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A detailed comparison is made between different viewpoints on reversible heating in electric double
layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat
equation, first studied by d’Entremont and Pilon [J. Power Sources 246, 887 (2014)], recovers the
temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113,
268501 (2014)], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765
(2006)] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors
contains information on electric double layer formation that has remained largely unexplored.
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With the relation between heat and entropy formulated by
Clausius in 1855, and with the establishment of the impor-
tance of ion entropy to the electric double layer (EDL) by
Gouy (1910) and Chapman (1913) [1], almost a century
passed before reversible, adiabatic heating and cooling was
measured in electric double layer capacitors (EDLCs) [2].
Unlike irreversible Joule heating, occurring everywhere in
the electrolyte when an EDLC is charged at finite currents, it
turns out that the sources of reversible heating are located
only within the nanometer-range vicinity of the electrode’s
surface. Therefore, one needs EDLCs whose surface-to-
volume ratio is as high as possible to notice an appreciable
reversible temperature variation. This has become possible
and relevant in recent years because electrodes can now be
manufactured from porous carbonwith internal surface areas
up to 2000 m2 g−1. Electrolyte-filled supercapacitors made
from these electrodes are characterized by a high capaci-
tance, fast (dis)charging rates, and high cyclability [3]. These
favorable properties have sparked a huge scientific interest in
supercapacitors in recent years, and led to various applica-
tions [4–8]. The performance of supercapacitors for energy
storage usually suffers, however, from increased temper-
atures causing aging of materials, increased internal resis-
tance, decreased capacitance, parasitic electrochemical
reactions, and self discharging [9–11]. Efforts were therefore
made both in experiments [2,10–13] and modeling [14–17]
to gain insight in the thermal behavior of supercapacitors.
However, a unified understanding of reversible heating
effects occurring during EDL buildup is still lacking, and
thermal response to charging has not yet been fully exploited.
This Letter for the first time quantitatively reconciles two
viewpoints on reversible heating.Within the thermodynamic
viewpoint, two distinct identities for isentropic processes
are discussed, only one of which (we show) agrees with the
other, kinetic, viewpoint.
For the thermodynamic viewpoint, consider an EDLC on

which a potential is imposed by connecting it to a battery.

The electrodes then obtain surface charges which are
screened by diffuse clouds of counterionic charge (see
Fig. 1), hence the ionic configuration entropy decreases.
For a thermally insulated capacitor that is charged quasis-
tatically, thermodynamics demands via the second law
(dS ¼ 0) that this decrease is counterbalanced by an
electrolyte entropy increase: the EDLC heats up. Upon
quasistatic adiabatic discharging the opposite happens:
while the EDL breaks down, the electrolyte cools.
Experimental observations of reversible heating in an
EDLC were first reported in Ref. [2] (and later in
Refs. [12,13]). Here, the EDL buildup was described
theoretically as an isentropic compression of an ideal
gas. While this model correctly captures the exchange
between configuration and momentum contributions to the
fixed phase space volume, it completely ignores the long-
range Coulomb interactions among the constituent par-
ticles. An alternative expression not hinging on ideal-gas
reasoning was proposed by the current authors in Ref. [5]
[and repeated here in Eq. (2)]. Interestingly, there are
many well-established examples of isentropic temperature
changes which are governed by equations analogous to
Eq. (2), e.g., the magnetocaloric [18], the electrocaloric
[19], and the Joule-Gouge effect [20].

FIG. 1. Slow charging of a thermally insulated EDLC reduces
the ionic configuration entropy Sions and thereby causes a rise in
the temperature T of the electrolyte (solvent not shown). Upon
discharging an opposite cooling effect is observed.
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The kinetic viewpoint on heat production in the EDL can
be traced back to Verwey and Overbeek [21] who stated
for EDL discharging that “..the counter ions must diffuse
more and more back into the solution. This diffusion occurs
against electric forces... The energy needed to raise the
electric energy of these ions must be taken up from the
surrounding ions and molecules, and is delivered as kinetic
energy from the thermal motion of the latter.” A thermally
insulated EDLC therefore cools upon discharging. This
exchange between electric energy and heat is captured in
the internal energy balance [see Eq. (7)] as the inner
product I · E of the ionic current I and the electric field
E [22–24]. In bulk electrolytes ions respond Ohmically to
an imposed electric field [see Eq. (6)]: the electric field
drives a current that is proportional to and aligned with this
field. Hence, I ·E ∼ I2 > 0 in the bulk, such that electric
energy is irreversibly transferred to the internal energy of
the fluid, also known as Ohmic losses or Joule heat. In
general, however, the direction of particle fluxes is set by
the gradient of the electrochemical potential, which, next to
the gradient in electric potential, also contains the gradient
of the local ion density. In regions of strong concentration
gradients it is therefore possible that the ionic current
opposes the electric forcing (I · E < 0), giving rise to
localized cooling [14,24,25]. Since the sources of the
reversible heating are located only in the EDL, the resulting
temperature variations are more pronounced in supercapa-
citors that have a large surface-to-volume ratio. However,
while supercapacitors have a highly intricate pore structure,
this Letter focuses for illustration purposes on a parallel
plate EDLC as it already captures the essential physics.
Capturing ionic currents within a modified Poisson-Nernst-
Planck model, we show that the heat equation recovers the
prediction of Eq. (2) in the limit of slow charging, thereby
reconciling the thermodynamic and kinetic viewpoints.
The ideal-gas reasoning, often used for illustration pur-
poses [9,11,14], or even to fit to experiments [13,15],
cannot reproduce the adiabatic temperature change.
Consider a thermally insulated container with two planar

parallel electrodes separated by an (incompressible) 1∶1
electrolyte of dielectric constant ϵ (Fig. 1). The electrolyte
consists of 2N ¼ Nþ þ N− ions and Ns solvent (s) mol-
ecules, and occupies a volume Vel ¼ AL, where L is the
electrode separation, and A the large surface area of each of
the electrodes. An external battery imposes the potential Ψ
and −Ψ to the ideally polarizable electrodes, leading to
opposite surface charges Q and −Q with corresponding
surface charge densities �eσ ¼ �Q=A, where e is the
proton charge. The coordinate z runs perpendicular to the
plates from z ¼ 0 to z ¼ L. At finite potentials, ionic
density profiles ρ�ðzÞ are inhomogeneous because an
EDL is formed to screen the surface charge. The bulk
salt concentration is defined in the uncharged state as
ρ0 ¼ N=Vel. Since the dielectric constant ϵðT; ρ0Þ depends
in general on both T and ρ0, the Bjerrum length

λB ¼ e2=ϵkBT, with kB the Boltzmann constant, could
vary through the system. We choose to ignore this
dependence henceforth and focus on aqueous electrolytes
at fixed ϵ. We ignore convective fluid flow and (implicitly)
assume a fixed atmospheric pressure p.
An approximate expression for the reversible temperature

rise upon electrode charging was proposed in Ref. [2] where
the adiabatic EDL buildup was described as the isentropic
compression of 2N ideal-gas particles, from the complete
electrolyte volume Vel ¼ AL to two microscopic layers of
thickness λ and volume Vλ ¼ Aλ. The reversible temper-
ature rise, from the initial low temperature TL to the final
high temperature TH, is then easily found by evaluating the
total differential of the entropy SðT;VÞ, depending here on
thevolumeV that varies betweenVel andVλ, which results in

ln
TH

TL
¼ 2N kB

ϱcpVel
ln
L
λ
; ð1Þ

with the specific heat capacity cx ≡ Tð∂S=∂TÞx=ϱVel at a
general fixed variable x, and ϱ the electrolyte mass density.
The authors of Ref. [2] inserted EDL characteristics via a
Helmholtz model where the numberN ¼ N H ions involved
in the adsorption process scales linearly with the surface
charge as N H ¼ Aσ. Moreover, these ions are confined
to a layer of fixed width independent of temperature and
salt concentration. A first step towards the inclusion of ion
interactions can be made by employing Gouy-Chapman
results instead. The number of adsorbed ions is then N ¼
N GC, with N GC=A¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2þσ̄2

p
−σ̄, where σ̄ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ0=πλB
p

,
and the EDL width is characterized by the Debye length
λ ⇒ λD ≡ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πρ0λB
p Þ−1; i.e., λ in Eq. (1) depends on T and

ρ0 [26]. Moreover, ρ0 itself depends on the surface charge
since the relation N ¼ ρ0Vel þN needs to be obeyed for
canonical (fixed N) charging.
Alternatively, we now describe the EDLC in terms of

themacroscopic variables temperature, charge, andpotential
from the start. The entropy SðT;QÞ and the potential
ΨðT;QÞ are then functions of the independent variables
Q and T. Since no heat δQ flows through the adiabatic
walls of our system, the first law of thermodynamics dU ¼
δQþ δW simplifies and the internal energy is solely
affected by electrostatic work δW performed on the system
by the external battery; hence, dU ¼ δW ¼ 2ΨdQ. The
temperature change due to an isentropic change of surface
charge now follows from the total differentialdSðT;QÞ ¼ 0.
Employing a Maxwell relation we find

d lnT ¼ 2

ϱcQL

�∂Ψ
∂T

�
Q
edσ: ð2Þ

For aqueous electrolytes at moderate ion concentration
the heat capacity of the water molecules dwarfs the heat
capacity of the ions. At isobaric conditions this means
cQ ≈ cp, with cp the specific heat capacity of the solvent.
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As ð∂Ψ=∂TÞQ in general depends nontrivially on bothQ
and T, we need to integrate Eq. (2) numerically, using a
relation between the macroscopic observables Ψ and Q for
a given electrode and electrolyte system, which can involve
experiments [6], simulations [27], or a microscopic model
[28]. In this Letter we capture the EDL within classical
density functional theory (DFT). While much effort has
been devoted to the development of accurate functionals for
the EDL [29], for the illustrative purpose of this Letter it
suffices to use a relatively simple grand potential functional
Ω½ρ�; σ�, which reads in the planar geometry of interest

βΩ ¼ A
Z

L

0

dz

�X
α¼�

ραðzÞ½ln ραðzÞΛ3
α − 1 − β ~μαðzÞ�

þ ρwðzÞ½ln ρwðzÞv − 1� þ 1

2
ϕðzÞqðzÞ

�
: ð3Þ

The first line is the ideal-gas grand potential of ions at
electrochemical potential ~μ�, with Λ� the ionic thermal
wavelength. The first term of the second line captures steric
hindrance qualitatively and is based on a lattice gas model
of equal-sized solvent molecules and ions where an upper
limit 1=v is imposed on the local density via the constraint
½ρþðzÞ þ ρ−ðzÞ þ ρwðzÞ�v ¼ 1 [30], with ρw the water
density and v the hydrated ionic volume. Finally, the last
term in Eq. (3) is the mean-field electrostatic energy, with
qðzÞ ¼ ρþðzÞ − ρ−ðzÞ þ σ½δðzÞ − δðz − LÞ� the local unit
charge density, and ϕðzÞ ¼ eψðzÞ=kBT the local dimen-
sionless electrostatic potential, governed by Poisson’s law

ϵ∂2
zψðzÞ ¼ −4πe½ρþðzÞ − ρ−ðzÞ�; 0 < z < L: ð4Þ

The boundary conditions βe∂zψðzÞjz¼0;L ¼ −4πλBσ
imposed at the electrode surfaces follow from Gauss’ law.
From the Euler-Lagrange equations δΩ=δρ�ðzÞ ¼ 0 follows

~μ�ðzÞ ¼ kBT ln
ρ�ðzÞΛ3

�
1 − v½ρþðzÞ þ ρ−ðzÞ�

� eψðzÞ; ð5Þ

which for future referencewe split up as ~μ� ≡ μ� � eψ into
the chemical potentials μ�, including contributions from all
nonelectric interactions, and an electric contribution eψ .
Demanding the electrochemical potential ~μ�ðzÞ to be a
spatial constant in equilibrium, we can solve Eq. (5)
analytically for the density profiles to find modified
Boltzmann distributions. Equation (4) can then be closed
yielding the so-called modified Poisson-Boltzmann equa-
tion [31], which we solve at a set of temperatures and fixed σ
to extract the temperature dependence of the surface
potential Ψ ¼ ψðz ¼ 0Þ. One then evaluates ð∂Ψ=∂TÞQ
to solve Eq. (2) for TH.
We turn the discussion to charging dynamics where a

time-dependent surface potential ΨðtÞ drives the system
out of equilibrium. The densities ρ�ðz; tÞ and electrostatic
potential ψðz; tÞ are now time dependent. Moreover, out of
equilibrium, the electrochemical potential is not a spatial

constant. Consequently, the Poisson equation (still valid
since the electromagnetic field responds instantaneously
to “slow” ions) is no longer closed by the Boltzmann
weights. We use dynamical DFT to obtain the ion currents
J� ¼ −Dρ�β∂z ~μ� from the electrochemical potentials.
The diffusion constant D is assumed constant and identical
for cations and anions, and for brevity the argument ðz; tÞ
is dropped. The ion densities are determined by the
continuity equation, to give the Nernst-Planck equation
[32], ∂tρ� ¼ D∂zðρ�β∂z ~μ�Þ, with blocking boundary
conditions J�jz¼0;L ¼ 0 at the electrodes. The ionic con-
duction current I ≡ eðJþ − J−Þ amounts to

I ¼ −Def∂zqþ ðρþ þ ρ−Þβe∂zψ

þ q∂z ln ½1 − vðρþ þ ρ−Þ�g: ð6Þ
Clearly, in the bulk (q ¼ 0) the electric field −∂zψ drives
an ionic current I subject to an ionic resistivity r ¼ kBT=
De2ðρþ þ ρ−Þ. Crucial to the reversible heat effect is that
the EDL (∂zq ≠ 0) can support ionic currents that oppose
the local electric field. To find the temperature profiles
Tðz; tÞ we need to solve the heat equation [33]

ϱcp∂tT ¼ κ∂2
zT þ IE: ð7Þ

Here, κ is the heat conductivity, and the source term IE≡
_qirr þ _qrev consists of the (ir)reversible heating rates _qrev ¼
IrDef∂zqþ q∂z ln ½1 − vðρþ þ ρ−Þ�g and _qirr ¼ I2r . Note
that _qrev is nonvanishing only in the EDL, where q ≠ 0.
Moreover, within this region the ratio _qirr= _qrev∼ I=∂zq→ 0
for slow charging (I → 0). Equations (4)–(6) and (7)
form the closed set PNPh, for Poisson, Nernst-Planck,
and heat. Numerical results for the ðz; tÞ dependence of
ϕ; ρ�; q; J�; I, and T were obtained for an (initially
uncharged) EDLC of plate separation L ¼ 50 nm at
T ¼ 20 °C, filled with an aqueous NaCl electrolyte at
ρ0 ¼ 0.3 nm−3. We use the following parameter set
v ¼ 0.16 nm3 (from Ref. [40]), D ¼ 1.6 × 10−9 m2 s−1,
κ ¼ 0.599 Wm−1 K−1, ϵ ¼ 71, ϱ ¼ 998.3 kgm−3, cp ¼
4.182 kJK−1 kg−1. We start with the uncharged EDLC at
TL ¼ 20 °C and ramp the dimensionless electrode potential
Φ≡ ϕðz ¼ 0Þ linearly from Φ ¼ 0 to Φ ¼ 10 during 10τ
[Fig. 2(a), inset]. For the slow charging rates τ=τc ¼
f5; 100g considered, with time measured in units of the
“RC time” τc ¼ λDL=D, the temperature Tðz; tÞ is practi-
cally homogenous throughout the cell. With σðtÞ and
Tðz; tÞ at hand we eliminate the time dependence of the
latter. The black dotted lines in Fig. 2(a) represent the
measurement ΔTðσÞ ¼ Tðz ¼ 0; σÞ − TL. We also plot
the adiabatic temperature rise as predicted by the thermo-
dynamic identities Eq. (1) for both N GC and N H (blue-
dashed lines), and Eq. (2) (red line). For the slow charging
process at τ=τc ¼ 100 we see a near-perfect agreement
between the temperature rise predictions of Eq. (2) and the
PNPh equations. Equation (1) does not perform as well.
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This is numerical evidence for our claim that Eq. (2)
and not Eq. (1) captures the thermodynamics of EDLCs.
We ascribe the small temperature rise at σ ≪ σ̄ (here,
σ̄ ¼ 0.49 nm−2) to “ion swapping”: at low potentials,
surface charge is screened via both coion repulsion and
counterion attraction, yielding inefficient salt adsorption.
Conversely, at higher potentials, coions are depleted from
the electrodes’ vicinity, such that each additional electron
(hole) attracts an additional counterion. Since the adiabatic
temperature rise is driven by the surface charge-induced
electrolyte inhomogeneity, the nonlinear screening regime
σ ≫ σ̄ yields a higher differential temperature increase
[33]. Accordingly, N GC constitutes a considerable
improvement over N H for Eq. (1), since it incorporates
this transition from N GC ∼ σ2=2σ̄ at σ ≪ σ̄, to N GC ∼ σ at
σ ≫ σ̄. For comparison, we also evaluated Eq. (2) for

regular (v ¼ 0) Poisson-Boltzmann theory (green). The
influence of ion size only shows at higher potentials, when
packing constraints start to affect the electrochemical
potential Eq. (5). The higher temperature variations pre-
dicted at v ¼ 0 indicate that incorporation of ionic volume
lowers the entropic contribution to the grand potential [41].
In Fig. 2(b) we show the total heating rate IE halfway

(t=τ ¼ 5) through the charging process with τ=τc ¼ 5.
The corresponding instantaneous anion (dotted), cation
(dashed), and charge density profiles (red) are shown in
Fig. 2(b) (inset). For comparison, we also consider the
reversed process, starting at an equilibrated state at Φ ¼ 10
and discharging to Φ ¼ 0 during 10τ with τ=τc ¼ 5. The
negative of the heating rate halfway through this discharg-
ing process is indicated with a dotted line in Fig. 2(b). The
heating rates IE exhibit a clear peak associated with _qrev in
the EDL where q is nonvanishing. Towards the bulk only
the small contribution _qirr persists. Upon decreasing the
(dis)charging rates, this strictly positive Joule heating gets
progressively smaller, and the (dis)charging heating rates
turn into mirror images of one another (not shown).
This Letter discusses reversible heating in EDLCs from

two different viewpoints. On the one hand we considered the
heat equation, which was derived decades ago for general
settings [22].Only recently [14] itwas specified to the case of
adiabatic EDLC charging, with ion currents captured by
Poisson-Nernst-Planck equations. This model was shown to
quantitatively reproduce the reversible temperature oscilla-
tion as observed in supercapacitors [2]. The PNPh model
exhibits cooling where ionic currents, adhering to the
gradient in electrochemical potential, oppose the local
electric field. Since this only occurs in theEDL, the reversible
heating effect is highly localized [see Fig. 2(b)]. While the
level of sophistication of the PNPh model sufficed for the
purposes of this Letter (large plate separation, slow charging,
hence, small spatial temperature variation), when consider-
ing fast (dis)charging of nanoporous supercapacitors the
adiabatic approximation underlying dynamical DFT
becomes less justifiable. Moreover, when spatial variations
in the diffusion constant and temperature become non-
negligible, the use of a free energy functional is problematic,
as in DFT the temperature enters as an imposed (spatially
constant) parameter. Future work could build on recent
developments that address these problems [42–44].
The other, thermodynamic, viewpoint, brought fourth

two distinct identities [Eqs. (1) and (2)] for the temperature
change upon isentropic charging ofEDLCs.Compared to the
PNPh model, the merits of Eq. (2) are twofold. Firstly,
its simplicity aides interpretation. Reversible temperature
changes are controlled essentially by a small set of param-
eters fσ; ϱcQ; Lg together with a system-dependent deriva-
tive ð∂Ψ=∂TÞQ. The second merit of Eq. (2) is that, as a
thermodynamic identity, it does not rely on uncontrolled
approximations, and can be used as a reliable predictor for
the lower bound of temperature variations. Approximations
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FIG. 2. (a) The temperature increase ΔT upon adiabatic
charging of two electrodes separated by L ¼ 50 nm, starting at
uniform salt concentration ρ0 ¼ 0.3 nm−3 and a low temperature
T ¼ 20 °C. Plotted are data obtained from Eq. (1) (blue-dashed
lines) with λ ¼ λD for both Helmholtz and Gouy-Chapman
adsorption, Eq. (2) for v ¼ 0.16 nm3 (red line) and v ¼ 0 (green
line), as well as the PNPh system (black dotted) with a linear
voltage ramp (inset) of inverse slope τ=τc ¼ f5; 100g. (b) The
total heating rate (line) within the immediate vicinity of the
electrode, halfway (t=τ ¼ 5) through the τ=τc ¼ 5 charging
process of (a). The inset shows the corresponding instantaneous
anion (line), cation (dashed), and charge density profiles (red
dotted). The mirror discharging process at the same time and
charging rate is also plotted (dotted).
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enter the theory at the level of ð∂Ψ=∂TÞQ, so that more
accurate estimates can be found by systematically improving
the grand potential Eq. (3), by including, for instance, solvent
polarizability [45], a better description of excluded volume
interactions [46], and residual ion correlations [29,33].
Though oversimplified ideal-gas reasoning permeates the

reversible heating literature [9,11,13–15], the main finding
of this Letter is that the thermodynamic identity Eq. (2),
and not Eq. (1), constitutes the slow charging limit of the
PNPh system. The kinetic and thermodynamic viewpoints
give complementary information that together allow for a
thorough understanding of reversible temperature variations
in EDLCs. While structural transitions of the EDL in
supercapacitors under isothermal conditions are the subject
of intense study [47], the findings of this Letter should
form the basis for understanding heat effects that such
structural rearrangements undoubtedly induce in adiabatic
setups. Adiabatic temperature measurements as discussed
here probe thermodynamic response that is not isothermally
accessible. The thermal response of adiabatically (dis)-
charged supercapacitors therefore carries information that
could deepen our understanding of the electric double layer.
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