A.36)

2τ sin θ0

τy

(
1

cosh(tm/τ) + sinh(tm/τ) cos θ0

− 1

)
(A.37)

=
2τ sin θ0

τy

 2(√
1−cos θ0
1+cos θ0

+
√

1+cos θ0
1−cos θ0

)
+ cos θ0

(√
1−cos θ0
1+cos θ0

−
√

1+cos θ0
1−cos θ0

) − 1

 (A.38)

=
2τ sin θ0

τy

(
2
√

1 + cos θ0

√
1− cos θ0

(1− cos θ0) + (1 + cos θ0) + cos θ0(1− cos θ0)− (1 + cos θ0)

)
(A.39)

=
2τ sin θ0

τy

(
2 sin θ

2− 2 cos2 θ0

− 1

)
=

2τ

τy
(1− sin θ0) (A.40)

Finally, we observe that θ(tm) = π/2, which follows directly from the fact that the

right-hand-side of (15) changes sign for θ = π/2. Alternatively, setting θ = π/2 in Eq.

13 and solving for t, will result in an equation identical to Eq. (A.33).

Appendix B. Supplementary material: animations

Animations that support this work, as well as descriptions of these animations, can be

found at http://web.science.uu.nl/itf/brambet.htm.
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