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Abstract. For many inference tasks in Bayesian networks, computa-
tional efforts can be restricted to a relevant part of the network. Research-
ers have studied the relevance of a network’s variables and parameter
probabilities for such tasks as sensitivity analysis and probabilistic infer-
ence in general, and identified relevant sets of variables by graphical
considerations. In this paper we study relevance of the evidence vari-
ables of a network for such tasks as evidence sensitivity analysis and
diagnostic test selection, and identify sets of variables on which compu-
tational efforts can focus. We relate the newly identified sets of relevant
variables to previously established relevance sets and address their com-
putation compared to these sets. We thereby paint an overall picture of
the relevance of various variable sets for answering questions concerning
inference and analysis in Bayesian network applications.

1 Introduction

Bayesian networks have become increasingly popular for decision support in a
range of application domains. Capturing general domain knowledge, Bayesian
networks owe much of their strength to their ability to derive probability distri-
butions for individual problem instances, given the evidence available from that
instance. In view of practical applications however, decision makers should have
insight not just in the established probability distributions themselves but in
their robustness as well. This observation has motivated researchers to develop
techniques for this purpose. The sensitivity of a network’s output probabilities
to inaccuracies in its parameters can be studied using a parameter sensitivity
analysis [2]. A sensitivity-to-evidence analysis allows studying the contribution
of specific observations to the output of interest and investigating the effects
of changing or removing a particular observation [4]. Algorithms developed for
these types of analysis typically rely on (multiple) propagations throughout a
network, and hence incur high computational costs.

To relieve the computational burden of probabilistic inference with a Bayesian
network, the runtime efforts of computing an output probability of interest can
be focused on a relevant part of the network, which depends on the target vari-
ables and the specific set of observed variables at hand [3]. This relevant part
can to a large extent be identified from graphical considerations only. For exam-
ple, d-separated nodes and barren nodes are readily identified from a network’s
graph (we refer to [3] for an overview of available methods) and subsequently
pruned without affecting the computed output distribution [1].
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Although the concept of relevance has been studied for probabilistic infer-
ence in general, it has hardly been addressed in the context of the analyses
mentioned above. An exception is the concept of parameter sensitivity set which
was introduced to describe the set of variables to which a parameter sensitivity
analysis can be restricted [2]. In this paper we will study the relevance of various
sets of network variables for answering questions related to evidence, such as
sensitivity-to-evidence analyses and test-selection procedures. Where previous
relevance studies often focused on a single output variable, we consider in this
paper the more general case of a set of target variables; the insights developed
will therefore be relevant to MAP and MPE studies as well [7]. We will define
three new sets of relevant nodes and show how these relate to existing relevance
sets; we further show that these sets can be efficiently determined from a net-
work by graphical considerations only. We thereby provide an overall view of the
relevance of both known and newly defined sets of nodes, for answering various
types of question related to practical applications of Bayesian networks.

The paper is organised as follows. In Sect. 2 we present some preliminaries.
Section 3 introduces our new sets of relevant and irrelevant nodes. In Sect. 4 we
show how to efficiently establish these sets, and illustrate their possible applica-
tion. The paper ends with our concluding remarks in Sect. 5.

2 Preliminaries

A Bayesian network is a concise representation of a joint probability distrib-
ution Pr over a set of random variables [5]. It consists of a directed acyclic
graph G = (VG,AG), which captures the random variables as nodes and their
interdependencies through arcs; in the sequel we will use the term node to refer
to nodes and variables alike. The network further includes a set of conditional
probabilities for its parameters, which jointly define the distribution Pr through:

Pr(VG) =
∏

Vi∈VG

Pr(Vi | π(Vi))

where π(Vi) denotes the parent set of Vi in the graph. The factorisation of
the distribution Pr derives from the well-known concept of d-separation which
provides a semantics for the network’s graph [8]. For any three disjoint sets of
nodes X,Y,Z ⊂ VG, the set Z is said to d-separate the sets X and Y in G,
written 〈X|Z|Y〉dG, if there do not exist any active chains between X and Y given
evidence for Z. A chain between two nodes is active if each of its head-to-head
nodes is either observed or has an observed descendant, and none of its other
nodes are observed. The variables captured by d-separated nodes are considered
probabilistically independent.

For computing probabilities of interest from a Bayesian network, general
inference algorithms have been designed which derive their efficiency from the
d-separation properties of a network’s graphical structure. In view of these
properties, researchers have studied the computation of an output distribution
Pr(T | e) for a set T of target nodes given evidence e, and identified sets of nodes
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whose parameter probabilities are not involved in establishing this distribution.
Two well-known examples of such sets are the set of nodes d-separated from
T given E, denoted DSep(T,E), and the set Barren(T,E) of barren nodes,
where a barren node is a node in VG\(T∪E) without descendants, or with bar-
ren descendants only. These sets of nodes are efficiently established through the
Bayes-ball algorithm [9], which runs on the network’s graph and does not require
probabilistic inference. After pruning these nodes from the graph, a minimal
computationally equivalent subgraph results from which the output distribution
can be established [1].

3 Defining Sets of (Ir)relevant Nodes

Inspired by the well-known concept of parameter sensitivity set and its role in
reducing the computational burden of a parameter sensitivity analysis [2], we
develop the concept of evidence sensitivity set as the set of nodes for which
a change in observed value, or a change in observational status, may affect a
posterior probability distribution of interest.

3.1 Parameter and Evidence Sensitivity Sets

Parameter sensitivity analysis is a well-known technique for studying the possible
effects of inaccuracies in the parameter probabilities of a Bayesian network [2]. To
reduce the computational burden involved, such an analysis is typically restricted
to the parameters of a network which, based upon graphical considerations, can-
not be discarded as uninfluential. The concept of parameter sensitivity set was
introduced to identify the nodes to which these possibly influential parameter
probabilities apply [2]. We briefly review this concept, generalising it to marginal
output distributions Pr(T | e) for sets of target nodes T.

Definition 1. Let G = (VG,AG) be the digraph of a Bayesian network. Let
T ⊂ VG, T �= ∅, be a set of target nodes and let E ⊂ VG \ T be a set of
evidence nodes in G. The parameter sensitivity set for T given E is the set

ParSens(T,E) = {X ∈ VG | ¬〈{PX}|E|T〉dG∗}
where G∗ is the parented graph of G in which each node X has an additional
auxiliary parent PX .

As described by Coupé and Van der Gaag [2], the parent nodes PX used for
defining the parameter sensitivity set can be viewed as capturing the uncertainty
in the parameters for the node X. If this uncertainty is not d-separated from the
target nodes, it may affect their probability distribution. The authors proved
that a sensitivity analysis can be restricted to this parameter sensitivity set.

While a parameter sensitivity analysis addresses the effects of inaccuracies in
a network’s parameters, a sensitivity-to-evidence analysis focuses on the effects
of changes in the observation entered for a node or in a node’s observational sta-
tus [4]. Similar to the parameter sensitivity set, we now develop the concept of



Relevance of Evidence in Bayesian Networks 369

evidence sensitivity set as the set of nodes to which an evidence sensitivity analy-
sis can be restricted. We begin by distinguishing between two types of evidence
sensitivity set. The given-evidence sensitivity set consists of all observed nodes
for which a change in value or in observational status may affect the probability
distribution of interest. While the given-evidence sensitivity set includes observed
nodes only, the potential-evidence sensitivity set comprises all yet unobserved
evidence nodes for which obtaining evidence may affect the output distribution.
We define the evidence sensitivity sets more formally.

Definition 2. Let G,T,E be as before. Then,

– the given-evidence sensitivity set for T given E is the set

GivEvSens(T,E) = {X ∈ E | ¬〈{X}|E\{X}|T〉dG}

– the potential-evidence sensitivity set for T given E is the set

PotEvSens(T,E) = T ∪ {X ∈ VG \ E | ¬〈{X}|E|T〉dG}

– the evidence sensitivity set for T given E is the set

EvSens(T,E) = GivEvSens(T,E) ∪ PotEvSens(T,E)

We note that the given-evidence sensitivity set contains only nodes from the set
E of observed nodes. If such a node X ∈ E is not d-separated from a target node
given the remaining evidence, then X and T may be conditionally dependent,
and any change in or removal of the observation for X may affect the output
probabilities Pr(T | e). The potential-evidence sensitivity set on the other hand,
contains only nodes which are yet unobserved. The given-evidence sensitivity
set and the potential-evidence sensitivity set thus are disjoint. If an unobserved
node X /∈ E is not d-separated from a target node given the available evidence,
then X and T may be conditionally dependent, and entering an observation for
X may affect the probabilities Pr(T | e). Although we could assume that nodes
in the target set will never be observed, we include T in the potential-evidence
sensitivity set since observations for nodes in T most likely affect the probability
distribution over the set of target nodes. We further note that all sensitivity sets
are defined for a specific T and E and may therefore change upon adding or
removing an observation. The dynamics involved may then be more complex
than just moving nodes between the various sensitivity sets.

Our new concept of evidence sensitivity set is closely related to the concept
of parameter sensitivity set, yet is different. The following proposition shows in
fact that the parameter sensitivity set is a subset of the evidence sensitivity set.

Proposition 1. Let G,T,E be as before. Then,

(i) T ⊆ ParSens(T,E);
(ii) ParSens(T,E) ∩ E ⊆ GivEvSens(T,E);
(iii) ParSens(T,E)\E ⊆ PotEvSens(T,E).
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Fig. 1. The relations between the various sets. (a) The light grey area indicates the
potential-evidence sensitivity set, whereas the dark grey constitutes the given-evidence
sensitivity set; (b) the hatched area represents all nodes that can be pruned, i.e. d-
separated nodes, barren nodes and irrelevant evidence nodes

Proof

(i) We consider adding an auxiliary parent PT to a target node T ∈ T. Since
PT and T are directly connected, we have that ¬〈{PT }|E|〉dG∗ . Therefore,
T ∈ ParSens(T,E) by definition.

(ii) We consider a node X ∈ ParSens(T,E) ∩ E. Since X ∈ E, the auxil-
iary parent PX has active chains only to other parents of X. Since X ∈
ParSens(T,E), at least one such parent Y must have an active chain to a
target node. As a result, X cannot be d-separated from T given E\{X}.

(iii) We consider a node X ∈ ParSens(T,E)\E. Since PX is not d-separated
from T given E in G∗, there must be an active chain from X to T in G. 
�

A schematic summary of the above properties is given in Fig. 1(a). The dark grey
area represents the intersection of the sensitivity sets with the set of observed
nodes E; this area thus coincides with the given-evidence sensitivity set. The
light grey area constitutes the potential-evidence sensitivity set; the diagram
shows that the set of target nodes is a subset of this set.

3.2 Ignoring Irrelevant Evidence Nodes

The concept of computationally equivalent subgraph was introduced to describe
a subgraph of a Bayesian network, with its associated parameters, from which the
correct output distribution over the network’s target variables can be established.
Although the minimal computationally equivalent subgraph identified by Baker
and Boult [1], contains no nodes X /∈ T ∪ E that can be pruned, it may contain
evidence nodes that are d-separated from the target nodes given the remaining
evidence, that is, it may contain evidence nodes outside GivEvSens(T,E). The
identified subgraph thus is not minimal in the sense that no proper subgraph
exists from which the output distribution can be correctly established. For the
sake of completeness, we define the set of irrelevant evidence nodes and explicitly
state the property that these nodes cannot affect the output distribution.
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Definition 3. Let G,T,E be as before. Then, the irrelevant evidence set for T
given E equals

IrrEv(T,E) = {E ∈ E | 〈{E}|E\{E}|T〉dG}
The irrelevant evidence nodes together constitute a set of nodes whose parameter
probabilities indeed are not required for computing Pr(T | E).

Proposition 2. Let G,T,E be as before. Then, Pr(T | E) = Pr(T | E\IrrEv
(T,E)).

Proof. Assuming that Pr(E) is strictly positive, the proposition is proven by
repeated application of the intersection property of independence relations. 
�
From the above property we conclude that the minimal computationally equiv-
alent subgraph can be further pruned by removing all nodes from IrrEv(T,E).
Moreover, since IrrEv(T,E) = E\GivEvSens(T,E), the proposition also shows
that Pr(T | E) can indeed be correctly computed by restricting the set of evi-
dence nodes to GivEvSens(T,E).

3.3 Relating the Different Sets

We now establish the relationship between the various sensitivity sets and well-
known types of irrelevant node.

Proposition 3. Let G,T,E be as before. Then,

(i) DSep(T,E) = VG \ (EvSens(T,E) ∪ E);
(ii) Barren(T,E) = PotEvSens(T,E) \ParSens(T,E);

Proof

(i) The setDSep(T,E) contains all nodesX ∈ VG\(T∪E) such that 〈{X}|E|T〉dG.
By definition, this set equals VG \ (PotEvSens(T,E) ∪ E), and corresponds
with the white area outside the circles in Fig. 1(a).

(ii) Barren nodes are unobserved nodes that are not d-separated from the target
nodes given the evidence, yet are not involved in the computation of the
output distribution over these nodes; once observed however (directly or
indirectly), barren nodes can become computationally relevant. 
�

For computing the output distribution Pr(T | E) over the target nodes T of a
Bayesian network, we can safely prune all nodes fromDSep(T,E)∪Barren(T,E)∪
IrrEv(T,E). From the above proposition we find that this set equals:

VG \ (ParSens(T,E) ∪ (E\IrrEv(T,E))),

where E\IrrEv(T,E) equals GivEvSens(T,E). We can therefore prune all nodes
from VG except those in ParSens(T,E) ∪GivEvSens(T,E); this set of nodes is
illustrated in Fig. 1(b).
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4 Identifying (Ir)relevant Nodes

Many Bayesian network properties can be recognised just by inspecting the net-
work’s graph. Core d-separation statements, for example, can be verified in time
linear to the size of the graph. A well-known algorithm for this purpose is the
Bayes-ball algorithm [9]. Although this algorithm was not designed for establish-
ing sensitivity sets as defined in the previous section, we will demonstrate that
the information maintained by the algorithm suffices for identifying these sets.
We will subsequently illustrate all concepts introduced in this paper, as well as
their potential use, by means of an example.

4.1 Bayes-Ball for Sensitivity Sets

The Bayes-ball algorithm was designed to identify various sets of relevant and
irrelevant nodes. The algorithm explores the graph of a Bayesian network in view
of an output distribution Pr(T | E) over its target nodes. It starts from these
target nodes and “bounces a ball” through the graph, respecting d-separation
properties. Visited nodes are marked as such, and in addition get a top or bot-
tom mark when their parents or children, respectively, are scheduled for a visit.
Initially, all target nodes are marked on top and at the bottom; evidence nodes,
if visited, can receive a top mark only. After exploring the graph, the algorithm
establishes the following sets of nodes, based on the marks received:

– Ni(T | E) = {X ∈ VG | X is not marked at the bottom };
– Np(T | E) = {X ∈ VG | X is marked on top };
– Ne(T | E) = {X ∈ E | X is marked as visited }.

The set Ni(T | E), termed the set of irrelevant nodes, includes all d-separated
nodes [9]. We note that the algorithm includes all evidence nodes in the set
of irrelevant nodes as well. Evidence nodes in general are not irrelevant to the
computation at hand, however, with the exception of nodes in IrrEv(T,E). The
set Np(T | E), called the set of requisite probability nodes, includes the nodes
whose parameters are needed for the computation of the output probability; we
note that the adjective ‘requisite’ refers to the node’s parameter probabilities.
The set Ne(T | E), coined the set of requisite observation nodes, includes the
evidence nodes whose value is required for the computations. A computationally
equivalent subgraph for the computations can now be obtained from the original
Bayesian network by pruning all nodes outside the set Np(T | E) ∪ Ne(T | E).

The sensitivity sets defined and reviewed in the previous section can be read-
ily identified from the information recorded by the Bayes-ball algorithm as stated
in the following proposition; for a formal proof of the proposition, we refer to [6].

Proposition 4. Let G,T,E be as before. Consider running Bayes-ball on G
with respect to Pr(T | E). Then,

– ParSens(T,E) = {X ∈ VG | X is marked on top };
– GivEvSens(T,E) = {X ∈ E | X is marked as visited };
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Fig. 2. (a) The digraph of the example Bayesian network, and (b) the sensitivity sets
for Pr(T | E)

– PotEvSens(T,E) = {X ∈ VG | X is marked at the bottom};
– IrrEv(T,E) = {X ∈ E | X is not marked as visited }.
The proposition reveals that the different sensitivity sets identified in the previ-
ous section actually provide alternative semantics for the three Bayes-ball sets:

– Ni(T | E) = VG \ PotEvSens(T,E);
– Np(T | E) = ParSens(T,E);
– Ne(T | E) = GivEvSens(T,E).

4.2 An Example

To illustrate the use of the various relevance sets introduced in Sect. 3, we con-
sider an example Bayesian network defining a joint probability distribution over
eight nodes; the graph of the network is shown in Fig. 2(a). For the network,
we consider output probability distributions Pr(T | E) for the target nodes
T = {T1, T2} given observations for the evidence nodes E = {E1, E2, E3}. Using
Bayes-ball, we find the following sensitivity sets, summarised in Fig. 2(b):

– ParSens(T,E) = {A,E1, T1, T2};
– PotEvSens(T,E) = {A,C, T1, T2};
– GivEvSens(T,E) = {E1, E2}.

We recall that the parameter sensitivity set was designed to describe the nodes in
a Bayesian network whose parameter inaccuracies may affect the output prob-
abilities from the network. For the example network, we conclude that only
changes in the parameter probabilities of the nodes A, E1, T1 and T2 may influ-
ence the probabilities Pr(T | E). A parameter sensitivity analysis may thus be
restricted to the parameters for these nodes and forego variation of the parame-
ters of the nodes B, C, E2 and E3, that is, the parameters of only half of the
nodes need be investigated upon the analysis.

The evidence sensitivity set captures the nodes for which a change of value
or in observational status may affect the output probabilities established from
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Fig. 3. (a) Graph of the example network after pruning all nodes outside
ParSens(T,E) ∪ (E\IrrEv(T,E)), and (b) a summary of the pruning result

the network. In the example network, only the evidence nodes E1 and E2 are
contained in the given-evidence sensitivity set for T given E. Changing their
observed value, or removing their observations, may therefore change the output
probabilities Pr(T | E). Since node E3 is not included in the given-evidence sensi-
tivity set, we can change or remove its observation, without affecting the output
probabilities. The network’s output therefore is robust against an inaccurate
observation for E3. The potential-evidence sensitivity set for T given E provides
information about the effects of additional evidence. The potential-evidence sen-
sitivity set established from the example network shows that obtaining additional
evidence for one of the nodes A, C, T1 and T2 may change the output. Since
node B is not in the set, gathering an observation for this node cannot change
the current distribution over T. We note that such a finding may be exploited by
a test-selection procedure. In fact, test selection can focus on collecting evidence
for the nodes A and C, if appropriate.

The resulting computationally equivalent subgraph is shown in Fig. 3(a),
along with a schematic summary of the roles of the remaining nodes (b). We
would like to emphasize that as a result of the dynamics of the various sets upon
changes in the observational status of nodes, a change in E may require a differ-
ently pruned graph. For example, if an observation would be entered for node C,
the parameters of node E3 would no longer be immaterial for the output distribu-
tion over the target nodes. We further note that the various sets of relevant nodes
identified above can be instrumental in focusing the efforts of a large variety of
inference tasks. We note for example that the above conclusions also pertain to
MAP computations, that is, for establishing MAP(T, e) =argmaxt Pr(t | e) for
a specific assignment e to E: taking the output of the Bayes-ball algorithm in
fact, we know that we can safely prune the nodes {B,C,E3} from the network
without affecting the established MAP.

5 Conclusions and Future Research

Relevance of the nodes of a Bayesian network had so far been studied primarily
in the context of probabilistic inference. In this paper we focused on a network’s
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evidence nodes and addressed their relevance for such tasks as sensitivity-to-
evidence analysis and diagnostic test selection. To this end, we defined two types
of evidence sensitivity set and studied the relationships between these sets and
with previously known sets of (ir)relevant nodes. We thereby presented a more
complete picture of the relevance of various node sets for answering questions
concerning inference and analysis in Bayesian network applications. By demon-
strating that our evidence sensitivity sets can be determined from the well-known
Bayes-ball algorithm, moreover, we provided an efficient way of establishing these
sets from graphical considerations only.

The various relevance sets discussed in this paper are not static in a Bayesian
network application, but will change dynamically as the set of observed nodes
changes. More extensive sensitivity-to-evidence analyses and test-selection pro-
cedures therefore entail re-establishing the relevance sets after each change in
observational status. In the near future we would like to study the dynamics
involved and investigate whether we can predict, at least partly, how these sets
will change without having to re-invoke the Bayes-ball algorithm. We would fur-
ther like to extend our investigations and study the concept of relevance for yet
other computational tasks in Bayesian network applications.
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