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IDEMPOTENTS AND HOMOLOGY OF DIAGRAM
ALGEBRAS

GUY BOYDE

Abstract. This paper provides a systematization of some recent

results in homology of algebras. Our main theorem gives crite-

ria under which the homology of a diagram algebra is isomorphic

to the homology of the subalgebra on diagrams having the maxi-

mum number of left-to-right connections. From this theorem, we

deduce the ‘invertible-parameter’ cases of the Temperley-Lieb and

Brauer results of Boyd-Hepworth and Boyd-Hepworth-Patzt. We

are also able to give a new proof of Sroka’s theorem that the ho-

mology of an odd-strand Temperley-Lieb algebra vanishes, as well

as an analogous result for Brauer algebras and an interpretation

of both results in the even-strand case. Our proofs are relatively

elementary: in particular, no auxiliary chain complexes or spec-

tral sequences are required. We briefly discuss the relationship to

cellular algebras in the sense of Graham-Lehrer.

1. Introduction

The study of homology of algebras begins by observing that the ho-
mology of a group G is TorRG

∗
(1,1), and that this expression still makes

perfectly good sense if one replaces RG by any associative algebra A

with a choice of trivial module (or augmentation) 1 [Ben98, Section
2.4.4].
Boyd and Hepworth have recently pioneered this point of view in

the context of homological stability, establishing a variety of results
for Iwahori-Hecke algebras of type A [Hep22], Temperley-Lieb algebras
[BH20; BH21], and, together with Patzt, Brauer algebras [BHP21].
Patzt has also studied the representation stability of these families
[Pat20]. Sroka [Sro22] has since improved the known results on Temperley-
Lieb algebras when the number of strands is odd, and Moselle [Mos22]
has recently shown that Iwahori-Hecke algebras of type B exhibit ho-
mological stability.
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2 GUY BOYDE

These algebras all have an interpretation in terms of diagrams. In
some cases, the above authors are able to completely compute the ho-
mology, rather than just establishing stability. In these ‘global’ compu-
tations, the homology of the algebra always turns out to be isomorphic
to that of a certain retract, and this retract always has the same descrip-
tion: it is ‘the subalgebra on diagrams having the maximum number
of left-to-right connections’ (see Proposition 2.3). This is generally a
good thing: this subalgebra is isomorphic to a group algebra, and the
group usually turns out to be a familiar one whose homology is known.
The goal of this paper is to provide an explanation of this phenom-

enon, using our main result, Theorem 1.7. We will focus on Brauer
and Temperley-Lieb algebras, as studied in [BH20; BHP21; Sro22], as
well as two classes whose homology does not yet appear to have been
studied: the rook and rook-Brauer algebras.
Among the existing global computations, Sroka’s proof that the ho-

mology of a Temperley-Lieb algebra on an odd number of strands van-
ishes [Sro22] is distinguished: the other results all hold when the pa-
rameter defining the algebra is invertible, but Sroka’s theorem is in-
stead conditional on the parity of the number of strands. The setup of
Theorem 1.7 will allow us to recover Sroka’s result (as Theorem 1.11),
prove an analogue for Brauer algebras (Theorem 1.13) and give an
interpretation of both results in the even-strand case (Theorems 1.12
and 1.14). We will also recover invertible-parameter homology vanish-
ing for Temperley-Lieb algebras (Theorem 6.6, originally [BH20]), and
for Brauer algebras (Theorem 6.5, originally [BHP21]), and add a few
similar results for rook and rook-Brauer algebras. As shorthand, we
will refer to these two classes of result as ‘Sroka-type’ and ‘invertible-
parameter’ respectively.
Since we deal only in global computations, we recover only the sub-

stantially easier part of the work of Boyd-Hepworth [BH20] and Boyd-
Hepworth-Patzt [BHP21]: the harder part of their work consists of
‘true’ homological stability results that hold only in a range. As such,
one way of thinking of this paper is as an attempt to recover the
global part of the existing theory ‘direct from the algebra’, avoiding
the need to handcraft an acyclic chain complex, or deploy any spec-
tral sequences. The ‘inductive’ character of the methods introduced by
Boyd-Hepworth will still be visible, especially in the proof of the main
theorem.
In the other direction, the Temperley-Lieb and Brauer algebras are

cellular in the sense of Graham and Lehrer [GL96], and the structure on
which our methods depends is closely related to the cellular structure
(but not identical, see Remark 1.5). We hope to explore this connection
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more in future work, but here we confine ourselves to a few comments,
directed at readers familiar with the basic language of cellular algebras,
in the interest of accessibility and self-containedness. Such a reader
may be especially interested in Remark 1.15, where we suggest that
the sensitivity of the cellular technology to the ground ring, which is
an advantage in representation theory, is likely to be a disadvantage
here.
We hope that these features will make this paper useful in bridg-

ing the gap between the homological stability community and mathe-
maticians in other areas who are interested in the (rook-)Brauer and
Temperley-Lieb algebras.

1.1. The main theorem. We now assemble the terminology neces-
sary for the statement of the main theorem (Theorem 1.7).
We will use ‘diagram algebra’ (informally) to mean a ‘nice enough’

subalgebra of the rook-Brauer algebra, which we now define. Our
ground ring R will always be commutative with unit, and, at least
in the introduction, pictures are drawn for n = 5.
Martin and Mazorchuk [MM14] (who call them partial Brauer al-

gebras) state that the first appearance of the rook-Brauer algebras is
in the physics literature, namely that they are implicit in the paper
[GW95] of Grimm and Warnaar, but it is not clear (at least to the
present author) exactly what is meant by this. They are a variant of
the much older Brauer algebras, which we will meet later (Definition
1.9). The analogous semigroup has also been studied, at least as far
back as Mazorchuk’s paper [Maz98]. Our notation will be closest to
that of Halverson and delMas [Hd14].

Definition 1.1. A rook-Brauer n-diagram is a graph consisting of two
columns of n nodes (vertices) such that each node is connected to at
most one other node by an edge.
Let R be a commutative ring with unit, let n be a natural number,

and let δ, ε ∈ R. An element of the rook-Brauer algebra RBrn =
RBrn(δ, ε) is a formal R-linear combination of rook-Brauer n-diagrams.
The multiplication is the bilinear extension of a multiplication rule
defined on diagrams. For diagrams x and y, the product x·y (sometimes
xy) will be another diagram multiplied by a prefactor of the form δaεb.
It is defined via the following procedure:

• Concatenate x and y by identifying the right hand nodes of x
with the left hand nodes of y.
• Forgetting the vertices in the middle of this concatenated dia-
gram gives an object which differs from a rook-Brauer diagram
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only in the possible presence of isolated components (sequences
of edges) in the middle. These are dealt with as follows, de-
pending on their topological type:

– Each loop should be replaced with a factor of δ.
– Each contractible component should be replaced with a
factor of ε.

The result is the (definition of the) product x · y.

We illustrate this multiplication rule with an example.

Example 1.2. In RBr5, if

x = and y =

then the product x · y is

· = = δε·

We get a single factor of δ from the single loop, and a single factor
of ε because there is a single contractible component (in the form of
an isolated node) in the middle.
Note also that there are two left-to-right connection in x: one meets

a left-to-right connection of y, forming a left-to-right connection in the
product. The other meets a ‘missing’ edge of y, and disappears in the
product. In the concatenated diagram, one may think of contracting
this edge down to its initial node.

Definition 1.3. The trivial module 1 for RBrn(δ, ε) is a single copy of
R, where diagrams with no missing edges and no left-to-left or right-
to-right connections act as multiplication by 1, and other diagrams act
as multiplication by 0.

Any subalgebra of RBrn(δ, ε) acts on 1 by restriction. To state our
main result (Theorem 1.7), we need some more terminology, which
was introduced by Ridout and Saint-Aubin [RS14] in the context of
Temperley-Lieb algebras.
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Definition 1.4. By slicing vertically down the middle of a rook-Brauer
diagram we obtain two ‘half-diagrams’, which are called the left and
right link states of the diagram. Intrinsically, a link state consists of
n nodes, arranged vertically, where each node may be connected by
an edge to at most one other, and a node not connected to any other
may (or may not) have a ‘hanging’ edge attached, whose other end is
not connected to anything. A hanging edge (or the node to which it is
attached) is called a defect.

In particular, we do not think of link states as having an intrinsic
handedness, even though they will always be drawn with one. This
means for example that we can say that ‘a diagram that is symmetric
about the vertical has identical left and right link states’.

Remark 1.5. Our link states are related to the part of the data defining
a cellular algebra that Graham and Lehrer [GL96] call M(λ). For the
Temperley-Lieb algebras (Definition 1.10) they coincide with the sets
M(λ) of Graham and Lehrer’s cell structure [GL96, Theorem 6.7], but
for the Brauer algebra (Definition 1.9) they do not [GL96, Theorem
4.10]. In basic terms, the reason is that a Temperley-Lieb diagram may
be recovered from its link states, but a Brauer diagram may not, since
one has lost information, namely the permutation on the left-to-right
connections. For cellular algebras, this cannot happen: in Graham and
Lehrer’s notation, a pair of elements S, T ∈ M(λ) uniquely determines
a basis element Cλ

S,T . As such, Graham and Lehrer’s cellular basis for
the Brauer algebra is not the basis of diagrams.
As such, our link states should be thought of a naive diagrammatic

generalisation of Ridout and Saint-Aubin’s definition to rook-Brauer
algebras. We should note that our point of view on the Brauer algebras
is implicit in [GL96]: on the way to their cell structure on the Brauer
algebra, they study the basis of Brauer diagrams, and denote basis
elements by [S1, S2, w], where the Si are link states in our sense, and
w is the permutation on the through strands. In König and Xi’s point
of view on cellular algebras, there is also a sense in which ‘our point of
view may be refined to a cellular structure’, and this is made precise
as [KX99, Corollary 5.1].

Although the name ‘link state’ was introduced by Ridout and Saint
Aubin in [RS14] those authors point out that the concept predates that
paper, being equivalent to the parenthesis structures of [Kau90], and
the arch configurations of [DGG97b], as well as the cellular structure
mentioned in Remark 1.5 above. Link states are such natural combina-
torial objects that they surely occur in many other places under many
other names.
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Example 1.6. Here is an illustration of the function that carries a rook-
Brauer diagram to its right link state, as applied to a diagram in RBr5:

7→

Since the original diagram had two left-to-right connections, the right
link state has two defects.

For i = 0, . . . , n, the R-span of the rook-Brauer n-diagrams having
at most i left-to-right connections is a twosided ideal of RBrn(δ, ε). We
denote this ideal by Ii. For convenience, we set I−1 = 0. Let Pi be the
set of link states with precisely i defects.
Link states are important because they provide a natural family of

onesided ideals. First, given a link state, we may perform the following
two operations:

• Connect two defects to form an edge. For shorthand, we call
this operation a splice, and it defines a function Pi → Pi−2.
• Delete a defect, leaving a missing edge. We call this operation
a deletion, and it defines a function Pi → Pi−1.

For p ∈ Pi, let Jp be the R-submodule of RBrn(δ, ε) with basis the
diagrams having right link state obtained from p by a (perhaps empty)
sequence of splices and deletions. The following observation justifies
the introduction of this terminology. Given diagrams x and y, the right
link state of xy (ignoring factors of δ and ε) must be obtained from the
right link state of y by precisely such a sequence. This implies that Jp

is actually a left ideal of RBrn(δ, ε).



IDEMPOTENTS AND HOMOLOGY OF DIAGRAM ALGEBRAS 7

We now state the main theorem.

Theorem 1.7. Let 0 ≤ ℓ ≤ m ≤ n − 1. Let A be a subalgebra of
RBrn(δ, ε), such that

• as an R-module, A is free on a subset of the rook-Brauer n-
diagrams, and
• for i in the range ℓ ≤ i ≤ m, for each link state p ∈ Pi, if
A contains at least one diagram with right link state p, then A

contains an idempotent ep such that in A we have equality of
left ideals A · ep = A ∩ Jp.

Then we have a chain of isomorphisms

Tor
A�A∩Iℓ−1

∗ (1,1) ∼= Tor
A�A∩Iℓ
∗ (1,1) ∼= . . . ∼= Tor

A�A∩Im
∗ (1,1).

Another way of stating the second hypothesis is to say that for each
p ∈ Pi, the left ideal A ∩ Jp < A is either empty or is principal and
generated by an idempotent.
We will only use this theorem when ℓ = 0 or 1 and m = n−1, and in

fact almost always with ℓ = 0. The case ℓ = 1 will be useful basically
only for explaining what even-parity Sroka-type results should mean
(Theorems 1.12 and 1.14).
In the most common case, ℓ = 0, since I−1 = 0 by definition, the

first group in this chain of isomorphisms is actually the homology of
A itself. The theorem then says that the homology of A is isomorphic
to the homology of the subalgebra of A generated by diagrams with
the maximum number n of left-to-right connections, since (Proposition

2.3) this is isomorphic to A�A ∩ In−1
. This subalgebra is typically well

understood: for our examples it is usually the symmetric group algebra
RΣn, with the sole exception of the Temperley-Lieb algebras, when it is
just a copy of the ground ring R. The homology of RΣn is the same as
the group homology of Σn, which was computed by Nakaoka [Nak60].
The homology of R is trivial - for example by thinking of R as the
group ring of the trivial group. In particular, the right hand end of the
above chain of isomorphisms is supposed to be useful for understanding
the left hand end, rather than vice versa.

1.2. The algebras. Here, we collect the definitions of the subalgebras
ofRBrn(δ, ε) that will appear in the applications of Theorem 1.7. Each
of them will arise by restricting the set of permitted diagrams. As
noted earlier, each of these algebras has a trivial module, obtained by
restriction of scalars on the trivial module for RBrn(δ, ε).
For each subalgebra A, the subalgebra of A on diagrams having

the maximum number n of left-to-right connections is a retract of A
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(Proposition 2.3). In each case, we will identify this retract - for want of
a better name, we will call it the canonical subalgebra of A. It is always
the group algebra on a subgroup G of Σn, and is always independent
of δ and ε. This tells us what answer to expect from an application of
Theorem 1.7 to the algebra in question. More immediately, since all
functors preserve retracts, this identifies a summand of the homology
of A very cheaply.
First, for the rook-Brauer algebra itself, the canonical subalgebra

is isomorphic to the symmetric group algebra RΣn (Proposition 2.1).
Briefly, a diagram with the maximum number of left-to-right connec-
tions gives a bijection between the nodes on the left and those on
the right, hence a permutation, and each permutation can be repre-
sented by such a diagram. This identification between permutations
and diagrams respects the multiplication, so we see directly that this
subalgebra is independent of δ and ε.

1.2.1. The rook algebras. The origin of the name ‘rook’ appears to be
with Solomon [Sol02], who defines the rook monoid on n strands to
be the set of partially defined permutations of n letters, together with
composition. A diagram with no left-to-left or right-to-right connec-
tions may be interpreted as a partial permutation: the permutation is
defined on those nodes on the left that have a left-to-right connection,
and these are mapped to the node at the other end of the connection.
The following definition therefore includes the algebra on Solomon’s
rook monoid as the case ε = 1.

Definition 1.8. A rook n-diagram is a rook-Brauer n-diagram having
no left-to-left or right-to-right connections. The rook algebra Rn =
Rn(ε) (determined by a ring R, a natural number n, and a parameter
ε ∈ R) is the subalgebra of RBrn(δ, ε) on the rook diagrams.

The rook algebra is independent of δ (which is therefore omitted
from the notation) since the absence of left-to-left and right-to-right
connections means that multiplication can yield no loops.
Diagrammatically, this means we have the diagrams obtained from

those in the group algebra RΣn of the symmetric group by deleting
strands, and a sample multiplication in R5 is:

· = = ε ·
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where we have only a single factor of ε because there was only a single
isolated point in the middle.
The canonical subalgebra of the rook algebra, as for the rook-Brauer

algebra, is RΣn itself.

1.2.2. The Brauer algebras. The Brauer algebras are distinguished by
having no missing edges. They substantially predate the rook-Brauer
algebra, originating in a 1937 paper of Brauer [Bra37], and their ho-
mology was studied by Boyd, Hepworth, and Patzt in [BHP21].

Definition 1.9. A Brauer n-diagram is a rook-Brauer n-diagram hav-
ing no missing edges. The Brauer algebra Brn = Brn(δ) (determined by
a ring R, a natural number n, and a parameter δ ∈ R) is the subalgebra
of RBrn(δ, ε) on the Brauer diagrams.

Note that the absence of missing edges means that after concatena-
tion of diagrams, each node in the middle has valence 2, so all connected
components in the middle must be loops, and multiplication can yield
no factors of ε. The Brauer algebra is therefore independent of ε, jus-
tifying the notation. A sample multiplication in Br5 is:

· = =

As with the rook-Brauer and rook algebras, the canonical subalgebra
of the Brauer algebra is the symmetric group algebra RΣn.

1.2.3. The Temperley-Lieb algebras. The homology of the Temperley-
Lieb algebras was studied by Boyd and Hepworth in [BH20] and [BH21].
This family is distinguished by being planar and having no missing
edges, and originates in theoretical physics in the 1970s [TL71].

Definition 1.10. A Temperley-Lieb n-diagram is a rook-Brauer n-
diagram that is planar and has no missing edges. The Temperley-Lieb
algebra TLn = TLn(δ) (determined by a ring R, a natural number
n, and a parameter δ ∈ R) is the subalgebra of RBrn(δ, ε) on the
Temperley-Lieb diagrams.

In particular, this makes the Temperley-Lieb algebra a subalgebra
of the Brauer algebra, and justifies the absence of ε from the notation.
A sample multiplication in TL5 is:
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· = =

This particular multiplication produces no factors of δ. The possi-
bility of constructing diagrams that multiply to give no factors of δ will
be key to our Sroka-type applications.
Planarity makes the canonical subalgebra much smaller: the only

planar diagram having n left-to-right connections is the identity dia-
gram (where all edges are horizontal). The canonical subalgebra of
TLn is therefore just a copy of R.

1.3. Applications. As mentioned earlier, our applications come in
two flavours: those where the defining parameter(s) are invertible, and
Sroka-type results which depend on the parity of the number of strands.
Our more substantial contributions are those of the second sort.

1.3.1. Invertible-parameter results. For the rook algebras Rn(ε), we
will show (Theorem 4.4) that if ε is invertible then the homology of
the rook algebras is just that of the symmetric groups, which has been
completely computed by Nakaoka [Nak60]. This is the simplest appli-
cation, and does not require the full strength of Theorem 1.7; instead,
(a special case of) the much simpler Theorem 3.3 suffices. The reader
who wishes to understand the framework of this paper is encouraged
to begin with this application.
By the same method, we show that if ε is invertible then, regardless

of the value of δ, the homology of a rook-Brauer algebra coincides
with that of its Brauer subalgebra (Theorem 6.3). As a consequence
(Corollary 6.4), these rook-Brauer algebras inherit the stability range
for the Brauer algebras due to Boyd-Hepworth-Patzt [BHP21]. Our
first application of Theorem 1.7 is then to recover another theorem
from that paper as Theorem 6.5, namely that when δ is invertible, the
homology of the Brauer algebras coincides with that of the symmetric
groups.
For the Temperley-Lieb algebras, we recover a result of Boyd-Hepworth

as Theorem 6.6: when δ is invertible, the homology vanishes.

1.3.2. Sroka-type results. Sroka [Sro22] has proven the following, which
holds even for non-invertible δ.

Theorem 1.11 ([Sro22]). Let n be odd. Then TorTLn(δ)
q (1,1) = 0 for

q > 0.
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We are able to offer one interpretation of what this should mean
for even n. First, note that the Temperley-Lieb algebra TLn contains
diagrams having no left-to-right connections if and only if n is even,
or in other words, TLn ∩ I0 = 0 if and only if n is odd. We will prove
the following theorem, which (therefore) coincides with Sroka’s result
when n is odd.

Theorem 1.12. Let n be any positive integer. Let I0 ≤ TLn(δ) be
the twosided ideal which is free as an R-module on diagrams with no

left-to-right connections. Then Tor
TLn(δ)�I0
q (1,1) = 0 for q > 0.

From this point of view, the moral is that the significant point of
Sroka’s result is not the parity itself, but rather whether diagrams with
no connections are permitted. This is also true from the viewpoint
of Sroka’s paper, and our proof, although quite different to Sroka’s,
has echoes of some of the same basic phenomena. The ill-behaviour
of diagrams with no left-to-right connections is also familiar from the
cellular point of view, as for example in the classification of irreducible
representations of TLn over a field in [GL96, Corollary 6.8].
Boyd, Hepworth, and Patzt [BHP21] show that the homology of the

Brauer algebras is stably isomorphic to that of the symmetric groups.
They show that their result is sharp for n = 2, and ask whether it is
sharp in general. This motivates the next theorem, which is our main
new application.

Theorem 1.13. Let n be odd. Then

TorBrn(δ)
∗

(1,1) ∼= TorRΣn

∗
(1,1) =: H∗(Σn;R).

This extends the results of [BHP21], showing that in fact the iden-
tification of the homology with that of the symmetric groups holds
globally, at least when n is odd, thereby answering their sharpness
question in odd parity. As with Sroka’s theorem, Theorem 1.13 follows
immediately from a result that holds regardless of the parity of n, by
using the fact that Brn ∩ I0 = 0 when n is odd.

Theorem 1.14. Let n be any positive integer. Let I0 ≤ Brn(δ) be
the twosided ideal that is free as an R-module on diagrams with no
left-to-right connections. Then

Tor
Brn(δ)�I0
∗ (1,1) ∼= TorRΣn

∗
(1,1) =: H∗(Σn;R).

1.4. Sketch of methods. In this subsection, fix a commutative ring
R and an R-algebra A with a choice of trivial module 1. We will sketch
the proof of Theorem 4.1, which is to say, the proof of Theorem 3.3
with k = 1. This is the simplest version of our main result.
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Begin with the following observation. For I a left ideal of A, if I
is generated by commuting idempotents, then I is projective as a left
A-module, and if 1 · I = 0 then 1⊗A I = 0. Since I is projective as a
left A-module,

· · · → 0→ 0→ I → A→ A�I

is a ‘very short’ (augmented) projective resolution of A�I. These facts

suffice to show that if 1 · I = 0 then TorAq (1,
A�I) = 0 for q > 0.

If I is a twosided ideal of A, then A�I is again an algebra. If I

acts trivially on 1 in the sense that 1 · I = I · 1 = 0, then 1 becomes

an A�I-bimodule. Under these circumstances, the homology of A�I
is well-defined, and it makes sense to ask when we have a homology
isomorphism

TorA
∗
(1,1) ∼= Tor

A�I
∗ (1,1).

The above Tor-vanishing then implies that⊗A
A�I carries freeA-resolutions

of 1 to free A�I-resolutions of 1. This is the key step involved in show-

ing that Tor
A�I
∗ (1,1) and TorA

∗
(1,1) are the homology of the same chain

complex, hence are isomorphic. This concludes the sketch of the proof
of Theorem 4.1.
Taking I = A ∩ In−1, the ideal of diagrams having fewer than the

maximum number of connections, this suffices for our two simplest
applications, Theorems 4.4 and Theorem 6.3. As has been alluded to,
however, these are the only two theorems for which this simplest result
will suffice.
The sense in which reality is not usually so simple is that the gen-

erators we identify for A∩ In−1 do not usually commute. To deal with
this, we work inductively, in a sense which is precisely parallel to that
introduced by Boyd and Hepworth [BH20]: here we will outline the
sense in which each Ii is still (inductively) projective.
From our point of view, working inductively is made possible by the

observation (which occurs in the proof of Theorem 1.7) that for distinct
link states p and q having i defects, we have the inclusion Jp∩Jq ⊂ Ii−1.
The fact that every diagram has a link state amounts to a sum

Ii�Ii−1
=

∑

p∈Pi

A ∩ Jp�Ii−1
,

regarded as internal to A�Ii−1
, and the intersection condition says that

actually this sum is direct. Since a direct sum of projectives is projec-
tive, we may focus our attention on establishing (the inductive fact)
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that each A ∩ Jp�Ii−1
is either zero or principal idempotent. This often

can be shown in practice - and it is this which makes Theorem 1.7
work.
Once we know that Ii�Ii−1

is projective over A�Ii−1
, we may proceed

as before, and the resulting resolutions of A�Ii over
A�Ii−1

play pre-

cisely the same role as those constructed in [BH20] and [BHP21]. In
those papers, a spectral sequence argument is required in the induction
that then shows the Tor-vanishing, but the relative simplicity of our
resolutions eliminates the need for this.

1.5. Discussion and philosophy. This paper began life as an at-
tempt to establish homological stability for rook algebras, and became
something quite different. As such, we make no attempt at a ‘true’ ho-
mological stability result for not-necessarily invertible parameter rook
algebras - our methods do not apply.
It should not go unremarked that all of the algebras discussed here

are isomorphic to their opposite. Geometrically, this corresponds to
reflecting diagrams in the vertical. As such, all results of this paper
still hold after interchanging ‘right’ and ‘left’ everywhere.
The verification of Theorem 1.7 in this paper always goes via Lemma

6.1 (for invertible-parameter applications) or Lemma 7.6 (for Sroka-
type applications). These lemmas verify a more eigenspace-flavoured
statement, which echoes the cellular point of view, and which some
readers may find helpful.
We hope that this paper succeeds in making precise the following

morals:

• Diagram algebras come with a ‘group in the middle’ (Proposi-
tion 2.3) which is independent of the parameters, always spans
a subalgebra which is a retract, and often turns out to know all
of the homology.
• Sroka’s Theorem [Sro22] is just one instance of a class of results
(Theorems 1.14 and 1.12) which might reasonably be expected
to hold for other families of algebras.

The following ideas are borrowed from the study of the (real or com-
plex) Temperley-Lieb algebra in other areas, but all of them are appli-
cable to all of the diagram algebras we consider.

• Link states (Definition 1.4): These appear for Temperley-Lieb
algebras in [RS14], and under other names in [Kau90], [DGG97b],
and, in the context of cellular algebras, [GL96]. We repeat the
warning (Remark 1.5) that for Brauer algebras our link states
do not coincide with the cellular structure. Link states define
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the family of ideals Jp whose structural properties make possible
Theorem 1.7. There will be echoes of various related ideas from
[GL96] and [RS14], notably the cell modules/link modules, and
their inner products. We note when these parallels appear.
• Meanders [DGG97a]: We will not use this language explicitly,
but the basic idea (Lemma 7.11) needed to apply Theorem 1.7
in the proof of our generalisation of Sroka’s result (Theorem
1.12) is a procedure due to Francesco, Golinelli, and Guitter in
[DGG97a]. For us, this amounts to the possibility of making
a ‘planar Eulerian cycle’ through the edges of a given planar
link state. In their language, one says that ‘every upper arch
configuration extends to a one-component meander’. The anal-
ogous result for Brauer algebras is much simpler, and this is
ultimately the reason why the proof of Theorem 1.14 is easier.

Lastly, it seems appropriate to comment on the applicability of the
cellular point of view.

Remark 1.15. The construction of suitable idempotents is a familiar
thing in the context of cellular algebras; cellular algebras typically have
many idempotents. For example, over a field, cell ideals in König and
Xi’s sense are either square zero or are generated by an idempotent
[KX98, Proposition 4.1].
The main difficulty with applying the cellular point of view in our

context is that (assuming the language of [GL96]) the nondegeneracy-
type conditions on the bilinear forms φλ that are necessary to guarantee
the existence of suitable idempotents often fail. For example, Graham
and Lehrer show that even for their cell structure on the Brauer al-
gebra, over a field of positive characteristic, φλ typically vanishes for
at least some λ [GL96, Theorem 4.17]. This suggests that for exam-
ple even Theorem 6.5 (the invertible-parameter Brauer result of Boyd-
Hepworth-Patzt) cannot be recovered using this cellular structure.
Intuitively, then, the sensitivity of the cellular structure to the ground

ring, which was an advantage in classifying irreducibles (where one
wishes to determine for which λ the bilinear form φλ vanishes [GL96,
Theorem 3.4]) becomes a disadvantage in attempting to compute ho-
mology (where one would wish to show that each φλ satisfied some
nondegeneracy-type condition, and in particular did not vanish). Es-
pecially, results on homology of diagram algebras have tended to be
very robust to the ground ring, depending at most on whether the pa-
rameter δ is invertible, and not, for example, on whether R is a field,
so it seems likely that technology which is less sensitive to the ground
ring is more appropriate.
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1.6. Organisation. This paper is organised as follows. In Section 2
we discuss the canonical subalgebra, recording its main properties as
Proposition 2.3. This section is not much used in what follows, but
provides context for the results. In Section 3 we will prove Theorem
3.3, and deduce Corollary 3.4. These belong to pure algebra and are the
first steps towards Theorem 1.7. Theorem 3.3 is already good enough
for our applications to rook algebras, which we then give in Section 4.
In Section 5 we prove Theorem 1.7, our main result.
The remainder of the paper then deals with applications. Invertible-

parameter applications are given in Section 6: to the (rook-)Brauer
algebras in Subsection 6.1, and to the Temperley-Lieb algebras in Sub-
section 6.2. Sroka-type applications are then given in Section 7, with
applications to the (rook-)Brauer algebras in Subsection 7.2, and ap-
plications to the Temperley-Lieb algebras in Subsection 7.3. The ap-
plications are all independent of one another, though the invertible-
parameter applications all use Lemma 6.1, and the Sroka-type appli-
cations all use Lemma 7.6. They are arranged roughly in order of
increasing complexity. Many of the ideas introduced in later applica-
tions could be used in earlier ones, but we prefer to give simple proofs
where possible, invoking the more complicated definitions only when
necessary.

1.7. Acknowledgements. I would like to thank Rachael Boyd and
Richard Hepworth, for their encouragement, and for their suggestions
and comments on previous drafts. I would also like to thank Sam
Hughes for early encouragement and feedback, and Lawk Mineh and
Niall Taggart for useful conversations about organisation and presen-
tation. I would also like to thank Rachael for suggesting rook algebras,
a class which leads quite naturally to thinking in terms of idempo-
tents, and to thank Richard for giving an excellent and accessible talk
on homological stability of algebras at Ran Levi’s 60th birthday con-
ference. Thanks are therefore also due to certain bureaucratic forces
which made it possible for me to attend that conference.

2. The canonical group algebra retract

In this section we record Proposition 2.3, an observation that we
used frequently in the introduction. Recall that R is always assumed
to be a commutative ring with unit, and In−1 ≤ RBrn(δ, ε) is the ideal
with R-basis consisting of diagrams having fewer than n left-to-right
connections.
We begin with the observation that RBrn(δ, ε) contains a copy of

the group algebra of the symmetric group.



16 GUY BOYDE

Proposition 2.1. For any δ, ε ∈ R, and any n, the set Smax of rook-
Brauer n-diagrams with the maximum number n of left-to-right con-
nections forms a multiplicatively closed subset of RBrn(δ, ε). Under
the multiplication, this subset is canonically isomorphic to the symmet-
ric group Σn.

The key point is that if x and y are diagrams having the maximum
number n of left-to right connections then the product xy again has the
maximum number n of left-to-right connections. This closure property
does not hold in general for the set of diagrams having at least j left-
to-right connections - it is special to j = n.

Proof. Define a function (σ 7→ dσ) from Σn to the set of rook-Brauer
n-diagrams by assigning to σ ∈ Σn a rook-Brauer diagram dσ with
connections from each node i on the right to σ(i) on the left. This
map is an injection onto Smax, so it suffices to establish that it is a
homomorphism.
Concatenating the diagrams associated to two permutations σ, τ ∈

Σn, we see that each node j on the right of dσ is connected to σ(j) on
the left of dσ. The node σ(j) on the right of dτ is in turn connected
to τ(σ(j)) = (τ ◦ σ)(j) on the left of dτ . Hence, there is a left-to-right
connection from (τ ◦ σ)(j) to j in dτ · dσ. Since j was arbitrary, each
node on the right is attached to a node on the left.
Each node k in the middle of the concatenated diagram is connected

to τ(k) on the left, so there can be no loops, hence no factors of δ.
This establishes that the assignment σ 7→ dσ is a homomorphism, and
completes the proof. �

The intersection of two multiplicatively closed subsets of RBrn(δ, ε)
is again a multiplicatively closed subset. Thus, if some subalgebra
A of RBrn(δ, ε) has non-empty intersection with Smax, then in fact
A ∩ Smax is canonically identified with a subgroup G ≤ Σn under the
isomorphism of Proposition 2.1. In other words, we have the following
corollary.

Corollary 2.2. Let A be a subalgebra of RBrn(δ, ε), which is free on a
subset of the rook-Brauer diagrams, and contains at least one diagram
having the maximum number n of left-to-right connections. The set
of diagrams in A having the maximum number n of left-to-right con-
nections is multiplicatively closed, and canonically isomorphic to some
subgroup G ≤ Σn. �

Taking the R-span of A ∩ Smax therefore identifies a canonical sub-
algebra of A as a group algebra. This canonical group-subalgebra of A
is actually a retract, as follows.
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Proposition 2.3. Let A be a subalgebra of RBrn(δ, ε), which is free on
a subset of the rook-Brauer diagrams, and contains at least one diagram
having the maximum number n of left-to-right connections. Let Amax

denote the R-span of the diagrams in A with the maximum number n

of left-to-right connections. The following properties are satisfied:

• Amax is a subalgebra of A, and is canonically isomorphic to the
group ring RG of some G ≤ Σn.

• Amax is isomorphic to the quotient A�A ∩ In−1
, hence is a re-

tract of A.

Proof. To see the first claim, note that Amax is free on the set of dia-
grams in A having the maximum number of left-to-right connections,
hence is isomorphic to the required RG by Corollary 2.2.
To see the second claim, note that since A is assumed to be free on

a subset of the diagrams, A ∩ In−1 has R-basis those diagrams in A

with fewer than n left-to-right connections. The quotient A�A ∩ In−1

therefore has a basis given by the diagrams with precisely n left-to-

right connections, so the composite Amax → A → A�A ∩ In−1
is an

isomorphism, so Amax
∼= A�A ∩ In−1

is a retract of A, as required. �

3. Idempotents and Ideals

In this section, we will prove Theorem 3.3, and deduce Corollary
3.4, which is essentially an inductive version of the same thing. The
word ‘inductive’ here refers to the same basic phenomenon as in the
Boyd-Hepworth inductive resolutions of [BH20] and [BHP21]. These
results belongs to pure algebra, and our main result (Theorem 1.7) is
essentially the specialisation of Corollary 3.4 to diagram algebras.
In this section, R is a commutative unital ring, and all algebras

are associative and unital, but need not be augmented. The next two
lemmas are well-known (see for example [Liu02, Chapter 1, Exercise
2.4]) but we include proofs because they are quite simple.

Lemma 3.1. Let A be an R-algebra, and let e ∈ A be idempotent
(e2 = e). Then the left ideal Ae generated by e is a projective A-
module.

Proof. The point is that the sequence of left A-modules

0→ Ae→ A
·(1−e)
−−−→ A(1− e)→ 0

is split short exact. Injectivity and surjectivity are clear. To see that
the composite is zero, note that an element of Ae is of the form αe for
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α ∈ A, and idempotency of e then gives

αe · (1− e) = α(e− e2) = α(e− e) = 0.

For exactness, if α(1 − e) = 0, then α = αe lies in Ae. For splitness,
the first map is split by ·e, or alternatively the second map is split by
·(1 + e).
Splitness gives that Ae is a direct summand of (the free left A-

module) A, hence is projective, as required. �

This lemma can be strengthened to cover ideals generated by com-
muting families of idempotents, as follows.

Corollary 3.2. Let A be an R-algebra, and let J be a left ideal of A
generated by finitely many commuting idempotents e1, . . . , en. Then J

is a projective A-module.

Proof. If e1 and e2 are commuting idempotents, then e1 + e2 − e1e2 is
idempotent, and we have

e1 · (e1 + e2 − e1e2) = e1 + e1e2 − e1e2 = e1,

and

e2 · (e1 + e2 − e1e2) = e2e1 + e2 − e2e1e2 = e2e1 + e2 − e2e1 = e2.

It follows inductively that a left ideal generated by commuting idem-
potents is actually generated by a single idempotent.
The result then follows from Lemma 3.1. �

This corollary will be used to prove the next theorem, which is the
key algebraic observation underlying our main result (Theorem 1.7).

Theorem 3.3. Let A be an R-algebra, let M be a right A-module
and let N be a left A-module. Let I be a twosided ideal of A which
acts trivially on M and N , and which as a left ideal is a direct sum
I ∼= J1 ⊕ · · · ⊕ Jk. Suppose that each Ji is generated as a left ideal by
finitely many commuting idempotents. Then

TorA
∗
(M,N) ∼= Tor

A�I
∗ (M,N).

Before proving this theorem, we note that it implies the following
corollary, by taking a chain of ideals 0 = I−1 ≤ I0 ≤ I1 ≤ · · · ≤ Im ≤ A,

and ℓ ≥ 0, and supposing that for each i ≥ ℓ, the hypotheses of that

theorem hold for the image of each Ii inside A�Ii−1
.

Corollary 3.4. Let A be an R-algebra, let M be a right A-module and
let N be a left A-module. Let 0 ≤ ℓ ≤ m. Suppose that we have a chain
of twosided ideals

0 = I−1 ≤ I0 ≤ I1 ≤ · · · ≤ Im ≤ A,
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where each Ii acts trivially on M and N , and for i ≥ ℓ, as left A-
modules we have an isomorphism

Ii�Ii−1
∼= Ji,1�Ii−1

⊕ · · · ⊕ Ji,ki�Ii−1
,

for left ideals Ji,j generated by finitely many commuting idempotents
(the sum being direct means equivalently that Ji,j∩Ji,j′ ⊂ Ii−1 whenever
j 6= j′). Then

Tor
A�Iℓ−1

∗ (M,N) ∼= Tor
A�Iℓ
∗ (M,N) ∼= . . . ∼= Tor

A�Im
∗ (M,N). �

This corollary is the main result of this section: it is the algebra
underlying our main result, Theorem 1.7. The artificial asymmetry
between the roles played by ℓ and m (that the chain of ideals Ii is
assumed to be defined even when i ≤ ℓ) becomes more natural in that
theorem.

Remark 3.5. Theorem 3.3 actually implies a bit more than Corollary
3.4: the generators of the Ji,j need only commute and be idempotent
modulo Ii−1, but we will not need this extra generality.

Proof of Theorem 3.3. We will show that TorA∗ (M,N) and Tor
A�I
∗ (M,N)

are the homology of the same chain complex.
Let P∗ be a free resolution (by right A-modules) of M over A, so

that TorA∗ (M,N) is the homology of P∗ ⊗A N . We have

P∗ ⊗A N ∼= P∗ ⊗A A⊗A N

∼= (P∗ ⊗A
A�I)⊗A�I

N,

since I acts trivially on N . Since P∗ consists of free A-modules, each

Pi ⊗A
A�I
∼= (

⊕
A)⊗A

A�I
∼=

⊕
A�I

is a free (right) A�I-module. It therefore suffices to show that P∗⊗A
A�I

is a resolution of M , which is to say we must show that the homology

of this complex, which in degree q is TorAq (M,A�I), is M when q = 0
and 0 otherwise.
By Corollary 3.2, I ∼= J1 ⊕ · · · ⊕ Jk is a direct sum of projective

A-modules, hence also projective. The exact sequence A ←− I ←− 0

is therefore a (very short) projective resolution of A�I over A, so

TorA
∗
(M,A�I) is the homology of M ⊗ A ←− M ⊗ I ←− 0. Now, I

is assumed to act trivially on M , and the direct sum decomposition of
I implies that M ⊗ I is is generated by elements of the form m ⊗ ae,
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for e one of the idempotent generators of some Ji, a ∈ A, and m ∈ M .
Then we may write

m⊗ ae = m⊗ ae2 = (m · ae)⊗ e = 0,

since ae ∈ I is assumed to act trivially on M . Since M⊗I is generated
by such elements, we have M ⊗ I ∼= 0, and the result follows. �

4. Applications: The rook algebras

Recall from Definition 1.8 that the rook algebra Rn(ε) is the subal-
gebra of RBrn(δ, ε) on those diagrams having no left-to-left or right-
to-right connections. In this section we will give our first application,
Theorem 4.4: when ε is invertible, the homology of the rook algebras
coincides with that of the symmetric groups. This is the simplest ap-
plication of our framework, essentially because the idempotents we will
identify actually commute in the algebra itself, without taking succes-
sive quotients. In particular, the case k = 0 of Theorem 3.3, which we
proved in the last section, will suffice to play the role that Theorem 1.7
will play in later applications. The statement of this special case is as
follows.

Theorem 4.1. Let A be an R-algebra, let M be a right A-module and
let N be a left A-module. Let I be a twosided ideal of A which acts
trivially on M and N , and which as a left ideal is generated by finitely
many commuting idempotents. Then

TorA∗ (M,N) ∼= Tor
A�I
∗ (M,N). �

For us, I will be the ideal Rn(ε)∩In−1 of rook diagrams having fewer
than n left-to-right connections. To apply the theorem, we first have
to find some idempotents.
Let ρi be the element of Rn(ε) obtained from the identity diagram

by deleting the i-th strand, so that for example ρ2 in R5 is the diagram

For each i we have the identity ρ2i = ερi, and hence the following
lemma.

Lemma 4.2. If ε ∈ R is invertible, then ε−1ρi is idempotent. �
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Lemma 4.3. Regardless of whether ε ∈ R is invertible, the left ideal
Rn(ε) · ρi < Rn(ε) has R-basis consisting of those diagrams where the
i-th node on the right is not connected to anything on the left.

Proof. Let y be a diagram where the i-th node on the right is not
connected to anything on the left. There must be at least one vacant
node, say j, on the left of y. Let y′ be the diagram obtained by adding
a left-to-right connection from i to j. We then have y′ρi = y, so y

is contained in Rn(ε) · ρi. Since the latter is closed under R-linear
combinations, the result follows. �

We are now ready for our first application.

Theorem 4.4. Let ε ∈ R be invertible, and let Rn = Rn(ε). Let Σn

be the symmetric group, and let RΣn be the group algebra. Then

TorRn

∗
(1,1) ∼= TorRΣn

∗
(1,1) =: H∗(Σn;1).

Proof. Let I = Rnρ1 + · · · + Rnρn be the left ideal generated by the
ρi. This ideal is equivalently generated by the elements ε−1ρi. It is
directly verified that these elements commute, and they are idempotent
by Lemma 4.2. By definition I acts trivially on 1, so we may apply
Theorem 4.1 with M = N = 1, and it suffices to identify the quotient
Rn�I.
A diagram having at least one missing left-to-right connection lies in

some Rnρi ⊂ I by Lemma 4.3. It follows that I has R-basis consisting
of the diagrams with at least one missing left-to-right connection. The

quotient Rn�I then has R-basis consisting of the diagrams with no
missing left-to-right connections, which is to say (Proposition 2.3) that
Rn�I

∼= RΣn. Since this isomorphism carries the trivial module for Rn

to the trivial module for the symmetric group, this identifies the right
hand side of the isomorphism of Theorem 4.1 with the homology of the
symmetric group, completing the proof. �

5. Specialisation to diagram algebras

This section is devoted to the proof of the main result of this paper,
Theorem 1.7, which may be thought of as a specialisation of Corollary
3.4 to diagram algebras.
Recall that Ii denotes the twosided ideal of RBrn(δ, ε) with R-basis

consisting of the diagrams having at most i left-to-right connections.
Recall also that Pi denotes the set of link states with precisely i defects,
and that for p ∈ Pi, Jp denotes the left ideal of RBrn(δ, ε) which is
the R-span of diagrams having right link state obtained from p by a
(perhaps empty) sequence of splices and deletions.
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Proof of Theorem 1.7. We are given ℓ,m with 0 ≤ ℓ ≤ m ≤ n− 1, and
A, a subalgebra of RBrn(δ, ε), such that

• as an R-module, A is free on a subset of the rook-Brauer n-
diagrams, and
• for i in the range ℓ ≤ i ≤ m, whenever A contains at least
one diagram with some right link state p ∈ Pi, then A contains
an idempotent ep such that in A we have equality of left ideals
A · ep = A ∩ Jp.

We must deduce a chain of isomorphisms

Tor
A�A∩Iℓ−1

∗ (1,1) ∼= Tor
A�A∩Iℓ
∗ (1,1) ∼= . . . ∼= Tor

A�A∩Im
∗ (1,1).

We wish to apply Corollary 3.4 to the chain of twosided ideals

0 = A ∩ I−1 ≤ A ∩ I0 ≤ A ∩ I1 ≤ · · · ≤ A ∩ Im ≤ A,

where Ii is the twosided ideal of RBrn(δ, ε) with R-basis diagrams
having at most i left-to-right connections. Since A is assumed to be
generated as an R-module by a subset of the rook-Brauer n-diagrams,
A∩ Ii admits the same description: it is free as an R-module on those
diagrams in A which have at most i left-to-right connections.
Let i lie in the range ℓ ≤ i ≤ m. First note that Ii acts trivially on 1

for i ≤ n−1, so A∩Ii also does. This is the reason for the requirement
m ≤ n − 1. Note that since we assume ℓ ≥ 0, it makes sense to speak
about Iℓ−1 (under the convention that I−1 = 0).

The quotient Ii�Ii−1
has R-basis given by the diagrams with precisely

i left-to-right connections. Since every such diagram has some right
link state, we get the equality

Ii�Ii−1
=

∑

p∈Pi

Jp�Ii−1
.

Parenthetically, we note that it is only necessary to work modulo Ii−1

here because not every diagram having at most i left-to-right connec-
tions is actually obtained from one having precisely i left-to-right con-
nections by a sequence of splices and deletions (this is for the silly
reason that a splice removes two defects, thereby ‘skipping’ from i to
i − 2). Other solutions to this technical irritation are surely possible,
but we will need to work modulo Ii−1 later anyway. Thus, since A, Ii,
Ii−1 and each Jp are free on a subset of the rook-Brauer diagrams,

A ∩ Ii�A ∩ Ii−1
=

∑

p∈Pi

A ∩ Jp�A ∩ Ii−1
.
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We assumed that each A∩Jp is a principal left ideal generated by some
idempotent ep, so in particular each A∩ Jp is generated by a family of
commuting idempotents.
It remains only to show that the above sum is actually direct, that

is, that for p 6= q ∈ Pi, the intersection of A∩Jp and A∩Jq is contained
in A∩Ii−1. It suffices to show that Jp∩Jq ⊂ Ii−1: at this stage working
modulo Ii−1 really is materially important. To see this, recall that Jp is
free as an R-module on diagrams having right link state obtained from
p by a sequence of splices and deletions. Jp ∩ Jq is therefore generated
by diagrams with right link states that can be obtained from both p

and q by such a sequence, and if p and q are distinct with i defects
each of these must involve at least one splice or deletion, which reduces
the number of defects, yielding a diagram in Ii−1. This completes the
proof. �

6. Applications: Invertible parameters

The remainder of this paper treats applications of Theorem 1.7,
roughly in order of increasing complexity. In this section we give the
‘invertible-parameter’ applications.
These applications will be powered by the following lemma. Re-

call that the Brauer algebra Brn(δ) is the subalgebra of RBrn(δ, ε) on
diagrams having no missing edges.

Lemma 6.1. Let p ∈ Pi be a link state with no missing edges. Let dp
be the diagram whose left and right link states are both p, and all of
whose edges are horizontal. If y lies in Brn(δ) ∩ Jp, then

ydp = δ
1

2
(n−i)y.

In other words, Brn(δ)∩Jp is contained in the eigenspace of dp having

eigenvalue δ
1

2
(n−i). We are reassured that 1

2
(n − i) is an integer by

noticing that it is precisely the number of connections in p (we use
here the fact that p has no missing edges).

Proof. We give an illustrative example (Example 6.2) after the proof.
The reader may find it helpful to ‘carry this example along’.
First, since the multiplication is bilinear, it suffices to prove the

lemma when y is a diagram.
We will argue that the underlying diagram of ydp has all left-to-right,

right-to-right, and left-to-left connections of y, hence can differ from y

only in the possible appearance of some factors of δ. In the process,
we will see that the power of δ which appears must be the number of
connections in p.
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First consider the form y must take. Since y lies in Brn(δ), it must
have no missing edges. This means that any sequence of splices and
deletions which witnesses the fact that y lies in Jp must consist entirely
of splices. In other words, the right link state of y is obtained from p

by a sequence of splices.

(1) Each left-to-right connection of y must be at a defect in p, hence
connects to a horizontal connection in dp. Therefore, each left-
to-right connection of y occurs in the product ydp.

(2) The product ydp retains all left-to-left connections from y, be-
cause these do not interact with the multiplication.

(3) A right-to-right connection in y may or may not already appear
in p:
(a) A right-to-right connection in y not appearing in p must

connect two nodes which are defects in p, since y is obtained
from p by a sequence of splices. By definition dp contains
two horizontal connections at these heights, so the result
in ydp is precisely this right-to-right connection.

(b) A right-to-right connection in p must also occur as a right-
to-right connection in y. Since dp has left link state p, the
instance of this connection in the left link state of dp and
the one in the right link state of y must form a loop, hence
contribute a factor of δ.

This completes the proof. �

Example 6.2. For illustration, we give an example of the equation

ydp = δ
1

2
(n−i)y.

We let

p = , so that dp = ,

and suppose that we are given

y = ∈ Brn(δ) ∩ Jp.
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Note that the right link state of y is obtained from p by only a single
splice. Note also that 1

2
(n− i) = 1

2
(5− 3) = 1. We can now compute:

· = = δ·

6.1. The (rook-)Brauer algebras. Recall from Definition 1.9 that
the Brauer algebra Brn(δ) is the subalgebra of RBrn(δ, ε) on diagrams
having no missing edges.
Consider first the full rook-Brauer algebra RBrn(δ, ε). First, if ε is

invertible, notice that the same analysis as for the rook algebra applies:
we still have the elements ρi of Section 4, and applying Theorem 4.1
to the twosided ideal they generate immediately gives the following
theorem.

Theorem 6.3. If ε ∈ R is invertible, then (for any δ ∈ R) we get

TorRBrn(δ,ε)
∗

(1,1) ∼= TorBrn(δ)
∗

(1,1). �

Boyd, Hepworth, and Patzt [BHP21] have proven homological sta-
bility for Brn(δ). Combining their result with Theorem 6.3 gives the
following corollary.

Corollary 6.4. If ε ∈ R is invertible, then, for any δ ∈ R, the stabili-
sation map

TorRBrn−1(δ,ε)
q (1,1)→ TorRBrn(δ,ε)

q (1,1)

is an isomorphism for n ≥ 2q + 1. �

We can also use Theorem 1.7 to recover the following result of Boyd,
Hepworth, and Patzt.

Theorem 6.5 ([BHP21]). If δ ∈ R is invertible, then

TorBrn(δ)
∗ (1,1) ∼= TorRΣn

∗ (1,1).

Proof. Since Brn = Brn(δ) is free as an R-module on a subset of the
rook-Brauer diagrams, we may attempt to apply Theorem 1.7 with
ℓ = 0 and m = n − 1. This will give the correct conclusion, since
Brn�Brn ∩ In−1

∼= RΣn.

Let i lie in the range 0 ≤ i ≤ n− 1. Let p ∈ Pi be a link state with
i defects, that actually occurs as the right link state of some diagram
in Brn. This means precisely that p has no missing edges. We must
construct an idempotent ep which generates Brn ∩ Jp as a left ideal.
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Let dp be the diagram whose left and right link states are both p,
and all of whose edges are horizontal. Lemma 6.1 (with y = dp) gives

(dp)
2 = δ

1

2
(n−i)dp, so ep = δ−

1

2
(n−i)dp is an idempotent.

We must establish the equality of left ideals Brn · ep = Brn ∩Jp. The
inclusion Brn · ep ⊂ Brn ∩ Jp follows immediately, since ep lies in Jp by
construction. To see the reverse inclusion, let y ∈ Brn ∩ Jp. Lemma

6.1 gives that ydp = δ
1

2
(n−i)y, so yep = y, and so y lies in Brn · ep.

Thus, Brn ∩ Jp = Brn · ep, and the result follows. �

6.2. The Temperley-Lieb algebras. Recall that the Temperley-Lieb
algebra TLn(δ) is the subalgebra of Brn(δ) ⊂ RBrn(δ, ε) on planar
diagrams (having no missing edges).
First, note that the analogue of Theorem 6.3 does not hold here (at

least, it does not hold for the same reason). Namely, letting the rook-
Temperley-Lieb algebra RTLn(δ, ε) be the subalgebra of RBrn(δ, ε) on
the planar diagrams (i.e. we now allow missing edges), we see that not
every rook-Temperley-Lieb diagram can be ‘extended’ to a Temperley-
Lieb diagram by adding edges, since this might violate planarity. Here
is one of the two simplest possible examples of such a diagram, which
occurs in RTL2:

This means that the rook-Temperley-Lieb algebra is not generated
by its Temperley-Lieb subalgebra plus the elements ρi, so the key ob-
servation that powered the proof of Theorem 6.3 fails in this context.
On the other hand, we are able to recover the following result of

Boyd and Hepworth, which is the analogue of Theorem 6.5.

Theorem 6.6 ([BH20]). If δ ∈ R is invertible, then TorTLn(δ)
q (1,1) = 0

for q > 0.

What follows is essentially the same as the proof of Theorem 6.5,
except that we have to say everything a little more carefully to ensure
planarity.

Proof. Since TLn = TLn(δ) is free as an R-module on a subset of the
rook-Brauer diagrams, we may attempt to apply Theorem 1.7, with
ℓ = 0 and m = n − 1. This will give the correct conclusion: the
only TLn-diagram having n left-to-right connections is the identity, so
TLn�TLn ∩ In−1

∼= R.

Let p ∈ Pi be a link state with i defects, occurring as the right link
state of some diagram in TLn. This means that p has no missing edges
and that none of its defects lie inside the arc of any of its connections.
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We must construct an idempotent ep which generates TLn∩Jp as a left
ideal.
Take dp to be the diagram whose left and right link states are both

p, with all edges horizontal. Since no defects of p lie inside the arc of
any of its connections, dp is planar, and gives a diagram in TLn.

By Lemma 6.1, (dp)
2 = δ

1

2
(n−i)dp, so setting ep = δ−

1

2
(n−i)dp gives

an idempotent. We must now show that TLn · ep = TLn ∩ Jp. The
inclusion TLn · ep ⊂ TLn ∩ Jp follows immediately, since ep lies in Jp

by construction, and the reverse inclusion again follows by applying
Lemma 6.1 to an arbitrary y ∈ TLn ∩ Jp. It is important here that

in the equation ydp = δ
1

2
(n−i)y, the y appearing on the left is planar

(though this is somewhat tautological) because this shows that y lies
in the left TLn-span (rather than just the Brn-span) of dp, hence of ep.
We are therefore done by Theorem 1.7. �

7. Applications: Sroka-type theorems

In this section, we prove Theorem 1.12 and Theorem 1.14. The basic
pattern is as in the last section, but we now use Lemma 7.6 to verify
the hypotheses of Theorem 1.7, in place of Lemma 6.1. The extra
complexity in this lemma is because we are no longer assuming that δ
is invertible - we must now avoid producing factors of δ, because we
can no longer just rescale to get rid of them.

7.1. Double and sesqui- diagrams. Given two diagrams x and y,
the first step in computing the product x · y is to concatenate the
two diagrams. We introduce the following ad hoc language, which
will be useful for discussing these ‘concatenated, but not yet resolved’
diagrams, and will help in making some of the proofs rigorous.

Definition 7.1. Given diagrams x and y, the double diagram (x, y)
consists of three columns of n nodes, having x as its left half, and y

as its right half. In other words, we think of x and y as graphs, and
identify the right hand column of nodes in x with the left hand column
of nodes in y.
We will write, counting from top to bottom, l1, . . . ln for the nodes

on the left, m1, . . .mn for the nodes in the middle, and r1, . . . rn for the
nodes on the right. Intrinsically, we think of the double diagram as a
choice of a set of edges connecting this fixed set of nodes. For nodes

u, v ∈ {l1, . . . ln, m1, . . .mn, r1, . . . rn},

we write
u ∼

x,y
v
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if there is a sequence of edges in the double diagram (x, y) connect-
ing u and v. The relation ∼

x,y
is an equivalence relation on the set of

symbols {l1, . . . ln, m1, . . .mn, r1, . . . , rn}, and this equivalence relation
determines the algebra product xy.

Example 7.2. In Br7, if

x = and y =

then the double diagram formed from x and y is

l1
l2
l3
l4
l5
l6
l7

r1
r2
r3
r4
r5
r6
r7

m1

m2

m3

m4

m5

m6

m7

The equivalence classes under the relation ∼
x,y

are

l1 ∼ m5 ∼ r3, l2 ∼ m1 ∼ m4 ∼ m7 ∼ r6,

l3 ∼ l7, l5 ∼ l6, r1 ∼ r5, r4 ∼ r7, and m2 ∼ m3.

Ridout and Saint Aubin [RS14] give a geometric action of Temperley-
Lieb diagrams on link states, and extend this to an action of the
Temperley-Lieb algebra on the formal R-linear combinations of link
states. They call this module the link module, and it coincides with
the cell module W (λ) defined by Graham and Lehrer [GL96]. We will
not use either machinery explicitly, but the same ideas will always be
in the background - recall especially that for the Brauer algebra our
definitions do not coincide with the cellular ones (Remark 1.5). In
particular, the definitions of those papers explain what kind of mul-
tiplication the sesqui-diagrams of the next definition are intended to
describe.

Definition 7.3. [RS14] Let e be a diagram, and let p be a link state.
The sesqui-diagram (p, e) has nodesm1, . . . , mn, and r1, . . . , rn, thought
of as arranged in two vertical columns, and edges as follows.



IDEMPOTENTS AND HOMOLOGY OF DIAGRAM ALGEBRAS 29

We think of p as a right link state, and embed it by mapping its
nodes to the mj . We embed e by mapping its left hand nodes to the
mj and its right hand nodes to the rj.

Example 7.4. In Br7, if

p = and e =

then the sesqui-diagram formed from x and y is
r1
r2
r3
r4
r5
r6
r7

m1

m2

m3

m4

m5

m6

m7

Unsurprisingly, we think of sesqui-diagrams as being obtained from
double diagrams by restricting the left half to its right link state. Pre-
cisely, if x and y are diagrams, and let p is the right link state of x,
then the double diagram (x, y) extends the defects from the sesqui-
diagram (p, y) to edges, which terminate on the left hand side of the
embedded copy of x. Relative to ∼

p,y
, the equivalence relation ∼

x,y
has

extra equivalence classes (each of cardinality 2, coming from left-to-left
connections in x) and each left-to-right connection in x enlarges one of
the equivalence classes of ∼

p,y
by appending a single lj. In particular, we

have the following proposition.

Proposition 7.5. Let x and y be diagrams, and let p be the right link
state of x. The restriction of the equivalence relation ∼

x,y
to the nodes

{m1, . . . , mn, r1, . . . , rn} is precisely ∼
p,y
. �

The next lemma will be used to prove both of the results of this sec-
tion, Theorems 1.12 and 1.14. It give diagrammatic conditions under
which a property stronger than the input to Theorem 1.7 holds.

Lemma 7.6. Let p ∈ Pi be a link state. Suppose that e ∈ Brn(δ)
satisfies the following properties:

(1) e has right link state p,
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(2) rj ∼
p,e

mj whenever p has a defect at node j, and

(3) for each j, there exists some k with mj ∼
p,e

rk.

Then ye = y for all y ∈ Jp.

Proof. We must show that the underlying diagram of ye is just y, and
that the multiplication produces no factors of δ. We will show the
equivalent statement that the double diagram (y, e) has all of the con-
nections of y, and no loops.
The right link state of y is obtained from p via a sequence of splices.

The equivalence relation on the set of nodes {m1, . . . , mn, r1, . . . , rn}
obtained by restricting ∼

y,e
is therefore stronger than ∼

p,e
by Proposition

7.5. In other words, nodes connected in the sesqui-diagram (p, e) are
connected in the double diagram (y, e). We will use this fact frequently
and without comment in the rest of the proof.
Consider some node rj (1 ≤ j ≤ n) on the right of the double

diagram (y, e). We will argue that rj must be attached to the same
place in (y, e) as it is in y.

• If j is connected to some node k 6= j via a right-to-right con-
nection in y, then we must show that rj ∼

y,e
rk. There are two

cases to consider.
– If p does not have a defect at height j, then j is already
connected to k in e. By Property (1), e has right link state
p, so rj ∼

p,e
rk, so rj ∼

y,e
rk, as required.

– If p has a defect at height j, then by assumption, rj ∼
p,e

mj ,

and j is one of the ‘extra’ right-to-right connections that
occurs in y but not in p. In particular, the node k on the
right of y to which j is connected must also be a defect in
p, so rk ∼

p,e
mk. Thus, rj ∼

y,e
mj ∼

y,e
mk ∼

y,e
rk, as required.

• If j is connected to some node k via a left-to-right connection
in y (necessarily with k on the left), then we must show that
lk ∼

y,e
rj. Now, j is a defect in the right link state of y, so since

the right link state of y is obtained from p by a sequence of
splices, j must also be a defect in p. By Property (2), we have
rj ∼

p,e
mj , so rj ∼

y,e
mj , so rj ∼

y,e
mj ∼

y,e
lk, where the last step uses

that k is connected to j via a left-to-right connection in y, as
required.

Thus, nodes on the right are attached to the same place in y as they
are in (y, e). This means that y and (y, e) have the same left-to-right
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and right-to-right connections. Since (y, e) automatically retains all
left-to-left connections from y, the two have the same connections, and
it remains only to check that there are no loops.
A loop in (y, e) must only pass through nodes from among the middle

nodes mj, since these are the only nodes that can have valence greater
than one. It therefore suffices to establish that each middle node in
(y, e) is connected to some left or right node, and Property (3) says
that in fact each middle node is connected to a right node, as required.
This completes the proof. �

7.2. Proof of Theorem 1.14. This subsection is devoted to the proof
of Theorem 1.14. The plan is to prove Lemma 7.7, which will give us
the input to Lemma 7.6, which in turn feeds Theorem 1.7.

Lemma 7.7. Let p ∈ Pi be a link state with no missing edges, and
at least one defect (i ≥ 1). There exists a diagram e = ep ∈ Brn(δ)
satisfying Properties (1)-(3) of Lemma 7.6.

Remark 7.8. In the language of [RS14], the proof will also show that
in the link module we have pep = p. In interpreting this statement,
beware that our generalisation of the link module to the Brauer algebra
is not the cellular one.

Proof. We will build the desired diagram p ‘in situ’. Form a ‘partial
sesqui-diagram’, with p as the link state part, and p as the right link
state of the diagram part, which is otherwise left blank. Below we
illustrate an example in Br7, which we will carry along through the
proof:

We now complete the right half of the sesqui-diagram to an diagram
ep which will have the desired properties. Note that Property (1) is
already satisfied, because we have fixed the right link state of ep.
First, extend all but one of the defects of p to horizontal edges (this

is a laziness that will not be possible in the Temperley-Lieb case).
This almost ensures Property (2): namely, we see that rj ∼

p,e
mj in the

sesqui-diagram at all defects but one, which we call j0 (the existence
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of this defect is where we use the assumption i ≥ 1). For our example,
choosing the top and bottom defects, we get:

Choose an order on (and orientations on) the (right-to-right) con-
nections in the left half of the sesqui-diagram. Add edges to ep that
connect them together in the chosen order (and orientation). For our
example, there is only a single connection to choose:

This joins the edges in the middle of the diagram into a single con-
nected component (making a ‘Eulerian cycle’), and leaves the two ends
of the sequence as-yet unconnected in the right half of the double dia-
gram. In fact, the only nodes in the right half of the double diagram
that remain unconnected are these two ends, together with rj0, and
mj0.
To complete, connect one end of this sequence to rj0 and connect the

other to mj0 (it does not matter which way round):

The result is that in the double diagram, rj0 is connected to mj0

(establishing Property (2) in the only remaining case, j = j0) via the
sequence of edges in the middle. To see that each nodemj in the middle
is connected to one on the right and establish Property (3), note that
such a node is either at a height j 6= j0 where p has a defect, hence
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is connected directly to rj, or occurs as part of the ‘Eulerian cycle’ of
edges, hence is connected to rj0. This completes the proof. �

With Lemma 7.7 in hand, the proof of Theorem 1.14 proceeds just
like that of Theorem 6.5, except that we must take ℓ = 1 in Theorem
1.7.

Proof of Theorem 1.14. Since Brn(δ) is free as an R-module on a subset
of the rook-Brauer diagrams, we may attempt to apply Theorem 1.7
with ℓ = 1 and m = n− 1. This will give the correct conclusion, since

Iℓ−1 = I0, and
Brn(δ)�Brn(δ) ∩ In−1

∼= RΣn.

To verify the hypothesis of that theorem, take i in the range 1 ≤ i ≤
n − 1. Each link state with no missing edges occurs as the right link
state of some Brauer diagram, so we must take p ∈ Pi with no missing
edges, and find an idempotent ep generating Brn(δ)∩Jp as a left ideal.
Let ep be the diagram given by Lemma 7.7. By Lemma 7.6 with

y = ep, the diagram ep is idempotent. Now, the left ideal generated by
ep is in particular closed under R-linear combinations, and Brn(δ)∩Jp is
free on a basis of diagrams, so it suffices to show that for each diagram
y in Brn(δ) ∩ Jp, there exists x in Brn(δ) such that xep = y, but by
Lemma 7.6, taking x = y satisfies this equation. This completes the
proof. �

7.3. Proof of Theorem 1.12. We will proceed essentially the same
way as in Subsection 7.2: we still use Theorem 1.7, and we still use
Lemma 7.6, but now we use Lemma 7.12 in place of Lemma 7.7.
Roughly, we do the same thing, only now we have to be substantially
more careful, in order to avoid violating planarity. We will ‘fill in the
edges’ in Lemma 7.12 by an argument where we first solve a ‘local’
problem (Lemma 7.11) and then argue that this gives a solution of the
‘global’ problem (Lemma 7.9).
Many proofs of Lemma 7.12, at varying levels of rigour, appear to

be possible, and many of them are great fun - the reader may enjoy
trying to find their own proof.
We will say that a link state is planar if it occurs as the right link

state of a Temperley-Lieb diagram, or equivalently if it has no missing
edges and no defect lies inside the arc of any connection. A link state
is planar if and only if it occurs as the link state of a planar diagram.
Let p be a planar link state with i ≥ 1 defects, and let di be the i-th

defect. Since no connection may cross a defect, setting aj = dj+1 for
j = 1, . . . , i−1 verifies the following proposition (which typically holds
with many other choices of aj).
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Proposition 7.9. Let p be a planar link state with i ≥ 1 defects at
nodes d1 < d2 < · · · < di. There exist there exist nodes 1 = a0 < a1 <

· · · < ai = n+ 1 in the set {1, . . . , n + 1}, such that

(1) The j-th defect dj lies in the interval [aj−1, aj), and
(2) there are no connections between intervals [aj−1, aj) and [ak−1, ak)

for j 6= k. �

In words, the intervals [aj−1, aj) give a partition of the set {1, . . . , n}
into i sets consisting of consecutive numbers, each containing a single
defect, and such that there are no connections between these sets.
Given link states p and q, we may form the juxtaposition of p and q.

This is a graph with n nodes, arranged vertically, with the connections
of p on the left, and the connections of q on the right. This is the graph
involved in the inner product of [RS14] (equivalently, since we are now
discussing the Temperley-Lieb algebra, in Graham and Lehrer’s [GL96]
inner product φλ on the cell module W (λ)), though again we will not
use this technology explicitly.

Example 7.10. In TL7, if

p = and q =

then the juxtaposition of p and q is the graph

A statement equivalent to the next lemma was proven in [DGG97a].

Lemma 7.11. Let p be a planar link state with no defects and no
missing edges. There exists a planar link state q with two defects and
no missing edges, such that the juxtaposition of p and q consists of a
single connected component.

Proof. Let p be a planar link state with no defects and no missing
edges. In [DGG97a] it is shown (in the argument beginning at Fig. 21
and justifying Equation 6.30) that there exists a planar link state q′
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with no defects and no missing edges, such that the juxtaposition of
p and q′ consists of a single loop: in their language ‘every upper arch
configuration may be extended to a one-component meander’.
This link state q′ must have some connection that is not inside the arc

of any other (the one connected to the top node will do, for example).
We may cut this connection to form a pair of defects (performing the
inverse of a splice), and since it is not inside the arc of any other
connections, this does not violate planarity. The resulting link state q

has the required properties. �

Lemma 7.12. Let p ∈ Pi be a planar link state with no missing edges,
and at least one defect (i ≥ 1). There exists a diagram ep ∈ TLn(δ)
satisfying Properties (1)-(3) of Lemma 7.6.

Proof. For given p, we must construct ep such that

(1) ep has right link state p,
(2) rj ∼

p,ep
mj whenever p has a defect at node j, and

(3) for each j, there exists some k with mj ∼
p,ep

rk.

As in the proof of Lemma 7.7, form the partial sesqui-diagram with
p on the left, and an otherwise-blank diagram having p as its right link
state (to be completed to ep) on the right. We will argue similarly
to Lemma 7.7, now also ensuring that we do not add any intersecting
connections. Below we illustrate an example from TL15, which we will
carry along through the proof

The goal is to complete the edges of ep so that between them the
defects make a ‘Eulerian multi-cycle’ through all of the edges on the
left. As before, this will automatically satisfy Property (1).
We first establish ‘spheres of influence’ for each of the defects, so

that each can be treated separately. Let d1 < · · · < di be the positions
of the defects. By Proposition 7.9, since i ≥ 1, there exist integers
0 = a0 < · · · < ai = n+ 1 such that

(1) The j-th defect dj lies in the interval [aj−1, aj), and
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(2) there are no connections between intervals [aj−1, aj) and [ak−1, ak)
for j 6= k.

We will call the interval [aj−1, aj) the garden belonging to the j-th defect.
For our example, i = 3, and we might get a0 = 1, a1 = 2, a2 = 7, a3 =
16. Adding dotted lines to indicate the boundaries between gardens,
this produces:

Each defect dj may be strictly internal to its garden, or may lie at
one end of it. The nodes in [aj−1, aj) that lie above the defect in the
diagram (hence have numbers smaller than dj) will be called dj’s front
garden, and those that lie below dj will be called dj’s back garden. For
any given j, it is possible that one or both of the gardens are empty.
Fix j. The edges in each of dj’s front garden (if non-empty) and

back garden (if non-empty) are a link state on a subset of the nodes,
by construction having no defects. Apply Lemma 7.11 to each of these
‘local’ link states, and add the resulting link state to the right hand
side of ep. This adds edges to each garden so that the existing edges
are connected into a single component (‘Eulerian cycle’) and so that
two nodes are left, neither lying inside the arc of any of the new edges.
For the front garden, call these nodes f0 < f1, and for the back garden
call them b0 < b1. For the example (performing this step for each j)
this might look as follows:

We will now connect the left and right nodes at height dj via a
‘Eulerian cycle through both gardens’. Because one or both gardens
may be empty, a case division is necessary.
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• If gardens are empty, then add a single horizontal connection
at height dj.
• – If only the front garden is non-empty, then connect the

right-hand instance of dj to f0, and connect f1 to the left-
hand instance of dj. Because f0 < f1, these two connec-
tions do not intersect.

– If only the back garden is non-empty, then connect the
right-hand instance of dj to b1, and connect b0 to the left-
hand instance of dj. Because b0 < b1, these two connections
do not intersect.

• If both gardens are non-empty, then connect the right-hand
instance of dj to b1, connect b0 to f0, and connect f1 to the left-
hand instance of dj. One the left, we have f0 < f1 < dj < b0 <

b1. Because b1 is the largest, the horizontal connection from j

to b1 does not intersect either of the two left-to left connections.
Because f0 < f1 < dj < b0, the two left-to-left connections (are
nested and) do not intersect.

In the example, applying these steps to each garden gives:

We have now finished the construction of ep.
All nodes in the right hand half of the sesqui-diagram have now been

connected to something, so ep is a diagram with no missing edges. By
Lemma 7.11, the above procedure connects the left- and right-hand
instances of dj for each j, establishing Property (2), and each edge
from p on the left of the sesqui-diagram is strictly internal to the garden
belonging to some dj, hence, again by Lemma 7.11, lies on the path
between the two instances of dj, establishing Property (1).
It remains to establish planarity. We must argue that no pair of

connections in ep intersects. We will break into cases, based on the
fact that each connection is either left-to-left, right-to-right, or left-to-
right.

• No right-to-right connection in ep may intersect another (right-
to-right or left-to-right) connection, because we began with the
planar link state p.
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• No pair of left-to-right connections may intersect, because each
defect dj is connected to a node in its own garden(s), and if
j < k then the garden(s) of dj lie strictly above the garden(s)
of dk.
• If a left-to-right connection (from, say, defect dj on the right) in-
tersects a left-to-left connection, then the left-to-left connection
must lie in dj’s own garden, but dj is connected to either b0, f1,
or to the left-hand instance of dj , and none of these points lies
inside the arc of any of the left-to-left connections produced by
Lemma 7.11. The remaining left-to-left connections are those
among the two instances of dj, the fi and the bi, and we estab-
lished during the construction that these do not intersect the
horizontal connection.
• If two left-to-left connections intersect, then they must belong
to the same garden. The connections strictly internal to the
front and back gardens are those produced by Lemma 7.11,
which do not intersect by that lemma. We established during
the construction that the left-to-left connections among the two
instances of dj, the fi and the bi do not intersect one another,
and these do not intersect any of the other left-to-left connec-
tions by Lemma 7.11.

This establishes that ep is planar, and completes the proof. �

We now prove Theorem 1.12.

Proof of Theorem 1.12. Since TLn(δ) is free as an R-module on a sub-
set of the rook-Brauer diagrams, we may attempt to apply Theorem
1.7 with ℓ = 1 and m = n − 1. This will give the correct conclusion,

since Iℓ−1 = I0, and
TLn(δ)�TLn(δ) ∩ In−1

∼= R.

To verify the hypothesis of that theorem, take i in the range 1 ≤ i ≤
n−1. The algebra TLn(δ) contains diagrams possessing each right link
state that is planar and has no missing edges, so we must take such
a p ∈ Pi, and find an idempotent ep generating TLn(δ) ∩ Jp as a left
ideal.
Let ep be the diagram given by Lemma 7.12. By Lemma 7.6 with

y = ep, the diagram ep is idempotent. Now, the left ideal generated by
ep is in particular closed under R-linear combinations, and TLn(δ)∩Jp

is free on a basis of diagrams, so it suffices to show that for each diagram
y in TLn(δ) ∩ Jp, there exists x in TLn(δ) such that xep = y, but by
Lemma 7.6, taking x = y satisfies this equation. This completes the
proof. �
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