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PARAMETERIZED STABILITY

AND THE UNIVERSAL PROPERTY OF GLOBAL SPECTRA

BASTIAAN CNOSSEN, TOBIAS LENZ, AND SIL LINSKENS

Abstract. Extending work of Nardin, we develop a framework of parame-
terized semiadditivity and stability with respect to so-called atomic orbital
subcategories of an indexing ∞-category T . Specializing this framework, we
introduce global ∞-categories together with genuine forms of semiadditivity
and stability, yielding a higher categorical version of the notion of a Mackey
2-functor studied by Balmer-Dell’Ambrogio. As our main result, we identify
the free presentable genuinely stable global ∞-category with a natural global
∞-category of global spectra for finite groups, in the sense of Schwede and
Hausmann.
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1. Introduction

Equivariant homotopy theory combines classical homotopy theory with ideas from
representation theory to study geometric objects with symmetries. Many con-
structions from homotopy theory carry over to the equivariant setting, leading for
example to equivariant analogues of important cohomology theories like topological
K-theory and stable bordism. The resulting tools and methods have been success-
fully applied to various other branches of mathematics, for example in the proof of
the Atiyah-Segal Completion Theorem [AS69], Carlson’s proofs of the Segal [Car84]
and Sullivan Conjecture [Car91], or in the resolution of the Kervaire invariant one
problem by Hill, Hopkins, and Ravenel [HHR16].

While one can study equivariant homotopy theory for a single group G at a time,
there are many equivariant phenomena which occur uniformly and compatibly in
large families of groups, such as the families of all finite groups or all compact
Lie groups. The study of such phenomena is known as global homotopy theory
[GH07, Boh14, Sch18, Hau19, Len20, LNP22]. This framework has led to improved
understanding of a variety of equivariant phenomena, where previously a direct
description for each individual group was either much more opaque or not avail-
able, for example for equivariant stable bordism and equivariant formal group laws
[Hau22]. The study of global homotopy theory moreover admits connections to the
geometry of stacks [GH07, Jur20, Par20, SS20].

Just like non-equivariant and G-equivariant homotopy theory, global homotopy
theory comes in various different flavours: unstable global homotopy theory studies
global spaces [GH07] while stable global homotopy theory is concerned with so-
called global spectra [Sch18]; in-between, one can also consider a variety of algebraic
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structures on global spaces [Bar21], with the most prominent example being ultra-
commutative monoids or the equivalent notion of special global Γ-spaces [Len20].
The goal of this article is to understand the relationship between these different
variants.

Stability and equivariant semiadditivity. Classically the passage from the homotopy
theory of spaces to the homotopy theory of spectra is known as stabilization. More
generally, a homotopy theory C (e.g. given in the form of a model category or
an ∞-category) is said to be stable if the suspension-loop adjunction in C is an
equivalence. Stability of a homotopy theory leads to a lot of algebraic structure:
for example, its homotopy category Ho(C) is additive, and it canonically admits
the structure of a triangulated category. If C is not yet (known to be) stable, there
is a universal way to stabilize it by forming a homotopy theory Sp(C) of suitable
spectrum objects in C.

Although one may apply this stabilization procedure to the homotopy theory of
global spaces, the resulting theory is in many ways not sufficient, and in particular
does not yield the homotopy theory of global spectra. This issue in fact already
arises in the case of equivariant homotopy theory for a fixed group G: applying
the general stabilization procedure to the homotopy theory of G-spaces for some
finite group G only results in the homotopy theory of naive G-spectra, which for
example does not support a good theory of duality. Instead, one defines the ho-
motopy theory of genuine G-spectra by stabilizing more generally with respect to
the representation spheres SV for each finite-dimensional G-representation V . This
genuine stabilization leads to a much richer algebraic structure on the associated
homotopy category than naive stabilization: for example, the homotopy category
of genuine G-spectra admits a canonical enrichment in Mackey functors, refining
the enrichment in abelian groups.

Non-equivariantly, the algebraic structure on hom sets in a stable homotopy theory
comes from semiadditivity: finite coproducts agree with finite products. In a similar
way, the Mackey enrichment of the homotopy theory of genuine G-spectra comes
from a form of equivariant semiadditivity. To explain what this means, consider a
subgroup H of the finite group G; the restriction functor from genuine G-spectra to
genuine H-spectra then admits both a left adjoint indGH and a right adjoint coindGH ,
called induction and coinduction, respectively. From the perspective of this article,
the main feature of genuine equivariant spectra is that there is a natural equivalence
indGH ≃ coindGH between these two functors, called the Wirthmüller isomorphism

[Wir74]. If we think of indGH as a ‘G-coproduct over G/H ’ and coindGH as a ‘G-
product over G/H ,’ this may be seen as an equivariant analogue of the usual notion
of semiadditivity. These Wirthmüller isomorphisms are then precisely what gives
rise to the transfer maps in the aforementioned Mackey enrichment.

Parameterized higher category theory. In light of the above, it is natural to ask
whether one can modify the stabilization procedure for G-spaces in a way that
additionally enforces equivariant semiadditivity, and, if so, whether this will result
in the homotopy theory of genuine G-spectra. One subtlety with this question is
that the Wirthmüller isomorphisms described above do not only depend on the ho-
motopy theory of genuine G-spectra but also on the homotopy theories of genuine
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H-spectra for every subgroup H of G, together with all the restriction functors re-
lating them. Based on suggestions by Mike Hill in 2012, Clark Barwick, Emanuele
Dotto, Saul Glasman, Denis Nardin, and Jay Shah [BDG+16] began developing
the theory of G-∞-categories for a finite group G, in which these ideas could be
made precise. More generally, given an ∞-category T , they introduced the no-
tion of a T -∞-category, thought of as an family of ∞-categories parameterized by
T , and showed that many concepts and foundational results from the theory of
∞-categories have analogues in this parameterized setting. Using this framework,
Nardin [Nar16] worked out a notion of parameterized semiadditivity which neatly
recovers the equivariant Wirthmüller isomorphisms described earlier. He further
sketched a proof that the G-∞-category of genuine G-spectra is obtained from the
G-∞-category of G-spaces by enforcing both stability and parameterized semiad-
ditivity.

1.1. Global ∞-categories. The goal of this article is to develop an analogue of
the above story, and in particular of Nardin’s result, in the global setting. A distin-
guishing feature that was not present in the equivariant setting is the appearance
of inflation functors : restriction functors along surjective group homomorphisms
α : H ։ G. This extra structure leads to the notion of a global∞-category. Roughly
speaking, such an object consists of

(i) an ∞-category C(G) for every finite group G;
(ii) a restriction functor α∗ : C(G)→ C(H) for every homomorphism α : H → G;
(iii) higher structure which in particular witnesses that conjugations act as the

identity.

Examples of global∞-categories abound in representation theory, and more gener-
ally equivariant mathematics; here we only mention categories of representations,
genuine equivariant spectra, and equivariant Kasparov categories, referring the
reader to [BD20] for a detailed discussion of these examples. In this paper, on
the other hand, we will be mainly interested in examples coming from G-global
homotopy theory in the sense of [Len20]; namely, we consider:

• the global∞-category S
gl of global spaces, given at a group G by G-global

spaces (see Section 3.2 for a precise definition);

• the global ∞-category ΓS gl, spc of special global Γ-spaces, given at a group
G by special G-global Γ-spaces (see Section 5.1 for a precise definition);

• the global∞-category Spgl of global spectra, given at a group G by G-global
spectra (see Section 7.1 for a precise definition).

As the main results of this paper we establish universal properties for these three
global ∞-categories:

Presentability. A global∞-category C is said to be presentable if C(G) is presentable
for allG and the restriction functors α∗ : C(G)→ C(H) admit left and right adjoints
a! and α∗ for all α : H → G satisfying a base change condition, which may be
thought of as a categorified version of the Mackey double coset formula. We refer
to Section 2.4 for a precise definition. The universal example is provided byG-global
homotopy theory:
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Theorem A (Universal property of global spaces, 3.3.2). The global ∞-category

S
gl is presentable. For every presentable global ∞-category D, evaluation at the

point ∗ ∈ S
gl(1) induces an equivalence

FunLGlo(S
gl,D)→ D

of global ∞-categories. Put differently, S
gl is the free presentable global ∞-

category on one generator ∗.

We will in fact provide a stronger version of Theorem A based on a notion of global
cocompleteness, see Section 2.3. Our proof of this result can be regarded as a highly
coherent version of Schwede’s global Elmendorf theorem [Sch20].

Genuine semiadditivity. Following ideas of [Nar16], we introduce a notion of gen-
uine semiadditivity in our context; namely, a global ∞-category C is genuinely
semiadditive if the following conditions are satisfied:

• Fiberwise semiadditivity: The ∞-category C(G) is semiadditive for every
G and the functor α∗ : C(G) → C(H) preserves finite biproducts for every
α : H → G;
• Ambidexterity: For every injective homomorphism i : H → G, the restric-
tion functor i∗ : C(G) → C(H) admits a both left adjoint i! and a right
adjoint i∗ satisfying a base change condition as before, and a certain norm
map Nmi : i! → i∗ is a natural equivalence between these two adjoints.

A 2-categorical analogue of this definition was studied under the name Mackey 2-
functor by Balmer-Dell’Ambrogio [BD20]. The examples of representations, equi-
variant spectra, and Kasparov categories referred to above are all genuinely semi-
additive – for example, in the case of equivariant spectra, ambidexterity precisely
comes from the Wirthmüller isomorphism. Once again, G-global homotopy theory
provides the universal example in this setting:

Theorem B (Universal property of global Γ-spaces, 5.3.5). The global∞-category

ΓS gl, spc is presentable and genuinely semiadditive. For every presentable genuinely
semiadditive global∞-categoryD, evaluation at the free special global Γ-space P(∗)
induces an equivalence

FunLGlo(ΓS
gl, spc,D)

≃
−→ D

of global ∞-categories. Put differently, ΓS gl, spc is the free presentable genuinely
semiadditive global ∞-category on one generator P(∗).

Genuine stability. A global∞-category C is called genuinely stable if it is genuinely
semiadditive and fiberwise stable, meaning that the ∞-category C(G) is stable for
every finite group G and the restriction functors α∗ : C(G) → C(H) are exact for
all α : H → G.

Theorem C (Universal property of global spectra, 7.3.2). The global ∞-category

Spgl is presentable and genuinely stable. For every presentable genuinely stable
global ∞-category D, evaluation at the global sphere spectrum S defines an equiv-
alence

FunLGlo(Sp
gl,D)

≃
−−→ D

of global∞-categories. Put differently, Spgl is the free presentable genuinely stable
global ∞-category on one generator S.
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Combining this with Theorem A, this makes precise that Spgl is obtained from S
gl

by universally stabilizing and enforcing Wirthmüller isomorphisms, answering the
question from the beginning. In particular, global ∞-categories provide a natural
and convenient home for studying global homotopy theory. Conversely, once one is
interested in global ∞-categories, global (and more generally G-global) homotopy
theory appears naturally in the form of the universal examples. For example one
can show using the above that for every genuinely stable global ∞-category C,
the ∞-category C(G) is canonically enriched over G-global spectra, with strong
compatibilities as the group G varies.

1.2. Parameterized higher category theory. In setting up the formalism of
genuine semiadditivity and stability, we work in the more general context of T -
∞-categories for an arbitrary ∞-category T , in the sense of [BDG+16]. Global
∞-categories arise as the special case where T is the (2, 1)-category Glo of finite
connected groupoids, see Example 2.1.3. We introduce the notion of an atomic
orbital subcategory P ⊆ T , generalizing a notion due to [Nar16]; in this setting,
we can then more generally define P -semiadditivity and P -stability, which for the
subcategory Orb ⊆ Glo of faithful morphisms specializes to the notions of genuine
semiadditivity/stability discussed before.

Given a T -∞-category C with sufficiently many parameterized limits, we provide
a universal way to turn it into a P -semiadditive T -∞-category by passing to the
T -∞-category CMonP (C) of P -commutative monoids, a parameterized version of
commutative monoid objects in higher algebra. In a similar way, we construct a
universal P -stabilization SpP (C) of C. Combining this with Theorem A, the key
step in the proof of Theorem B and Theorem C is then to produce equivalences of
global ∞-categories

ΓS gl,spc ≃ CMonOrb(S gl), Spgl ≃ SpOrb(S gl).

1.3. Acknowledgements. The authors would like to thank Branko Juran for
pointing out an omission in a draft of this article, which led to the inclusion of
Appendix A. B.C. would like to thank Louis Martini and Sebastian Wolf for many
helpful discussions about parameterized higher category theory. T.L. would like
to thank Markus Hausmann who first suggested to him to use G-global homotopy
theory to obtain the parameterized incarnation of global homotopy theory.

This article is partially based on work supported by the Swedish Research Council
under grant no. 2016-06596 while T.L. was in residence at Institut Mittag-Leffler
in Djursholm, Sweden in early 2022. B.C. and S.L. are associate members of the
Hausdorff Center for Mathematics at the University of Bonn. B.C. is supported
by the Max Planck Institute for Mathematics in Bonn. S.L. is supported by the
DFG Schwerpunktprogramm 1786 “Homotopy Theory and Algebraic Geometry”
(project ID SCHW 860/1-1).

2. Parameterized higher category theory

In this section, we will recall some of the basic notions of parameterized higher
category theory. A first development of such theory was given by Clark Barwick,
Emanuele Dotto, Saul Glasman, Denis Nardin and Jay Shah, cf. [BDG+16, Sha21,
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Nar16]. From the perspective of categories internal to ∞-topoi, an alternative de-
velopment was given by Louis Martini and Sebastian Wolf [Mar21, MW21, MW22].

2.1. T -∞-categories. We introduce the notion of a T -∞-category for a small ∞-
category T and discuss various constructions and examples.

Definition 2.1.1. Let T be a small ∞-category. A T -∞-category is a functor
C : T op → Cat∞. If C and D are T -∞-categories, then a T -functor F : C → D is
a natural transformation from C to D. The ∞-category CatT of T -∞-categories is
defined as the functor category CatT := Fun(T op,Cat∞).

If C is a T -∞-category and f : A→ B is a morphism in T , we will write f∗ for the
functor C(f) : C(B)→ C(A) and refer to this as restriction along f .

Example 2.1.2. Let G be a finite group and let OrbG denote the orbit category of
G, defined as the full subcategory of the category of G-sets spanned by the orbits
G/H for subgroups H 6 G. When T = OrbG, T -∞-categories are referred to as
G-∞-categories, c.f. [BDG+16].

We will be mainly interested in the following example.

Example 2.1.3. Define Glo as the strict (2, 1)-category of finite groups, group
homomorphisms, and conjugations. In particular, Glo comes with a fully faithful
functor B : Glo →֒ Grpd into the (2, 1)-category of groupoids given by sending
a finite group G to the corresponding 1-object groupoid BG, a homomorphism
f : G → H to the functor Bf : BG → BH given on homomorphisms by f , and a
conjugation h : f ⇒ f ′ (i.e. an h ∈ H such that f ′(g) = hf(g)h−1 for all g ∈ G) to
the natural transformation Bf ⇒ Bf ′ whose value at the unique object of BG is
the edge h.

We define the ∞-category Glo as the Duskin nerve of the (2, 1)-category Glo. We
will use the term global ∞-category for a Glo-∞-category, global functor for a Glo-
functor, etc.

Remark 2.1.4. The straightening-unstraightening equivalence (see [Lur09, Theo-
rem 3.2.0.1]) provides an equivalence of ∞-categories CatT ≃ (Cat∞)cocart/T op , where

(Cat∞)cocart/T op denotes the (non-full) subcategory of the slice (Cat∞)/T op spanned by

the cocartesian fibrations over T op and the functors over T op that preserve cocarte-
sian edges. The cocartesian fibration over T op corresponding to a T -∞-category
C : T op → Cat∞ is denoted by

∫
C → T op and is referred to as the cocartesian un-

straightening of C. A T -functor F : C → D corresponds to a functor
∫
F :

∫
C →

∫
D

over T op which preserves cocartesian edges. In fact, in the articles [BDG+16],
[Sha21] and [Nar16], a T -∞-category is defined as a cocartesian fibration over T op.

Definition 2.1.5. Let C : T op → Cat∞ be a T -∞-category. We define the under-
lying ∞-category Γ(C) of C as the limit of C:

Γ(C) := lim
B∈T op

C(B).

This defines a functor Γ: CatT → Cat∞. Note that when T has a final object,
Γ(C) is obtained by evaluating C at the final object.

Remark 2.1.6. By [Lur09, Corollary 3.3.3.2], the ∞-category Γ(C) is equivalent
to the ∞-category of cocartesian sections of

∫
C → T op.
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We discuss some important examples of T -∞-categories.

Example 2.1.7. Every∞-category E gives rise to a T -∞-category constE : T
op →

Cat∞ given by constE(t) = E for all t ∈ T . This provides a functor const : Cat∞ →
CatT . We will refer to T -∞-categories in the essential image of this functor as
constant T -∞-categories.

Remark 2.1.8. Note that the functor const: Cat∞ → CatT is left adjoint to the
underlying ∞-category functor Γ: CatT → Cat∞: for every T -∞-category C and
every ∞-category E there is an equivalence

HomCatT (constE , C) ≃ HomCat∞(E ,Γ(C)).

Example 2.1.9. Every presheaf B : T op → Spc on T gives rise to a T -∞-category
B : T op → Cat∞ by composing it with the inclusion Spc ⊆ Cat∞ of ∞-groupoids
into all ∞-categories, and we obtain a fully faithful inclusion

PSh(T ) = Fun(T op, Spc) →֒ Fun(T op,Cat∞) = CatT .

The T -∞-categories in the essential image of this functor will be referred to as
T -∞-groupoids.

In particular, every object B ∈ T gives rise to a T -∞-category B via the Yoneda
embedding T →֒ PSh(T ).

Remark 2.1.10. The inclusion PSh(T ) ⊆ CatT admits a right adjoint ι : CatT →
PSh(T ). It is given on C by ι ◦ C, where ι : Cat∞ → Spc is the functor which assigns
to an ∞-category its core, the largest ∞-groupoid contained in it.

Example 2.1.11. Let E be an ∞-category. A T -object in E is a functor T op → E .
We obtain a T -∞-category ET of T -objects in E by assigning to an object B ∈ T the
∞-category Fun((T/B)

op, E) of T/B-objects in E . More precisely, the T -∞-category
ET is defined as the following composite

T op B 7→(T/B)op

−−−−−−−−→ (Cat∞)op
Fun(−,E)
−−−−−−→ Cat∞,

where the functoriality of the first functor is via post-composition in T , i.e. the
straightening of the cocartesian fibration ev1 : T

[1] → T . It is clear that sending E
to ET gives rise to a functor Cat∞ → CatT .

As a special case, we obtain the following T -∞-categories:

(1) taking E = Spc gives a T -∞-category Spc
T
of T -spaces or T -∞-groupoids.

(2) taking E = Spc∗ gives a T -∞-category Spc∗T of pointed T -spaces.

(3) taking E = Sp gives a T -∞-category Sp
T
of naive T -spectra.1

(4) taking E = Cat∞ gives a T -∞-category Cat∞T
of T -∞-categories.

Remark 2.1.12. For every T -∞-category C and every ∞-category E , there is an
equivalence

HomCatT (C, ET ) ≃ HomCat∞(
∫
C, E)

which is natural in C and E . In other words, the construction of Example 2.1.11
provides a right adjoint to the cocartesian unstraightening

∫
: CatT → Cat∞ which

1The usage of ‘naive spectra’ is used in equivariant homotopy theory to contrast it with ‘genuine
spectra’.
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assigns to a T -∞-category C : T op → Cat∞ the total category
∫
C of its unstraight-

ening
∫
C → T op. We will prove this in Lemma 2.2.9 below.

Remark 2.1.13. One may alternatively describe T -∞-categories as Cat∞-valued
sheaves on the presheaf ∞-topos PSh(T ) = Fun(T op, Spc), i.e., as limit-preserving
functors PSh(T )op → Cat∞. Indeed, the functor

Fun(PSh(T )op,Cat∞)→ Fun(T op,Cat∞)

given by precomposition with the Yoneda embedding T →֒ PSh(T ) becomes an
equivalence when restricting the domain to the full subcategory of limit-preserving
functors, see [Lur09, Theorem 5.1.5.6].

Remark 2.1.14. For an ∞-topos B, the ∞-category FunR(Bop,Cat∞) of sheaves
of ∞-categories on B is equivalent to the full subcategory of Fun(∆op,B) spanned
by the internal ∞-categories (or complete Segal objects). We refer to [Mar21,
Definition 3.2.4] for a precise definition of an internal ∞-category, and to [Mar21,
Section 3.5] for a proof of this equivalence. By Remark 2.1.13, the study of T -∞-
categories is thus equivalent to the study of ∞-categories internal to the presheaf
topos PSh(T ). Although we will never use this perspective in this article, we will
not hesitate to cite results from [Mar21, MW21, MW22] which are formulated in
the language of internal ∞-categories.

Convention 2.1.15. Henceforth, we will abuse notation and denote the extension
of a T -∞-category C to a limit preserving functor PSh(T )op → Cat∞ again by C.
At various points in this article, we will write expressions such as A×A or A×B A
for objects A,B ∈ T , meaning implicitly that this pullback is taken in the presheaf
∞-category PSh(T ). In particular, when we write C(A×B) or C(A×B A), we are
referring to the values of the limit-extension C : PSh(T )op → Cat∞ at the relevant
objects. This abuse of notation is justified by the fact that the Yoneda embedding
T →֒ PSh(T ) preserves all limits that exist in T , cf. [Lur09, Proposition 5.1.3.2]. In
a similar way, all colimits of objects of T are understood to be taken in the presheaf
∞-category PSh(T ): expressions such as

⊔n
i=1 Ai will always mean formal disjoint

union.

Remark 2.1.16. It will be useful to observe that the limit-extension of the T -∞-
category Spc

T
of T -spaces is equivalent to the slice functor

PSh(T )/− : PSh(T )op → Cat∞,

A 7→ PSh(T )/A,

[f : A→ B] 7→ f∗ : PSh(T )/B → PSh(T )/A,

which is defined as the functor which classifies the cartesian fibration

t : Ar(PSh(T ))→ PSh(T ) : (A→ B) 7→ B.

Indeed, since this slice functor preserves limits by [Lur09, Theorem 6.1.3.9, Propo-
sition 6.1.3.10], it suffices to show that its restriction to T op is equivalent to Spc

T
.

Consider the Yoneda embedding T →֒ PSh(T ). By considering the functoriality in
over-categories on both sides we obtain a natural transformation

T/− → PSh(T )/−
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of functors in T . The universal property of presheaves implies that this extends to
a natural equivalence

PSh(T/−)
∼
→ PSh(T )/−.

By the naturality of the Yoneda embedding (see [HHLN22, Theorem 8.1] or [Ram22,
Theorem 2.4]) we get that upon passing to right adjoints the diagram PSh(T/−)
agrees with Spc

T
, completing the proof.

Example 2.1.17. For an object B ∈ T there is an adjunction

πB : PSh(T )/B ⇄ PSh(T ) :−×B,

where πB is the forgetful functor. Since both functors preserve colimits we obtain
by precomposition an adjunction

π∗
B : CatT ⇄ CatT/B : (πB)∗ = (−×B)∗.

Lemma 2.1.18. Consider an object B ∈ T . Then there is for every ∞-category E
an equivalence of T/B-∞-categories

π∗
BET ≃ ET/B

,

natural in E.

Proof. It will suffice to prove that the composite

T/B
πB−−→ T

A 7→(T/A)op

−−−−−−−→ Cat∞

is equivalent to the slice functor of T/B. This is immediate from the observation

that the target map ev1 : (T/B)
[1] → T/B of T/B is the pullback along πB of the

target map ev1 : T
[1] → T . �

2.2. Parameterized functor categories. In this subsection, we establish a vari-
ety of basic results on parameterized functor categories.

Definition 2.2.1. Since T is small and Cat∞ is cartesian closed, the ∞-category
CatT = Fun(T op,Cat∞) is again cartesian closed. Given two T -∞-categories C and
D, we define the T -∞-category of T -functors C → D, denoted FunT (C,D), as the
internal hom-object between C and D in the ∞-category CatT . In particular, for
any triple of T -∞-categories C, D and E there is a natural equivalence

FunT (C ×D, E) ≃ FunT (C,FunT (D, E)).

Definition 2.2.2. Given two T -∞-categories C and D, we define the ∞-category
FunT (C,D) of T -functors C → D as the underlying∞-category of the T -∞-category
FunT (C,D):

FunT (C,D) := Γ(FunT (C,D)).

Remark 2.2.3. The objects of FunT (C,D) may be identified with T -functors C →
D. If F and F ′ are two such T -functors, we refer to a morphism α : F → F ′ in
FunT (C,D) as a natural transformation of T -functors. A natural transformation of
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T -functors is given by a collection of natural transformations ηA : F (A) → F ′(A)
together with a coherent collection of 3-cells which fill the cylinders

C(B) D(B)

C(A) D(A),

f∗

F (B)

F ′(B)

f∗

ηB

F (A)

F ′(A)

ηA

for every morphism f : A→ B in T .

Example 2.2.4. The T -functors of the form Cop → Spc
T
are called T -presheaves

on C. There is an analogue of the Yoneda embedding,

y : C → FunT (C
op, Spc

T
),

see [BDG+16, Section 10] or [Mar21, Section 4.7]. The functor y is fully faithful by
[Mar21, Theorem 4.7.8], and functors in the essential image preserve T -limits by
[MW21, Corollary 4.4.9].

Natural transformations between ordinary categories induce natural transforma-
tions between their associated T -∞-categories of T -objects.

Construction 2.2.5. Given ∞-categories E and E ′, we will construct a functor

Fun(E , E ′)→ FunT (ET , E
′
T )

which on groupoid cores reduces to the functoriality of the construction E 7→ ET
of Example 2.1.11. By adjunction we may equivalently specify a T -functor of the
form

constFun(E,E′)×ET → E
′
T .

At level B ∈ T , we define this as the composition functor

Fun(E , E ′)× Fun((T/B)
op, E)→ Fun((T/B)

op, E ′).

By precomposing with the functors T op
/A → T op

/B this specifies a T -functor.

The following result of [MW21] relates the ∞-category of T -functors from Defini-
tion 2.2.2 to the identically named ∞-category of T -functors from [BDG+16, p.3].

Proposition 2.2.6 ([MW21, Proposition 3.2.1]). For any two T -∞-categories C
and D there is a natural equivalence

FunT (C,D) ≃ Funcocart
/T op (

∫
C,

∫
D),

where the right-hand side denotes the full subcategory of Fun/T op(
∫
C,

∫
D) spanned

by those functors
∫
C →

∫
D over T op that preserve cocartesian edges. �

Lemma 2.2.7 (Categorical Yoneda lemma). For every B ∈ T and C ∈ CatT ,
evaluation at the identity idB ∈ HomT (B,B) = B(B) induces a natural equivalence
of ∞-categories

FunT (B, C)
∼
−→ C(B).
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Proof. By the Yoneda lemma and Remark 2.1.10 there is a natural equivalence

HomCatT (B, C) ≃ ι(C(B))

between the ∞-groupoid of T -functors B → C and the groupoid core of the ∞-
category C(B), so the statement holds on groupoid cores. To obtain the statement
on the level of categories, we use that the ∞-category CatT is cotensored over
Cat∞: for every T -∞-category C and every∞-category E , the cotensor CE is given
at B ∈ T by CE(B) ≃ Fun(E , C(B)). It follows that for any ∞-category E we have
natural equivalences

HomCat∞(E ,FunT (B, C)) ≃ HomCatT (B, C
E) ≃ ι(CE(B))

≃ ι(Fun(E , C(B)) = HomCat∞(E , C(B)),

and thus the claim follows from the Yoneda lemma. �

The previous lemma yields various alternative descriptions of the functor T -∞-
category FunT (C,D).

Corollary 2.2.8. Let C and D be T -∞-categories and let B ∈ T . The following
hold:

(1) There is an equivalence

FunT (C,D)(B) ≃ FunT (B × C,D)

which is natural in C, D and B.
(2) There is an equivalence

FunT (B,D) ≃ (πB)∗π
∗
B D

which is natural in D, with (πB)∗ and π∗
B as in Example 2.1.17.

(3) There is an equivalence

B × C ≃ (πB)!π
∗
B C

which is natural in C, where (πB)! : CatT/B
→ CatT denotes left Kan extension

along πB : T/B → T .
(4) There is an equivalence

FunT (C,D)(B) ≃ FunT/B
(π∗
B C, π

∗
B D).

which is natural in C, D.

Proof. Part (1) is immediate from Lemma 2.2.7 and the adjunction equivalence
FunT (B,FunT (C,D)) ≃ FunT (B × C,D). For part (2), we get for all A ∈ T a
natural equivalence

FunT (B,D)(A)
(1)
≃ FunT (A×B,D) ≃ FunT (A×B,D)

2.2.7
≃ D(A×B),

showing that FunT (B,D) ≃ D(−×B) = (πB)∗π
∗
B D. Part (3) follows directly from

(2) by passing to left adjoints. For part (4) we now compute

FunT (C,D)(B)
(1)
≃ FunT (B × C,D)

(3)
≃ FunT ((πB)!π

∗
B C,D) ≃ FunT/B

(π∗
B C, π

∗
B D).

This finishes the proof. �

We will now prove the adjunction between E 7→ ET and C 7→
∫
C promised in

Remark 2.1.12.
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Lemma 2.2.9. The functor
∫
: CatT → Cat∞, sending a T -∞-category C : T op →

Cat∞ to the total space
∫
C of the cocartesian fibration

∫
C → T op it classifies,

admits a right adjoint given by the construction E 7→ ET of Example 2.1.11.

Proof. The functor
∫
: CatT → Cat∞ can be expanded into the following composite

functor:

CatT
2.1.4
≃ (Cat∞)cocart/T op →֒ (Cat∞)/T op

fgt
−−→ Cat∞

By [Lur17, Example B.2.10, Remark B.0.28], the functor in the middle is the un-
derlying functor of a left Quillen functor between model categories, so that it ad-
mits a right adjoint by [Hin16, Proposition 1.5.1]. The second functor clearly
admits a right adjoint. It follows that

∫
: CatT → Cat∞ admits a right adjoint

R : Cat∞ → CatT .

As a formal consequence we obtain for each T -∞-category C and for each ∞-
category E a natural equivalence

FunT (C, R(E)) ≃ Fun(
∫
C, E)

between the ∞-category T -functors C → R(E) and the ∞-category of functors∫
C → E : for every other ∞-category E ′ there is a natural equivalence

HomCatT (E
′,FunT (C, R(E))) ≃ HomCatT (C × constE′ , R(E))

≃ HomCat∞(
∫
(C × constE′), E)

≃ HomCat∞(
∫
C ×E ′, E)

≃ HomCat∞(E ′,Fun(
∫
C, E)),

where we use that the cocartesian unstraightening of constE′ is T op × E ′ and that
the inclusion (Cat∞)cocart/T op →֒ (Cat∞)/T op preserves finite products. The claim now

follows from the Yoneda lemma.

The description of R as the functor E 7→ ET from Example 2.1.11 now follows
immediately by recalling that the cocartesian unstraightening of the functor B =
HomT (−, B) : T op → Spc is by definition given by the target functor (T/B)

op →
T op. Namely for any E ∈ Cat∞ and B ∈ T we have a natural equivalence

R(E)(B)
2.2.7
≃ FunT (B,R(E)) ≃ Fun(

∫
B, E) ≃ Fun((T/B)

op, E) = ET (B). (1)

This finishes the proof. �

Remark 2.2.10. Combining the previous lemma and part (1) of Corollary 2.2.8
we obtain a natural equivalence

FunT (C, ET ) ≃ Fun(
∫
C ×(−), E).

Remark 2.2.11. Let B ∈ T arbitrary. Unravelling the chain of equivalences (1)
we see that the diagram

FunT (B, ET ) Fun(
∫
B, E)

ET (B) Fun(T/B, E)

adjunction

Yoneda f∗
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of equivalences commutes up to natural equivalence where f is the chosen identifi-
cation of

∫
B with T/B over T .

Now assume T has a final object 1. Specializing the above to B = 1 (and identifying
T/1 with T as usual), we see that

FunT (1, ET ) Fun(
∫
1, E)

ET (1) Fun(T op, E)

Yoneda ≃

adjunction

≃

π∗

commutes up to natural equivalence, where π :
∫
1→ T op is the cocartesian projec-

tion. Combining this with the naturality of the adjunction equivalence, we conclude
that we have for every T -∞-category C and c ∈ C(1) a natural equivalence filling

FunT (C, ET ) Fun(
∫
C, E)

ET (1) Fun(T op, E)

evc

adjunction

≃

ĉ∗

where ĉ : T op →
∫
C is the essentially unique map over T op sending the fiber over

1 ∈ T to c (i.e. the unstraightening of c viewed as a T -functor 1→ C).

Remark 2.2.12. We can make the equivalence FunT (C, ET ) ≃ Fun(
∫
C, E) of

Lemma 2.2.9 more explicit. Consider a functor F̃ :
∫
C → E . The associated T -

functor F : C → ET is given at B ∈ T by the functor

FB : C(B)→ Fun(T op
/B, E),

where FB(X)(h : C → B) = F̃ (h∗(X)), the value of F̃ on the cocartesian pushfor-
ward of X ∈ C(B) along h to C(C). The value of FB(X) on a triangle

C D

B
h

f

g

is given by applying F̃ to the cocartesian edge over f from g∗(X) to h∗(X). More

generally, for another object B′ ∈ T and a functor F̃ :
∫
(C ×B′)→ E , the associated

T -functor F : C → Fun(B, E) is given at B ∈ T by the functor FB : C(B) →
Fun(T op

/B×B′ , E) given by

FB(X)(A
(fB ,fB′ )
−−−−−→ B ×B′) = F̃ (A, f∗

BX, fB′).

2.3. Parameterized adjunctions, limits and colimits. We will briefly recall
the parameterized versions of adjunctions, limits and colimits, following Sections 3
and 4 of [MW21] (see Remark 2.1.14). An alternative treatment in the language of
cocartesian fibrations over T op is given by [Sha21, Sections 8 and 9].

Definition 2.3.1 ([MW21, Definition 3.1.1]). Let C and D be T -∞-categories.
An adjunction between C and D is a tuple (L,R, η, ε), where L : C → D and
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R : D → C are T -functors and where η : idD → RL and ε : LR → idC are natural
transformations of T -functors fitting in commutative triangles

L LRL

L

Lη

εL and

RLR R

R.

Rε

ηR

Note that the notion of an adjunction between two T -∞-categories only depends
on the (homotopy) 2-category associated to CatT and in particular many of the
standard 2-categorical results about adjunctions hold in this setting.

Example 2.3.2. Every adjunction E ⇄ E ′ of∞-categories gives rise to an adjunc-
tion constE ⇄ constE′ on associated constant T -∞-categories.

Example 2.3.3. By Construction 2.2.5, every adjunction E ⇄ E ′ of ∞-categories
gives rise to an adjunction ET ⇄ E ′T on associated T -∞-categories of T -objects.

Important will be the following ‘pointwise’ criterion for checking that a T -functor
has a parameterized adjoint.

Proposition 2.3.4 ([MW21, Proposition 3.2.10]). A T -functor F : C → D admits
a (parameterized) right adjoint if and only if the following two conditions hold:

(1) For every object B ∈ T , the induced functor F (B) : C(B) → D(B) admits a
right adjoint G(B) : D(B)→ C(B);

(2) For every morphism f : A→ B in T , the Beck-Chevalley transformation

f∗ ◦G(B) =⇒ G(A) ◦ f∗

given as the mate of the naturality square

C(B) D(A)

C(A) D(A)

F (B)

f∗ f∗

F (A)

is an equivalence.

If this is the case, the right adjoint G : D → C of F is given on an object B ∈ PSh(T )
by the functor G(B) : D(B)→ C(B).

The dual statement for parameterized left adjoints also holds. �

We will now move to parameterized limits and colimits, of which we will only give
a brief treatment sufficient for the purposes of the present article.

Definition 2.3.5. Let K and C be T -∞-categories. We say that C admits K-
indexed colimits if the diagonal functor diag : C → FunT (K, C) given by precom-
posing withK → 1 admits a left adjoint colimK : FunT (K, C)→ C. Similarly we say
that C admits K-indexed limits if diag admits a right adjoint limK : FunT (K, C)→
C.

Definition 2.3.6. Let K, C and D be T -∞-categories and assume that C and D
admit K-indexed colimits. We will say that a T -functor F : C → D preserves K-
indexed colimits if the Beck-Chevalley transformation colimK ◦ FunT (K,F ) =⇒
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F ◦ colimK of the naturality square

C FunT (K, C)

D FunT (K,D)

diag

F FunT (K,F )

diag

is an equivalence.

In the non-parameterized context, one often asks an∞-category to admit (co)limits
for a certain class of indexing diagrams. In the parameterized setting, one should
work with the following parameterized notion of ‘class of indexing diagrams’.

Definition 2.3.7. Let T be an ∞-category. A class of T -∞-categories is a full
parameterized subcategory U ⊆ CatT of the T -∞-category of T -∞-categories.

Definition 2.3.8 ([MW21, Definition 5.2.1]). Let U be a class of T -∞-categories
and let C and D be T -∞-categories.

(1) We will say that C admits U-colimits if the T/B-∞-category π∗
B C of Exam-

ple 2.1.17 admits K-indexed T/B-colimits for every B ∈ T and K ∈ U(B) ⊆
Cat(T/B).

(2) If C and D admit U-colimits, a T -functor F : C → D is said to preserve U-
colimits if π∗

BF preserves K-indexed T/B-colimits for every B ∈ T and K ∈
U(B).

Dually, C is said to admit U-limits if for every B ∈ T and K ∈ U(B), the T/B-
∞-category π∗

B C admits K-indexed T/B-limits. A T -functor F : C → D is said
to preserve U-limits if π∗

BF preserved K-indexed T/B-limits for every B ∈ T and
K ∈ U(B).

If U = CatT consists of all T -∞-categories, we will say that C is T -cocomplete or
T -complete respectively.

From the pointwise criterion Proposition 2.3.4 of parameterized adjunctions, we
immediately obtain characterizations of T -(co)limits indexed by constant T -∞-
categories and T -∞-groupoids, respectively. We start with the case of constant
T -∞-categories.

Lemma 2.3.9 (cf. [MW21, Example 4.1.10]). Let C be a T -∞-category, let K be
an ∞-category, and let constK be the associated constant T -∞-category. Then the
following conditions are equivalent:

(1) The T -∞-category C admits constK-indexed colimits;
(2) For every object B ∈ T the ∞-category C(B) admits K-indexed colimits, and

for every morphism β : B′ → B in T the restriction functor β∗ : C(B)→ C(B′)
preserves K-indexed colimits.

The dual statement for limits also holds.
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Proof. We apply the natural identification

FunT (constK , C)(B)
2.2.8
≃ FunT (constK ,FunT (B, C))

2.1.8
≃ Fun(K,FunT (B, C))

2.2.7
≃ Fun(K, C(B)).

Because each equivalence above is natural in K, we find that under this identifica-
tion the T -functor diag : C → FunT (K, C) corresponds at B ∈ T to the standard
diagonal functor. Furthermore the Beck-Chevalley transformation associated to the
naturality square

C(B) Fun(K, C(B))

C(B′) Fun(K, C(B′))

β∗

diag

diag

Fun(K,β∗)

is the standard comparison colim ◦Fun(K,β∗)⇒ F ◦ colimK . Therefore this is an
instance of Proposition 2.3.4. �

The following result is proved similarly and will be left to the reader.

Lemma 2.3.10. Let K be an ∞-category and let C and D be two T -∞-categories
that admit constK-indexed T -colimits. Then a T -functor F : C → D preserves
constK-indexed T -colimits if and only if for each B ∈ T the functor F (B) : C(B)→
D(B) preserves K-indexed colimits.

The dual statement for limits also holds. �

Definition 2.3.11. If the equivalent conditions (1) and (2) of Lemma 2.3.9 are
satisfied, we say that C admits fiberwise K-indexed colimits. If S is a collection
of small ∞-categories such that C admits fiberwise K-indexed colimits for every
K ∈ S, we say that C admits fiberwise S-indexed colimits. We say that C is fiberwise
cocomplete if C admits fiberwise K-indexed colimits for every small ∞-category K.

Dually one defines when C admits fiberwise K-indexed limits or is fiberwise complete.

We next describe parameterized colimits indexed by T -∞-groupoids.

Definition 2.3.12. A class of T -∞-groupoids2 is a full parameterized subcategory
U ⊆ Spc

T
of the T -∞-category of T -∞-groupoids. A morphism f : A → B in

PSh(T ) is said to be inU if it is an object in the full subcategoryU(B) ⊆ PSh(T )/B.

Lemma 2.3.13 (cf. [MW21, Example 4.1.9], [Sha21, Proposition 5.12]). Let U
be a class of T -∞-groupoids. Then a T -∞-category C admits U-colimits if and
only if for every morphism p : A → B in U, with B ∈ T , the restriction functor
p∗ : C(B) → C(A) admits a left adjoint p! : C(A) → C(B), and for every pullback
square

A′ A

B′ B

p′

α

p

β

(2)

2This is called a ‘subuniverse’ in [Mar21, Definition 3.9.13]
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in PSh(T ) with β : B′ → B in T and p : A→ B in U, the Beck-Chevalley transfor-
mation p′! ◦ α

∗ ⇒ β∗ ◦ p! associated to the commutative diagram

C(B) C(B′)

C(A) C(A′)

β∗

p∗ p′∗

α∗

is a natural equivalence.

Dually, C admits U-limits if and only if p∗ : C(B) → C(A) admits a right adjoint
p∗ : C(A)→ C(B) for every morphism p : A→ B in U and for every pullback square
(2), the Beck-Chevalley transformation β∗ ◦ p∗ ⇒ p′∗ ◦ α

∗ is a natural equivalence.

Proof. Let (p : A → B) ∈ U(B) ⊆ PSh(T )/B be a morphism in U. It suffices to
show that the T/B-∞-category π∗

B C admits A-indexed colimits if and only if for
every pullback diagram

A′′ A′ A

B′′ B′ B

α′

p′′ p′

α

p

β′ β

the functors p′
∗
and p′′

∗
admit left adjoints p′! and p′′! , and the Beck-Chevalley

transformation p′′! ◦α
′∗ ⇒ β′∗ ◦ p′! is a natural equivalence. By replacing T by T/B,

we may assume B = 1 is a terminal object of T . Using the natural identifications

FunT (A, C)(B
′)
2.2.8
≃ FunT (A×B

′, C)) ≃ FunT (A×B
′, C))

2.2.7
≃ C(A×B′),

this is an instance of Proposition 2.3.4 applied to the T -∞-category FunT (A, C). �

Remark 2.3.14. In the context of Lemma 2.3.13, it follows from [MW21, Propo-
sition 3.2.8] that the left adjoint p! : C(A) → C(B) exists more generally for any
morphism p : A→ B in PSh(T ) satisfying the following condition:

(*) for every B′ ∈ T and every map β : B′ → B, the base change B′ ×B A→ B′ is
in U(B′) ⊆ PSh(T )/B′ .

Similarly, the Beck-Chevalley condition holds for any pullback square (2) in which
p : A→ B satisfies condition (*).

The following lemma is proved in a similar way and is left to the reader.

Lemma 2.3.15. Let C and D be two T -∞-categories which admit U-colimits. Then
a T -functor F preserves U-colimits if and only if for every morphism f : A → B
in U, the Beck-Chevalley transformation f! ◦ F (A)⇒ F (B) ◦ f! is an equivalence.

The dual statement for preserving U-limits also holds. �

It turns out that the parameterized colimits indexed by the constant T -∞-categories
and the T -∞-groupoids already determine all parameterized colimits.

Proposition 2.3.16 ([MW21, Proposition 4.7.1]). A T -∞-category is T -cocomplete
if and only if it admits fiberwise colimits and Spc

T
-colimits. A T -functor between

T -cocomplete T -∞-categories preserves T -colimits if and only if it preserves fiber-
wise colimits and Spc

T
-colimits. �
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An important example of a T -(co)complete T -∞-category is the T -∞-category of
T -spaces.

Example 2.3.17. The T -∞-category Spc
T
is both T -cocomplete and T -complete.

Recall from Remark 2.1.16 that Spc
T
(B) ≃ PSh(T )/B for every B ∈ T , with func-

toriality given via pullback in PSh(T ). The functor f∗ : PSh(T )/B → PSh(T )/A
admits a left adjoint given by postcomposition with f , and since PSh(T ) is locally
cartesian closed it also admits a right adjoint. It follows that Spc

T
admits all fiber-

wise limits and colimits. The left Beck-Chevalley condition is a consequence of the
pasting law of pullback squares. The right Beck-Chevalley condition follows from
this by passing to total mates.

Example 2.3.18. It follows directly from Example 2.3.17 that also the T -∞-
categories Spc∗T and Sp

T
of pointed T -spaces and naive T -spectra are both T -

cocomplete and T -complete, since they may be obtained from Spc
T

by pointwise

tensoring with Spc∗ and Sp inside PrL, respectively. For later use, we will make
the left adjoint functors p! of Spc∗T explicit. First note that giving a basepoint to

an object (X, f : X → A) ∈ Spc
T
(A) ≃ PSh(T )/A amounts to providing a section

s : A → X of the map f , so that we can identify objects of Spc
T,∗

(A) with triples

(X, f, s). Given a morphism p : A → B in PSh(T ), we get p!(X, f, s) ≃ (X ′, f ′, s′)
defined via the following pushout diagram:

A X A

B X ′ B.

s

p

f

p

s′ f ′

We end this subsection with a discussion of parameterized limits and colimits in
functor T -∞-categories.

Proposition 2.3.19 ([MW21, Proposition 4.3.1]). Let K and D be T -∞-categories
such that D admits all K-indexed parameterized limits. Then FunT (C,D) admits
all K-indexed limits for any T -∞-category C. Furthermore, the precomposition
functor i∗ : FunT (C

′,D) → FunT (C,D) preserves K-indexed limits for every T -
functor i : C → C′. The dual statement for colimits is true as well. �

Proof. Under the equivalence FunT (K,FunT (C,D)) ≃ FunT (C,FunT (K,D)), the
diagonal functor

diag : FunT (C,D)→ FunT (K,FunT (C,D))

corresponds to FunT (C, diag): FunT (C,D) → FunT (C,FunT (K,D)). Since the lat-
ter functor has a parameterized right adjoint FunT (C, limK), it follows that the
former also has a parameterized right adjoint given by the composite

FunT (K,FunT (C,D)) ≃ FunT (C,FunT (K,D))
FunT (C,limK)
−−−−−−−−−→ FunT (C,D).

The proof for colimits is similar. �

2.4. Presentable T -∞-categories. For the statement of various universal prop-
erties we need to restrict to presentable T -∞-categories. The notion of parameter-
ized presentability was introduced by Nardin [Nar17] and was subsequently further
developed by Hilman [Hil22] in the case where the ∞-category T is orbital (in



20 BASTIAAN CNOSSEN, TOBIAS LENZ, AND SIL LINSKENS

the sense of Definition 4.2.2 below). A more general theory of parameterized pre-
sentability which works for arbitrary T was developed by Martini and Wolf [MW22]
in terms of internal higher category theory. In this subsection, we will recall the
main results on parameterized presentability.

Definition 2.4.1. A T -∞-category C is called presentable if the following two
conditions hold:

(1) C is fiberwise presentable, meaning that the functor C : T op → Cat∞ factors

(necessarily uniquely) through PrL;
(2) C is T -cocomplete.

Observe that fiberwise presentability guarantees that C has fiberwise colimits, so
that condition (2) holds if and only if C admits Spc

T
-indexed colimits.

By [MW22, Theorem A], this definition agrees with the definition of [MW22, Sec-
tion 6] applied to the ∞-topos PSh(T ). When T is orbital, this definition agrees
with that of [Hil22, Section 4].

Remark 2.4.2. Any presentable T -∞-category C is automatically T -complete:
fiberwise completeness and the existence of right adjoints f∗ : C(A)→ C(B) follow
from fiberwise presentability, and for every pullback square of the form (2), the
Beck-Chevalley map β∗ ◦ p∗ ⇒ p′∗ ◦α

∗ is the total mate of the Beck-Chevalley map
α! ◦ p

′∗ ⇒ p∗ ◦ β! and thus an equivalence.

Definition 2.4.3. We define PrLT to be the (non-full) subcategory of CatT spanned
by the presentable T -∞-categories and left adjoint T -functors between them. Sim-
ilarly we define PrRT to be the (non-full) subcategory of CatT spanned by the pre-
sentable T -∞-categories and right adjoint T -functors between them. There is a
canonical equivalence PrLT ≃ (PrRT )

op, see [MW22, Proposition 6.4.7].

Example 2.4.4. The T -∞-category Spc
T

of T -spaces is presentable: fiberwise

presentability follows from presentability of PSh(T ) while T -cocompleteness was
argued for in Example 2.3.17.

Example 2.4.5. Let K be a small T -∞-category and let C be a presentable T -∞-
category. Then the functor T -∞-category FunT (K, C) is again presentable [MW22,
Corollary 6.2.6], [Hil22, Lemma 4.6.1].

Example 2.4.6. Accessible Bousfield localizations of presentable T -∞-category
are again presentable.

In more detail, let C be a presentable T -∞-category and let S be a parameterized
family of morphisms in C, i.e. a specification of a set S(B) of morphisms of C(B)
for every B ∈ T such that f∗(u) ∈ S(A) for every u ∈ S(B) and every morphism
f : A → B in T . An object X ∈ C(B) is said to be S-local if for every morphism
f : A → B in T the object f∗X ∈ C(A) is S(A)-local, meaning that for every
morphism u : Y → Z in S(A) the induced map of spaces HomC(A)(Z, f

∗X) →
HomC(A)(Y, f

∗X) is an equivalence. We let LocS(C) ⊆ C denote the full subcategory
spanned by the S-local objects.

By [MW22, Lemma 6.1.3, Corollary 6.2.8] the T -∞-category LocS(C) is again pre-
sentable and the inclusion LocS(C) ⊂ C admits a left adjoint.
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Remark 2.4.7. It follows from the previous three examples that the subcategory of
S-local objects of a T -∞-category of T -presheaves PShT (K) := FunT (K

op, Spc
T
)

is presentable whenever S is a parameterized family of morphisms in PShT (K).
Conversely, any presentable T -∞-category is of this form, see [MW22, Theorem B],
[Hil22, Theorem 4.1.2]

Definition 2.4.8. If C and D are T -cocomplete T -∞-categories, we let FunL
T (C,D)

denote the full subcategory of FunT (C,D) spanned at levelB ∈ T by the T/B-colimit
preserving T/B-functors π

∗
B C → π∗

B D.

Theorem 2.4.9 (Adjoint functor theorem, [MW22, Proposition 6.3.1]). If C and
D are large T -∞-categories such that C is presentable and D is locally small, a
T -functor C → D preserves T -colimits if and only if it admits a right adjoint. �

Given a small T -∞-category K, the T -∞-category PShT (K) is freely generated
under parameterized colimits by K:

Proposition 2.4.10 ([MW21, Theorem 6.1.1]). Let K be a small T -∞-category
and let D be a T -cocomplete T -∞-category. Then restriction along the Yoneda
embedding y : K →֒ PShT (K) induces an equivalence of T -∞-categories

FunL
T (PShT (K),D)

∼
−→ FunT (K,D). �

Remark 2.4.11. Let A ∈ T and let f : π∗
AK → π∗

AD define an element of
FunT (K,D)(A), which by the proposition then extends to a left adjoint T -functor
F : π∗

A PShT (K)→ π∗
AD. As in the classical non-parameterized situation, the right

adjoint G of F is actually easy to describe [MW21, Remark 7.1.4]: it is given by
the composition

π∗
AD

y
−→ FunT/A

(π∗
AD

op, Spc
T/A

)
f∗

−→ FunT/A
(π∗
AK, SpcT/A

) ≃ π∗
A PShT (K).

Applying this result to the case where K is the terminal T -∞-category 1, we see
that the T -∞-category Spc

T
is the free T -cocomplete T -∞-category on a single

generator.

Corollary 2.4.12. Let D be a T -cocomplete T -∞-category. Then evaluation at the
terminal object 1 ∈ PSh(T ) = Γ(Spc

T
) induces an equivalence of T -∞-categories

FunL
T (SpcT ,D)

∼
−→ D . �

3. The universal property of global spaces

In this section we will give a parameterized interpretation of unstable global homo-
topy theory in the sense of [Sch18, Chapter 1] with respect to finite groups. For
this, the key idea will be to more generally consider unstable G-global homotopy
theory in the sense of [Len20, Chapter 1] for finite groups G, which we recall in
Subsection 3.1 below. In 3.2 we will then explain how these models for varying
G assemble into a global ∞-category S

gl (in the sense of Example 2.1.3), and in

Subsection 3.3 we will finally provide a universal description of S
gl as the free

cocomplete global ∞-category generated by the terminal object.
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3.1. A reminder on global and G-global homotopy theory. Let G be a finite
group; [Len20, Chapter 1] studies various models of unstable G-global homotopy
theory. We will recall two of these models that will be particularly convenient for
us:

Definition 3.1.1. We write M for the monoid (under composition) of injective
self-maps of the countably infinite set ω := {0, 1, . . .}.

The functor SSet → Set, X 7→ X0 sending a simplicial set to its set of vertices
admits a right adjoint E, given explicitly by (EX)n = X1+n with functoriality
induced by the identification X1+n ∼= Hom({0, . . . , n}, X); equivalently, this is the
nerve of the groupoid with objects X and a unique map between any two objects.
As a right adjoint, E in particular preserves products, so EM inherits a natural
monoid structure fromM.

We occasionally call the resulting simplicial monoid EM the ‘universal finite group.’
While EM is of course neither finite nor a group, this terminology is motivated by
the fact that we can embed any finite group into EM in a particularly nice way:

Definition 3.1.2. LetH be a finite group. A countableH-set U is called a complete
H-set universe if every other countable H-set embeds equivariantly into U .

Definition 3.1.3. A finite subgroup H ⊂M is called universal if the tautological
H-action on ω makes the latter into a complete H-set universe.

Lemma 3.1.4 (See [Len20, Lemma 1.2.8]). Let H be a finite group. Then there
exists an injective homomorphism i : H →M with universal image. If j : H →M
is another such map, then there exists an invertible ϕ ∈ M such that i(h) =
ϕj(h)ϕ−1 for all h ∈ H. �

Remark 3.1.5. Somewhat loosely speaking, the reason to pass from the discrete
monoidM to the simplicial monoid EM is to eliminate the indeterminacy of the
invertible element ϕ in the above lemma, see [Len20, Subsections 1.2.2–1.2.3] for
more details.

Definition 3.1.6. Let G be any group. We write EM-G-SSet for the 1-category
(or simplicially enriched category) of simplicial sets with a strict action of the
simplicial monoid EM×G, together with the strictly (EM×G)-equivariant maps.

The categoryEM-G-SSetwill be our first model forG-global homotopy theory. In
order to define the weak equivalences of this model structure we recall the following
notation:

Notation 3.1.7. Let G1, G2 be groups, let H ⊂ G1, and let ϕ : H → G2 be a
homomorphism. The graph subgroup ΓH,ϕ ⊂ G1 ×G2 is the subgroup {(h, ϕ(h)) :
h ∈ H}. If X is a (G1 ×G2)-simplicial set, then we abbreviate Xϕ := XΓH,ϕ , and
similarly for (G1 ×G2)-equivariant maps.

Proposition 3.1.8. The category EM-G-SSet carries a (unique) combinatorial
model structure in which a map is a weak equivalence or fibration if and only if fϕ

is a weak homotopy equivalence or Kan fibration, respectively, for every universal
subgroup H ⊂M and homomorphism ϕ : H → G. We call this the G-global model
structure and its weak equivalences the G-global weak equivalences.
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Moreover, there is also a unique model structure on EM-G-SSet whose weak
equivalences are the G-global weak equivalences and whose cofibrations are the in-
jective cofibrations, i.e. the levelwise injections. We call this the injective G-global
model structure.

Proof. These are special cases of [Len20, Propositions 1.1.2 and 1.1.15], respec-
tively; also see Corollary 1.2.34 of op. cit. for the former model structure. �

For G = 1 the above recovers a version of Schwede’s global homotopy theory where
one only considers equivariant information for finite groups (‘Fin-global homotopy
theory’), see Remark 3.1.14 below. On the other hand, for general finite G one
can exhibit ordinary G-equivariant homotopy theory explicitly as a Bousfield local-
ization of G-global homotopy theory, see [Len20, Subsection 1.2.6]. In this sense,
G-global homotopy theory can be thought of as a ‘synthesis’ of the usual equivariant
and global approaches.

Lemma 3.1.9 (See [Len20, Corollaries 1.2.76–1.2.79]). Let α : G→ G′ be any group
homomorphism. Then the restriction functor α∗ : EM-G′-SSet→ EM-G-SSet
is homotopical and it takes part in Quillen adjunctions

α! : EM-G-SSetG-gl ⇄ EM-G′-SSetG′-gl :α
∗

α∗ : EM-G′-SSetinj. G′-gl ⇄ EM-G-SSetinj. G-gl :α∗.

Moreover, if α is injective, then we also have Quillen adjunctions

α! : EM-G-SSetinj. G-gl ⇄ EM-G′-SSetinj. G′-gl :α
∗

α∗ : EM-G′-SSetG′-gl ⇄ EM-G-SSetG-gl :α∗. �

Next, we come to another model in terms of suitable ‘diagram spaces’ that will
become useful later to relate the unstable and stable theory to each other:

Definition 3.1.10. We write I for the category of finite sets and injections.
Moreover, we write I for the simplicially enriched category obtained by applying
E : Set→ SSet to all hom-sets.

We write I-SSet for the category Fun(I,SSet) of simplicially enriched functors
I → SSet. Moreover, if G is any group, then we write G-I-SSet for the category
of G-objects in I-SSet.

Construction 3.1.11. Let X be any I-simplicial set. Then we define

X(ω) := colim
A⊂ω
finite

X(A).

This admits an EM-action via the original functoriality of X in I, see [Len20,
Construction 1.4.14] for details, giving rise to a functor evω : I-SSet→ EM-SSet.
If G is any group, then we obtain a functor evω : G-I-SSet → EM-G-SSet by
pulling through the G-actions.

Theorem 3.1.12 (See [Len20, Proposition 1.4.3 and Theorem 1.4.30]). There is a
unique model structure on G-I-SSet with

• weak equivalences those maps f for which evωf =: f(ω) is a G-global weak
equivalence, and
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• acyclic fibrations those maps f for which f(A)ϕ is an acyclic Kan fibration
for every finite set A, H ⊂ ΣA, and ϕ : H → G.

We call this the G-global model structure and its weak equivalences the G-global
weak equivalences again.

Moreover, the functor evω is the left half of a Quillen equivalence G-I-SSet ⇄

EM-G-SSetinj. G-gl. �

Remark 3.1.13. One can also define a G-global model structure on the category
G-I-SSet (whose weak equivalences are somewhat intricate). The forgetful functor
G-I-SSet→ G-I-SSet is then the right half of a Quillen equivalence, see [Len20,
Theorem 1.4.31].

Remark 3.1.14. Schwede [Sch18, Theorem 1.2.21] originally studied unstable
global homotopy theory in terms of so-called orthogonal spaces, which are topolog-
ically enriched functors from the topological category L of finite dimensional inner
product spaces and linear isometric embeddings into Top. While Schwede’s global
equivalences on L-Top see equivariant information for all compact Lie groups, there
is a natural notion of ‘Fin-global weak equivalences’ [Len20, Definition 1.5.13], and
with respect to these the evident forgetful functor L-Top → I-SSet becomes an
equivalence of homotopy theories, see [Len20, Corollary 1.5.29]. In this sense, the
above two models generalize global homotopy theory with respect to finite groups.

Finally, we again have suitable restriction functoriality analogous to Lemma 3.1.9.
We will only recall one aspect that we will need later:

Lemma 3.1.15 (See [Len20, Lemma 1.4.40]). Let α : G→ G′ be any group homo-
morphism. Then the adjunction

α! : G-I-SSet ⇄ G
′-I-SSet :α∗

is a Quillen adjunction with homotopical right adjoint. �

3.2. The global ∞-category of global spaces. We will now bundle the ∞-
categories associated to the above model categories into a global ∞-category, i.e. an
∞-category parameterized over the ∞-category Glo from Example 2.1.3:

Construction 3.2.1. We define the strict 2-functor EM-•-SSet as the compo-
sition

Gloop B
−֒→ Grpdop Fun(–,EM-SSet)

−−−−−−−−−−−→ Cat; (3)

put differently, this sends a finite group G to the 1-categoryEM-G-SSet, a homo-
morphism α : G→ G′ to the restriction map α∗ : EM-G′-SSet→ EM-G-SSet,
and a 2-cell g′ : α ⇒ β in Glo to the transformation α∗ ⇒ β∗ given by acting with
g′.

We now want to obtain a global ∞-category of global spaces by pointwise localizing
at the G-global weak equivalences. To this end we recall:

Definition 3.2.2. A relative category is a 1-category C together with a wide subcat-
egory W ⊆ C, whose morphisms we call weak equivalences. We let RelCat denote
the (2, 1)-category of relative categories, weak equivalence preserving functors, and
natural isomorphisms, and we write RelCat for its Duskin nerve.
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By Lemma 3.1.9, the restriction functor α∗ : EM-G′-SSet→ EM-G-SSet sends
G′-global weak equivalences to G-global weak equivalences for any homomorphism
α : G→ G′. In particular, (3) lifts to a 2-functor into RelCat this way.

Construction 3.2.3. To every relative category (C,W ), one can associate an ∞-
category C[W−1] together with a functor C → C[W−1] that exhibits it as a Dwyer-
Kan localization of C at W in the sense of [Lur17, Definition 1.3.4.1]. We will now
recall the argument of [GM20, Section C.1] that the ∞-category C[W−1] is in fact
functorial in the pair (C,W ).

Let ι : Cat∞ → Spc denote the left adjoint to the inclusion Spc ⊆ Cat∞ of ∞-
groupoids into ∞-categories. Sending an ∞-category C to the adjunction counit
ι C →֒ C refines to a functor

R : Cat∞ → Fun(∆1,Cat∞).

We let L∞ : Fun(∆1,Cat∞) → Cat∞ denote a left adjoint to this functor. By
associating to a relative category (C,W ) the inclusion W →֒ C and regarding
both W and C as ∞-categories via their nerve, we obtain a functor RelCat →
Fun(∆1,Cat∞). In particular we obtain a localization functor

L : RelCat→ Fun(∆1,Cat∞)
L∞−−→ Cat∞ .

It follows directly from the definition of L∞ that L is on objects given by sending
a relative category (C,W ) to the Dwyer-Kan localization L(C,W ) ≃ C[W−1].

Postcomposing with this, we get a global ∞-category LC from any global relative
category C , and this comes with a global functor C → LC that is pointwise a
Dwyer-Kan localization. By uniqueness of adjoints, this actually pins down LC up
to essentially unique equivalence; in particular, we can (and will at times) freely
choose a specific construction of the above localization for a given C .

Definition 3.2.4. We define the global ∞-category S
gl of global spaces as the

composite

Gloop = N∆(Glo)op
N∆(EM-•-SSet)
−−−−−−−−−−−→ N∆(RelCat) = RelCat

L
−→ Cat∞ .

In particular, for a finite group G the∞-category S
gl(G) =: S

gl
G is the∞-category

of G-global spaces and for a group homomorphism α : G→ G′, the functor S
gl(α)

is induced by the restriction functor α∗ : EM-G′-SSet→ EM-G-SSet.

Analogously, we get a global ∞-category S
gl
I sending G to the Dwyer-Kan local-

ization of G-I-SSet, with functoriality via restrictions.

By design, the maps evω are homotopical and strictly compatible with restrictions,
and so they assemble into a strictly 2-natural transformation between functors

Gloop → RelCat. Upon localization, we therefore get a global functor S
gl
I → S

gl

that we again call evω. Theorem 3.1.12 then implies:

Corollary 3.2.5. The global functor evω : S
gl
I → S

gl is an equivalence of global
∞-categories. �
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3.3. Proof of Theorem A. As a basis for the universal properties of special global
Γ-spaces and global spectra, we will now relate the global∞-category S

gl (defined
above in terms of a purely model categorical construction) to the global∞-category
Spc

Glo
(constructed using parameterized higher category theory alone). Namely we

will prove:

Theorem 3.3.1. The global ∞-category S
gl is presentable. Moreover, the essen-

tially unique globally cocontinuous functor Spc
Glo
→ S

gl that sends the terminal

object of SpcGlo(1) to the terminal object of S gl = S
gl
1 is an equivalence.

Together with Corollary 2.4.12 this will then immediately imply Theorem A from
the introduction:

Theorem 3.3.2. The presentable global ∞-category S
gl is freely generated under

global colimits by ∗ ∈ S
gl, i.e. for any globally cocomplete global ∞-category D

evaluating at ∗ induces an equivalence

FunLGlo(S
gl,D)→ D

of global ∞-categories. �

Corollary 3.2.5 then shows:

Corollary 3.3.3. The global ∞-category S
gl
I is presentable, and it is freely gen-

erated under global colimits by ∗ ∈ S
gl
I , i.e. for any globally cocomplete global

∞-category D evaluating at ∗ induces an equivalence

FunLGlo(S
gl
I ,D)→ D

of global ∞-categories. �

The way Theorem 3.3.1 is phrased naturally suggests a proof strategy: show that
the (fiberwise presentable) global ∞-category S

gl is globally cocomplete, use the
universal property to construct the map, and then check that it is an equivalence. In
fact, one can use the functoriality properties of Lemma 3.1.9 together with [Len20,
Proposition 1.1.22] to verify global cocompleteness, and it is not hard to show using
some adjunction yoga that the resulting functor sends corepresented objects to the
standard ‘generators’ of G-global homotopy theory (see Proposition 3.3.5 below)
while a concrete computation reveals that the mapping spaces on both sides are
abstractly equivalent. However, proving that actually the universal functor induces
equivalences between these mapping spaces is a totally different story, and in fact
the authors do not know a direct argument for this.

Instead, our proof of the theorem will proceed backwards: we will construct an
equivalence between S

gl and Spc
Glo

by hand, and deduce the remaining statements
from this. Since this comparison is somewhat lengthy, let us outline the general
strategy first: by definition, Spc

Glo
is levelwise given by∞-categories of presheaves,

and the first step will be to likewise express the levels of S
gl in terms of model

categories of presheaves. To complete the proof, we will then give a comparison
between the indexing categories on both sides, as well as a comparison between
presheaves in the model categorical and ∞-categorical setting.
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3.3.1. The G-global Elmendorf Theorem. Recall that the classical Elmendorf The-
orem [Elm83] expresses the homotopy theory of G-CW-complexes in terms of fixed
point systems, yielding a presheaf model of unstable G-equivariant homotopy the-
ory. We will now recall a G-global version of this, which is most easily formulated
using the model of EM-G-simplicial sets:

Construction 3.3.4. Let G be finite. We write Ogl
G for the full simplicial subcat-

egory of EM-G-SSet spanned by the objects EM×ϕ G := (EM×G)/H for all
universal subgroups H ⊂ M and homomorphisms ϕ : H → G, where H acts on
EM from the right in the evident way and on G from the right via ϕ.

We now define a functor

Φ: EM-G-SSet→ Fun((Ogl
G)

op,SSet),

where Fun denotes the 1-category of simplicially enriched functors, via the formula
Φ(X)(EM×ϕ G) = maps(EM×ϕ G,X) with the evident (enriched) functoriality
in each variable, i.e. Φ is the composition

EM-G-SSet
Yoneda
−−−−→ Fun(EM-G-SSetop,SSet)

restriction
−−−−−−→ Fun((Ogl

G)
op,SSet).

Proposition 3.3.5. For any finite group G the above functor Φ is homotopical
and the right half of a Quillen equivalence for the projective model structure on
the target. In particular, it descends to an equivalence between the ∞-categorical
localization at the G-global weak equivalences and the ∞-categorical localization at
the levelwise weak homotopy equivalences.

Proof. This is a special case of [Len20, Corollary 1.1.13]. �

Remark 3.3.6. We can describe the simplicial categoryOgl
G combinatorially as fol-

lows, see also [Len20, Remark 1.2.40]: n-simplices of maps(EM×ϕ G,EM×ψ G)
correspond bijectively to n-simplices [u0, . . . , un; g] ∈ (EM ×ψ G)ϕ via evalua-
tion at [1; 1] ∈ EM×ϕ G. Under this correspondence, composition is given by
[u0, . . . , un; g][u

′
0, . . . , u

′
n; g

′] = [u′0u0, . . . , u
′
nun; g

′g] (note the flipped order of mul-
tiplication).

More generally, if X is any EM-G-simplicial set, then evaluation at [1; 1] induces a
natural isomorphism ε : Φ(X)(EM×ϕ G) = maps(EM×ϕ G,X)→ Xϕ. A direct
computation shows that under this isomorphism restriction along an (n + 1)-cell

[u0, . . . , un; g] : EM×ϕ G→ EM×ψ G in Ogl
G corresponds to action by the same

element, i.e. the following diagram commutes:

Φ(X)(EM×ψ G) Φ(X)(EM×ϕ G)

Xψ Xϕ.

ε

Φ[u0,...,un;g]

ε

(u0,...,un;g).–

(4)

3.3.2. Comparisons of enriched presheaves. While one can extend the assignment

G 7→ Ogl
G to a strict 2-functor in Glo, and so assemble the localizations of the

categories Fun((Ogl
G)

op,SSet) into a global ∞-category, the maps Φ will not be
strictly natural with respect to this structure, but only pseudonatural. In order to
avoid talking about all the coherences required to make this precise, we will now
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give a more ‘combinatorial’ version of the simplicial categories Ogl
G and the functors

Φ that will also become relevant in Section 5.

Construction 3.3.7. Let G be a finite group. We define a strict (2, 1)-category

O
gl
G as follows: an object of Ogl

G is a pair (H,ϕ) of a universal subgroup H ⊂ M
and a homomorphism ϕ : H → G. For any two such objects (H,ϕ), (K,ψ) the hom-
category Hom((H,ϕ), (K,ψ)) has objects the triples (u, g, σ) with u ∈ M, g ∈ G
and σ : H → K a homomorphism such that hu = uσ(h) for all h ∈ H and moreover
ϕ = cgψσ, where cg denotes conjugation by g. If (u′, g′, σ′) is another object of the
hom-category, then a morphism (u, g, σ)→ (u′, g′, σ′) is a k ∈ K such that σ′ = ckσ
and g′ψ(k) = g. Composition in Hom((H,ϕ), (K,ψ)) is induced by multiplication
in K; we omit the easy verification that this is a well-defined groupoid.

If (L, ζ) is another object and (u1, g1, σ1) : (H,ϕ) → (K,ψ), (u2, g2, σ2) : (K,ψ)→
(L, ζ) are composable maps, then we define their composition as (u1u2, g1g2, σ2σ1)
(note the flipped order of composition in the first two components!); this is indeed
a map (H,ϕ) → (L, ζ) as hu1u2 = u1σ1(h)u2 = u1u2σ2σ1(h) for all h ∈ H and
moreover ϕ = cg1ψσ1 = cg1g2ζσ2σ1.

Finally, if (u′1, g
′
1, σ

′
1) : (H,ϕ) → (K,ψ) and (u′2, g

′
2, σ

′
2) : (K,ψ) → (L, ζ) are fur-

ther morphisms and k1 : (u1, g1, σ1) → (u′1, g
′
1, σ

′
1), k2 : (u2, g2, σ2) → (u′2, g

′
2, σ

′
2)

are 2-cells, then the composite of k1 and k2 is k2σ2(k1); note that this is indeed
well-defined as σ′

2σ
′
1 = ck2σ2ck1σ1 = ck1σ2(k2)σ2σ1 while g1g2 = g′1ψ(k1)g

′
2ζ(k2) =

g′1g
′
2ζσ

′
2(k1)ζ(k2) = g′1g

′
2ζ(σ

′
2(k1)k2) = g′1g

′
2ζ(k2σ2(k1)) where the second equality

uses that (u′2, g
′
2, σ

′
2) is a morphism and the final equality uses that k2 is a 2-cell.

We omit the straight-forward verification that this is suitably associative and unital

with units the maps of the form (1, 1, id), making O
gl
G into a strict (2, 1)-category.

Construction 3.3.8. We define µ : Ogl
G → Ogl

G as follows: an object (H,ϕ) is sent
to EM×ϕG, a morphism (u, g, σ) : (H,ϕ)→ (K,ψ) is sent to the map EM×ϕG→
EM×ψ G represented by [u; g] while a 2-cell k : (u, g, σ) → (u′, g′, σ′) is sent to
[u′k, u; g].

Lemma 3.3.9. The above µ is well-defined (i.e. these are indeed morphisms and

2-cells in Ogl
G) and an equivalence of (2, 1)-categories.

Proof. First observe that [u; g] is indeed ϕ-fixed as [hu;ϕ(h)g] = [uσ(h); gψσ(h)] =

[u; g] by definition of the morphisms of Ogl
G; moreover, any 1-cell in the target is of

this form by [Len20, Lemma 1.2.38]. On the other hand, Lemma 1.2.74 of op. cit.
shows that [u′k, u; g] is indeed a 2-cell [u; g] ⇒ [u′; g′] and that this assignment is
bijective. Thus, it only remains to show that µ is a strict 2-functor.

To prove that µ : Hom((H,ϕ), (K,ψ)) → (EM×ψ G)ϕ is a functor, it suffices to
prove compatibility with composition (as both sides are groupoids), for which we
note that for all k : (u, g, σ)→ (u′, g′, σ′) and k′ : (u′, g′, σ′)→ (u′′, g′′, σ′′)

µ(k′)µ(k) = [u′′k′, u′; g′][u′k, u; g] = [u′′k′k, u′k; g′ψ(k)︸ ︷︷ ︸
=g

][u′k, u; g] = [u′′k′k, u; g]

= µ(k′k).

Next, we have to show that µ is compatible with horizontal composition of 2-
cells, hence in particular with composition of 1-cells. For this we note that if
k : (u1, g1, σ1) ⇒ (u′1, g

′
1, σ

′
1) is a 2-cell between morphisms (H,ϕ) → (K,ψ) and
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ℓ : (u2, g2, σ2) ⇒ (u′2, g
′
2, σ

′
2) is a 2-cell between morphisms (K,ψ) → (L, ζ), then

the horizontal composition µ(ℓ)⊙ µ(k) is given by

[u′2ℓ, u2, g2]⊙ [u′1k, u1; g1] = [u′1ku
′
2ℓ, u1u2; g1g2] = [u′1u

′
2σ

′
2(k)ℓ, u1u2; g1g2]

= [u′1u
′
2ℓσ2(k), u1u2; g1g2]

where the final equality uses that σ′
2(k)ℓ = ℓσ2(k) as ℓ is a 2-cell. On the other

hand, by definition ℓ ⊙ k = ℓσ2(k) : (u1u2, g1g2, σ2σ1) → (u′1u
′
2, g

′
1g

′
2, σ

′
2σ

′
1), so

µ(ℓ⊙ k) = µ(ℓ)⊙ µ(k) as desired.

Finally, µ(1, 1, id) = [1; 1] by construction, i.e. µ also preserves identity 1-cells. �

Construction 3.3.10. Let G be a finite group. We define Ψ: EM-G-SSet →
PSh(Ogl

G) := Fun((Ogl
G)

op,SSet) as follows: for any EM-G-simplicial set X , the

enriched functor Ψ(X) : (Ogl
G)

op → SSet is given on objects by Ψ(X)(H,ϕ) =
Xϕ ⊂ X ; if (K,ψ) is another object, then we send an n-simplex

(u0, g0, σ0)
k1=⇒ (u1, g1, σ1)

k2=⇒ · · ·
kn=⇒ (un, gn, σn) ∈ maps((H,ϕ), (K,ψ))n (5)

to the action of (unkn · · · k1, un−1kn−1 · · · k1, . . . , u1k1, u0; g0) onX , cf. Remark 3.3.6.
If f : X → Y is any map of EM-G-simplicial sets, then we define Ψ(f) via
Ψ(f)(H,ϕ) = fϕ.

Proposition 3.3.11. The assignment Ψ: EM-G-SSet → PSh(Ogl
G) is well-

defined (i.e. Ψ(X) is a simplicially enriched functor and Ψ(f) is an enriched natural
transformation) and constitutes a functor. Furthermore, it descends to an equiva-
lence on ∞-categorical localizations.

Proof. We will simultaneously prove that Ψ is well-defined and that it is isomorphic
to the composite

EM-G-SSet
Φ
−→ PSh(Ogl

G)
µ∗

−→ PSh(Ogl
G);

the claim then follows from Proposition 3.3.5 together with Lemma 3.3.9.

To prove this, we first fix an EM-G-simplicial set X , and we will show that Ψ(X)
is a well-defined simplicial functor isomorphic to Φ(X) ◦ µ. To this end, we recall

that we have for every (H,ϕ) ∈ O
gl
G an isomorphism

Φ(X)(µ(H,ϕ)) = maps(EM×ϕ G,X)
ε
−→ Xϕ = Ψ(X)(H,ϕ)

given by evaluation at [1; 1]. It follows formally that there is a unique way to extend

the assignment (H,ϕ) 7→ Xϕ to a simplicially enriched functor (Ogl
G)

op → SSet
in such a way that the ε’s assemble into an enriched natural isomorphism from
Φ(X) ◦ µ, namely in terms of the composites

mapsOgl

(
(H,ϕ), (K,ψ)

) µ
−→ maps

Ogl(EM×ϕ G,EM×ψ G)

Φ
−→ mapsSSet

(
mapsEM-G-SSet(EM×ψ G,X),

mapsEM-G-SSet(EM×ϕ G,X)
)

ε∗(ε
−1)∗

−−−−−−→ mapsSSet(X
ψ, Xϕ)
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and we only have to show that this recovers the above definition of Ψ. By commu-
tativity of (4) this then amounts to saying that

maps
(
(H,ϕ), (K,ψ)

) µ
−→ maps(EM×ϕG,EM×ψG)

ε
−→ (EM×ψG)

ϕ ⊂ EM×ψG

sends (5) to (unkn · · · k1, . . . , u1k1, u0; g0). As EM×ψG is the nerve of a groupoid,
it will be enough to show this after restricting to each edge 0 → m (0 ≤ m ≤
n), i.e. that µ(km · · · k0) = (umkm · · · k1, u0; g0). However, this is precisely the
definition.

Thus, we have altogether shown that Ψ(X) is indeed a well-defined simplicial func-
tor and that the maps ε assemble into an isomorphism Ψ(X) ∼= Φ(X) ◦ µ. We
can now show that Ψ is a well-defined functor: indeed, if f : X → Y is (EM×G)-
equivariant, then Ψ(f) is enriched natural as the enriched functor structure on both
sides is given by acting with simplices of EM×G. It is then clear that Ψ preserves
composition and identities as this can be checked after evaluating at each (H,ϕ).

Finally, we have to establish that the isomorphisms ε are natural in X . However,
we can again check this after evaluating at each (H,ϕ), where this is obvious. �

Construction 3.3.12. We extend the assignment G 7→ O
gl
G to a strict (2, 1)-

functor O
gl
• : Glo → Cat∆ into the 2-category of simplicial categories as follows:

if α : G → G′ is a homomorphism, then α! : O
gl
G → O

gl
G′ is given on objects by

α!(H,ϕ) = (H,αϕ), on 1-cells by α!(u, g, σ) = (u, α(g), σ), and on 2-cells by
the identity; we omit the easy verification that this is well-defined and strictly
functorial in α. Moreover, if g ∈ G′ defines a natural transformation α1 ⇒ α2

(i.e. α2 = cgα1), then we define the natural transformation g! : α1! ⇒ α2! on (H,ϕ)
as (1, g−1, idH) : (H,α1ϕ) → (H,α2ϕ). We again omit the easy verification that
this is well-defined and yields a strict 2-functor.

This 2-functor structure then induces a 2-functor structure on the assignment G 7→
(Ogl

G)
op; note that in this the 2-cells get inverted, i.e. g : α1 ⇒ α2 is now sent to the

natural transformation gop! given pointwise by (1, g, id).

Proposition 3.3.13. The maps Ψ are strictly 2-natural in Glo.

Proof. Let us first check 1-naturality, i.e. that for every α : G→ G′ the diagram

EM-G′-SSet EM-G′-SSet

PSh(Ogl
G′) PSh(Ogl

G)

α∗

Ψ Ψ

(α!)
∗

of ordinary categories commutes.

The above diagram commutes on the level of objects: Let X be an EM-G-simplicial
set; we have to show that Ψ(α∗X) = Ψ(X) ◦ α!. On the level of objects, this just

amounts to the relation (α∗X)ϕ = Xα◦ϕ for all (H,ϕ : H → G) ∈ O
gl
G. To prove

commutativity on the level of morphism spaces, we let (K,ψ) be any other object
and we consider an n-simplex

(u•, g•, σ•) :=
(
(u0, g0, σ0)

k1==⇒ (u1, g1, σ1)
k2==⇒ · · ·

kn==⇒ (un, gn, σn)
)

of maps((H,ϕ), (K,ψ)). Then Ψ(α∗X)(u•, g•, σ•) is by definition given by acting
with (unkn · · · k1, . . . , u1k1, u0; g0) ∈ EMn ×G on α∗X , or equivalently by acting
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with (unkn · · · k1, . . . , u1k1, u0;α(g0)) ∈ EMn×G′ on X . As α! : O
gl
G → O

gl
G′ sends

(u•, g•, σ•) to

(u0, α(g0), σ0)
k1==⇒ (u1, α(g1), σ1)

k2==⇒ · · ·
kn==⇒ (un, α(gn), σn)

by definition, we see that Ψ(X)(α!(u•, g•, σ•)) is given by acting with the same
element. Since in addition both Ψ(X)(α!(u•, g•, σ•)) and Ψ(α∗X)(u•, g•, σ•) are
(higher) maps between the same two objects, this completes the proof that they
agree, so that Ψ(α∗X) = Ψ(X) ◦ α! as desired.

The above diagram commutes on the level of morphisms: As we already know that
the diagram commutes on the level of objects, it is enough to check the claim after
evaluating at each (H,ϕ). However, in this case both paths through the diagram
send a morphism f : X → Y to the restriction Xαϕ → Y αϕ of f .

Finally, we can now very easily prove 2-naturality by the same argument: namely,
it only remains to show that for every 2-cell g : α1 ⇒ α2 in Glo, every EM-G-

simplicial setX , and every (H,ϕ) ∈ O
gl
G the maps Ψ(X)(gop! : (H,α2ϕ)→ (H,α1ϕ))

and Ψ(g.–: α∗
1X → α∗

2X)(H,ϕ) agree. However, plugging in the definitions, both
are simply given by acting with g on X . �

Construction 3.3.14. Let G be a finite group. We define a strict 2-functor

γ : Ogl
G → Glo/G into the 2-categorical slice as follows: an object (H,ϕ) is sent

to ϕ : H → G and a morphism (u, g, σ) : (H,ϕ)→ (K,ψ) is sent to the morphism

H K;

G

ϕ

σ

ψ
g−1
⇒ (6)

note that g−1 indeed defines such a 2-cell in Glo since ϕ = cgσψ by assumption,
whence σψ = cg−1ϕ. Finally, a 2-cell k : (u, g, σ) ⇒ (u, g, σ) is sent to the 2-cell
k : σ ⇒ σ′.

Lemma 3.3.15. For any finite G, γ defines an equivalence O
gl
G ≃ Glo/G of strict

(2, 1)-categories.

Proof. One easily checks by plugging in the definitions that γ is indeed a strict
2-functor. Essential surjectivity of γ follows from the fact that any finite group
is isomorphic to a universal subgroup (Lemma 3.1.4). Moreover, given a general
1-cell as depicted in (6), there exists by [Len20, Corollary 1.2.39] a u ∈ M with
hu = uσ(h) for all h ∈ H ; (u, g, σ) then clearly defines a 1-cell (H,ϕ) → (K,ψ) in

O
gl
G, and this is a preimage of (6). This shows that γ is essentially surjective on

hom groupoids. Finally, γ is bijective on 2-cells by direct inspection. �

Lemma 3.3.16. The maps γ define a strictly 2-natural transformation O
gl
• ⇒

Glo/•.
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Proof. Let us first show that γ is 1-natural, i.e. for every homomorphism α : G→ G′

the diagram

O
gl
G Glo/G

O
gl
G′ Glo/G′

γ

α! Glo/α

γ

of strict 2-functors commutes strictly. This just amounts to plugging in the defi-
nitions: both paths through the diagram send an object (H,ϕ) to αϕ : H → G′, a
1-cell as in (6) to

H K,

G′

αϕ

σ

αψ
α(g)−1
⇒

and a 2-cell σ ⇒ σ′ represented by k to a 2-cell represented by the same k.

For 2-functoriality it then only remains to show that for any 2-cell g : α ⇒ α′ of
maps G→ G′ in Glo the two pastings

O
gl
G O

gl
G′ Glo/G′

α!

α′
!

g!

⇒ γ
and O

gl
G Glo/G Glo/G′

γ

α!

α′
!

g!

⇒

agree pointwise. However, by direct inspection both are given on an object (H,ϕ)

of Ogl
G simply as the 1-cell

H H

G
αϕ

=

α′ϕ
g
⇒

which completes the proof of the lemma. �

3.3.3. Putting the pieces together. Now we are finally ready to deduce our compar-
ison result:

Proof of Theorem 3.3.2. As mentioned in the beginning of this subsection, we will
first construct an equivalence S

gl ≃ Spc
Glo

by hand:

Proposition 3.3.13 says that the maps Ψ define a 2-natural transformation be-

tween the global categories EM-•-SSet and PSh(Ogl
• ) : G 7→ PSh(Ogl

G). If we
equip EM-G-SSet with the G-global weak equivalences for varying G and each

PSh(Ogl
G) with the levelwise weak homotopy equivalences, this lifts to a map

of global relative categories, which in turn decends to an equivalence between
the global ∞-categories obtained by pointwise localization according to Proposi-
tion 3.3.11. Note that the localization ofEM-•-SSet is the global∞-categoryS

gl

by definition; it will now be useful to pick a very specific localization of PSh(Ogl
• )

for the purposes of this proof:

Namely, we pick a simplicially enriched fibrant replacement functor for the Kan-
Quillen model structure (for example via the enriched small object argument [Rie14,
Theorem 13.5.2] or simply by using the geometric realization-singular set adjunc-
tion), which provides us with an enriched functor r : SSet → Kan together with
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enriched natural transformations id ⇒ ir and id ⇒ ri that are levelwise weak
homotopy equivalences, where i : Kan →֒ SSet is the inclusion. As an upshot,
if A is any simplicially enriched category, then r ◦ –: PSh(A) → PShKan(A) :=
Fun(Aop,Kan) is a homotopy equivalence with respect to the levelwise weak ho-
motopy equivalences, so it induces an equivalence of ∞-categorical localizations.
Specializing this to our situation, the maps r assemble into a map of global relative

categories from PSh(Ogl
• ) to PShKan(Ogl

• ). Finally, for any simplicial category A
the enriched-natural comparison map

N
(
PShKan(A)

)
= NFun(Aop,Kan)→ Fun(N∆(A

op),N∆(Kan)) = PSh(N∆A)

is a localization at the levelwise weak homotopy equivalences as a consequence
of [Lur09, Proposition 4.2.4.4], see also [Len20, Proposition A.1.18], where this
argument is spelled out in detail. Thus, we altogether get a map of global ∞-
categories

N
(
PSh(Ogl

• )
) r◦–
−−→ N

(
PShKan(Ogl

• )
) canonical
−−−−−−→ PSh(N∆(O

gl
• ))

that is pointwise a localization, whence induces an equivalence S
gl ≃ PSh(N∆O

gl
• )

of global ∞-categories.

Restricting along the strictly 2-natural equivalence γ : Ogl
• ⇒ Glo/• of 2-functors

Glo → Cat∆ (see Lemmas 3.3.15 and 3.3.16) yields an equivalence of global ∞-

categories PSh(N∆(Glo/•)) ≃ PSh(N∆O
gl
• ). By Proposition A.1 the left hand side

is then further equivalent to PSh(Glo/•) = Spc
Glo

. This completes the construction

of an equivalence Spc
Glo
≃ S

gl of global ∞-categories.

As Spc
Glo

is presentable (Example 2.4.4), so is S
gl. Moreover, the universal prop-

erty of Spc
Glo

shows that the equivalence F : Spc
Glo
→ S

gl constructed above is

characterized essentially uniquely by the image of the terminal object ∗ ∈ Spc
Glo

(1),

so it only remains to verify that F sends this to the terminal object of S gl. How-
ever, this follows simply from the fact that F (1) : Spc

Glo
(1)→ S gl is an equivalence

of ordinary ∞-categories. �

4. Parameterized semiadditivity

The goal of this section is to introduce the parameterized analogue of the familiar
notion of semiadditivity of an∞-category, following the ideas introduced by Nardin
[Nar16]. In the parameterized setting, the notion of semiadditivity comes in various
flavors, parameterized by suitable subcategories P ⊆ T : roughly speaking, a T -∞-
category C is P -semiadditive if it is pointwise semiadditive, admits left adjoints p!
and right adjoints p∗ for the morphisms p : A→ B in P satisfying base change, and
a canonical norm map Nmp : p! → p∗ between these two adjoints is an equivalence.

4.1. Pointed T -∞-categories. As a first step in the process of defining parame-
terized semiadditivity, we introduce the notion of pointedness for T -∞-categories.
Recall that a zero object of an ∞-category is an object which is both initial and
terminal. An ∞-category is called pointed if it admits a zero object. This has the
following parameterized analogue.

Definition 4.1.1. Let C be a T -∞-category and let c : 1 → C be a T -∞-functor.
We say that c is a T -zero object of C if c(B) ∈ C(B) is a zero object for every
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B ∈ T . We say that C is pointed if it admits a T -zero object; equivalently, C(B)
is a pointed ∞-category for every B ∈ T and f∗ : C(B)→ C(A) preserves the zero
object for every f : A→ B in T .

Similarly, we say that c : 1 → C is a T -initial object (resp. a T -final object) if
c(B) ∈ C(B) is an initial object (resp. a final object) for all B ∈ T .

Denote by Cat∗T ⊆ CatT the (non-full) subcategory spanned by the T -∞-categories
admitting a T -final object and the T -functors that preserve the T -final object.
We let CatptT ⊆ Cat∗T denote the full subcategory spanned by the pointed T -∞-
categories.

Definition 4.1.2. For T -∞-categories C and D which admit a T -final object, we
let

Fun∗
T (C,D) ⊆ FunT (C,D)

be the full parameterized subcategory spanned at B ∈ T by the pointed T/B-
functors, i.e. those F : π∗

B C → π∗
B D which preserve the T/B-final object.

In the non-parameterized setting, an ∞-category is pointed if and only if it admits
an initial object ∅ and a terminal object 1, and the canonical map ∅ → 1 is an
equivalence. In other words: the limit and colimit of the empty diagram in C exist
and are canonically equivalent. For our discussion of parameterized semiadditivity,
we will need an enhancement of this statement to the parameterized setting which
identifies more generally the (parameterized) limit and colimit corresponding to a
disjoint summand inclusion.

Definition 4.1.3. A map f : A→ B in an ∞-category E is called a disjoint sum-
mand inclusion if there exists another morphism g : C → B in E such that the maps
f and g exhibit B as a coproduct of A and C in E .

Lemma 4.1.4. Let C be a T -∞-category and let f : A→ B be a disjoint summand
inclusion in PSh(T ).

(1) If C admits a T -initial object, then the restriction functor f∗ : C(B) → C(A)
admits a fully faithful left adjoint f! : C(A)→ C(B);

(2) If C admits a T -final object, then the restriction functor f∗ : C(B) → C(A)
admits a fully faithful right adjoint f∗ : C(A)→ C(B);

(3) If C admits both a T -initial object and a T -final object, then there is a unique
map

Nmf : f! =⇒ f∗

whose restriction f∗ Nmf : f
∗f! ⇒ f∗f∗ is the equivalence inverse to the com-

posite

f∗f∗
c∗f
==⇒
∼

id
u!
f

==⇒
∼

f∗f!;

(4) If C is pointed, this map Nmf : f! ⇒ f∗ is an equivalence.

Proof. Let g : C → B denote the disjoint complement of f . As C : PSh(T )op →
Cat∞ sends colimits in PSh(T ) to limits of ∞-categories, the maps f and g induce
an equivalence

(f∗, g∗) : C(B)
∼
−→ C(A)× C(C),
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and under this equivalence the restriction functor f∗ : C(B) → C(A) corresponds
to the first projection map C(A) × C(C) → C(A). If C admits a T -initial object,
then this projection has a fully faithful left adjoint given by X 7→ (X, ∅), where
∅ ∈ C(C) denotes the initial object. It follows that f∗ admits a fully faithful left
adjoint f!. Similarly if C admits a T -final object, the projection has a fully faithful
right adjoint given by X 7→ (X, 1), where 1 ∈ C(C) is a final object, and thus f∗

admits a right adjoint f∗. If C satisfies both, then inserting the unique map ∅ → 1
in the second variable gives rise to a natural transformation Nmf : f! ⇒ f∗, which
is uniquely determined by requiring that its restriction along f is the canonical
identification f∗f! ≃ f∗f∗ in (3). It is clear that Nmf is an equivalence whenever
C(C) is pointed. �

Given a T -∞-category C admitting a T -final object, one may form the T -∞-category
C∗ of pointed objects of C. We will need several basic properties of this construction.

Construction 4.1.5. Let C be a T -∞-category which admits a T -final object. We
define the T -∞-category C∗ of pointed objects of C as the composite

T op C
−→ Cat∗∞

(−)∗
−−−→ Catpt∞,

where the second functor sends an ∞-category E with terminal object ∗ to the
slice E∗ := E∗/. This construction is functorial in C and assembles into a functor

(−)∗ : Cat∗T → CatptT .

Corollary 4.1.6. The functor (−)∗ : Cat∗T → CatptT is right adjoint to the fully

faithful inclusion CatptT →֒ Cat∗T .

Proof. This is immediate from the fact that the functor (−)∗ : Cat∗∞ → Catpt∞ is
right adjoint to the fully faithful inclusion Catpt∞ ⊆ Cat∗∞. �

Corollary 4.1.7. For C ∈ CatptT and D ∈ Cat∗T , composition with the adjunc-

tion counit D∗ → D induces an equivalence of T -∞-categories Fun∗T (C,D∗)
∼
−→

Fun∗T (C,D).

Proof. We will prove that the induced functor Fun∗
T (C,D∗) → Fun∗

T (C,D) on un-
derlying∞-categories is an equivalence. For every B ∈ T this thus gives an equiva-
lence Fun∗T/B

(π∗
B C, π

∗
B D∗) → Fun∗T/B

(π∗
B C, π

∗
B D) which proves the claim. By the

Yoneda lemma it suffices to prove that for any∞-category E the above map induces
an equivalence

HomCat∞(E ,Fun∗
T (C,D∗))→ HomCat∞(E ,Fun∗T (C,D)).

Observe that the cotensor DE of D by E again has fiberwise final objects, and that
there is a canonical equivalence (DE)∗ ≃ (D∗)

E . The cotensoring adjunction gives
rise to an equivalence

HomCat∞(E ,Fun∗
T (C,D)) ≃ HomCat∗

T
(C,DE)

and similarly for D∗. It thus suffices to show that for every ∞-category E the map
(DE)∗ → D

E induces an equivalence

HomCat∗T
(C, (DE)∗)→ HomCat∗T

(C,DE),

which is true by the adjunction of Corollary 4.1.6. �
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It follows that the condition of being pointed is closed under passing to parameter-
ized functor categories.

Corollary 4.1.8. Consider T -∞-categories C and D admitting a T -final object. If
either C or D is pointed, the T -∞-category Fun∗T (C,D) is pointed as well.

Proof. The case where D is pointed is clear from Proposition 2.3.19. When C is
pointed, we have by Corollary 4.1.7 an equivalence Fun∗

T (C,D∗)
∼
−→ Fun∗

T (C,D),
which reduces to the previous case since D∗ is pointed. �

Lemma 4.1.9. Let U be a class of T -∞-categories and let D be a U-complete T -∞-
category admitting a T -final object. Then D∗ is also U-complete and the forgetful
functor D∗ → D preserves U-limits.

Proof. It is clear that the fiberwise limits are preserved as limits in the slice D(B)∗/
may be computed in D(B). To show it also preserves limits indexed by T -∞-
groupoids, consider a morphism f : A → B in T , consider objects X ∈ D(B) and
Y ∈ D(A)∗ and assume we are given a map ϕ : f∗X → Y in D(A) which exhibits
X as a right adjoint object to Y under f∗ : D(B)→ D(A), in the sense that for all
Z ∈ C(B) the composite

HomC(B)(Z,X)
f∗

−→ HomC(A)(f
∗Z, f∗X)

ϕ◦−
−−−→ HomC(A)(f

∗Z, Y )

is an equivalence. Taking Z = ∗ gives X a canonical basepoint which turns the
map f∗X → Y into a map in D(A)∗. One now observes that this map exhibits
X ∈ D(A)∗ as a right adjoint object to Y ∈ D(B)∗ under f∗ : D(B)∗ → D(A)∗.
This proves the claim. �

4.2. Orbital subcategories. In order to obtain a parameterized analogue of semi-
additivity, we first need a parameterized analogue of the notion of finite (co)products.
In the non-parameterized setting, an∞-category E admits finite (co)products if and
only if it admits (co)limits indexed by finite sets (regarded as discrete∞-categories).
To generalize this to the parameterized setting, we would thus need a parameterized
analogue of the notion of finite set.

In general, there might be various natural choices for such a generalization. A large
family of examples comes from certain subcategories P of T that we call orbital,
extending the terminology of [BDG+16]. To every orbital subcategory P , we assign
a class of T -∞-groupoids called the finite P -sets, and a T -∞-category C is said
to admit finite P -coproducts if it admits parameterized colimits indexed by finite
P -sets.

Definition 4.2.1. Let FT be the finite cocompletion of T , defined as the full sub-
category of PSh(T ) spanned by the finite disjoint unions

⊔n
i=1Ai of representable

presheaves Ai ∈ T . We refer to FT as the ∞-category of finite T -sets.

For a wide subcategory P ⊆ T , we let FPT ⊆ FT denote the wide subcategory
spanned by all the morphisms which are a disjoint union of morphisms of the form
(pi) :

⊔n
i=1Ai → B where each morphism pi : Ai → B is in P . We refer to FPT as

the ∞-category of finite P -sets.

Note that FPT is equivalent to the finite cocompletion of the ∞-category P .
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Definition 4.2.2. A wide subcategory P ⊆ T is called orbital if the base change
of a morphism in FPT along an arbitrary morphism in FT exists and is again in FPT .
Equivalently, for every pullback diagram

A′ A

B′ B

p′

α

p

β

in PSh(T ), with A,B,B′ ∈ T and p : A→ B in P , the morphism p′ : A′ → B′ can be
decomposed as a disjoint union (pi)

n
i=1 :

⊔n
i=1Ai → B′ for morphisms pi : Ai → B′

in P .

The ∞-category T is called orbital if it is orbital when regarded as a subcategory
of itself.

Remark 4.2.3. An ∞-category T is orbital in our sense if and only if it is orbital
in the sense of [BDG+16], [Sha21], [Nar16, Definition 4.1].

The following is the main example of an orbital subcategory in this article.

Example 4.2.4. We define Orb ⊂ Glo to be the subcategory spanned by all
objects and the injective group homomorphisms. We claim that Orb is an orbital
subcategory of Glo. Observe that the ∞-category of finite Glo-sets is equivalent
to the (2, 1)-category of finite groupoids, which admits all homotopy-pullbacks.
The subcategory of finite Orb-sets is the wide subcategory on the faithful maps
of groupoids, and thus the orbitality of Orb is equivalent to the observation that
pullbacks of faithful maps of groupoids are again faithful.

The following two examples are variations of Example 4.2.4.

Example 4.2.5. The orbit category OrbG of a finite group G is orbital. More

generally, for a Lie group G, let Orbf.i.G be the wide subcategory of the orbit ∞-
category OrbG spanned by the morphisms equivalent to projections G/K → G/H

for subgroupsK ⊆ H ⊆ G whereK has finite index in H . Then Orbf.i.G is an orbital
subcategory of OrbG. Indeed, the pullback of G/K → G/H along a morphism
G/H ′ → G/H is computed via a double coset formula, namely the finite disjoint
union

⊔
[g]∈H′\H/K G/(H ′ ∩ gK).

Example 4.2.6. Mixing Example 4.2.4 with Example 4.2.5, one can define an
∞-category GloLie whose objects are compact Lie groups G and whose morphism
space HomGlo(G,H) is given by the homotopy orbit space HomTopGrp(G,H)hH ,
where H acts on the space of continuous homomorphisms G→ H via conjugation.

See [GH07, Section 4.1] or [Rez14, Section 2.2]. Let Orbf.i.Lie ⊆ GloLie be the wide
subcategory whose morphisms are given by the injective homomorphisms G →֒ H

of finite index. Then Orbf.i.Lie is an orbital subcategory. The relevant pullbacks are
again computed by a double coset formula.

Orbital subcategories are closed under various constructions:

Example 4.2.7. (1) (Slice) Let P ⊆ T be an orbital subcategory and let B ∈ T
be an object. Then the wide subcategory of T/B spanned by those morphisms
over B contained in P is again an orbital subcategory. We will often abuse
notation and denote this subcategory again by P .
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(2) (Preimage) More generally, if f : S → T is a right fibration, then the preimage
Q := f−1(P ) ⊆ S of an orbital subcategory P ⊆ T is again orbital. Indeed,
note that FQ = f−1(FP ), and that the extension FQ → FP of f is still a right
fibration. The claim is then an instance of [HHLN22, Proposition 2.6].

(3) (Intersection) The intersection
⋂
i∈I Pi of any non-empty collection of orbital

subcategories Pi ⊆ T is again orbital.

Example 4.2.8. Let G be a finite group. Combining part (2) from Example 4.2.7
with Example 4.2.5, we find that for a G-space X : OrbopG → Spc, the ∞-category∫
X of points of X (that is, the total category of the right fibration classified by X)

is orbital.

So far, all the given examples of orbital subcategories are equivariant in nature,
being a variation of the orbit category of a group; these are the examples we are
most interested in in this article. In the following example we mention some orbital
subcategories that appear in completely different contexts.

Example 4.2.9. Let T be an∞-category, and assume P ⊆ T is a wide subcategory
such that base changes of morphisms in P exist in T and are again in P . Then P
is orbital.

In particular, many geometric examples give rise to orbital subcategories. For
example:

(1) If T = Diff is the ordinary category of smooth manifolds, the wide subcategory
on the local diffeomorphisms is orbital.

(2) If T = SmS is the ordinary category of smooth schemes over some base scheme
S, the wide subcategory on the étale morphisms is orbital.

For the remainder of this subsection, we will fix an orbital subcategory P ⊆ T .

Definition 4.2.10. We define the T -∞-category of finite P -sets FPT . Given B ∈ T ,
we let

F
P
T (B) ⊆ PSh(T )/B

be the full subcategory spanned by those morphisms p : A → B in PSh(B) which
can be decomposed as a coproduct (pi) :

⊔n
i=1 Ai → B such that each morphism

pi : Ai → B is in P . By orbitality of P , FPT forms a parameterized subcategory of

Spc
T
. When P = T , we simply write FT for FTT .

Since F
P
T forms a class of T -∞-groupoids (see Definition 2.3.12) it makes sense to

speak of parameterized colimits indexed by F
P
T .

Definition 4.2.11. Let P ⊆ T be an orbital subcategory of T . We say that a
T -∞-category C admits finite P -coproducts if it admits FPT -colimits, in the sense of

Definition 2.3.8. Dually, we say C admits finite P -products if it admits FPT -limits.

Definition 4.2.12. Let C andD be two T -∞-categories which admit FPT -limits. We

define FunP -×(C,D) to be the full parametrized subcategory of Fun(C,D) spanned
in level B by the T/B-functors F : π∗

B C → π∗
B D which preserve P -products (i.e.

preserves π−1(P )-products, c.f. Example 4.2.7). Dually we define FunP -⊔(C,D).
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When P = T , a T -∞-category C admits finite T -coproducts in the sense of Defi-
nition 4.2.11 if and only if it has finite T -coproducts in the sense of Shah [Sha21,
Definition 5.10].

The following result gives a more explicit characterization of the condition for a
T -∞-category to admit finite P -(co)products.

Proposition 4.2.13 (cf. [Sha21, Proposition 5.12], [Nar16, Proposition 2.11]). Let
P ⊆ T be an orbital subcategory and let C be a T -∞-category. Then C admits finite
P -coproducts if and only if the following two conditions hold:

(1) C admits fiberwise finite coproducts, see Definition 2.3.11;
(2) for every morphism p : A → B in P , the restriction functor p∗ : C(B) → C(A)

admits a left adjoint p! : C(A) → C(B) and for every pullback square as in
Lemma 2.3.13(2) with A,B,B′ ∈ T and f : A → B in P , the Beck-Chevalley
transformation p′! ◦ α

∗ ⇒ β∗ ◦ p! is an equivalence.

Dually, C admits finite P -products if and only the dual conditions hold.

Proof. By definition, every morphism in FPT with target B ∈ T can be written as a
composite

n⊔

i=1

Bi

⊔n
i=1 pi−−−−−→

n⊔

i=1

B
∇
−→ B (7)

for morphisms pi : Bi → B in P , where ∇ :
⊔n
i=1 B → B denotes the fold map in

PSh(T ). As the functor C : PSh(T )op → Cat∞ sends colimits in PSh(T ) to limits of
∞-categories, the condition of left FPT -adjointability splits up as left adjointability

for the maps ∇ :
⊔n
i=1 B

∇
−→ B and left adjointability for the maps in P . Spelling

out the definitions, one observes that the former is equivalent to condition (1) while
the latter is equivalent to condition (2). �

A similar argument gives the following analogous result for preservation of finite
P -coproducts.

Proposition 4.2.14. Let P ⊆ T be an orbital subcategory and let C and D be T -∞-
categories that admits finite P -coproducts. Then a T -functor F : C → D preserves
finite P -coproducts if and only if it preserves fiberwise finite coproducts and for every
morphism p : A→ B in P , the Beck-Chevalley transformation p! ◦ FA ⇒ FB ◦ p! is
an equivalence.

The dual statement for preservation of finite P -products also holds. �

We end this subsection by showing that the T -∞-category F
P
T can be characterized

by a universal property: it is the free T -∞-category admitting finite P -coproducts.

Corollary 4.2.15. The T -∞-category F
P
T admits finite P -coproducts and the in-

clusion F
P
T →֒ Spc

T
preserves finite P -coproducts.

Proof. By Example 2.3.17 it suffices to show that the subcategory F
P
T →֒ Spc

T
is

closed under finite P -coproducts. But this is clear from Proposition 4.2.13 since it
is closed under fiberwise coproducts and under composition with morphisms in P
by construction. �
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Corollary 4.2.16. Let D be a T -∞-category admitting finite P -coproducts. Let
∗ : 1 → F

P
T denote the T -final object, given at B ∈ T by the identity idB ∈ F

P
T (B).

Then composition with ∗ : 1→ F
P
T induces an equivalence of T -∞-categories

FunP -⊔
T (FPT ,D)→ FunT (1,D) ≃ D .

Proof. It follows directly from Corollary 4.2.15 that the subcategory F
P
T ⊆ Spc

T
is the smallest subcategory which contains the T -final object and is closed under

finite P -coproducts, meaning it is equivalent to PSh
F
P
T

T (1) in the notation of [MW21,
Definition 6.1.6]. The claim is then an instance of [MW21, Theorem 6.1.10]. �

4.3. Atomic orbital subcategories and norm maps. Let P be an orbital sub-
category of T . In this subsection, we will define what it means for P to be an
atomic orbital subcategory of T , generalizing a definition of [Nar16]. The atomic-
ity condition on P will allow us to define norm maps Nmp : p! → p∗ in a pointed
T -∞-category C, making it possible to compare finite P -coproducts in C to finite
P -products in C. We may therefore think of the atomic orbital subcategories as
classifying the various potential ‘levels of semiadditivity’ that a T -∞-categorymight
have.

Definition 4.3.1. Suppose T is an ∞-category and let P ⊆ T be an orbital
subcategory. We say that P is atomic orbital if for every morphism p : A → B in
P the diagonal ∆: A→ A×B A in PSh(T ) is a disjoint summand inclusion in the
sense of Definition 4.1.3. An ∞-category T is called atomic orbital if it is atomic
orbital as a subcategory of itself.

For a subcategory P ⊂ T , being an atomic orbital subcategory is a very restrictive
condition: since every disjoint summand inclusion in PSh(T ) is in particular a
monomorphism, it implies that all the morphisms in P have to be 0-truncated.

The following lemma provides an alternative characterization of atomic subcate-
gories in terms of the triviality of certain retracts. The case P = T of this lemma
immediately implies that our definition of atomic orbital∞-categories is equivalent
to that of [Nar16, Definition 4.1].

Lemma 4.3.2. Let P ⊆ T be an orbital subcategory. Then P is atomic orbital
if and only if any morphism p : A → B in P which admits a section in T is an
equivalence.

Proof. Assume first that P is atomic orbital. Let p : A→ B be a morphism in P and
assume that p admits a section s : B → A in T . We will show that p is an equivalence
with inverse s. Since we are given an equivalence ps ≃ idB, it remains to show that
sp ≃ idA. Equivalently, we may show that the map (idA, sp) : A→ A×B A factors
through the diagonal ∆p : A→ A×B A. By assumption this diagonal is equivalent
to an inclusion A →֒ A ⊔ C for some presheaf C ∈ PSh(T ), and since A is a
representable presheaf it follows that the map (idA, sp) : A → A ×B A ≃ A ⊔ C
must either factor through ∆p : A →֒ A ⊔ C or through C →֒ A ⊔ C. Assume for
contradiction that we are in the latter situation. Then the pullback of ∆p : A →
A ×B A and (idA, sp) : A → A ×B A is the empty presheaf. But this pullback is
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also equivalent to B, by the following pullback diagram:

B A B

A A×B A A

A B.

s

s (idA,sp)

p

s

∆p pr2

pr1 p

p

Since B is not the empty presheaf, this leads to a contradiction, showing that
(idA, sp) : A→ A×B A factors through ∆p as desired.

Conversely, assume that any map in P which admits a section in T is an equivalence.
Let p : A→ B be a morphism in P . Since P is orbital, the projection map pr1 : A×B
A → A in PSh(T ) can be decomposed as a disjoint union (pi)

n
i=1 :

⊔n
i=1 Ai → A

of morphisms pi : Ai → B in P . Since A is representable, the diagonal ∆p : A →
A ×B A ≃

⊔n
i=1Ai has to factor through one of the inclusions Ai →֒ A ×B A, so

that the morphism pi : Ai → A admits a section A→ Ai in T . By the assumption
on P , this means that pi is an equivalence. It follows that the diagonal ∆p of p is
the inclusion of a disjoint summand A ≃ Ai →֒

⊔n
i=1 Ai, as desired. �

Corollary 4.3.3. Let P ⊆ T be an atomic orbital subcategory. Then for every
morphism p : A → B in FPT the diagonal ∆p : A → A×B A is a disjoint summand
inclusion.

Proof. Let p : A → B be a morphism in FPT . Arguing for each component of
B we may assume that B ∈ T . By definition of FPT we may decompose p as
(pi)

n
i=1 :

⊔n
i=1 Bi → B for objects Bi ∈ T and morphisms pi : Bi → B in P . The

diagonal of p then takes the form
⊔n
i=1 Bi →

⊔n
k=1

⊔n
j=1 Bk ×B Bj , given on the

i-th summand of the domain by the composite

Bi
∆pi−−→ Bi ×B Bi →֒

n⊔

k=1

n⊔

j=1

Bi ×B Bj ,

where the last map is the inclusion of the summand indexed by k = j = i. Since
each of the individual maps ∆pi : Bi → Bi ×B Bi is a disjoint summand inclusion
by Lemma 4.3.2 and each lands in a different summand of

⊔n
k=1

⊔n
j=1 Bi ×B Bj , it

follows that the map ∆p is also a disjoint summand inclusion. �

A convenient feature of atomic orbital subcategories is that they are left cancellable,
in the sense that for morphisms f : A → B and g : B → C in T , if both g and gf
are in P then also f is in P .

Lemma 4.3.4. Every atomic orbital subcategory P ⊆ T is left cancellable.

Proof. Let f : A→ B and g : B → C be morphisms in T , and assume that both g
and gf are in P . We will show that then also f is in P . This is a classical argument
[Gro60, Remarque 5.5.12]: we may factor f as a composite

A
(1,f)
−−−→ A×C B

prB−−→ B

in FT , and it will suffice to show that both of these morphisms are morphisms in FPT .
The projection prB : A×C B → B is the base change of gf : A→ C along B → C,
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so it is in FPT by orbitality of P and the assumption on gf . In turn, the morphism
(1, f) : A→ A×C B is a base change of the diagonal map ∆g : B → B×C B, which
is by assumption a disjoint summand inclusion and thus in particular in F

P
T . This

finishes the proof. �

Corollary 4.3.5. Let P ⊆ T be an atomic orbital subcategory. Then for every B ∈
T , the inclusion P/B →֒ T/B is fully faithful. In particular, there is an equivalence

F
P
T (B) ≃ (FPT )/B . �

For the remainder of this subsection, we will fix an atomic orbital subcategory
P ⊆ T . We are now ready to define the norm map Nmp : p! → p∗ for every
morphism p in FPT .

Construction 4.3.6 (Norm map, cf. [Lur17, Construction 6.1.6.8], [NS18, Con-
struction I.1.7], [HL13, Construction 4.1.8]). Let C be a pointed T -∞-category and
let p : A→ B be a morphism in FPT . Consider the following pullback diagram

A×B A A

A B

pr1

pr2

p

p

(8)

in PSh(T ), and let ∆: A → A ×B A denote the diagonal of p. By atomicity of
P , ∆ is a disjoint summand inclusion, so that Lemma 4.1.4 provides adjunctions
∆! ⊣ ∆∗ ⊣ ∆∗ and an equivalence Nm∆ : ∆! ≃ ∆∗.

(1) Define a natural transformation α : pr∗1 ⇒ pr∗2 as the following composite:

pr∗2
u∗
∆==⇒ ∆∗∆

∗pr2
∗ ≃ ∆∗

Nm−1
∆
≃ ∆! ≃ ∆!∆

∗ pr∗1
c!∆==⇒ pr∗1 .

(2) Assume that C admits finite P -coproducts, so that the pullback square (8)
gives a left base change equivalence p∗p! ≃ pr1! pr

∗
2. We define the adjoint

norm transformation Ñmp : p
∗p! ⇒ id of p in C as the composite

Ñmp : p
∗p!

l.b.c.
≃ pr1! pr

∗
2

pr1!α====⇒ pr1! pr
∗
1

c!pr1===⇒ id .

(3) Assume that C admits finite P -products, so that the pullback square (8) gives
a right base change equivalence p∗p∗ ≃ pr2∗ pr

∗
1. We define the dual adjoint

norm transformation Nmp : id⇒ p∗p∗ of p in C as the composite

Nmp : id
u∗
pr2===⇒ pr2∗ pr

∗
2

pr2∗α====⇒ pr2∗ pr
∗
1

r.b.c.
≃ p∗p∗.

(4) Assume that C admits both finite P -products and finite P -coproducts. We
define the norm transformation of p in C

Nmp : p! =⇒ p∗

as the map adjoint to the adjoint norm transformation Ñmp : p
∗p! ⇒ id.

We will sometimes write Ñm
C

p , Nm
C

p or NmC
p to emphasize the dependence on C.
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Remark 4.3.7. Unwinding the definitions, the map Ñmp : p
∗p! ⇒ id may be given

more directly as the composite

p∗p!
l.b.c.
≃ pr1! pr

∗
2

u∗
∆==⇒ pr1!∆∗∆

∗ pr∗2
Nm−1

∆
≃ pr1!∆!∆

∗ pr∗2 ≃ idC(A) .

Similarly, the map Nmp : id⇒ p∗p∗ unwinds to the following composite:

idC(A) ≃ pr2∗∆∗∆
∗ pr∗1

Nm−1
∆
≃ pr2∗∆!∆

∗ pr∗1
c!∆==⇒ pr2∗ pr

∗
1

r.b.c.
≃ p∗p∗.

The description of the adjoint norm map Ñm given above is precisely the definition

of the map ν
(0)
p : p∗p! ⇒ id of [HL13, Construction 4.1.8], applied to the Beck-

Chevalley fibration
∫
C |(FP

T )op → FPT classified by the functor C |(FP
T )op : (F

P
T )

op →
Cat∞. In particular, the norm map Nmp : p! → p∗ defined above agrees with the
norm map Nmp of [HL13, Construction 4.1.12].

Remark 4.3.8. Let f : A→ B be a morphism in F
P
T which happens to be a disjoint

summand inclusion. Then the norm map Nmf : f! ⇒ f∗ of Construction 4.3.6 agrees
with the map Nmf : f! ⇒ f∗ constructed in Lemma 4.1.4.

The map α : pr∗2 ⇒ pr∗1 defined in Construction 4.3.6(1) may be thought of as some
kind of ‘diagonal matrix’: as the next lemma shows, it restricts to the identity when
restricted along the diagonal ∆: A →֒ A×B A, and restricts to the zero map on the
complement of the diagonal.

Lemma 4.3.9. Let C be a pointed T -∞-category and let p : A→ B be a morphism
in FPT . Let j : C →֒ A×BA denote the disjoint complement of the diagonal inclusion
∆: A →֒ A×B A. Then the following hold:

(1) The composite idC(A) ≃ ∆∗ pr∗2
∆∗α
===⇒ ∆∗ pr∗1 ≃ idC(A) is homotopic to the

identity transformation.
(2) The map j∗α : j∗ pr∗2 ⇒ j∗ pr∗1 is the zero transformation, in the sense that it

factors through the zero functor 0: C(A)→ C(C).

Proof. The proof of (1) follows from the following commutative diagram:

∆∗ pr∗2 ∆∗ pr∗2 id ∆∗ pr∗1 ∆∗ pr∗1

∆∗∆∗∆
∗ pr∗2 ∆∗∆∗ ∆∗∆! ∆∗∆!∆

∗ pr∗2 .
Nm−1

∆

u∗
∆ c∗∆ u!

∆ c!∆

≃ ≃

≃≃

c∗∆ u!
∆

The triangles on the two sides commute by the triangle identity, the rhombi com-
mute by naturality and the triangle in the middle commutes by the defining property
of the norm map Nm∆ of Lemma 4.1.4.

For (2), note that by definition of α the map j∗α factors through the functor j∗∆∗.
Since coproducts are disjoint in PSh(T ), the fiber product C×A×BAA is the empty
presheaf. It then follows from base change that the functor j∗∆∗ factors through
the ∞-category C(∅) ≃ ∗, which forces it to be the zero functor. �

Remark 4.3.10. In the setting of Mackey 2-functors, Balmer and Dell’Ambrogio
[BD20, Theorem 3.3.4] have produced a similar transformation Θi : i! ⇒ i∗. It
follows from Lemma 4.3.9 and [BD20, Proposition 3.2.1] that the transformation
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Nmp : p! ⇒ p∗ of Construction 4.3.6 specializes to the transformation Θi of Balmer
and Dell’Ambrogio in the case T = Glo and P = Orb. In particular, if C is a
pointed global∞-category admitting finite Orb-(co)products, it follows from [BD20,
Theorem 3.4.2] that the norm maps Nmi are equivalences for every injective group
homomorphism i : H →֒ G if and only if there exist abstract equivalences i! ≃ i∗
for every such i.

4.4. Properties of norm maps. We will next establish a variety of results about
the calculus of norm maps.

To start with, we address the obvious asymmetry in the construction of the norm
map: we could just as well have considered the map p! ⇒ p∗ adjoint to the dual
adjoint norm map Nmp : id ⇒ p∗p∗. The following lemma shows that these two
maps agree.

Lemma 4.4.1. Assume that C is a pointed T -∞-category which admits both fi-

nite P -products and finite P -coproducts. Then the maps Ñmp : p
∗p! ⇒ id and

Nmp : id⇒ p∗p∗ adjoin to the same map Nmp : p! ⇒ p∗.

Proof. We have to show that dual adjoint norm map Nmp is the total mate of the

adjoint norm map Ñmp. A mundane exercise in 2-category theory shows that the
total mate of the Beck-Chevalley equivalence p∗p! ≃ pr1! pr

∗
2 is the Beck-Chevalley

equivalence pr2∗ pr
∗
1 ≃ p∗p∗. Furthermore, it follows directly from the triangle

identity that the total mate of the composite

pr1! pr
∗
2

pr1!α====⇒ pr1! pr
∗
1

c!pr1===⇒ id

is given by the composite

id
u∗
pr2===⇒ pr2∗ pr

∗
2

pr1!α====⇒ pr2∗ pr
∗
1 .

Since the total mate of a composite of transformations is given by composing in
opposite order the individual total mates of these transformations, this finishes the
proof. �

The norm map Nmp can be written in terms of the double Beck-Chevalley map
p!pr2∗ ⇒ p∗pr1! associated to the pullback square (8).

Lemma 4.4.2. Assume that C is a pointed T -∞-category which admits both finite
P -products and finite P -coproducts. Let p : A→ B be a morphism in F

P
T . Then the

norm map Nmp is homotopic to the composite

p! ≃ p!pr2∗∆∗ −→ p∗pr1!∆∗
Nm−1

∆−−−−→ p∗pr1!∆! ≃ p∗.

Proof. By adjunction, it suffices to show that the adjoint normmap Ñmp : p
∗p! → id

is given by the composite

p∗p! ≃ p
∗p!pr2∗∆∗ −→ p∗p∗pr1!∆∗

Nm−1
∆−−−−→ p∗p∗pr1!∆! ≃ p

∗p∗
c∗p
−→ id .
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This follows from the following commutative diagram:

p∗p! p∗p!pr2∗∆∗ p∗p∗pr1!∆∗ p∗p∗pr1!∆! p∗p∗

pr1! pr
∗
2 pr1! pr

∗
2 pr2∗∆∗ pr1!∆∗ pr1!∆! id

pr1! pr
∗
2 pr1!∆∗∆

∗ pr∗2 pr1!∆!∆
∗ pr∗1 pr1! pr

∗
1

≃

l.b.c. l.b.c.

≃
c∗pr2

≃

Nm−1
∆

Nm−1
∆

c∗p c∗p c∗p

≃

≃

u∗
∆

≃ c!pr1
c!∆

pr1!α

(1)

(3)(2)

The unlabeled squares commute by naturality. Commutativity of (1) is by the
triangle identity, while commutativity of (2) and (3) follows from the equivalence
pr1 ◦∆ ≃ id ≃ pr2 ◦∆ and the fact that the (co)unit of a composite of adjunctions
is the composite of the individual (co)units. �

As was shown by Hopkins and Lurie [HL13], the norm maps behave well under
composition and base change of morphisms in FPT .

Proposition 4.4.3 ([HL13, Proposition 4.2.1]). Assume that C is a pointed T -∞-
category which admits finite P -coproducts. Consider a pullback square

A′ A

B′ B

p′

gA

p

gB

in FT such that p and (hence) p′ are in FPT . Then there is a commutative diagram

p′
∗
p′!g

∗
A p′

∗
g∗Bp! g∗Ap

∗p!

g∗A g∗A.

Ñmp′

l.b.c.
∼

∼

Ñmp
�

Corollary 4.4.4 ([HL13, Remark 4.2.3]). In the situation of Proposition 4.4.3,
assume that C furthermore admits finite P -products. Then the composite

p′!g
∗
A

l.b.c.
≃ g∗Bp!

g∗B Nmp
−−−−−→ g∗Bp∗

r.b.c.
≃ p′∗g

∗
A

is homotopic to the map Nmp′ g
∗
A. �

Proposition 4.4.5 ([HL13, Proposition 4.2.2]). Assume that C is a pointed T -
∞-category which admits finite P -coproducts. Let p : A → B and q : B → C be

morphisms in FPT . Then the adjoint norm map Ñmqp of the composite qp is homo-
topic to the composite

(qp)∗(qp)! ≃ p
∗q∗q!p!

Ñmq
−−−→ p∗p!

Ñmp
−−−→ id . �

Corollary 4.4.6 ([HL13, Remark 4.2.4]). In the situation of Proposition 4.4.5,
assume that C furthermore admits finite P -products. Then the composite transfor-
mation

(qp)! ≃ q!p!
Nmq
−−−→ q∗p!

Nmp
−−−→ q∗p∗ ≃ (qp)∗

is homotopic to the norm map Nmqp. �
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The norm maps are also suitably functorial in the T -∞-category C: as we will now
show, any pointed T -functor G : C → D transforms norm maps in C into norm
maps in D.

Lemma 4.4.7. Let G : C → C be a pointed T -functor of pointed T -categories and
let p : A→ B be any map in FPT . Then the diagram

pr∗2G pr∗1G

Gpr∗2 Gpr∗1

αG

≃ ≃

Gα

of transformations between functors C(A)→ D(A×B A) commutes.

Proof. Spelling out the definition of α, this is a direct consequence of the following
three commutative diagrams:

G ∆∗∆
∗G

G∆∗∆
∗ ∆∗G∆

∗,

u∗
∆G

≃Gu∗
∆

BC∗

∆!G ∆∗G

G∆! G∆∗,

BC!

Nm∆G

GNm∆

BC∗

∆!∆
∗G G

∆!G∆
∗ G∆!∆

∗.

c!∆G

Gc!∆

BC!

≃

The left and right squares commute by definition of the Beck-Chevalley maps, using
the triangle identities. The fact that the middle square commutes follows directly
from pointedness of G and the construction of Nm∆ in Lemma 4.1.4. �

Lemma 4.4.8. Let G : C → D be a pointed T -functor between two pointed T -∞-
categories which admit finite P -coproducts. Then for every morphism p : A → B
in FPT , the diagram

p∗p!GA p∗GBp! GAp
∗p!

GA GA

≃BC!

GA Ñm
C

pÑm
D

p GA

commutes.

Proof. Consider the diagram

p∗p!GA p∗GBp! GAp
∗p!

pr1! pr
∗
2GA pr1!GA×BA pr∗2 GApr1! pr

∗
2

pr1! pr
∗
1GA pr1!GA×BA pr∗1 GApr1! pr

∗
1

GA GA.

≃BC!

l.b.c. l.b.c.

BC!≃

pr1!αGA GApr1!αpr1!GA×BAα

BC!≃

c!pr1GA GAc
!
pr1

GA Ñm
C

pÑm
D

p GA

We are interested in the outer square. The right middle square commute by nat-
urality. The left middle square commutes by Lemma 4.4.7. The bottom rectangle
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commutes by definition of the Beck-Chevalley map, using the triangle identity. Fi-
nally, the upper rectangle commutes as the two composites are the Beck-Chevalley
transformations associated to the following two equivalent composite squares:

C(B) D(B) D(A)

C(A) D(A) D(A×B A)

GB

GA

p∗ p∗ pr∗1

pr∗2

p∗

and

C(B) C(A) D(A)

C(A) C(A×B A) D(A×B A).

p∗

pr∗2

p∗ pr∗1 pr∗1
GA×BA

GA

This finishes the proof. �

We end the subsection with the the following technical lemma, needed for the proof
of Proposition 4.5.6 below. We recommend the reader skip this lemma on first
reading.

Lemma 4.4.9. Let C be a pointed T -∞-category which admits finite P -products.
Let p : A→ B be a morphism in FPT , and assume that p admits a section s : B → A
which is a disjoint summand inclusion. Then the composite

s∗
∼
−→ p∗s∗s

∗ p∗ Nm−1
s s∗

−−−−−−−→ p∗s!s
∗ p∗c

!
s−−−→ p∗

is homotopic to the composite

s∗
s∗ Nmp
−−−−−→ s∗p∗p∗ ≃ p∗.

Proof. Recall from Remark 4.3.7 that the map Nmp : id → p∗p∗ is given by the
following composite:

id ≃ pr2∗∆∗∆
∗ pr∗1

Nm−1
∆−−−−→ pr2∗∆!∆

∗ pr∗1
c!∆−−→ pr2∗ pr

∗
1

r.b.c.
≃ p∗p∗.

We thus see that the composite s∗
s∗ Nmp
−−−−−→ s∗p∗p∗ ≃ p∗ is given by the composite

along the left, bottom and right in the following large diagram:

s∗ p∗s∗s
∗ p∗s!s

∗ p∗

p∗s!s
∗(1, sp)∗ pr∗1 p∗(1, sp)

∗ pr∗1 p∗

s∗ p∗s∗s
∗∆∗ pr∗1 p∗s!s

∗∆∗ pr∗1

p∗(1, sp)
∗∆∗∆

∗ pr∗1 p∗(1, sp)
∗∆!∆

∗ pr∗1 p∗(1, sp)
∗ pr∗1 p∗

s∗ s∗(pr2)∗∆∗∆
∗ pr∗1 s∗(pr2)∗∆!∆

∗ pr∗1 s∗(pr2)∗ pr
∗
1 s∗p∗p∗

Nm−1
∆ c!∆≃ r.b.c.

s∗ Nmp

≃

r.b.c.

r.b.c.

Nm−1
s

l.b.c.

Nm−1
∆

r.b.c. r.b.c.

≃

≃

c!∆

≃ Nm−1
s

≃

c!s

(1)

≃

≃

≃

≃

c!s

(2)

(3)

(3)

The composite along the top of this diagram is the other map appearing in the
statement of the lemma, so it will suffice to prove that the diagram commutes.
All unlabeled equivalences in this diagram come from identifications on the level
of maps in F

P
T , e.g. we have p∗s∗ ≃ (ps)∗ ≃ id∗ ≃ id, etcetera. The maps labeled
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l.b.c. and r.b.c. are the left/right base change equivalences associated with one of
the following three pullback squares in FPT :

B A B

A A×B A A

A B.

p

p

(1,sp)

pr1

pr2

p

s

∆

s

s

Except for the squares labelled (1), (2) and (3), all squares in the above diagram
commute by naturality. The commutativity of (1) is an instance of Corollary 4.4.4
applied to the previous pullback square exhibiting s as a base change of ∆ along
(1, sp) : A→ A×BA. The commutativity of (2) follows directly from the definition

of the left base change equivalence s!s
∗ ∼
−→ (1, sp)∗∆!, using the triangle identity.

Finally, the two squares labeled (3) use that the composite of two right base change
equivalences is the right base change equivalence for the composite, which in both
cases is just equivalent to the identity. �

4.5. P -semiadditive T -∞-categories. In this section, we will introduce and dis-
cuss the notion of a P -semiadditive T -∞-category for a fixed atomic orbital sub-
category P ⊆ T .

Definition 4.5.1 (cf. [Nar16, Definition 5.3]). Let C be a pointed T -∞-category
which admits both finite P -products and finite P -coproducts. We say that C is P -
semiadditive if for every morphism p : A → B in FPT the norm map Nmp : p! ⇒ p∗
is an equivalence.

We let CatP -×
T ⊆ CatT denote the (non-full) subcategory spanned by the T -∞-

categories which admit finite P -products and the T -functors which preserve finite
P -products. We let CatP -⊕

T ⊆ CatP -×
T denote the full subcategory spanned by the

P -semiadditive T -∞-categories.

We will next discuss various alternative characterizations of P -semiadditivity. We
start by observing that this condition is self-dual.

Lemma 4.5.2. Let C be a pointed T -∞-category. Then the following conditions
are equivalent:

(1) The T -∞-category C is P -semiadditive;
(2) The opposite T -∞-category Cop is P -semiadditive;
(3) The T -∞-category C admits finite P -coproducts and for every morphism p : A→

B the adjoint norm map Ñmp : p
∗p! ⇒ id is the counit of an adjunction p∗ ⊣ p!;

(4) The T -∞-category C admits finite P -products and for every morphism p : A→
B the dual adjoint norm map Nmp : id ⇒ p∗p∗ is the unit of an adjunction
p∗ ⊣ p

∗.

Proof. Observe that the dual adjoint norm map Nmp : id⇒ p∗p∗ may be obtained

by applying the construction of the adjoint norm map Ñm: p∗p! ⇒ id to the T -
∞-category Cop. The equivalence between (1) and (2) is then immediate from
Lemma 4.4.1. The equivalence between (1) and (3) is clear since the norm map
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Nmp : p! ⇒ p∗ is adjoint to Ñm: p∗p! ⇒ id. The equivalence between (2) and (4) is
obtained dually by replacing C with Cop. �

Every choice of an atomic orbital subcategory P ⊆ T gives a different notion of
parameterized semiadditivity for a T -∞-category C. The weakest form of parame-
terized semiadditivity is fiberwise semiadditivity.

Definition 4.5.3. A T -∞-category C is called fiberwise semiadditive if for every
B ∈ T the ∞-category C(B) is semiadditive and for every morphism f : A→ B in
T the restriction functor f∗ : C(B)→ C(A) preserves finite biproducts.

Lemma 4.5.4. Let C be a pointed T -∞-category which admits fiberwise finite prod-
ucts and coproducts. Then the following three conditions are equivalent:

(1) The T -∞-category C is fiberwise semiadditive;
(2) The norm map Nm∇ : ∇! → ∇∗ associated to the fold map ∇ :

⊔n
i=1B → B is

an equivalence for every n ≥ 0 and every B ∈ T ;
(3) The T -∞-category C is P -semiadditive for P = ι T , the core of T .

Proof. When P = ι T is the core of T , any map in FPT is equivalent to a fold
map ∇ :

⊔n
i=1B → B for some B ∈ T , and thus the equivalence between (2) and

(3) is clear. It remains to show that (1) and (2) are equivalent. The ∞-category
C(
⊔n
i=1B) is equivalent to the n-fold product

∏n
i=1 C(B) of C(B). Given an object

X = (Xi) ∈
∏n
i=1 C(B), there are equivalences ∇!(X) ≃

⊕n
i=1Xi and ∇∗(X) ≃∏n

i=1Xi. By Lemma 4.3.9, the map α(X) is a morphism in
∏n
i=1

∏n
j=1 C(B) which

we may visually display as



1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 :




X1 X2 . . . Xn

X1 X2 . . . Xn

...
...

. . .
...

X1 X2 . . . Xn


→




X1 X1 . . . X1

X2 X2 . . . X2

...
...

. . .
...

Xn Xn . . . Xn


 ,

where 1 denotes an identity map while 0 denotes the zero map. In particular, the
induced norm map Nmp :

⊕n
i=1Xi →

∏n
j=1Xj is induced by the family of maps

{Xi → Xj}i,j given by the identity when i = j and the zero-map when i 6= j.
This is precisely the norm map defining ordinary semiadditivity for ∞-categories,
finishing the proof. �

As the next result shows, the condition of P -semiadditivity for general P is a
combination of fiberwise semiadditivity and norm equivalences Nmp : p! ≃ p∗ for
morphisms p in P .

Corollary 4.5.5. Let C be a T -∞-category. Then C is P -semiadditive if and only
if it is fiberwise semiadditive and for every morphism p : A → B in P the norm
map Nmp : p! ⇒ p∗ is an equivalence.

Proof. As in the proof of Proposition 4.2.13, every morphism in FPT with repre-

sentable domain B ∈ T can be written as a composite
⊔n
i=1 Ai

⊔n
i=1 pi−−−−−→

⊔n
i=1Ai

∇
−→

B for morphisms pi : Ai → B in P , where∇ denotes the fold map. The norm map of⊔n
i=1 pi :

⊔n
i=1Ai →

⊔n
i=1 B is equivalent to the product of the norm maps for each

individual pi : Ai → B. By Corollary 4.4.6, the norm map of a composite morphism
can be written as a composite of norm maps, and it follows that C is P -semiadditive
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if and only if the norm maps of all the fold maps ∇ :
⊔n
i=1B → B and of all mor-

phisms p : A → B in P are equivalences. But by Lemma 4.5.4 the norm maps for
the fold maps are equivalences if and only if C is fiberwise semiadditive. �

We finish this subsection with a recognition criterion for P -semiadditivity along the
lines of [Lur17, Proposition 2.4.3.19].

Proposition 4.5.6. Let C be a pointed T -∞-category admitting finite P -products.
Assume that for every morphism p : A→ B in FPT , there is a natural transformation
µp : p∗p

∗ ⇒ idC(B) of functors C(B)→ C(B) satisfying the following two conditions:

(a) for every X ∈ C(B), the composite

p∗X
Nmp p

∗X
−−−−−−→ p∗p∗p

∗X
p∗µpX
−−−−→ p∗X

is homotopic to the identity;
(b) for every Y ∈ C(A), the following diagram commutes

p∗p
∗p∗Y p∗(pr2)∗ pr

∗
1 Y p∗(pr1)∗ pr

∗
1 Y

p∗Y.
µpp∗Y

≃

r.b.c.

≃

p∗µpr1Y

Then the T -∞-category C is P -semiadditive.

Proof. To show that C is P -semiadditive, we may by Lemma 4.5.2 equivalently
show that for every map p : A → B in FPT and every object Y ∈ C(A), the dual

adjoint norm map Nmp Y : Y ⇒ p∗p∗Y exhibits p∗Y as a left adjoint object to Y
under the functor p∗ : C(B)→ C(A), i.e. that for every X ∈ C(B) the composite

HomC(B)(p∗Y,X)
p∗

−→ HomC(A)(p
∗p∗Y, p

∗X)
−◦Nmp Y
−−−−−−→ HomC(A)(Y, p

∗X)

is an equivalence. We claim that an inverse is given by

HomC(A)(Y, p
∗X)

p∗
−→ HomC(B)(p∗Y, p∗p

∗X)
µpX◦−
−−−−−→ HomC(B)(p∗Y,X).

By naturality of µp and Nmp, it suffices to prove that the following two composites
are homotopic to the identity for every fixed X :3

p∗X
Nmp p

∗X
−−−−−−→ p∗p∗p

∗X
p∗µpX
−−−−→ p∗X,

p∗Y
p∗ Nmp Y
−−−−−−→ p∗p

∗p∗Y
µpp∗Y
−−−−→ p∗Y.

The first composite is homotopic to the identity by condition (a), so we focus on
the second composite. Plugging in the description of Nmp given in Remark 4.3.7,
this composite expands to

p∗Y p∗pr2∗∆∗∆
∗ pr∗1 Y p∗pr2∗∆!∆

∗ pr∗1 Y

p∗pr2∗ pr
∗
1 Y p∗p

∗p∗Y p∗Y,

∼ Nm−1
∆

c!∆

r.b.c. µpp∗Y

∼

∼

3While this suffices to show that Nmp is a unit of an adjunction, it does not show that µp is

the corresponding counit, as we do not provide homotopies that are functorial in X and Y .
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which, using condition (b) and the equivalence p ◦ pr1 ≃ p ◦ pr2, is homotopic to
the composite

p∗Y ≃ p∗pr1∗∆∗∆
∗ pr∗1 Y

Nm−1
∆−−−−→ p∗pr1∗∆!∆

∗ pr∗1 Y
c!∆−−→ p∗pr1∗ pr

∗
1 Y

p∗µpr1Y−−−−−→ p∗Y.

Applying Lemma 4.4.9 to the map pr1 : A×BA→ A with section ∆: A→ A×BA,
we see that this map is homotopic to the following composite:

p∗Y ≃ p∗∆
∗ pr∗1 Y

p∗∆
∗ Nmpr1 pr∗1 Y

−−−−−−−−−−−→ p∗∆
∗ pr∗1 pr1∗ pr

∗
1 Y

p∗∆
∗ pr∗1 µpr1Y−−−−−−−−−−→ p∗∆

∗ pr∗1 Y ≃ p∗Y.

This map is homotopic to the identity by assumption (a) applied to the map
pr1 : A×B A→ A, finishing the proof. �

4.6. P -semiadditive T -functors. We continue to fix an atomic orbital subcat-
egory P ⊆ T . In this subsection we will define what it means for a T -functor
F : C → D to be P -semiadditive: roughly speaking, it means that F turns finite
P -coproducts in C into finite P -products in D. The main result of this subsection is
Proposition 4.6.11, which states that the T -∞-category FunP -⊕

T (C,D) of FunT (C,D)
spanned by the P -semiadditive T -functors is P -semiadditive.

We start by constructing a ‘relative’ variant of the norm map.

Construction 4.6.1. Let F : C → D be a T -functor such that C is pointed and
admits finite P -coproducts and D admits finite P -products, and let p : A → B be
a map in FPT . We define the norm transformation of p relative to F

NmF
p : FB ◦ p! =⇒ p∗ ◦ FA

as the transformation adjoint to the composite p∗FBp! ≃ FAp
∗p!

FA Ñm
C

p
=====⇒ FA,

where the first equivalence uses that the parameterized functor F : C → D com-
mutes with the restriction functors.

Note that when D is equal to C and F is the identity on C, the transformation NmF
p

reduces to the norm transformation NmC
p : p! ⇒ p∗ of Construction 4.3.6.

Definition 4.6.2. Let F : C → D be a T -functor such that C is pointed and
admits finite P -coproducts and D admits finite P -products. We will say that F is
P -semiadditive if it satisfies the following condition:

(∗) For each morphism p : A→ B in FPT , the transformation NmF
p : FB◦p! ⇒ p∗◦FA

defined in Construction 4.6.1 is a natural equivalence.

By Example 4.2.7(1) we also obtain a notion of P -semiadditive T/B-functors for
all B ∈ T . Note that C is P -semiadditive if and only if the identity id: C → C is
P -semiadditive. Also note that condition (∗) specializes for A = ∅ to the condition
that the functor FB : C(B)→ D(B) sends the zero object of C(B) to the final object
of D(B).

While not necessary for our work, we show for completeness that our norm map
generalizes the analogous construction in [Nar16].

Proposition 4.6.3. Let T be an atomic orbital ∞-category, let B ∈ T and let
p : A → B be a morphism in FT . Let F : C → D be a T -functor with C and D
satisfying the assumptions of Construction 4.6.1. Then the norm transformation
NmF

p : FB ◦ p! ⇒ p∗ ◦ FA of Construction 4.6.1 is homotopic to the transformation
defined in [Nar16, Construction 5.2].
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Proof. We will first give an alternative description of the norm map in this special
case, and then argue why it agrees with the construction of Nardin. By definition
of FT , we may assume p : A→ B to be of the form p = (pi) :

⊔n
i=1 Ai → B, where

each Ai ∈ T is representable. Let ιi : Ai →֒
⊔n
i=1Ai = A denote the canonical

inclusion, so that pi = p ◦ ιi : Ai → B. The functor p∗ : D(A) → D(B) may be
decomposed as

D(A) = D(
n⊔

i=1

Ai)
(ι∗i )i−−−→
≃

n∏

i=1

D(Ai)
∏n

i=1 pi∗−−−−−−→
n∏

i=1

D(B)
∏
−→ D(B),

where the last map denotes the multiplication in D(B). For an object X =

(Xi) ∈ C(A) ≃
∏n
i=1 C(Ai) the norm map NmF

p (X) : FB(p!(X)) → p∗FA(X) ≃∏n
i=1 pi∗(FAi(Xi)) is the product of n maps FB(p!(X))→ pi∗(FAi(Xi)), where the

i-th one is obtained by adjunction from the composite

p∗iFB(p!(X)) ≃ FAip
∗
i p!X ≃ FAi ι

∗
i p

∗p!X
FAi

ι∗i Ñmp

=======⇒ FAi ι
∗
iX = FAiXi.

We will now expand the definition of the map ι∗i Ñmp : p
∗
i p!X → Xi. First notice

that the map Ñmp : p
∗p!X → X is given by the following composite:

p∗p!X
l.b.c.
≃ pr1! pr

∗
2X

u∗
∆==⇒ pr1!∆∗∆

∗ pr∗2X
Nm−1

∆====⇒
≃

pr1!∆!∆
∗ pr∗2X ≃ X.

Applying left base change to the pullback diagram

Ai ×B A Ai ×B A A

Ai Ai B

ιi×BA

pr1 pr1

pr2

p

ιi pi

gives an equivalence p∗i p!X ≃ pr1! pr
∗
2X . Since T is atomic, the diagonal ∆pi : Ai →

Ai ×B Ai →֒
⊔n
i=1 Ai ×B Ai = Ai ×B A is a disjoint summand inclusion. Writing

g : C → Ai ×B A for the complement summand, we observe that C(Ai ×B A) =
C(Ai ⊔ C) ≃ C(Ai) × C(C) and that the object pr∗2X ∈ C(Ai ×B A) corresponds
to the pair (Xi, XC) for some XC ∈ C(C). Plugging in the map XC → ∗ to the
zero-object ∗ of C(C) thus gives a map pr1!(Xi, XC) → pr1!(Xi, ∗) ≃ Xi. Looking
at the construction of Nm∆ in Lemma 4.1.4, one sees that the resulting composite

p∗i p!X → Xi is precisely ι
∗
i Ñmp.

One may now observe that this second description of the norm map is precisely the
construction of [Nar16], after making the following translations in notation:

B ↔ V, A↔ U, p↔ I,

n⊔

i=1

Ai ↔
⊔

W∈Orbit(U)

W,

p! ↔
⊔

I

, p∗i ↔ δW/V , ιi ↔ (W ⊆ U), ι∗i Ñmp ↔ (χ[W⊆U ])∗.

This finishes the proof. �

By the following lemma, the P -semiadditive T -functors from C to D form a param-
eterized subcategory of FunT (C,D).

Lemma 4.6.4. Let C and D be as in Definition 4.6.2 and let B ∈ T .
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(1) For any P -semiadditive T -functor F : C → D, the T/B-functor

π∗
BF : π∗

B C → π∗
B D

is P -semiadditive.
(2) For any π∗

BP -semiadditive T/B-functor G : π∗
B C → π∗

B D, the T -functor

πB∗G : πB∗π
∗
B C → πB∗π

∗
B D

is P -semiadditive.

Proof. The functors fgt : PSh(T )/B → PSh(T ) and − × B : PSh(T ) → PSh(T )/B
preserve pullbacks, and thus in particular the pullback square (8) used in Construc-

tion 4.3.6. It is now immediate from the construction that the norm map Nmπ∗
BF
p

of π∗
BF = F ◦ fgt with respect to a morphism p : A → A′ of T/B is given by the

norm transformation NmF
fgt(p) of F with respect to fgt(p) : A→ A′, while the norm

map NmπB∗G
p′ of πB∗G with respect to a map p′ : A→ A′ in T is given by the norm

transformation NmG
p′×B of G with respect to p′ ×B : A×B → A′ ×B. The claim

follows. �

Definition 4.6.5. Let C and D be T -∞-categories such that C is pointed and ad-
mits finite P -coproducts and D admits finite P -products. We define FunP -⊕

T (C,D)
as the full subcategory FunT (C,D) spanned at level B ∈ T by the P -semiadditive
T/B-functors F : π∗

B C → π∗
B D for B ∈ T . This does indeed form a subcategory by

Lemma 4.6.4.

We think of a P -semiadditive T -functor as a functor which sends finite P -coproducts
to finite P -products. Hence we expect that this condition should be preserved when
precomposing (resp. postcomposing) with a T -functor which preserves finite P -
coproducts (resp. finite P -products). The following result shows that this is indeed
the case.

Proposition 4.6.6. Let F : C → D be a P -semiadditive T -functor, where C and
D are as in Definition 4.6.2, and let p : A→ B be a morphism in FPT .

(1) Let C′ be another pointed T -category admitting finite P -coproducts and let
G : C′ → C be a pointed T -functor which preserves finite P -coproducts. Then
the norm map NmFG

p : FBGBp! ⇒ p∗FBGB of FG with respect to p is given by
the composite

C′(A) C(A) D(A)

C′(B) C(B) D(B),

FAGA

p! p! p∗

FBGB

BC−1
!

NmF
p

where BC! : p!G(A)
∼
−→ G(B)p! denotes the Beck-Chevalley equivalence of G.

In particular the composite F ◦G : C′ → D is again P -semiadditive.
(2) Let D′ be another T -∞-category which admits finite P -products and let H : D →
D′ be a T -functor which preserves finite P -products. Then the norm map
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NmHF
p : HBFBp! ⇒ p∗HBFB of HF at p is given by the composite

C(A) D(A) D′(A)

C(B) D(B) D′(B),

FA

p! p∗

FB

NmF
p

p∗

HA

HB

BC∗

where BC∗ : H(A)p∗
∼
−→ p∗H(A) denotes the Beck-Chevalley equivalence of H.

In particular the composite H ◦ F : C → D is again P -semiadditive.

Proof. The description of NmFG
p follows from the commutative diagram

FBGBp! p∗p
∗FBGBp! p∗FAp

∗GBp! p∗FAGAp
∗p!

FBp!GA p∗p
∗FBp!GA p∗FAp

∗p!GA p∗FAGA.

u∗
p ≃ ≃

p∗FAGA ÑmpBC−1
!

p∗FA ÑmpGA

BC−1
!BC−1

!

u∗
p ≃

NmF
p GA

The middle and left square commute by naturality, and the right square by Lemma
4.4.8. The description of NmHF

p follows from the commutative diagram

HBFBp! HBp∗p
∗FBp! HBp∗FAp

∗p! HBp∗FA

p∗p
∗HBFBp! p∗HAp

∗FBp! p∗HAFAp
∗p! p∗HAFA,

u∗
p

HBu
∗
p

≃ ≃

BC∗ ≃

≃

BC∗ ≃

HBp∗FA Ñmp

p∗HAFA Ñmp

BC∗≃

HB NmF
p

where the middle and right square commute by naturality while the left-most square
commutes by definition of the Beck-Chevalley equivalence BC∗ and the triangle
identity. �

Corollary 4.6.7. Let C and D be T -∞-categories such that C is pointed and admits
finite P -coproducts, and D admits finite P -products. Then post-composition with
the forgetful functor D∗ → D induces an equivalence of T -∞-categories

FunP -⊕
T (C,D∗)

∼
−→ FunP -⊕

T (C,D).

Proof. By Corollary 4.1.7 it remains to show that a pointed T -functor C → D∗

is P -semiadditive if and only if its composition with D∗ → D is P -semiadditive.
This follows from Proposition 4.6.6 since the T -functor D∗ → D is conservative and
preserves T -limits by Lemma 4.1.9. �

Corollary 4.6.8. Let C be a pointed T -∞-category which admits finite P -coproducts
and let D be a T -∞-category which admits finite P -products. Let B ∈ T and con-
sider a T/B-functor F : π∗

B C → π∗
B D. Then F is P -semiadditive if and only if the

corresponding functor F̃ : C → πB∗π
∗
B D

2.2.8
≃ FunT (B,D) is P -semiadditive.
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Proof. Given F : π∗
B C → π∗

B D, the transpose F̃ : C → πB∗π
∗
B D is given by the

composite

C
unit
−−→ πB∗π

∗
B C

πB∗F−−−−→ πB∗π
∗
B D,

and conversely F can be recovered from F̃ as the composite

π∗
B C

π∗
BF̃−−−→ π∗

BπB∗π
∗
B D

counit
−−−−→ π∗

B D .

The claim thus follows from Lemma 4.6.4 and Proposition 4.6.6, since the unit T -
functor C → πB∗π

∗
B C preserves finite P -coproducts by assumption on C, while the

counit T/B-functor π
∗
BπB∗π

∗
B D → π∗

B D preserves finite P -products by assumption
on D. �

Lemma 4.6.9. Let C and D be T -∞-categories such that C is pointed and ad-
mits finite P -coproducts and D admits finite P -products. Let U be a class of
T -∞-categories, and assume that D admits U-limits. Then the T -∞-category
FunP -⊕

T (C,D) also admits U-limits and the inclusion FunP -⊕
T (C,D) →֒ FunT (C,D)

preserves U-limits.

Proof. First note that the T -∞-category FunT (C,D) admits U-limits by Propo-
sition 2.3.19. Let K ∈ U(B) be a T/B-∞-category in U, and let F : π∗

B C →
FunT (K,π

∗
B D) be a P -semiadditive T/A-functor. We need to show that the T/B-

functor limK F : π∗
B C → π∗

B D is again P -semiadditive. To simplify the notation,
we will assume that B is the final object of T by replacing T by T/B, and thus
we may identify π∗

B C and π∗
B D with C and D, respectively. Since parameterized

limits in FunT (C,D) are computed pointwise by Proposition 2.3.19, the functor
limK F : C → D is given by the composite

C
F
−→ FunT (K,D)

limK−−−→ D .

Note that the T -functor limK : FunT (K,D)→ D, being right adjoint to the diagonal
D → FunT (K,D), preserves all parameterized limits and thus in particular all finite
P -products. It then follows from Proposition 4.6.6 that limK F is P -semiadditive
as desired. �

Corollary 4.6.10. Let C and D be pointed T -∞-categories admitting finite P -
coproducts, and let E be a T -∞-category admitting finite P -products. Then the
composite equivalence

FunT (C,FunT (D, E)) ≃ FunT (C ×D, E) ≃ FunT (D,FunT (C, E))

restricts to an equivalence

FunP -⊕
T (C,FunP -⊕

T (D, E)) ≃ FunP -⊕
T (D,FunP -⊕

T (C, E)).

Proof. It follows immediately from Lemma 4.6.9 and Proposition 2.3.19 that both
sides correspond to the full subcategory of FunT (C ×D, E) spanned by those T -
functors which are P -semiadditive in both variables. Here we say a T -functor
F : C ×D → E is P -semiadditive in both variables if for everyB ∈ T andX : B → C,
the T -functor

F (X,−) : D → FunT (B, E)
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adjoint to the composite B ×D
X×D
−−−→ C×D

F
−→ E is P -semiadditive and similarly

for every Y : B → D the T -functor

F (−, Y ) : C → FunT (B, E)

adjoint to C ×B
C ×Y
−−−→ C×D

F
−→ E is P -semiadditive. �

We now come to the main result of this subsection: the P -semiadditivity of the
T -∞-category FunP -⊕

T (C,D).

Proposition 4.6.11 (cf. [Nar16, Proposition 5.8]). Let C and D be T -∞-categories
such that C is pointed and admits finite P -coproducts and D admits finite P -
products. Then the T -∞-category FunP -⊕

T (C,D) is P -semiadditive.

Proof. By Corollary 4.6.7, we may assume that D is pointed. It follows from Corol-
lary 4.1.8 that FunP -⊕

T (C,D) is pointed and from Lemma 4.6.9 that FunP -⊕
T (C,D)

admits finite P -products. These are computed pointwise, meaning that for p : A→
B in F

P
T the map

p∗ : Fun
P -⊕(C,FunT (A,D))→ FunP -⊕(C,FunT (B,D))

is given by post-composition with p∗ : FunT (A,D)→ FunT (B,D).

To show that FunP -⊕
T (C,D) is P -semiadditive, we will apply the recognition prin-

ciple from Proposition 4.5.6. For every morphism p : A → B in FPT and every
P -semiadditive T/B-functor G : π∗

B C → π∗
B D, we define a natural transformation

µpG : p∗p
∗G → G. For notational simplicity, we will construct this in the case

where B = 1 is a terminal object of T ; the general case is obtained by replacing T
by T/B. In this case, µpG is defined as the following composite:

p∗p
∗G ≃ p∗G

Ap∗
(NmG

p )−1

−−−−−−→ Gp!p
∗
Gc!p
−−→ G;

here we denote by GA : FunT (A, C) → FunT (A,D) the T -functor induced by G.
We need to check that conditions (a) and (b) of Proposition 4.5.6 are satisfied.
Condition (b) follows directly from the definitions, using Proposition 4.6.6(2) to
compute the norm map of p∗F in terms of the norm map of F and the right base
change equivalence p∗p∗ ≃ (pr2)∗ pr

∗
1. For condition (a), we need to show that for

every P -semiadditive T -functor G : C → D, the composite

p∗G
Nmp p

∗G
−−−−−−→ p∗p∗p

∗G
p∗µpG
−−−−→ p∗G

is homotopic to the identity in FunP -⊔
T/A

(π∗
A C, π

∗
AD) ≃ FunP -⊕

T (C,FunT (A,D)). Ob-

serve that pointedness of D guarantees that the transformation Nmp p
∗G : p∗G →

p∗p∗p
∗G is given by whiskering p∗G with the transformation NmD

p : id → p∗p∗.
Spelling out the definitions, we are therefore interested in the composite along the
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top right in the following diagram:

p∗G pr2∗∆∗∆
∗ pr∗1 p

∗G pr2∗∆!∆
∗ pr∗1 p

∗G pr2∗ pr
∗
1 p

∗G p∗p∗p
∗G

GAp∗ pr2∗∆∗∆
∗ pr∗1G

Ap∗ pr2∗∆!∆
∗ pr∗1G

Ap∗ pr2∗ pr
∗
1G

A p∗p∗G
Ap∗

p∗Gp!p
∗ p∗G

GAp∗ GApr2!∆!∆
∗ pr∗1 p

∗ GApr2! pr
∗
1 p

∗ GAp∗p!p
∗ GAp∗

GAp∗ GA(pr2)!∆!∆
∗ pr∗2 p

∗ GApr2! pr
∗
2 p

∗ GAp∗

l.b.c.c!∆≃

≃

≃ c!∆ r.b.c.Nm−1
∆

Nmp p
∗G

≃

Nm−1
∆

≃ ≃ ≃ ≃ ≃

c!∆

r.b.c.

c!p

p∗µpG

≃

c!p

(NmG
p )−1

c!∆

≃

≃

≃

c!pr2

(1)

(2)

As the composite along the bottom left is the identity, it remains to show that
this diagram commutes. Except for (1) and (2), all squares commute either by
definition or by naturality, and the commutativity of square (2) follows from the
triangle identity. The commutativity of (1) follows from the following commutative
diagram:

GA pr2∗∆∗∆
∗ pr∗1G

A pr2∗∆!∆
∗ pr∗1G

A pr2∗ pr
∗
1G

A p∗p∗G
A

GA pr2∗∆∗G
A∆∗ pr∗1 pr2∗∆!G

A∆∗ pr∗1 pr2∗ pr
∗
1G

A p∗p∗G
A

pr2∗G
A×A∆!∆

∗ pr∗1 pr2∗G
A×A∆!∆

∗ pr∗1 pr2∗G
A×A pr∗1 p∗Gp!

GA GApr2!∆!∆
∗ pr∗1 GApr2! pr

∗
1 GAp∗p!.

l.b.c.c!∆

NmG
p

r.b.c.

NmF
pr1

≃

≃

NmGA×A

∆

≃

≃

(4)

NmGA

pr1

≃

c!∆ r.b.c.Nm−1
∆

≃

Nm∆

≃

c!∆

BC!(2)

(3)

(1)

The unlabeled squares commute by naturality. The fact that (1) commutes follows
from Corollary 4.4.6, while the commutativity of (4) follows from Corollary 4.4.4.
The commutativity of (2) and (3) easily follows from the definitions. This finishes
the proof. �

Proposition 4.6.12. Let C be a pointed T -∞-category which admits finite P -
coproducts, and suppose D is P -semiadditive. Then a T -functor F : C → D is
P -semiadditive if and only if it preserves finite P -coproducts. In particular we get
that FunP -⊕

T (C,D) and FunP -⊔
T (C,D) are the same subcategory of FunT (C,D).

Analogously, suppose C is a P -semiadditive T -∞-category, and suppose D admits
finite P -products. Then a T -functor G : C → D is P -semiadditive if and only if it
preserves finite P -products. In particular FunP -⊕

T (C,D) and FunP -×
T (C,D) are the

same subcategory of FunT (C,D).
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Proof. We start with the first case. Observe that in both cases F is pointed so that
Lemma 4.4.8 applies. Adjoining over p∗ to the right gives a commutative triangle

FBp!

p!FA p∗FA.

NmF
p

BC!

NmD
p FA

Since D is a P -semiadditive, the bottom map is an equivalence. It thus follows from
the two-out-of-three property that BC! : p!FA ⇒ FBp! is an equivalence if and only
if NmF

p : FBp! ⇒ p∗FA is, proving the result.

Next we consider the second case. Just as before the result follows from the com-
mutativity of the triangle

p∗FA

FBp! FBp∗,
FB NmC

p

BC∗

NmF
p

which in turn follows from the commutative diagram

p∗p
∗FBp! p∗FAp

∗p! p∗FA

FBp! FBp∗p
∗p! FBp∗

u∗
p

Ñm
C

p

Ñm
C

p

BC∗BC∗

u∗
p

≃

The left square commutes by the triangle identity and the right by naturality. �

Corollary 4.6.13. Let C and D be P -semiadditive T -∞-categories. Then a T -
functor F : C → D preserves finite P -coproducts if and only if it preserves finite
P -products. �

There exists a characterization of P -semiadditivity which does not make reference
to the norm maps: it suffices for finite P -products to commute with finite P -
coproducts.

Corollary 4.6.14. Let C be a pointed T -∞-category which admits finite P -products
and finite P -coproducts. Then the following conditions are equivalent:

(1) The T -∞-category C is P -semiadditive
(2) For every morphism p : A→ B in FPT , the T/B-functor

p∗ : FunT/B
(A, π∗

B C)→ π∗
B C

preserves finite P -coproducts.

Proof. Suppose C is P -semiadditive. Then so are the T/B-∞-categories π∗
B C and

FunT/B
(A, π∗

B C). Given a morphism p : A → B, the T/B-functor p∗ is a right
adjoint of p∗ so preserves finite P -products. By Corollary 4.6.13, it follows that p∗
also preserves finite P -coproducts, proving that (1) implies (2).



PARAMETERIZED STABILITY AND THE UNIV. PROPERTY OF GLOBAL SPECTRA 59

Conversely, applying (2) to the finite P -coproduct p! gives that the double Beck-
Chevalley map p!pr2∗ ⇒ p∗pr1! associated to the pullback square (8) is an equiva-
lence. It thus follows from Lemma 4.4.2 that the norm map Nmp is an equivalence,
showing that (2) implies (1). �

We finish this subsection by observing that passing to the T -∞-category of P -
semiadditive T -functors out of a small T -∞-category C preserves presentability.

Proposition 4.6.15. Let C be a small pointed T -∞-category which admits finite
P -coproducts. Let D be a presentable T -∞-category, so that D in particular admits
finite P -products by Remark 2.4.2. Then the T -∞-category FunP -⊕(C,D) is again
presentable and the inclusion

FunP -⊕(C,D) ⊂ Fun(C,D)

admits a left adjoint.

Proof. We will exhibit FunP -⊕
T (C,D) as the T -∞-category of S-local objects for a

parameterized family S of morphisms in FunT (C,D) (i.e. a set S(B) of morphisms
of FunT/B

(π∗
B C, π

∗
B D) for every B ∈ T which are closed under restriction). Then

Example 2.4.6 implies both statements of the proposition. Since we may prove the
statement after pulling back to every slice of T , we may assume without loss of
generality that T has a final object. We will describe a set S′(1) of morphisms
in FunT (C,D) such that F is P -semiadditive if and only if F is S′-local; the set
S′(B) at any other object B ∈ T is given by the analogous procedure applied to
the slice T/B. We then define S(B) to be the union of the restriction of S′(A) along
every map A → B in T . Note that a functor F is S(A)-local if and only if f∗F
is S′(B)-local for every f : A → B in T . By Lemma 4.6.9 this is equivalent to F
being S′(A)-local.

By definition, a T -functor F : C → D is T -semiadditive if and only if it preserves
T -final objects and the norm map Nmp : FB ◦ p! ⇒ p∗ ◦ FA is an equivalence for
every p : A → B in FPT . By presentability of D(B), there exists a set {di} of
generating objects of D(B) for every B ∈ FT , which we may assume to be closed
under restriction along maps in FT . It follows that F is semiadditive if and only
if for every morphism p : A → B in FPT , every generator di ∈ D(B) and every
x ∈ C(A) the following two maps of spaces are equivalences:

(1) HomD(B)(di, FB(∗))→ HomD(B)(di, ∗) ≃ ∗;
(2) HomD(B)(di, FB(p!(x))→ HomD(B)(di, p∗(FA(x))) ≃ HomD(A)(p

∗(di), FA(x)).

Note that this is a set worth of conditions. We claim that these maps of spaces
are obtained by applying HomFunT (C,D)(−, F ) to certain maps S′(1) in FunT (C,D).
Since the maps are natural in the functor F , it suffices to prove that the source and
target of each map are corepresented. Note that the functor F 7→ ∗ is corep-
resented by the initial object of FunT (C,D). Therefore it will suffice to show
that functors in F of the form HomD(B)(y, FB(x)) are corepresented. First re-
call the standard fact that the assignment F 7→ HomD(B)(di, FB(x)) is corep-
resented by the functor y(x) ⊗ di : C(B) → D(B) in Fun(C(B),D(B)). Here
y(x) = HomC(B)(x,−) : C(B) → Spc denotes the Yoneda embedding, while the
functor − ⊗ di : Spc → D(B) denotes the standard tensoring over spaces in the
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cocomplete category D(B). To prove the claim, it thus remains to show that the
evaluation functor

evB : FunT (C,D)→ Fun(C(B),D(B))

admits a left adjoint. Note that by Proposition 2.3.19 it preserves colimits and
limits. Since both source and target are presentable the existence of the required
left adjoint follows immediately from the adjoint functor theorem [Lur09, Corollary
5.5.2.9]. �

4.7. Finite pointed P -sets. We will now introduce the T -∞-category F
P
T,∗ of

finite pointed P -sets for an orbital subcategory P ⊆ T and prove that it is the free
pointed T -∞-category admitting finite P -coproducts.

Definition 4.7.1. Let P ⊆ T be an orbital subcategory. We define the subcategory
F
P
T,∗ ⊆ Spc

T,∗
of finite pointed P -sets as the inverse image of the subcategory

F
P
T ⊆ Spc

T
under the forgetful functor Spc

T,∗
→ Spc

T
: it contains those pointed

T -spaces (X, f, s) ∈ Spc
T,∗

(B) whose underlying T -space (f : X → B) is in F
P
T .

Note that FPT,∗ is equivalent to (FPT )∗, the pointed objects in the T -∞-category of
finite P -sets.

Notation 4.7.2. By Example 2.3.3, the forgetful functor Spc
T,∗
→ Spc

T
admits a

left adjoint (−)+ : Spc
T
→ Spc

T,∗
. It is given at B ∈ T by the functor

(−)+ : PSh(T )/B → (PSh(T )/B)∗ : (X, f) 7→ (X+, f+, s),

where X+ := X ⊔ B, where f+ := (f, id) : X ⊔ B → B and where s : B →֒ X ⊔ B
is the canonical inclusion. We will often abuse notation and write X+ or (X, f)+
instead of (X+, f+, s).

Observe that the T -functor (−)+ : Spc
T
→ Spc

T,∗
of Notation 4.7.2 restricts to a T -

functor (−)+ : FPT → F
P
T,∗ which is left adjoint to the forgetful functor fgt : FPT,∗ →

F
P
T .

Lemma 4.7.3. Let P ⊆ T be an atomic orbital subcategory. Then the T -functor
(−)+ : FPT → F

P
T,∗ is essentially surjective: any finite pointed P -set (Y, p, s) ∈

F
P
T,∗(B) is equivalent to one of the form X+ for some (X, q) ∈ F

P
T (B).

Proof. By definition, we may write Y =
⊔n
i=1 Ai as a finite disjoint union such

that each map pi : Ai → B is in P . The section s : B →
⊔n
i=1 Ai must factor

as B → Ai →֒
⊔n
i=1Ai for some i. But this implies that the map B → Ai is a

section of pi : Ai → B, so by Lemma 4.3.2 it must be an equivalence, exhibiting
B as a disjoint summand of Y . Defining X as the disjoint union of the remaining
summands gives the desired equivalence Y ≃ X+ over B. �

Notation 4.7.4. When P ⊆ T is atomic orbital, we will assume all pointed P -set
over B ∈ T are given to us in the form X+ = X ⊔ B for (X, q) ∈ F

P
T (B). This

convention is justified by Lemma 4.7.3. We emphasize that the maps X+ → Y+
of finite pointed P -sets over B are not assumed to respect this decomposition, i.e.
they might not be induced by maps in F

P
T (B).
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Lemma 4.7.5. The T -∞-category F
P
T,∗ from Definition 4.7.1 admits finite P -

coproducts and the inclusion F
P
T,∗ →֒ Spc

T,∗
preserves finite P -coproducts. Further-

more, for any other T -∞-category D which admits finite P -coproducts, a T -functor
F : FPT,∗ → D preserves finite P -coproducts if and only if the composite F ◦ (−)+
does.

Proof. By Example 2.3.18, it suffices to prove that F
P
T,∗ is closed under finite P -

coproducts in Spc
T,∗

. By Corollary 4.2.15, the T -category F
P
T admits finite P -

coproducts and these are preserved by the (left adjoint) T -functor (−)+ : FPT →
F
P
T,∗. Conversely it follows from Lemma 4.7.3 that every cocone in F

P
T,∗ indexed by

a finite P -set comes from F
P
T . The claim follows. �

Let S0 : 1→ F
P
T,∗ denote the T -functor given at B ∈ T by the object B+ ∈ F

P
T,∗(B).

The goal of the remainder of this subsection is to show that this map exhibits the
T -∞-category FPT,∗ as the free pointed T -∞-category admitting finite P -coproducts.

If E is an ∞-category admitting a final object ∗, we let E+ ⊆ E∗ denote the full
subcategory of pointed objects ∗ → Z for which there exists a pointed equivalence
Z ≃ X ⊔ ∗ for some X ∈ E . If E admits finite coproducts, then E+ also admits
finite coproducts and the functor (−)+ : E → E+ : X 7→ X+ := X ⊔ ∗ preserves
finite coproducts. Furthermore E+ is pointed. We will show that the functor
(−)+ : E → E+ is universal among coproduct preserving functors from E into a
pointed ∞-category.

Lemma 4.7.6. Let E and D be ∞-categories admitting finite coproducts. Assume
that E admits a final object and that D is pointed. Then precomposition with the
functor (−)+ : E → E+ induces an equivalence

Fun⊔,∗(E+,D)
∼
−→ Fun⊔(E ,D).

Proof. We claim an inverse is given by sending a finite-coproduct-preserving functor

F : E → D to the functor F̃ : E+ → D defined by the formula

F̃ (X+) := cofib(F (∗)→ F (X+)).

Observe that this colimit exists and is equivalent to F (X) by the following pushout
diagram:

∗ F (∗) ∗

F (X) F (X+) F (X).

Here the left square is a pushout since D is pointed and F preserves finite coprod-
ucts, and it thus follows from the pasting law of pushout diagrams that the right

square is a pushout as well. This proves that the composition F̃ ◦(−)+ is equivalent

to F . It is easily observed that F̃ is pointed and preserves finite coproducts.

Now assume we are given a pointed functor F̃ : E+ → D which preserves finite
coproducts. It remains to show that for every object Z ∈ E+ the canonical map

cofib(F̃ (∗+)→ F̃ (Z+))→ F̃ (Z)
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is an equivalence. This follows from the fact that Z+ is a coproduct in E+ of Z and

∗+ and that F̃ preserves coproducts by assumption. �

Let Cat⊔∞ ⊆ Cat∞ denote the (non-full) subcategory consisting of ∞-categories
which admit finite coproducts and functors which preserve finite coproducts. Let
Cat⊔,pt∞ ⊆ Cat⊔,∗∞ ⊆ Cat⊔∞ denote the full subcategories spanned by those ∞-
categories with finite coproducts which admit a zero object or admit a final object,
respectively.

Corollary 4.7.7. The inclusion Cat⊔,pt∞ →֒ Cat⊔,∗∞ admits a left adjoint

(−)+ : Cat⊔,∗∞ → Cat⊔,pt∞

which on objects sends E to E+.

Proof. We need to show that for any E ∈ Cat⊔,∗∞ and any D ∈ Cat⊔,pt∞ , the precom-
position with the map (−)+ : E → E+ induces an equivalence

HomCat⊔∞
(E+,D)

∼
−→ HomCat⊔∞

(E ,D).

This is immediate from Lemma 4.7.6. �

Corollary 4.7.8. Let D be a pointed T -∞-category D which admits finite P -
coproducts. Then composition with S0 : 1 → F

P
T,∗ induces an equivalence of T -

∞-categories

FunP -⊔,∗
T (FPT,∗,D)→ FunT (1,D) ≃ D .

Proof. Note that S0 is the composite 1
∗
−→ F

P
T

(−)+
−−−→ F

P
T,∗. By Corollary 4.2.16 it

thus suffices to show that composition with the T -functor (−)+ : FPT → F
P
T,∗ induces

an equivalence FunP -⊔,∗
T (FPT,∗,D)

∼
−→ FunP -⊔

T (FPT ,D). It in fact suffices to show that
it induces an equivalence between T -∞-categories of fiberwise coproduct preserving
functors. Namely by the last part of Lemma 4.7.5 this equivalence will restrict to
the subcategories of P -coproduct preserving functors on either side. Replacing T by
T/B for every B ∈ T , it suffices to prove this on underlying∞-categories. Note that

the subcategory Cat⊔T ⊆ CatT is closed under cotensoring by Cat∞ and that there is

a canonical equivalence HomCat∞(E ,Fun⊔
T (C,D)) ≃ HomCat⊔T

(C,DE) for E ∈ Cat∞
and C,D ∈ Cat⊔T . By the Yoneda lemma it will thus suffice to show that the functor

(−)+ : FPT → F
P
T,∗ induces an equivalence HomCat⊔T

(FPT,∗,D)
∼
−→ HomCat⊔T

(FPT ,D).
This is immediate from Corollary 4.7.7. �

4.8. P -commutative monoids. In this subsection we will introduce the notion
of a P -commutative monoid in a T -∞-category D admitting finite P -products.
Furthermore we will show that the T -∞-category CMonP (D) of P -commutative
monoids in D is the terminal P -semiadditive T -∞-category equipped with a finite
P -product preserving T -functor to D.

Definition 4.8.1 (P -commutative monoids, cf. [Nar16, Definition 5.9]). Let D be
a T -∞-category which admits finite P -products. A P -commutative monoid object
of D is a P -semiadditive T -functor M : FPT,∗ → D. We define the T -∞-category

CMonP (D) of P -commutative monoids in D as

CMonP (D) := FunP -⊕
T (FPT,∗,D).
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We define the forgetful functor U : CMonP (D)→ D to be given by precomposition

with the T -functor S0 : 1→ F
P
T,∗.

As a special case, we define the T -∞-category CMonPT of P -commutative monoids
as

CMonPT := CMonP (Spc
T
).

Combining our previous results, we can immediately deduce the universal property
of P -commutative monoids. We spell this out in the following series of statements.

Proposition 4.8.2. For every T -∞-category D admitting finite P -products, the
T -∞-category CMonP (D) is P -semiadditive. Furthermore, the forgetful functor

CMonP (D)→ D preserves finite P -products.

Proof. The first statement is a special case of Proposition 4.6.11 for C = F
P
T,∗. The

second statement is a special case of Lemma 4.6.9 combined with Proposition 2.3.19.
�

Proposition 4.8.3. Given a T -∞-category D admitting finite P -products,

U : CMonP (D)→ D

is an equivalence if and only if D is P -semiadditive.

Proof. As CMonP (D) is P -semiadditive by Proposition 4.8.2, one direction is im-
mediate. Conversely, if D is P -semiadditive, then Proposition 4.6.12 provides an
equivalence

CMonP (D) = FunP -⊕
T (FPT,∗,D) ≃ FunP -⊔

T (FPT,∗,D).

The result thus follows from Corollary 4.7.8. �

Corollary 4.8.4 (cf. [Nar16, Corollary 5.11.1]). Let C and D be T -∞-categories
such that C is pointed and admits finite P -coproducts and D admits finite P -
products. Then postcomposition with the forgetful functor U : CMonP (D) → D
induces an equivalence

FunP -⊔
T (C,CMonP (D))→ FunP -⊕

T (C,D).

Proof. By Proposition 4.6.12, the left-hand side is equal to the T -∞-category of
P -semiadditive T -functors C → CMonP (D). By Corollary 4.6.10 this is in turn

equivalent to CMonP (FunP -⊕
T (C,D)). The claim thus follows from Proposition 4.8.2

and Proposition 4.8.3. �

Corollary 4.8.5. The inclusion CatP -⊕
T →֒ CatP -×

T of the T -∞-category of P -
semiadditive T -∞-categories and P -semiadditive T -functors into the T -∞-category
of T -∞-categories admitting finite P -products and the finite P -product preserving
T -functors admits a right adjoint given by

CMonP (−) : CatP -×
T → CatP -⊕

T . �

We are also interested in a presentable version of Corollary 4.8.5.

Definition 4.8.6. We define PrR,P -⊕
T to be the full subcategory of PrRT spanned

by those presentable T -∞-categories which are moreover P -semiadditive. Similarly

we define PrL,P -⊕
T .
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Proposition 4.8.7. The functor CMonP restricts to a functor

CMonP : PrRT → PrR,P -⊕
T .

Proof. Let C be a presentable T -∞-category. Note that by Proposition 4.6.15,
CMonP (C) is again presentable. Furthermore suppose G : C → D is a right adjoint
between presentable T -∞-categories, and denote its left adjoint by F . Note that
G preserves finite P -products, and so induces a functor CMonP (G) : CMonP (C)→
CMonP (D). Because G preserves local objects, the composite

CMonP (D) FunT (F
P
T,∗,D) FunT (F

P
T,∗, C) CMonP (C)F LP -⊕(−)

is left adjoint to CMonP (R), where LP -⊕ refers to the left adjoint of the inclusion

CMonP ⊂ FunT (F
P
T,∗, C) constructed in Proposition 4.6.15. �

Corollary 4.8.8. There exists an adjunction

CMonP (−) : PrLT ⇄ PrL,P -⊕
T : incl.

Furthermore the unit P : C → CMonP (C) is left adjoint to the forgetful functor U.

Proof. Consider the adjunction constructed in Proposition 4.8.7 and apply the
equivalence PrLT ≃ (PrRT )

op. �

For ease of reference we record the strongest results obtained above in one omnibus
theorem:

Theorem 4.8.9. Let C be a T -∞-category with finite P -products. The functor
U : CMonP (C)→ C exhibits CMonP (C) as the P -semiadditive envelope of C, i.e. for
every P -semiadditive T -∞-category D postcomposition with U induces an equiva-
lence

FunP -×(D,U) : FunP -⊕(D,CMonP (C))→ FunP -×(D, C).

Suppose now that D is moreover presentable. Then the left adjoint P of U ex-
hibits CMonP (C) as the presentable P -semiadditive completion of C, i.e. for any
presentable P -semiadditive T -∞-category D precomposition with P yields an equiv-
alence

FunL(P,D) : FunL(CMonP (C),D)→ FunL(C,D). �

Combining the result above with the universal property of Spc
T

already shows
that we have for any presentable P -semiadditive T -∞-category D an equivalence
FunLT (CMonPT ,D) ≃ D of T -∞-categories. As our final result in this subsection we
will generalize this to the case where D is merely assumed to be T -cocomplete:

Theorem 4.8.10. Let D be a T -cocomplete P -semiadditive T -∞-category. Then
evaluation at P(∗) defines an equivalence

FunLT (CMonP ,D)
≃
−−→ D. (9)

Proof. Appealing to the universal property of Spc
T
and passing to adjoints, we see

that (9) agrees up to equivalence with the map

FunRT (D,U) : Fun
R
T (D,CMonP )→ FunR

T (D, SpcT )
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between parameterized categories of right adjoint functors. In particular it is fully
faithful by the first half of Theorem 4.8.9, so it only remains to prove essential
surjectivity.

Replacing T by its slices, we may then assume that T has a terminal object ∗, and
it will be enough to construct for every X ∈ D(∗) a T -left adjoint F : CMonP → D
with F (P(∗)) ≃ X .

For this, we use the universal property of F
P
T,∗ (Lemma 4.7.8) to obtain a P -

coproduct preserving functor ϕ : FPT,∗ → D
op sending (id1)+ to X , which we may

then extend to a left adjoint Φ: FunT (F
P
T,∗, SpcT )→ D via Proposition 2.4.10. To

complete the proof it suffices now to prove that Φ factors through the Bousfield
localization LP -⊕ : FunT (F

P
T,∗, SpcT ) → CMonP , or equivalently that its right ad-

joint takes values in CMonP . However, by Remark 2.4.11 the value of this right
adjoint on Y ∈ D(A) is given by the composite

π∗
AF

P
T,∗

π∗
Aϕ−−−→ π∗

AD
op maps(–,Y )
−−−−−−−→ SpcT/A

≃ π∗
ASpcT

and the first functor sends π∗
AP -coproducts to π

∗
AP -products by construction of ϕ

and semiadditivity of D while the second one even preserves all π∗
AT -limits that

exist in π∗
AD

op [MW21, Corollary 4.4.9]. �

We can now slightly strengthen the second half of Theorem 4.8.9 in the case of
Spc

T
:

Corollary 4.8.11. Let S be a T -∞-category equivalent to Spc
T
and let D be any P -

semiadditive T -cocomplete T -∞-category. Then precomposition with the T -functor
P : S → CMonP (S) induces an equivalence

FunL
T (CMonP (S),D)

≃
−−→ FunLT (S,D). �

Remark 4.8.12. We will prove in forthcoming work that Corollary 4.8.11 in fact
holds for any presentable T -∞-category S.

4.9. Commutative monoids in E
T
. Let E be an ∞-category. Recall that a T -

functor F : FPT,∗ → ET corresponds to a functor F̃ :
∫
F
P
T,∗ → E of ∞-categories,

see Lemma 2.2.9. We will now give a characterization of those functors F̃ whose
associated T -functor F is a P -semiadditive monoid in ET . We start with an explicit

description of the adjoint norm map Ñmp : p
∗p! ⇒ id associated to F

P
T,∗.

Lemma 4.9.1. Let P ⊆ T be an atomic orbital subcategory. Consider a map
p : A → B in P and let f : X → A and g : Y → A be a morphisms in PSh(T ).
Then the map 1×p 1: X ×A Y → X ×B Y is a disjoint summand inclusion.

Proof. Using Corollary 4.3.3, this follows directly from the observation that the
map X ×A Y → X ×B Y is a base change of the disjoint summand inclusion
∆: A→ A×B A along the map f ×B g : X ×B Y → A×B A. �

Construction 4.9.2. Consider a morphism p : A→ B in FPT . For any finite P -set

(X, q) ∈ F
P
T (A), the unit map (1, q) : X → X ×B A = p∗p!X is a disjoint summand

inclusion by Lemma 4.9.1, and thus we may choose an identification

X ×B A ≃ X ⊔ JX
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for some finite P -set JX ∈ F
P
T (A). In particular we obtain a map p∗p!(X+)→ X+

in F
P
T (A) defined as the following composite:

p∗p!(X+) ≃ (X ×B A)+ ≃ (X ⊔ JX)+ → X+,

where the last map projects away the disjoint component JX to the disjoint base-
point.

Lemma 4.9.3. The map p∗p!(X+) → X+ constructed in Construction 4.9.2 is

homotopic to the adjoint norm map Ñmp : p
∗p!(X+)→ X+ associated to the T -∞-

category F
P
T,∗.

Proof. Choose a map JA →֒ A×B A exhibiting JA as a complement of the disjoint
summand inclusion ∆: A →֒ A×B A. The resulting equivalence A×B A ≃ A ⊔ JA
induces an equivalence FPT,∗(A×BA) ≃ F

P
T,∗(A⊔JA) ≃ F

P
T,∗(A)×F

P
T,∗(JA). Pulling

back the decomposition A ×B A ≃ A ⊔ JA along the map X ×B A → A ×B A
gives a decomposition X×B A ≃ X ⊔JX , and it follows that the object pr∗2(X+) ≃
(X×BA)+ ∈ F

P
T,∗(A×BA) corresponds to the pair (X+, JX+) ∈ F

P
T,∗(A)×F

P
T,∗(JA).

By Lemma 4.3.9, the transformation α : pr∗2 ⇒ pr∗1 corresponds to a transformation

of functors into F
P
T,∗(A) × F

P
T,∗(JA) which on the first component is the identity

and on the second component is the zero-map which projects everything onto the
disjoint basepoint. The description from Construction 4.9.2 follows. �

Notation 4.9.4. We will abuse notation and denote objects of the unstraightening∫
F
P
T,∗ by pairs (A,X+), where A ∈ T and (X, q : X → A) ∈ F

P
T (A) is a finite P -set.

We will specify q explicitly whenever confusion might arise.

Construction 4.9.5 (Parameterized Segal map). Consider a map p : A → B in

P , a map C → B in T and a finite pointed P -set X+ → A in F
P
T,∗(A). Since p is

in P , the pullback A×B C of p along C → B may be written as a disjoint union of
maps pi : Ci → C in P :

⊔n
i=1 Ci A

C B.

(pi)
n
i=1

p

We will we construct for each i ∈ {1, . . . , n} a parameterized Segal map

ρi : (C, (X ×B C)+)→ (Ci, (X ×A Ci)+)

in
∫
F
P
T,∗. To give such a map, we need to provide a map Ci → C in T , which we

simply take to be the map pi : Ci → C, and a map p∗i (X ×B C)+ ≃ (X ×B Ci)+ →
(X×ACi)+ in F

P
T,∗(Ci). Recall from Lemma 4.9.1 that the mapX×ACi → X×BCi

is a disjoint summand inclusion, so that we may choose an equivalence

(X ×B Ci) ≃ (X ×A Ci) ⊔ Ji,

where Ji → Ci is some finite P -set. The required map (X×B Ci)+ ≃ (X×ACi)+∨
Ji+ → (X ×A Ci)+ is now given by projecting away the second summand.

Proposition 4.9.6. Let E be an ∞-category and consider a T -functor F : FPT,∗ →

ET . Denote by F̃ :
∫
F
P
T,∗ → E the functor associated to F under the equivalence

of Lemma 2.2.9. Then F is a P -semiadditive monoid in ET if and only if F is
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fiberwise semiadditive and for every map p : A→ B in P , every map f : C → B in
T and every finite pointed P -set X+ ∈ F

P
T,∗(A), the map

(F̃ (ρi))
n
i=1 : F̃ (C, (X ×B C)+)→

n∏

i=1

F̃ (Ci, (X ×A Ci)+)

induced by the parameterized Segal maps is an equivalence.

Proof. By Corollary 4.5.5, the T -functor F is P -semiadditive if and only if it
is fiberwise semiadditive and for all maps p : A → B in P the transformation
NmF

p : FB ◦ p! ⇒ p∗ ◦ FA of functors FPT,∗(A)→ ET (B) = Fun(T op
/B, E) is an equiv-

alence. Since we may check this pointwise, it suffices to show that for every finite
P -set X+ ∈ F

P
T,∗(A) and every object f : C → B of T/B, the induced map

FB(p!(A,X+))(C, f)→ (p∗(FA(A,X+))(C, f)

is an equivalence. By definition, this map is given by the composite

FB((B,X+))(C, f) p∗p
∗(FB((B,X+)))(C, f)

FA(p
∗p!(A,X+))(p

∗(C, f)) FA(A,X+)(p
∗(C, f)).

∼

u∗
p

Ñmp

To make this composite explicit it will be useful to consider the objects of ET (B)
as functors from (FT /B)

op to E by limit extending. Similarly it will be useful to
consider F as a natural transformation of functors from FT to Cat∞ by again limit
extending. If we make both of these extensions we may again apply Lemma 2.2.9
to conclude that F is induced by a functor F̄ :

∫
FT

F
P
T,∗ → E . Namely we recall

from Remark 2.2.12 that given a T -set X and a pointed P -set Y → X over X ,
FX(X,Y+)(f : Z → X) = F̄ (f∗(X,Y+)) = F̄ (Z, (Y ×X Z)+). Using this identifica-
tion we find that the composite above is equivalent to

F̄ (C,X ×B C) F̄ (C ×B A,X ×B (C ×B A)) F̄ (C ×B A,X ×A (C ×B A)),
F̄ (ϕp) F̄ (Ñmp)

where ϕp is a cocartesian edge expressing X ×B (C ×B A) as a pullback of X ×B C
along up : C ×B A → C. Now recall that F̄ was defined to be the limit extension
of F , and so given a decomposition C ×B A ≃

∐
Ci, we find that

F̄ (C ×B A,X ×A (C ×B A))
∼
−→

∏
F̄ (Ci, X ×A Ci).

To conclude we would like to show that projecting the composite above to any
factor agrees with the map constructed in Construction 4.9.5. For this observe that
by definition applying F̄ to a cocartesian edge over ι : Cj →֒ C ×B A gives the
projection

prj :
∏

i

F̄ (Ci, X ×A Ci)→ F̄ (Cj , X ×A Cj)

Therefore we can compute the top-right way around the following commutative
diagram

F̄ (C,X ×B C) F̄ (C ×B A,X ×B (C ×B A)) F̄ (C ×B A,X ×A (C ×B A))

F̄ (Cj , X ×B Cj) F̄ (Cj , X ×A Cj)

F̄ (ϕp) F̄ (Ñmp)

F̄ (ϕι)

F̄ (ι∗(Ñmp))

F̄ (ϕι)
F̄ (ϕpj

)
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by instead going along the bottom. Once again ϕι is our notation for a cocartesian
edge over ι. Because cocartesian edges compose we see that ϕpj is a cocartesian
edge witnessing X×B Cj as the pullback of X×B C along the map Cj → C. Using

the description of Ñmp given in Lemma 4.9.3 we find that ι∗(Ñmp)) is equivalent
to the map X ×B Ci → X ×A Ci given in Construction 4.9.5. Finally note that

by definition F̄ agrees with F̃ on the full subcategory over T ⊂ FT . Therefore the
proposition follows. �

We now show that the P -semiadditivity of a functor F̃ :
∫
F
P
T,∗ → E in fact follows

from substantially less than the previous proposition suggests.

Observation 4.9.7. Let X+ ∈ F
P
T,∗(A) be a finite pointed P -set, and let p : A→ B

be a map in P . Furthermore let C → B be the identity of B. Considering the
parameterized Segal maps associated to this data, we note that A ×B B = A, so
there is just one. We call this map ρp,X . If X = A+, we simply write ρp.

Proposition 4.9.8. Let E be an ∞-category and consider a T -functor F : FPT,∗ →

ET which corresponds to a functor F̃ :
∫
F
P
T,∗ → E of ∞-categories. Then F is a

P -semiadditive monoid in ET if and only if F is fiberwise semiadditive and for
every map p : A→ B in P , the map

F̃ (ρp) : F̃ (B,A+)→ F̃ (A,A+)

is an equivalence.

Proof. First we observe that F is a P -semiadditive monoid in ET if and only if F is
fiberwise semiadditive and for every map p : A → B in P and every finite pointed
P -set X+ ∈ F

P
T,∗(A), the map

F̃ (ρp,X) : F̃ (B,X+)→ F̃ (A,X+)

is an equivalence. For this it suffices to observe that the following triangle commutes

F̃ (C, (X ×B C)+)
∏n
i=1 F̃ (Ci, (X ×A Ci)+)

∏n
i=1 F̃ (C, (X ×A Ci)+).

(F̃ (ρi))
n
i=1

(F̃ (ρpi,X×ACi
))ni=1

Next suppose that X =
∐
Ci. We note that by fiberwise semi-additivity of F ,

F̃ (ρp,X) is equal to a product of the F̃ (ρp,Ci), and therefore we can further reduce
to the case where X = C is in T . Write q : C → A for the map in P expressing C
as a finite P -set over A. Finally we claim that the following diagram

(B,C+) (A,C+)

(C,C+)

ρpq

ρp,C

ρp

commutes in
∫
F
P
T,∗. This can readily be checked from the definitions. Therefore

after applying F̃ , the 2-out-of-3 property implies that it suffices to assume that
F̃ (ρp) is an equivalence for all p ∈ P . �
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Remark 4.9.9. While Proposition 4.9.8 gives an explicit description of the un-
derlying ∞-category of CMonP (ET ), a similar analysis in fact describes the whole

T -∞-category CMonP (ET ). At an object B′ ∈ T , it consists of those T -functors

F : FPT,∗ ×B
′ → ET whose curried map F ′ : FPT,∗ → Fun(B′, ET ) is P -semiadditive,

see Corollary 4.6.8. On the other hand, the T -functor F corresponds to a func-
tor F̃ :

∫
(FPT,∗ × B

′) → E by Lemma 2.2.9. Carrying out the same analysis as in
the proofs of Proposition 4.9.6 and Proposition 4.9.8 shows that F corresponds
to a P -semiadditive functor F ′ : FPT,∗ → FunT (B

′, ET ) if and only if the following
conditions are satisfied:

• The T -functor F ′ is fiberwise semiadditive; put differently, for any f : B →
B′ the restriction of F̃ to the (non-full) subcategory F

P
T,∗(B) × {f} ⊂

F
P
T,∗(B)×B′(B) ⊂

∫ (
F
P
T,∗ ×B

′
)
is semiadditive in the usual sense.

• For every map p : A→ B in P and every map f : B → B′ in T , the map

F̃ (ρp, p) : F̃ (B,A+, f)→ F̃ (A,A+, p ◦ f)

is an equivalence.

5. The universal property of special global Γ-spaces

In this section we want to identify the global ∞-category of Orb-commutative
monoids in global spaces with the various models of globally and G-globally coher-
ently commutative monoids studied in [Sch18, Chapter 2] and [Len20, Chapter 2].
In particular, after evaluating at the trivial group, this will yield an equivalence be-
tween the underlying ordinary ∞-category of Orb-commutative monoids in global
spaces with Schwede’s ultra-commutative monoids with respect to finite groups.

For this, the model based on so-called (special) G-global Γ-spaces will be the most
convenient; we recall the relevant theory in 5.1 below and show how G-global Γ-
spaces assemble into a global ∞-category ΓS gl. In 5.2 we will then identify ΓS gl

with a certain parameterized functor category, from which we will deduce the de-
sired comparison between special G-global Γ-spaces and CMonOrb(Spc

Glo
) in 5.3.

This will then immediately imply various universal properties of global Γ-spaces,
including Theorem B from the introduction.

5.1. A reminder on G-global Γ-spaces. Segal [Seg74] introduced (special) Γ-
spaces as a model of commutative monoids in the ∞-category of spaces, and an
equivariant generalization of his theory was later established by Shimakawa [Shi89].
We will be concerned with the following G-global refinement [Len20, Section 2.2]
of this story:

Definition 5.1.1. We write Γ for the category of finite pointed sets and pointed
maps. For any n ≥ 0 we let n+ := {0, . . . , n} with basepoint 0.

We moreover write Γ-EM-G-SSet for the category of functors Γ→ EM-G-SSet.
A map f : X → Y in Γ-EM-G-SSet (i.e. a natural transformation) is called a
G-global level weak equivalence if f(S+) : X(S+) → Y (S+) is a (G × ΣS)-global
weak equivalence (with respect to the ΣS-action induced by the tautological action
on S) for every finite set S.

Similarly, we write Γ-G-I-SSet for the category of functors X : Γ → G-I-SSet,
and we define G-global level weak equivalences in Γ-G-I-SSet analogously.
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We will refer to objects of either of these categories as G-global Γ-spaces. Beware
that [Len20] reserves this name for functors X for which X(0+) is a terminal object,
while for us the above definition will be more useful. However, we will later only
be interested in so-called special G-global Γ-spaces, for which this technicality will
turn out to be irrelevant, see Proposition 5.1.6 below.

5.1.1. Model categorical properties. Just like in the unstable case we have the fol-
lowing Elmendorf type theorem expressing the homotopy theory of special G-global
Γ-spaces in terms of enriched presheaves:

Proposition 5.1.2. The G-global level weak equivalences are part of a simplicial
combinatorial model structure on Γ-EM-G-SSet.

Moreover, if we write OG-gl
Γ ⊂ Γ-EM-G-SSet for the full subcategory spanned by

the objects ΓH,S,ϕ := (Γ(S+, –) × EM× Gϕ)/H (where H is a finite group, S a
finite H-set, ϕ : H → G a homomorphism, and Gϕ denotes G with H acting from
the right via ϕ), then the enriched Yoneda embedding induces a functor

ΦΓ : Γ-EM-G-SSet→ PSh(OG-gl
Γ )

which is the right half of a Quillen equivalence when we equip the right hand side
with the projective model structure.

Proof. For any finite group H , any finite H-set S, and any homomorphism ϕ : H →
G, the functor X 7→ X(S+)

ϕ preserves filtered colimits, pushouts along injections,
and it is corepresented by ΓH,S,ϕ (via evaluation at [id, 1, 1]). Thus, the objects of

OG-gl
Γ form a set of orbits in the sense of [DK84, 2.1], and the above statements are

instances of Theorems 2.2 and 3.1 of op. cit. �

Remark 5.1.3. We can make the morphism spaces in OG-gl
Γ explicit, analogously

to Remark 3.3.6: as observed in the above proof, we have for any (H,S, ϕ) as above
and any G-global Γ-space X an isomorphism

ε : maps(ΓH,S,ϕ, X)→ X(S+)
ϕ

given by evaluation at [id, 1, 1]. Specializing this to X = ΓK,T,ψ, we see that OG-gl
Γ

is a (2, 1)-category (the quotient ΓK,T,ψ = (Γ(T+, –)×EM×Gψ)/K being the nerve
of a groupoid asK acts freely on EM) and that n-simplices of maps(ΓH,S,ϕ,ΓK,T,ψ)
correspond to ϕ-fixed classes [f ;u0, . . . , un; g] where f : T+ → S+, u0, . . . , un ∈ M,
and g ∈ G.

Moreover, a direct computation shows that under the above identification compo-
sition is given by

[f ′;u′0, . . . , u
′
n; g

′][f ;u0, . . . , un; g] = [ff ′;u0u
′
0, . . . , unu

′
n; gg

′]

and that the following diagram commutes for any X ∈ Γ-EM-G-SSet:

Φ(X)(ΓK,T,ψ) Φ(X)(ΓH,S,ϕ)

X(T+)
ψ X(S+)

ϕ.

ε

Φ(X)[f ;u0,...,un;g]

ε

X(f)◦
(
[u0,...,un;g]·–

)



PARAMETERIZED STABILITY AND THE UNIV. PROPERTY OF GLOBAL SPECTRA 71

5.1.2. The global ∞-category of global Γ-spaces. Letting G vary, the categories
Γ-EM-G-SSet together with the G-global weak equivalences assemble into a
global relative category with functoriality given by restrictions (apply Lemma 3.1.9

with α replaced by α × ΣS). Localizing, we then get a global ∞-category ΓS
gl.

Analogously, we obtain a global ∞-category ΓS
gl
I whose value at a finite group G

is the localization of Γ-G-I-SSet at the G-global weak equivalences, with functo-
riality given via restrictions.

For everyG-global Γ-spaceX , evaluating at 1+ (with trivial action) yields an under-

lying G-global space X(1+), and this obviously yields a global functor U : ΓS gl →

S
gl. For later use we record:

Lemma 5.1.4. The global functor U admits a left adjoint, which is pointwise in-
duced by Γ(1+, –)× –.

Proof. By the Yoneda Lemma we have an adjunction

Γ(1+, –)× –: EM-SSet ⇄ Γ-EM-SSet : ev1+ ,

and for every finite group G pulling through the G-actions yields an adjunction
EM-G-SSet ⇄ Γ-EM-G-SSet of 1-categories such that both functors are ho-
motopical. In particular, U admits a pointwise adjoint of the above form.

For the Beck-Chevalley condition it suffices now to observe that since all functors
are homotopical, the Beck-Chevalley comparison map of∞-categorical localizations
can be modelled by the 1-categorical Beck-Chevalley map, and the latter is even
the identity by construction. �

5.1.3. Specialness. Just like in the non-equivariant case, in the theory of global
coherent commutativity one typically isn’t interested in all G-global Γ-spaces, but
only those satisfying a certain ‘specialness’ condition (although the fact that there
are non-special G-global Γ-spaces is what will make this model so convenient for
our comparison):

Definition 5.1.5 (cf. [Len20, Definition 2.2.50]). A G-global Γ-space X : Γ →
EM-G-SSet is called special if for every finite set S the Segal map

ρ : X(S+)→
∏

s∈S

X(1+)

induced by the characteristic maps χs : S+ → 1+ of the elements s ∈ S is a (G×ΣS)-
global weak equivalence.

We write ΓS gl, spc ⊂ ΓS gl for the full global subcategory spanned in degree G
by the special G-global Γ-spaces, and ΓS gl, spc

∗ ⊂ ΓS gl for those special Γ-spaces
X for which X(0+) is terminal in the 1-categorical sense (and not just G-globally
weakly equivalent to a terminal object).

Analogously, we define specialness for elements of Γ-G-I-SSet, yielding nested full

global subcategories ΓS gl, spc
I,∗ ⊂ ΓS gl, spc

I ⊂ ΓS gl
I .
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Proposition 5.1.6. All maps in the commutative diagram

ΓS gl, spc
I,∗ ΓS gl, spc

I

ΓS gl, spc
∗ ΓS gl, spc

evω evω

of global ∞-categories are equivalences.

Proof. For the left hand vertical arrow this is part of [Len20, Corollary 2.2.53]. We
will now show that the lower horizontal inclusion is an equivalence; the argument
for the top inclusion is then similar, and with this established the proposition will
follow by 2-out-of-3.

To prove the claim, we now fix a finite group G and observe that the inclusion
Γ-EM-G-SSet∗ →֒ Γ-EM-G-SSet of those G-global Γ-spaces X with X(0+) =
∗ admits a left adjoint given by quotienting out X(0+), i.e. forming the pushout

constX(0+) X

∗ X/X(0+)
p

where the top map is induced by the unique pointed maps 0+ → S+ for varying
S. It will therefore be enough that the right hand vertical map is a G-global
level weak equivalence if X is special. But indeed, in this case constX(0+) →
∗ is a G-global level weak equivalence (as X(0+) is G-globally and hence also
(G × ΣT )-globally weakly contractible for any T by the special case S = ∅ of the
Segal condition), while for any Γ-space the top map is an injective cofibration as
X(0+) → X(S+) admits a retraction via functoriality. The claim then follows as
pushouts along injective cofibrations preserve G-global level weak equivalences by
[Len20, Lemma 1.1.14] applied levelwise. �

5.2. Global Γ-spaces as parameterized functors. In this section we will prove
the key computational ingredient to the universal property of special global Γ-
spaces in form of the following description of the global ∞-category ΓS gl of all
global Γ-spaces:

Theorem 5.2.1. There exists an equivalence of global ∞-categories

Ξ: ΓS gl ≃ FunGlo(F
Orb
Glo,∗, Spc)

together with a natural equivalence filling

ΓS gl FunGlo(F
Orb
Glo,∗, Spc)

S
gl Spc

Glo

Ξ

U ev(id1)+

≃

where the unlabelled arrow on the bottom is ‘the’ essentially unique equivalence (see
Theorem 3.3.2).
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5.2.1. A model of finite Orb-sets. The proof of the theorem will occupy this whole
subsection. As the first step, we will recognize F

Orb
Glo and F

Orb
Glo,∗ as some familiar

global 1-categories:

Construction 5.2.2. For any finite group G, we write FG for the category of
finite G-sets. The assignment G 7→ FG becomes a strict 2-functor in Gloop via
restrictions, and we denote the resulting global category by F•.

We moreover write F+
• for the corresponding global category of pointed finite G-

sets.

Lemma 5.2.3. There is an essentially unique equivalence of global ∞-categories
F
Orb
Glo ≃ NF•. Up to isomorphism, this sends (H →֒ G) ∈ F

Orb
Glo (G) to G/H ∈ FG

for all finite groups H ⊂ G.

Proof. By Corollary 4.2.16 there is an essentially unique global functor FOrb
Glo → NF•

that preserves Orb-coproducts and the terminal object. It remains to construct any
such equivalence and prove that it admits the above description.

By construction the left hand side is a subcategory of Spc
Glo

. On the other hand,

we have a fully faithful functor of global ∞-categories ι : NF• → S
gl that is given

by sending a finite G-set X to X considered as a discrete simplicial set with trivial
EM-action. It then suffices to show that the unique equivalence F : Spc

Glo
→ S

gl

restricts accordingly and admits the above description.

For this we first observe that indeed F (i : H →֒ G) ≃ G/H for every H ⊂ G:
namely, i can be identified with i!p

∗(∗) where p : H → 1 is the unique homomor-
phism, and since F is an equivalence it follows that F (i) ≃ i!p

∗F (∗) = i!p
∗(∗),

which can in turn be identified with G/H by Lemma 3.1.9.

As a consequence of Corollary 4.2.15, each FOrb
Glo (G) is closed under (ordinary) finite

coproducts, so F preserves them (as a functor to S
gl). Together with the above

computation, it immediately follows that F restricts to an essentially surjective
functor FOrb

Glo → ess im ι as claimed. �

Corollary 5.2.4. There is an essentially unique equivalence θ : FOrb
Glo,∗ ≃ NF+

• . Up
to isomorphism, this sends (H →֒ G)+ to G/H+ for all finite groups H ⊂ G.

Proof. The existence of such an equivalence is immediate from the previous lemma.
For the uniqueness part, it suffices by Corollary 4.7.8 that any autoequivalence of
F+

1 preserves 1+ up to isomorphism, which is immediate from the observation that
this is the only non-zero object without non-trivial automorphisms. �

5.2.2. Grothendieck constructions. Thanks to Remark 2.2.10, understanding the
global functor category FunGlo(F

Orb
Glo,∗, Spc) is equivalent to understanding the un-

straightenings
∫
F
Orb
Glo,∗×G of the diagram F

Orb
Glo,∗×G : Gloop → Cat∞ naturally in

G ∈ Glo. However as an upshot of the previous subsection, the functors FOrb
Glo,∗×G

are modelled by strict 2-functors of strict (2, 1)-categories, which will allow us to
give a reasonably explicit description in terms of the classical Grothendieck con-
struction:
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Construction 5.2.5. Let C be a strict (2, 1)-category. We recall (see [Buc14,
Construction 2.2.1] or [HNP19, Definition 6.1]) the Grothendieck construction

∫∫∫∫∫∫∫∫∫∫∫∫∫
F

for a strict 2-functor F : C → Cat(2,1) into the (2, 1)-category of (2, 1)-categories:

(1) The objects of
∫∫∫∫∫∫∫∫∫∫∫∫∫
F are given by pairs (c,X) with c ∈ C and X ∈ F (c)

(2) A morphism from (c,X) to (d, Y ) is given by a pair of a map f : c → d and a
map g : F (f)(X)→ Y in F (d); if (f ′, g′) : (d, Y )→ (e, Z) is another morphism,
then their composite is

(f ′, g′)(f, g) =
(
f ′f, F (f ′f)(X) = F (f ′)F (f)(X)

F (f ′)(g)
−−−−−→ F (f ′)(Y )

g′

−→ Z).

(3) A 2-cell (f1, g1) ⇒ (f2, g2) between maps (c,X) → (d, Y ) is given by a 2-cell
σ : f1 ⇒ f2 in C together with a 2-cell

F (f1)(X)

Y .

F (f2)(X)

F (σ)

g1

τ

g2

in F (d). If (ρ, ζ) : (f2, g2) ⇒ (f3, g3) is another 2-cell, then the composite
(ρ, ζ) ◦ (σ, τ) is given by the composition in C and the pasting

F (f1)(X)

F (f2)(X) Y

F (f3)(X)

F (σ)

g1

F (ρ)

g2

τ

g3

ζ

in F (d). Moreover, if (σ′, τ ′) : (f ′
1, g

′
1) ⇒ (f ′

2, g
′
2) is a 2-cell between maps

(d, Y ) → (e, Z), then the horizontal composite (σ′, τ ′) ⊙ (σ, τ) is given by the
horizontal composite σ′ ⊙ σ and the pasting

F (f ′
1f1)(X)

F (f ′
1f2)(X) F (f ′

1)(Y )

F (f ′
2f2)(X) F (f ′

2)(Y ) Z

F (f ′
1)F (σ)(X)

F (f ′
1)(g1)

F (f ′
1)(g2)

F (f ′
1)(τ)

F (σ′)(F (f2)(X)) F (σ′)(Y )

g′1

F (f ′
2)(g2) g′2

τ ′

where the square commutes as F (σ′) is a natural transformation F (f ′
1) ⇒

F (f ′
2).

This comes with a natural strict 2-functor π :
∫∫∫∫∫∫∫∫∫∫∫∫∫
F → C given by projecting onto

the first coordinate. By [HNP19, Proposition 2.15] the homotopy coherent nerve
of this functor is a cocartesian fibration representing N∆ ◦F . Put differently, there
is a natural equivalence

∫
(N∆ ◦F ) ≃ N∆(

∫∫∫∫∫∫∫∫∫∫∫∫∫
F ) over N∆(C) from the usual marked
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unstraightening to the homotopy coherent nerve of the 2-categorical Grothendieck
construction which preserves cocartesian edges.

We can also describe the behaviour of this equivalence on fibers as follows: for any
c ∈ C the composition

N∆F (c) →֒ N∆(
∫∫∫∫∫∫∫∫∫∫∫∫∫
F ) ≃

∫
(N∆ ◦ F )

of the natural embedding with the above equivalence agrees with the usual identifi-
cation of N∆F (c) with the fiber of the unstraightening

∫
(N∆◦F ) over c, see [HNP19,

proof of Proposition 6.25]. In particular, for the cocartesian fibration N∆(
∫∫∫∫∫∫∫∫∫∫∫∫∫
F ) the

notation (c,X) (with X ∈ F (c)) for vertices is compatible with Notation 4.9.4. As
the above equivalence moreover preserves cocartesian edges, we also immediately
deduce the analogous statement for 1-simplices.

Construction 5.2.6. For every finite group G, we define a strict (2, 1)-category∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G as follows: Sending a finite group H to the product of the strict (2, 1)-

categoryF+
H of finite pointedH-sets and the groupoidGlo(H,G) :=HomGlo(H,G)

of group homomorphisms H → G and conjugations defines a strict 2-functor

F+
• ×Glo(−, G) : Gloop → Cat(2,1).

Composing this functor with the equivalence of strict (2, 1)-categories γ : Ogl ∼
−→

Glo from Construction 3.3.14, we obtain a strict 2-functor

F
gl,+
G :=

(
F+

• ×Glo(−, G)
)
◦ γ : (Ogl)op → Cat(2,1).

As before, we let
∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G denote the 2-categorical Grothendieck construction of

F
gl,+
G . The assignment G 7→

∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G then becomes a strict 2-functor

∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
• : Glo→

Cat(2,1) via (post)composition in Glo.

As promised we can now prove:

Proposition 5.2.7. There exists an equivalence

ΘG : N∆

(∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G

)
= N∆

( ∫∫∫∫∫∫∫∫∫∫∫∫∫
(F+

• ×Glo(–, G)) ◦ γ
) ≃
−−→

∫
F
Orb
Glo,∗ ×G

of ∞-categories natural in G ∈ Glo with the following properties:

(1) For all H ∈ Ogl and ϕ : H → G in Glo, the following diagram commutes
up to equivalence:

N∆(F
+
H × {ϕ}) F

Orb
Glo,∗ × {ϕ}

N∆(F
+
H ×Glo(H,G)) FOrb

Glo ×G(H)

N∆(
∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G )

∫
F
Orb
Glo,∗ ×G

θH

ΘG

(10)

where θ is the equivalence from Corollary 5.2.4 and the bottom vertical
arrows are the chosen identifications of the fibers over H.

In particular, ΘG restricts to an equivalence between the non-full sub-

category N∆

(∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G

)
ϕ
⊂ N∆

(∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G

)
with objects of the form (H ;X,ϕ)

(for X ∈ F+
H) and morphisms only those that are the identities in H and
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ϕ (i.e. the image of F+
H × {ϕ} under the chosen identification) and the

analogous full subcategory on the right.
(2) For all maps (α, u) : K → H in Ogl and f : α∗X → Y in F+

K , the map
ΘG(α, u; f, idϕα) agrees up to equivalence with (α; θK(f), idϕα).

Proof. Specializing the above discussion we have a natural equivalence

N∆

(∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G

)
≃

∫
N∆ ◦ F

gl,+
G =

∫
N∆ ◦ (F+

• ×Glo(–, G)) ◦ γ

between the 2-categorical and∞-categorical Grothendieck construction sending the
map (α, u; f, idϕα) on the left to the map of the same name on the right and such
that for every H ∈ Ogl the induced map on fibers respects the identifications with
F+
H ×Glo(H,G).

On the other hand, as γ : Ogl → Glo is an equivalence, the right hand side is in turn
naturally equivalent to the unstraightening

∫
N∆ ◦ (F+

• ×Glo(–, G)) over Gloop by
an equivalence sending (α, u; f, idϕα) to (α; f, idϕα) up to equivalence; again, under
our chosen identifications this is just the identity on fibers.

Finally, by construction of the ∞-categorical Yoneda embedding we have an equiv-
alence υ : N∆(Glo(L,G)) ≃ Glo(L,G) = G(L) natural in both variables sending
ψ : L→ G to ψ, which together with the global equivalence θ from Corollary 5.2.4
induces an equivalence

∫
N∆(F+

• ×Glo(–, G)) ≃
∫
F
Orb
Glo,∗ ×G sending (α; f, idϕα)

to (α; θK(f), idϕα) and that is given under the chosen identifications of the fibers
overH by θH×υ. The commutativity of (10) follows immediately, which completes
the proof of the proposition. �

5.2.3. Global Γ-spaces as enriched functors. Thanks to the above proposition, we
can replace the somewhat mysterious ∞-categorical unstraightenings

∫
F
Orb
Glo,∗ ×G

by the homotopy coherent nerves of the much more explicit (2, 1)-categories
∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G .

These are suitably combinatorial to in turn admit a comparison to the OG-gl
Γ ’s:

Construction 5.2.8. Let G be a finite group. We define δ : (
∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G )op → OG-gl

Γ

as follows:

(1) An object (H ;S+, ϕ) consisting of a universal subgroupH ⊂M, a finite pointed
H-set S+ and a homomorphism ϕ : H → G is sent to (Γ(S+, –)×EM×Gϕ)/H .

(2) A morphism (u ∈ M, σ : H → K; f : σ∗T+ → S+; g ∈ G) is sent to the map
induced by Γ(f, –)× (– · (u, g)), i.e. the map corresponding to [f ;u; g] under the
identification from Remark 5.1.3.

(3) A 2-cell k : (u, σ; f, g) ⇒ (u′, σ′; f ′, g′) (for k ∈ K ⊂ M) is sent to the 2-cell
corresponding to [f ;u′k, u; g].

Proposition 5.2.9. The assignment δ is well-defined (i.e. the above indeed repre-

sent morphisms and 2-cells in OG-gl
Γ ) and is an equivalence of (2, 1)-categories.

Proof. We break this up into several steps.

It is well-defined on morphisms and a full 1-functor: If (u, σ; f ; g) is a morphism
(H,S+, ϕ) → (K,T+, ψ) in the opposite of the Grothendieck construction, then
hu = uσ(h) for all h ∈ H as (u, σ) is a morphism H → K in Ogl; moreover,
cgψσ = ϕ as g is a morphism ϕ→ ψσ in Glo(K,G), while (h ·–)◦ f = f ◦ (σ(h) ·–)
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for all h ∈ H as f is a map of (pointed) H-sets. Thus,

(h, ϕ(h))·[f ;u; g] = [(h·–)◦f ;hu;ϕ(h)g] = [f ◦(σ(h)·–);uσ(h); gψ(σ(h))] = [f ;u; g],

i.e. [f ;u; g] is indeed ϕ-fixed. Note that we can also deduce this statement from (the
easy direction of) [Len20, Lemma 1.2.38]: namely, if we consider Γ(S+, T+) × Gψ
as a (G ×H)×K-biset, where G acts on G from the left, H acts on S+ from the
left, and K acts from the right via its given action on T+ and its action on G via
ψ, then swapping the factors defines an isomorphism

(Γ(T+, S+)× EM×Gψ)/K
)ϕ ∼=

(
EM×K (Γ(T+, S+)×G)

)(idH ,ϕ)

where the right hand side is the usual balanced product; loc. cit. then says that
[u; f ; g] defines a vertex of the right hand side if and only if there exists a homo-
morphism σ : H → K (necessarily unique) such that hu = uσ(h) for all h ∈ H and
moreover (h, ϕ(h)) · (f, g) = (f, g) · σ(h), i.e. f is equivariant as a map σ∗T+ → S+

and ϕ = cgψσ. From the ‘only if’ part we then immediately deduce that the above
is surjective on morphisms: a preimage of [u; f ; g] is given by (u, σ; f ; g).

The equality δ(1, 1; idS+ , 1) = [1; idS+ ; 1] shows that δ preserves identities. To see
that it is also compatible with composition of 1-morphisms (whence a 1-functor),
we let (u′, σ′; f ′, g′) be a map (K;T+;ψ)→ (L;U+; ζ) in the opposite category (so
that σ′ : K → L is a homomorphism and f ′ : (σ′)∗U+ → T+ an equivariant map).
Then indeed

δ
(
(u′, σ′; f ′, g′)(u, σ; f, g)

) (∗)
= δ(uu′, σ′σ; ff ′; gg′)

= [ff ′;uu′; gg′] = δ(u′; f ′; g′)δ(u; f ; g)

where the somewhat surprising formula (∗) for the composition in the Grothendieck
construction comes from the fact that σ∗ does not change underlying maps of sets
nor the group elements representing maps in Glo(–, G).

It is well-defined on 2-cells and a locally fully faithful 2-functor: First, let us show
that δ defines fully faithful functors

maps
(
(H ;S+, ϕ), (K;T+, ψ)

)
→ maps

(
ΓH,S,ϕ,ΓK,T,ψ

)
(11)

for all objects (H ;S+, ϕ) and (K;T+, ψ). For this it will be enough to prove this
after postcomposing with the isomorphism ε to (ΓK,T ;ψ)

ϕ.

If now (u1, σ1; f1; g1) and (u2, σ2; f2; g2) are morphisms (H ;S+;ϕ) ⇒ (K;T+;ψ),
then [Len20, Lemma 1.2.74] shows that we have a bijection between morphisms
[f1;u1; g1] → [f2;u2; g2] in ΓϕK,T,ψ and elements k ∈ K such that f1 = f2(k · –),

g1 = g2ψ(k), and σ2 = ckσ1, which is explicitly given by k 7→ [f1;u2k, u1; g1]. The
last condition precisely says that k is a 2-cell (u1, σ1) ⇒ (u2, σ2) in Ogl, while the

remaining two conditions say that (f2; g2) ◦ F
gl,+
G (k) = (f1; g1), which is precisely

the compatibility condition for 2-cells in the Grothendieck construction. Thus, (11)
is well-defined and bijective on morphisms. To see that it is indeed a functor, we
observe that δ(1) = id by design, and that for any further 2-cell k′ : (u2, σ2; f2; g2)⇒
(u3, σ3; f3; g3) we have

δ(k′) ◦ δ(k) = [f2;u3k
′, u2; g2] ◦ [f1;u2k;u1; g1]

(∗)
= [f1;u3k

′k, u2k; g1] ◦ [f1;u2k;u; g1]

= [f1;u3k
′k, u1; g1] = δ(k′k) = δ(k′ ◦ k),
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where the equality (∗) uses [f2;u3k′, u2; g2] = [f2(k ·–), u3k′k, u2k; g2ψ(k)] together
with the above relations.

To complete the current step, it now only remains to show that δ is compatible with
horizontal composition of 2-cells, i.e. if (u′1, σ

′
1; f

′
1; g

′
1), (u

′
2, σ

′
2; f

′
2; g

′
2) : (K;T+;ψ) ⇒

(L;U+; ζ) are parallel morphisms and ℓ : (u′1, σ
′
1; f

′
1; g

′
1) ⇒ (u′2, σ

′
2; f

′
2; g

′
2), then

δ(ℓ ⊙ k) = δ(ℓ) ⊙ δ(k). Plugging in the definitions, the left hand side is given
by δ(ℓσ2(k)) = [f1f

′
1;u2u

′
2ℓσ2(k), u1u

′
1; g1g

′
1] while the right hand side evaluates to

[f ′
1;u

′
2ℓ, u

′
1; g

′
1]⊙ [f1;u2k, u1; g1] = [f1f

′
1;u2ku

′
2ℓ;u1u

′
1; g1g

′
1]. But ku

′
2 = u′2σ

′
2(k) as

(u′2, σ
′
2) is a morphism, while σ′

2(k)ℓ = ℓσ2(k) as ℓ is a 2-cell, whence u2ku
′
2ℓ =

u2u
′
2ℓσ2(k) as desired.

The 2-functor δ is an equivalence: We have shown above that δ is a 2-functor,
surjective on 1-cells, and bijective on 2-cells. As it is clearly surjective on objects,
the claim follows immediately. �

Together with the Elmendorf Theorem for G-global Γ-spaces, we can now describe
the global relative category of global Γ-spaces in terms of suitable simplicially en-
riched functor categories. The structure of the argument is very similar to the
arguments following Construction 3.3.10.

Construction 5.2.10. We define

ΨΓ : Γ-EM-G-SSet→ Fun(
∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G ,SSet)

as follows:

(1) If X is any G-global Γ-space, then ΨΓ(X)(H ;S+;ϕ) = X(S+)
ϕ. If (K;T+;ψ)

is another object, then an n-simplex

(u0, σ0; f0; g0)
k1==⇒ (u1, σ1; f1; g1)

k2==⇒ · · ·
kn==⇒ (un, σn; fn; gn) (12)

of maps((K;T+;ψ), (H ;S+;ϕ)) is sent to the composition
(
(unkn · · · k1, . . . , u1k1, u0; g0) · –

)
◦X(f0).

(2) If f : X → Y is any map of G-global Γ-spaces, then

ΨΓ(f)(H ;S+;ϕ) = f(S+)
ϕ : X(S+)

ϕ → Y (S+)
ϕ.

Proposition 5.2.11. The assignment ΨΓ is well-defined and it descends to an
equivalence when we localize the source at the G-global level weak equivalences and
the target at the levelwise weak homotopy equivalences.

Proof. One argues precisely as in the proof of Proposition 3.3.11 that ΨΓ is well-
defined and isomorphic (via corepresentability) to the composite

Γ-EM-G-SSet
ΦΓ−−→ Fun((OG-gl

Γ )op,SSet)
δ∗
−→ Fun(

∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G ,SSet).

The claim now follows from Proposition 5.1.2 together with Proposition 5.2.9. �

Proposition 5.2.12. The maps ΨΓ are strictly 2-natural in Glo (where the right
hand side is a 2-functor in G as before).

Proof. We again break this up into two steps:

The ΨΓ’s are 1-natural: Let α : G → G′ be a group homomorphism. We will first
show that we have for every G-global Γ-space X an equality of enriched functors
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ΨΓ(α
∗X) = ΨΓ(X) ◦

( ∫∫∫∫∫∫∫∫∫∫∫∫∫
(F+

• ×Glo(–, α)) ◦ γ
)
. To prove this, we first observe that

this holds on objects as X(S+)
αϕ = (α∗X)(S+)

ϕ for all universal H ⊂M, ϕ : H →
G. Given now an n-simplex (12) of maps((H ;S+;ϕ), (K;T+;ψ)), it is straight-
forward to check that both ΨΓ(α

∗X) and ΨΓ(X) ◦ (
∫∫∫∫∫∫∫∫∫∫∫∫∫
(F+

• ×Glo(–, α)) ◦ γ) send
this to the restriction of the composite

(
(unkn · · · k1, . . . , u1k1, u0;α(g)) · –

)
◦X(f).

With this established, naturality on morphisms can be checked levelwise, i.e. after
evaluating at each (H ;S+;ϕ). However, for any map f both Ψ(α∗f)(H ;S+;ϕ) and
Ψ(f)(

∫∫∫∫∫∫∫∫∫∫∫∫∫
(F+

• ×Glo(–, α)) ◦ γ)(H ;S+;ϕ) are simply given by a restriction of f(S+).

The ΨΓ’s are 2-natural : It only remains to show that for each α, β : G → G′ and
g′ : α⇒ β the two pastings

Γ-EM-G′-SSet Γ-EM-G-SSet Fun(
∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G ,SSet)

α∗

(α′)∗

ΨΓ
g′

⇒

and

Γ-EM-G′-SSet Fun(
∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G′ ,SSet) Fun

(∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G ,SSet

)ΨΓ

α∗

(α′)∗

g′

⇒

agree. However, as we have already established 1-naturality, this can be again

checked pointwise in Γ-EM-G′-SSet and levelwise in
∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G , where both are

simply given by restriction of the action of g′. �

5.2.4. The comparison. Putting everything together we now get:

Proof of Theorem 5.2.1. Arguing precisely as in the proof of Theorem 3.3.2, we
deduce from Propositions 5.2.11 and 5.2.12 that we have an equivalence of global
∞-categories

ΓS gl ≃ Fun(N∆

∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+
• , Spc)

given on objects in degree G by sending a G-global Γ-space X to N∆(P ◦ΨΓ(X))
where P is our favourite simplically enriched Kan fibrant replacement functor.

On the other hand, Proposition 5.2.7 provides an equivalence between the right
hand side and Fun(

∫
F
Orb
Glo × (–), Spc). The desired equivalence now follows as

Remark 2.2.10 also gives a natural equivalence

FunGlo(F
Orb
Glo,∗, SpcGlo

) ≃ Fun(
∫
(FOrb

Glo,∗ × (–)), Spc). (13)

It remains to construct an equivalence filling the diagram on the left in

ΓS gl FunGlo(F
Orb
Glo,∗, SpcGlo

)

S
gl Spc

Glo

U

Ξ

evid+

≃

ΓS gl FunGlo(F
Orb
Glo,∗, SpcGlo

)

S
gl Spc

Glo

Ξ

≃

Γ(1+,–)×– left Kan ext.

for which it is enough by passing to vertical left adjoints (as the horizontal maps
are equivalences) to construct an equivalence filling the diagram on the right. By
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the universal property of Spc
Glo

it is in turn enough for this to chase through
the terminal object. Now the forgetful functor EM-SSet → SSet sending an
EM-simplicial set to its underlying non-equivariant homotopy type is obviously
homotopical right Quillen with left adjoint given by EM× –; passing to associated
∞-categories, we obtain an adjunction S

gl(1) ⇄ Spc and as EM ≃ ∗ by [Len20,
Example 1.2.35], we see that the left adjoint preserves the terminal objects. On the
other hand, as 1 is a terminal object of Glo, the evaluation functor ev1 : SpcGlo

(1)→

Spc similarly admits a left adjoint given by const : Spc → SpcGlo(1), which again
preserves the terminal object. In particular, we see by another application of the
universal property of Spc

Glo
that the equivalence S

gl ≃ Spc
Glo

is compatible with
these adjunctions.

We are therefore reduced to constructing a natural equivalence filling the diagram
on the left in

ΓS gl(1) FunGlo(F
Orb
Glo,∗, SpcGlo

)

Spc Spc

Ξ

Γ(1+,–)×EM×–

ΓS gl(1) FunGlo(F
Orb
Glo,∗, SpcGlo

)

Spc Spc,

Ξ

forget◦U ev1◦evid+

for which it is then by the same argument as before enough to construct a natu-
ral equivalence filling the diagram on the right. By Remark 2.2.11, the compos-
ite of the right hand vertical map with the equivalence (13) from the construc-
tion of Ξ is given by evaluating at (1; 1, 1). However, by the description of Θ1

from Proposition 5.2.7, Θ1(1; 1, 1) = (1; 1, 1), so it follows by construction of Ξ
that the upper path through this diagram is induced by the homotopical functor
P ◦ ΨΓ(–)(1; 1, 1): Γ-EM-SSet → Kan. However, by definition ΨΓ(–)(1; 1, 1) is
precisely the functor sending a global Γ-space X to X(1+) considered as a non-
equivariant space, so the claim follows. �

5.3. Proof of Theorem B. Building on the above we will now prove a comparison
between special G-global Γ-spaces and CMonOrb

Glo (SpcGlo
):

Theorem 5.3.1. There exists an essentially unique pair of an Orb-semiadditive
functor Ξ: ΓS gl, spc → CMonOrb(Spc

Glo
) together with an equivalence filling

ΓS gl, spc CMonOrb(Spc
Glo

)

S
gl SpcGlo.

U

Ξ

U=evid+

≃

(14)

Moreover, Ξ is an equivalence.

As the above notation suggests, we will in fact show that the equivalence Ξ from
Theorem 5.2.1 restricts accordingly. For this let us first translate our definition
of specialness into something that is more akin to the characterization of Orb-
semiadditivity given in Subsection 4.9:

Proposition 5.3.2. A G-global Γ-space X is special if and only if the following
conditions are satisfied for every universal subgroup H ⊂ M and every homomor-
phism ϕ : H → G:
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(1) For all finite H-sets S, T the collapse maps S+ ← S+∨T+ → T+ induce a weak
homotopy equivalence X(S+ ∨ T+)ϕ → X(S+)

ϕ ×X(T+)
ϕ.

(2) For all K ⊂ H the composite map

X(H/K+)
ϕ →֒ X(H/K+)

ϕ|K X(χ)ϕ|K

−−−−−−→ X(1+)ϕ|K ,

is a weak homotopy equivalence, where χ : H/K+ → 1+ is the characteristic
map of [1] = K ∈ H/K.

Proof. Let us first assume that X is special. Then we have a commutative diagram

X(S+ ∨ T+) X(S+)×X(T+)

∏
S⊔T X(1+)

∏
S X(1+)×

∏
T X(1+)

ρ ρ×ρ

∼=

where the top horizontal map is again induced by the collapse maps. By assumption,
the left hand vertical map is a (G × ΣS⊔T )-global weak equivalence, hence also a
(G×H)-global weak equivalence with respect to the H-action on S ⊔ T . Similarly,
one shows that the right hand vertical map is a (G×H)-global weak equivalence,
and hence so is the top horizontal map by 2-out-of-3. Taking fixed points with
respect to (ϕ, id) : H → G×H then establishes Condition (1).

In order to verify Condition (2), we first note that we have for any H-space Y

an isomorphism
(∏

H/K Y
)H ∼= Y K via projection to the factor indexed by [1].

Applying this to Y = (ϕ, idH)∗X(1+) we then get a commutative diagram

(∏
H/K X(1+)

)ϕ

X(H/K+)
ϕ

X(1+)ϕ|K

∼= pr[1]

ρ

X(χ)

(15)

in which the top map is a weak homotopy equivalence by specialness. The claim
follows by 2-out-of-3.

Conversely, assume X is a G-global Γ-space satisfying Conditions (1) and (2). We
want to show that for every finite set S the Segal map X(S+) →

∏
S X(1+) is

a (G × ΣS)-global weak equivalence, i.e. for every universal subgroup H ⊂ M,
every H-action on S (i.e. homomorphism ρ : H → ΣS), and every homomorphism

ϕ : H → G it induces a weak homotopy equivalence X(S+)
ϕ →

(∏
S X(1+)

)ϕ
.

Using Condition (1) one readily reduces to the case that S is transitive, i.e. S =
H/K for some K ⊂ H ; however, in this case the claim again follows by applying
2-out-of-3 to the commutative diagram (15). �

In order to relate this to our characterization of Orb-semiadditive functors into
Spc

Glo
we note:
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Lemma 5.3.3. Let p : K →֒ H be an inclusion of finite groups (hence a map

in Orb). Then the essentially unique equivalence θ : FOrb
Glo,∗ ≃ NF+

• (see Corol-

lary 5.2.4) sends the map ρp : p
∗p!(id+)→ id+ in F

Orb
Glo,∗(K) from Observation 4.9.7

up to isomorphism to the map χ : H/K+ → 1+ in F+
K from Proposition 5.3.2.

Proof. By construction, ρp is characterized by the properties that ρpη = id and
ρp,Lj = 0 for some (hence any) complement j : C → p∗p!(ι) of η. Now the inclusion
1+ → H/K+ of the coset [1] qualifies as a unit 1+ → p∗p!1

+, and with respect to this
choice of η the map χ : H/K+ → 1+ obviously admits the analogous description.

If we now assume for ease of notation that θ(id1)+ = 1+ (instead of them just
being isomorphic), then the calculus of mates provides us with an isomorphism
α : H/K+

∼= θ(p∗p!(id+)) in F
+
K fitting into a commutative diagram

1+ θ(id+)

H/K+ θ(p∗p! id+),

η θ(η)

∼=
α

(16)

and we claim that χ is actually equal to θ(ρp)α. Indeed,

χη = id1+ = θ(idid+
) = θ(ρpη) = θ(ρp)θ(η) = θ(ρp)αη,

where the last equation uses the commutativity of (16). On the other hand, if
j : C → p∗p! id+ is a complement of η, then θ(j) is a complement of θ(η) (as
θ preserves coproducts), so α−1θ(j) is a complement of η : 1+ → H/K+ in F+

K

by commutativity of (16) again. But then χ(α−1θ(j)) = 0 = θ(0) = θ(ρpj) =
θ(ρp,L)α(α

−1θ(j)), which finishes the proof. �

Proof of Theorem 5.3.1. By the universal property of CMonOrb(Spc
Glo

) it will suf-
fice to construct such an equivalence, for which we will show that the equivalence Ξ
from Theorem 5.2.1 restricts accordingly, i.e. that a G-global Γ-space X is special
if and only if Ξ(X) : π∗

GF
Orb
Glo,∗ → π∗

GSpcGlo
is π∗

GOrb-semiadditive.

For this, let us write Ξ̂(X) for the functor
∫
F
Orb
Glo,∗ × G → Spc corresponding to

Ξ(X). Plugging in the construction of Ξ, this is simply given by the restriction
of N∆(P ◦ ΨΓ(X)) : N∆(

∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+) → N∆(Kan) = Spc (where P is a fixed fibrant

replacement again) along the inverse of the equivalence ΘG :
∫
F
Orb
Glo,∗ ≃ N∆

∫∫∫∫∫∫∫∫∫∫∫∫∫
Fgl,+

from Proposition 5.2.7. On the other hand, Remark 4.9.9 shows that Ξ(X) is

semiadditive if and only if Ξ̂(X) is fiberwise semiadditive and sends the Segal maps
(defined there) to equivalences.

Fiberwise semiadditivity. We will first show that X satisfies Condition (1) of Propo-

sition 5.3.2 if and only if Ξ̂(X) is fiberwise semiadditive. Namely, Ξ̂(X) is fiberwise
semiadditive if and only if its restriction to the non-full subcategories spanned by
the objects (H ;X,ϕ) and the maps of the form (id; f, id) for each universal H ⊂M
and ϕ : H → G is semiadditive (as the universal subgroups of M account for all
objects of Glo up to isomorphism). As ΘG identifies this with the corresponding full

subcategory N∆(
∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G )ϕ ⊂ N∆(

∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G ) via an equivalence by Proposition 5.2.7,

we conclude that Ξ̂(X) is fiberwise semiadditive if and only if Θ∗
GΞ̂(X) is semiad-

ditive when restricted to each N∆(
∫∫∫∫∫∫∫∫∫∫∫∫∫
F
gl,+
G )ϕ. But by the explicit construction of



PARAMETERIZED STABILITY AND THE UNIV. PROPERTY OF GLOBAL SPECTRA 83

ΨΓ, we immediately see that the latter condition for Θ∗
GΞ̂(X) ≃ N∆(P ◦ΨΓ(X)) is

equivalent for every fixed ϕ to X(–)ϕ sending coproducts of finite pointed H-sets
to products, which is precisely what we wanted to prove.

Segal maps. To complete the proof, it will now suffice to show that X satisfies
Condition (2) of Proposition 5.3.2 if and only if Ξ̂(X) sends the parameterized Segal
maps ρ : (H ; ι+, ϕ) → (K; id+, ϕι) (where ι : K →֒ H is an inclusion of universal

subgroups and ϕ : H → G is a homomorphism) in
∫
F
Orb
Glo,∗ × G to equivalences.

However, by the description of ΘG given in Proposition 5.2.7 together with the
computation in Lemma 5.3.3, we conclude that Θ−1

G (ρ) is given up to equivalence
by (ι, 1;χ, idϕι) : (H ;H/K+, ϕ) → (K; 1+, ϕι), and by the explicit construction of
ΨΓ we see that P ◦ΨΓ sends this up to weak equivalence to the map X(H/K+)

ϕ →
X(1+)ϕ|K from Proposition 5.3.2 as desired. �

We can now leverage the above comparison in order to deduce a universal property
of ΓS gl, spc.

Theorem 5.3.4. The functor U : ΓS gl, spc → S
gl exhibits ΓS gl, spc as the Orb-

semiadditive envelope of S
gl, i.e. for every Orb-semiadditive global ∞-category C

we have an equivalence

FunP -×
Glo (C,U) : FunP -⊕

Glo (C,ΓS
gl, spc)

≃
−−→ FunP -×

Glo (C,S gl).

Moreover, U admits a left adjoint P which exhibits ΓS gl, spc as the Orb-semiadditive
completion in the following sense: for every globally cocomplete Orb-semiadditive
global ∞-category D we have an equivalence

FunL
Glo(P,D) : Fun

L
Glo(ΓS

gl, spc,D)
≃
−−→ FunL

Glo(S
gl,D).

Proof. The existence of the left adjoint follows formally from Theorem 5.3.1 and
the fact that U : CMonOrb

Glo → Spc
Glo

admits a left adjoint (see Corollary 4.8.8).

Now the free-forgetful adjunction S
gl

⇄ CMonOrb
Glo (S

gl) has both of the above
universal properties by Theorem 4.8.9 and Corollary 4.8.11), so it suffices to show
that the equivalence Ξ from Theorem 5.3.1 is compatible with the free-forgetful
adjunctions in the sense that there are natural equivalences filling

ΓS gl, spc CMonOrb(Spc
Glo

)

S
gl SpcGlo.

U

Ξ

U=evid+

≃

and

ΓS gl, spc CMonOrb(Spc
Glo

)

S
gl SpcGlo.

P

Ξ

P

≃

However, as Ξ is an equivalence it suffices to prove the first statement, which is
simply the defining property of Ξ. �

Together with Theorem 4.8.10 we moreover get Theorem B from the introduction:

Theorem 5.3.5. Let D be a globally cocomplete and Orb-semiadditive global ∞-
category. Then evaluation at P(∗) provides an equivalence FunLGlo(ΓS

gl, spc,D) ≃

D. Put differently, ΓS gl, spc is the free globally cocomplete (or presentable) Orb-
semiadditive global ∞-category on one generator (namely, the free global special
Γ-space P(∗)). �
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Using Proposition 5.1.6 we can deduce several variants of the above theorems. Let
us make the one that we will need later explicit:

Corollary 5.3.6. The forgetful functor U : ΓS gl, spc
I,∗ → S

gl
I exhibits ΓS gl, spc

I,∗ as

the universal Orb-semiadditive envelope of S
gl
I . Moreover, it admits a left adjoint

P, exhibiting ΓS gl, spc
I,∗ as the Orb-semiadditive completion of S

gl
I . �

Remark 5.3.7. [Len20] also discusses various other models of ‘G-globally coher-
ently commutative monoids,’ for example G-ultra-commutative monoids (Defini-
tion 2.1.25 of op. cit.) or G-parsummable simplicial sets (Definition 2.1.10). Simi-
larly, [Len22, Definition 3.9] introduces a notion of global E∞-operads, and for any
global E∞-operad O, considering O-algebras in EM-G-SSet (with respect to the
trivial G-action on O) yields a concept of G-global E∞-algebras.

All of these models are related via suitable zig-zags of Quillen equivalences by
[Len20, Chapter 2] and [Len22, Section 4], and while these can be somewhat com-
plicated (especially on the operadic side of things), in each case they are by design
strictly compatible with restrictions along group homomorphisms and moreover at
least one of the adjoints is homotopical, so that they lift to equivalences of asso-
ciated global ∞-categories in the same way as before. As moreover each of them
is readily seen to be compatible with the respective forgetful functors, we obtain
universal properties in the above spirit for each of these models.

Conversely, while each of these comparisons comes from a concrete (and sometimes
ad-hoc) model categorical construction, this tells us that a posteriori, once we have
passed to parameterized ∞-categories, these comparisons are actually canonical
and completely characterized by lying over the forgetful functors.

6. Parameterized stability

In this section, we will introduce the notion of a P -stable T -∞-category: a T -∞-
category which is both P -semiadditive and fiberwise stable.

6.1. Fiberwise stable T -∞-categories.

Definition 6.1.1. We say a T -∞-category C is fiberwise stable if the following
conditions are satisfied:

(1) For every object B ∈ T , the ∞-category C(B) is stable;
(2) For every morphism β : B′ → B, the restriction functor β∗ : C(B) → C(B′) is

exact.

Equivalently, C is fiberwise stable if the functor C : T op → Cat∞ factors through the
(non-full) subcategory Catst∞ ⊆ Cat∞ of stable∞-categories and exact functors. We
let CatstT denote the∞-category Fun(T op,Catst∞) of fiberwise stable T -∞-categories.

Definition 6.1.2. Denote by Catlex∞ ⊆ Cat∞ the (non-full) subcategory spanned
by the ∞-categories admitting finite limits and the finite-limit-preserving functors
between them. We let CatlexT denote the functor ∞-category Fun(T op,Catlex∞ ) of
T -∞-categories C admitting fiberwise finite limits (cf. Definition 2.3.11) and T -
functors preserving fiberwise finite limits.
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Definition 6.1.3. Let C and D be two T -∞-categories with finite limits. We write
FunlexT (C,D) for the full subcategory of FunT (C,D) spanned on level B ∈ T by
those functors F : π∗

B C → π∗
B D which preserve fiberwise finite limits.

When C and D are both fiberwise stable, we will write FunexT (C,D) for Funlex
T (C,D).

Construction 6.1.4 (Fiberwise stabilization). Let C ∈ CatlexT be a T -∞-category

which has fiberwise finite limits. We define the T -∞-category Spfib(C), called the
fiberwise stabilization of C, as the composite

T op C
−→ Catlex∞

Sp
−→ Catst∞ .

This construction assembles into a functor Spfib : CatlexT → CatstT .

Example 6.1.5. The T -∞-category Sp
T
of naive T -spectra is the fiberwise stabi-

lization of the T -∞-category Spc
T
of T -spaces.

More generally, if E is an∞-category admitting finite limits, then the fiberwise sta-
bilization of the T -∞-category ET of T -objects in E is the T -∞-category Sp(E)

T
of

T -objects in the stabilization Sp(E). Indeed, this follows easily from the equivalence
Sp(Fun(−, E)) ≃ Fun(−, Sp(E)) from [Lur17, Remark 1.4.2.9].

Remark 6.1.6. As a right adjoint, the stabilization functor Sp: Catlex∞ → Catst∞
preserves limits, which in both the source and target are computed in Cat∞. It
follows that the limit extension of Spfib(C) to the presheaf category PSh(T ) is given
by postcomposing the limit extension of C to PSh(T ) with the functor Sp.

Remark 6.1.7. We will use that the functor Sp: Catlex∞ → Catst∞ is in fact func-
torial in natural transformations of finite limit preserving functors, i.e. that Sp
refines to a 2-functor between homotopy 2-categories. Given that taking functor
categories forms such a functor, this immediately follows from the definition of
Sp(C) as a full subcategory of Fun(Spcfin∗ , C), see [Lur17, Definition 1.4.2.8]. (Using
the same argument, one can in fact show that Sp is an (∞, 2)-functor.)

It follows in particular that stabilization preserves adjunctions between left exact
functors.

Proposition 6.1.8. The functor Spfib : CatlexT → CatstT is right adjoint to the fully

faithful inclusion CatstT ⊆ CatlexT .

Proof. Since Fun(T op,−) : Cat∞ → Cat∞ preserves adjunctions, this is immediate

from the fact that the stabilization functor Sp: Catlex∞ → Catst∞ is right adjoint to

the fully faithful inclusion Catst∞ ⊆ Catlex∞ by [Lur17, Corollary 1.4.2.23]. �

Lemma 6.1.9. Consider C ∈ CatstT and D ∈ CatlexT . Composition with the adjunc-

tion counit Ω∞ : Spfib(D)→ D induces an equivalence of T -∞-categories

FunexT (C, Spfib(D))
≃
−→ Funlex

T (C,D).

Proof. It immediately follows from Proposition 6.1.8 that the map

ιFunT (C,Ω
∞) : ιFunexT (C, Spfib(D))→ ιFunlexT (C,D)

is an equivalence. We will now show that this already holds before passing to cores.
Replacing T by T/B for varying B ∈ T then yields the proof of the proposition.
For this it will be enough to show that for every small ∞-category K the induced
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map ι
(
FunexT (C, Spfib(D))K)→ ι

(
Funlex

T (C,D)K) is an equivalence. But this agrees

up to equivalence with the map induced by (Ω∞)K : Spfib(D)K → DK ; the claim

follows as this is again the stabilization of DK . �

The fiberwise stabilization of a T -∞-category C inherits certain parameterized limits
from C. Since this is clear for limits along constant T -∞-categories, we focus on
limits along T -∞-groupoids.

Lemma 6.1.10. Let U be a class of T -∞-groupoids, and let C be a U-complete
T -∞-category which admits fiberwise finite limits. Then Spfib(C) is U-complete and

the T -functor Spfib(C)→ C preserves U-limits.

Proof. We will use the characterization of Lemma 2.3.13. Given a morphism
p : A→ B in U, applying the functor Sp: Catlex∞ → Catst∞ to the adjunction

p∗ : C(B) ⇄ C(A) :p∗

shows that the functor Sp(p∗) : Sp(C(B))→ Sp(C(A)) admits a right adjoint given
by Sp(p∗) : Sp(C(A))→ Sp(C(B)). Furthermore, for a pullback square

A′ A

B′ B

p′

α

p

β

in PSh(T ) with p : A→ B in U and β : B′ → B in T , the resulting Beck-Chevalley
transformation Sp(p∗) ◦ Sp(β∗) ⇒ Sp(α∗) ◦ Sp(p′∗) is given by applying Sp to the
Beck-Chevalley transformation p∗ ◦β∗ ⇒ α∗ ◦ p′∗, and thus is again an equivalence.

This shows that Spfib(C) is again U-complete. It is immediate from this construc-

tion that the T -functor Spfib(C)→ C preserves U-limits, finishing the proof. �

Fiberwise stabilization preserves parameterized presentability.

Definition 6.1.11. We define PrR,st
T to be the full subcategory of PrRT spanned by

those presentable T -∞-categories which are also fiberwise stable. The subcategory

PrL,stT ⊆ PrLT is defined similarly.

Proposition 6.1.12. The functor Spfib : CatlexT → CatstT restricts to a functor

Spfib : PrRT → PrR,st
T

which is right adjoint to the inclusion PrR,st
T →֒ PrRT .

Proof. We first show that the fiberwise stabilization of a presentable T -∞-category
C is again presentable. By [Lur17, Proposition 1.4.4.4, Example 4.8.1.23], Spfib(C)
is given by the composite

T op C
−→ PrL

−⊗Sp
−−−−→ PrL,

proving that Spfib(C) is again fiberwise presentable. Since the functor−⊗Sp: PrL →

PrL preserves adjunctions, one deduces the existence of left adjoints f! for all mor-
phisms f : A → B in PSh(T ) satisfying the Beck-Chevalley conditions, similar to

the proof of Lemma 6.1.10. This shows that Spfib(C) is again a presentable T -
∞-category. In an analogous way, one can show that if L ⊣ R is an adjunction
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between presentable T -∞-categories, then L⊗ Sp ⊣ R⊗ Sp is again an adjunction.

This shows that Spfib restricts to a functor PrRT → PrR,st
T . It is right adjoint to the

inclusion PrR,st
T →֒ PrRT by Proposition 6.1.8. �

Applying the equivalence (PrRT )
op ≃ PrLT , we obtain:

Corollary 6.1.13. The construction C 7→ Spfib(C) defines a functor

Spfib : PrLT → PrL,stT

which is left adjoint to the inclusion functor incl : PrL,stT →֒ PrLT . �

6.2. P -stable T -∞-categories.

Definition 6.2.1. We say a T -∞-category C has finite P -limits if it has fiberwise
finite limits and finite P -products. We define CatP -lex

T to be the (non-full) subcate-
gory of CatT spanned by the T -∞ categories which admit finite P -limits and those
functors which preserve finite P -limits.

Let C and D be two T -∞-categories with finite P -limits, we define FunP -lex
T (C,D)

to be the full subcategory of FunT (C,D) spanned on level B by those functors
F : π∗

B C → π∗
B D which preserve finite P -limits.

Definition 6.2.2 (cf. [Nar16, Definition 7.1]). A T -∞-category C is P -stable if it

is fiberwise stable and P -semiadditive. We define CatP -st
T to be the full subcategory

of CatP -lex
T spanned by the P -stable T -∞-categories.

When C and D are both P -stable T -∞-categories, we will write FunP -ex
T (C,D) for

FunP -lex
T (C,D).

Lemma 6.2.3. Let C be a T -∞-category. If C admits finite P -limits, then so does
CMonP (C).

Proof. This is a special case of Lemma 4.6.9. �

Definition 6.2.4 ([Nar16, Definition 7.3]). Let C be a T -∞-category which admits

finite P -limits. Then the P -stabilization of C is the T -∞-category SpP (C) defined
as

SpP (C) := Spfib(CMonP (C)),

the fiberwise stabilization of the T -∞-category of P -commutative monoids in C. As
a special case, we define the T -∞-category SpP

T
of P -genuine T -spectra as

SpP
T
:= SpP (Spc

T
),

the P -stabilization of the T -∞-category of T -spaces.

The next lemma shows that the P -stabilization of a T -∞-category with finite P -
limits is indeed P -stable.

Lemma 6.2.5. Let C be a P -semiadditive T -∞-category with finite P -limits. Then
Spfib(C) is again P -semiadditive, and thus in particular P -stable.
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Proof. The T -∞-category Spfib(C) is fiberwise pointed and admits finite P -products
by Lemma 6.1.10. By Lemma 4.5.2, it will suffice to show that for every morphism
p : A → B in FPT the dual adjoint norm map Nmp : id → Sp(p∗) Sp(p∗) exhibits

Sp(p∗) as a right adjoint of Sp(p∗). Since the adjunction data for Spfib(C) is in-

herited from C by fiberwise stabilizing, the dual adjoint norm map for Spfib(C) is

obtained by applying the stabilization functor to the map Nm
C

p : id → p∗p∗. As
stabilization preserves adjunctions, the claim thus follows from P -semiadditivity of
C. �

Corollary 6.2.6. The functor SpP : CatP -lex
T → CatP -st

T is right adjoint to the

inclusion CatP -st
T →֒ CatP -lex

T .

Proof. Lemma 6.2.5 shows that the adjunction of Proposition 6.1.8 restricts to an
adjunction

incl : CatP−st
T → Catlex,P -⊕

T :Spfib(−).

Composing this with the adjunction of Corollary 4.8.5 gives the statement. �

From the adjunction of ∞-categories from Corollary 6.2.6, we may immediately
deduce an equivalence at the level of T -∞-categories of functors.

Definition 6.2.7. We define the T -functor Ω∞ : SpP (C) → C to be the counit of
the adjunction from Corollary 6.2.6. Explicitly it is given by the composite

Spfib(CMonP (C))
Ω∞

−−→ CMonP (C)
U
−→ C,

where the first functor is the infinite loop space functor and the second functor is
given by evaluation at S0 : 1→ F

P
T,∗.

Proposition 6.2.8. Let D be a T -∞-category with finite P -limits. For every P -
stable T -∞-category C, composition with Ω∞ : SpP (C) → C induces an equivalence
of T -∞-categories

FunT (C,Ω
∞) : FunP -ex

T (C, SpP (D))→ FunP -lex
T (C,D).

Proof. This follows by combining Corollary 4.8.4 and Lemma 6.1.9. �

Lemma 6.2.9. Let U be a family of T -∞-groupoids, and let C be a U-complete
T -∞-category which admits finite P -limits. Then also SpP (C) is U-complete and

the T -functor Ω∞ : SpP (C)→ C preserves U-limits.

Proof. This follows immediately from Lemma 6.1.10 and Lemma 4.6.9. �

As before, P -stabilization restricts to an adjunction on presentable T -∞-categories.

Lemma 6.2.10. The construction C 7→ SpP (C) defines a functor

SpP : PrLT → PrL,P -st
T

which is left adjoint to the inclusion PrL,P -st
T →֒ PrLT .

Proof. Combine Corollary 6.1.13 and Corollary 4.8.8. �

Definition 6.2.11. We write Σ∞
+ : C → SpP (C) for the left adjoint of the forgetful

functor Ω∞ : SpP (C)→ C. It is the unit of the adjunction in Lemma 6.2.10.
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We record the results of this section in the following theorem for easy reference:

Theorem 6.2.12. Let C be a T -∞-category with finite P -limits. The functor
Ω∞ : SpP (C) → C exhibits SpP (C) as the P -stable envelope of C, i.e. for every
P -stable T -∞-category D postcomposition with Ω∞ induces an equivalence

FunP -lex(D,Ω∞) : FunP -ex(D, SpP (C))→ FunP -lex(D, C).

Suppose now that C is moreover presentable. Then the left adjoint Σ∞
+ of Ω∞

exhibits SpP (C) as the presentable P -stable completion of C, i.e. for any presentable
P -stable T -∞-category D precomposition with Σ∞

+ yields an equivalence

FunL(Σ∞
+ ,D) : Fun

L(SpP (C),D)→ FunL(C,D). �

As a simple consequence, we get that the T -∞-category SpP
T
of genuine P -spectra

is the free presentable P -stable T -∞-category on a single generator. As in the
P -semiadditive setting of Section 4.9, we can strengthen this to the T -cocomplete
setting:

Theorem 6.2.13. Let D be a T -cocomplete P -stable T -∞-category. Then evalu-
ating at Σ∞

+ (∗) yields an equivalence

FunL
T (Sp

P

T
,D)

≃
−−→ D.

For the proof we will first consider the following non-parameterized version strength-
ening of [Lur17, Corollary 1.4.4.5]:

Lemma 6.2.14. Let C be a presentable ∞-category and let D be cocomplete and
stable. Then we have equivalences

FunL(Σ∞
+ ,D) : FunL(Sp(C),D)

≃
−−→ FunL(C,D)

FunR(D,Ω∞) : FunR(D, Sp(C))
≃
−−→ FunR(D, C)

of categories of left adjoint and categories of right adjoint functors, respectively.

Proof. It suffices to prove the second statement. Since full faithfulness follows from
the usual universal property of spectrification [Lur17, Corollary 1.4.2.23], it only
remains to prove essential surjectivity, i.e. for every right adjoint G : D → C we can
find a right adjoint G∞ : D → Sp(C) such that Ω∞G∞ ≃ G.

For this we first observe that G lifts to a functor G∗ : D ≃ D∗ → C∗ as D is pointed
and G preserves terminal objects; moreover, this is again a right adjoint functor
by the dual of [Lur09, Proposition 5.2.5.1]. Replacing C by C∗ if necessary, we may
therefore assume without loss of generality that C is pointed.

We now define Gi := GΣi : D → C for all i ≥ 0. Then we have equivalences

ΩGi+1 = ΩGΣi+1 ≃ GΩΣi+1 ≃ GΣi = Gi

G∞ : D → Sp(C) = lim
(
· · ·

Ω
−→ C

Ω
−→ C

)

with Ω∞G∞ ≃ G0 = G by passing to limits. However, each Gi for i <∞ is a right
adjoint (as G is and since Σi is even an equivalence by stability), whence so is the
limit map G∞ by [HY17, Theorem B]. �

Corollary 6.2.15. In the above situation, let G : D → Sp(C) be an exact functor.
Then G admits a left adjoint if and only if Ω∞ ◦G does. �
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Proposition 6.2.16. Let C be a presentable T -∞-category and let D be a T -
cocomplete fiberwise stable T -∞-category. Then we have equivalences

FunL
T (Σ

∞
+ ,D) : Fun

L
T (Sp

fib(C),D)
≃
−−→ FunL

T (C,D)

FunR
T (D,Ω

∞) : FunR
T (D, Sp

fib(C))
≃
−−→ FunR

T (D, C).

Proof. Arguing as before, it suffices to show that any right adjoint g : D → C lifts
to a right adjoint G : D → Spfib(C). However, by Lemma 6.1.9 there exists a
fiberwise left exact functor G lifting g, and by the previous corollary this admits a
pointwise left adjoint F ; it only remains to show that for every t : A→ B in T the
Beck-Chevalley map Ft∗ ⇒ t∗F is an equivalence.

However, for the diagram

D(A) Spfib(C)(A) C(A)

D(B) Spfib(C)(B) C(B)

G Ω∞

t∗

G

t∗

Ω∞

t∗

both the mate of the total square as well as the mate of the right hand square are
equivalences as g and Ω∞ are parameterized right adjoints. By the compatiblity
of mates with pasting we conclude that Ft∗ ⇒ t∗F becomes an equivalence after
precomposition with Σ∞

+ : C(B)→ Spfib(C)(B). Therefore the claim follows by the
first half of Lemma 6.2.14. �

Proof of Theorem 6.2.13. By the same reduction as in the semiadditive case (The-
orem 4.8.10) we may assume that T has a terminal object 1, and we only have

to construct for each given X ∈ D(1) a left adjoint functor F : SpP
T
→ D with

F (Σ∞
+ (1)) ≃ X .

To this end, we simply observe that Theorem 4.8.10 provides us with a left adjoint
f : CMonPT → D with f(P(1)) ≃ X , and by the previous proposition f factors as

CMonPT
Σ∞

−−→ Spfib(CMonPT ) = SpP
T

F
−→ D

for some left adjoint F , which is then the desired functor. �

Corollary 6.2.17. Let S be a T -∞-category equivalent to Spc
T

and let D be a
T -cocomplete P -stable T -∞-category. Then we have an equivalence

FunLT (Σ
∞
+ ,D) : Fun

L
T (Sp

P (S),D)
≃
−−→ FunLT (S,D). �

7. The universal property of global spectra

In this section, we will prove the main result of this article: an interpretation of
the global ∞-category of global spectra, defined via certain localizations of sym-
metric G-spectra generalizing [Sch18, Hau19], in terms of the abstract stabilization
procedure we have described in the previous section.
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7.1. Stable G-global homotopy theory. We start by recalling the ∞-category
of G-global spectra for a finite group G, and then show how these assemble for
varying G into a global ∞-category Spgl.

Definition 7.1.1. We write Spectra for the category of symmetric spectra in the
sense of [HSS00, Definition 1.2.2]. We will as usual evaluate symmetric spectra
more generally at all finite sets (and not only at the standard sets {1, . . . , n} for
n ≥ 0), see e.g. [Hau17, 2.4].

We write G-Spectra for the category of G-objects in Spectra and call its objects
(symmetric) G-spectra.

For a finite groupG, we refer the reader to [Hau17, Definition 2.35] for the definition
of G-stable equivalences of symmetric G-spectra, to which we will refer as G-weak
equivalences below.

Definition 7.1.2. Let G be a finite group and let f : X → Y be a map of symmetric
G-spectra. We call f a G-global weak equivalence if ϕ∗f is an H-weak equivalence
for every group homomorphism ϕ : H → G (not necessarily injective).

Theorem 7.1.3 (See [Len20, Proposition 3.1.20 and Theorem 3.1.41]). There is a
unique (combinatorial) model structure on G-Spectra with

• weak equivalences the G-global weak equivalences and
• acyclic fibrations those maps f such that f(A)ϕ is an acyclic Kan fibration
for all finite sets A, all H ⊂ ΣA, and all ϕ : H → G.

We call this the projective G-global model structure. �

Remark 7.1.4. For G = 1 the above was first studied by Hausmann [Hau19], who
also exhibited it as a Bousfield localization of Schwede’s global orthogonal spectra
[Sch18, 4.1] at certain ‘Fin-global weak equivalences,’ see [Hau19, Theorem 5.3].

Lemma 7.1.5 (See [Len20, Lemma 3.1.49]). Let α : G→ H be a homomorphism.
Then the adjunction

α! : G-SpectraG-gl proj ⇄ H-SpectraH-gl proj :α
∗

is a Quillen adjunction with homotopical right adjoint. �

There are also injective analogues of the above model structures that will become
useful below:

Theorem 7.1.6 (See [Len20, Corollary 3.1.46]). There is a unique (combinatorial)
model structure on G-Spectra with

• weak equivalences the G-global weak equivalences and
• cofibrations the injective cofibrations (i.e. levelwise injections).

We call this the injective G-global model structure. �

7.1.1. Relation to unstable G-global homotopy theory. Passing to pointwise local-

izations as before, we get a global ∞-category Spgl such that Spgl(G) = SpglG is
the ∞-category of G-global spectra, with functoriality given via restriction. Let us
now relate this to the unstable models from 3.1.
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Construction 7.1.7. Let X be an I-space (or, more generally, an I-space). Then
we define its unbased suspension spectrum Σ•

+X , cf. [SS12, discussion before Propo-
sition 3.19], via

(Σ•
+X)(A) := SA ∧X(A)+ = ΣA+X(A)

with the diagonal ΣA-action and with structure maps given by

SA ∧ (Σ•
+X)(B) = SA ∧

(
SB ∧X(B)+

)
∼= SA∐B ∧X(B)+

SA∐B∧X(incl)
−−−−−−−−−→ SA∐B ∧X(A ∐B)+ = (Σ•

+X)(A ∐B)

where the unlabelled isomorphism is the canonical one.

This has a right adjoint Ω• (e.g. by the Special Adjoint Functor Theorem); for any
finite group G, we get an induced adjunction G-I-SSet ⇄ G-Spectra by pulling
through the G-actions, which we again denote by Σ•

+ ⊣ Ω•.

Warning 7.1.8. Beware that [Len20] uses different (more elaborate) notation for
the right adjoint, reserving the above for the right adjoint of Σ•

+ : G-I-SSet →
G-Spectra. However, as the latter adjoint will play no role here, we have decided
to use the above, simpler notation.

Lemma 7.1.9 (See [Len20, Proposition 3.2.2, Corollary 3.2.6, and Remark 3.2.7]).
The above functor Σ•

+ preserves G-global weak equivalences and it is part of a
Quillen adjunction

Σ•
+ : G-I-SSetG-gl ⇄ G-SpectraG-gl proj :Ω

•. �

In particular, we get a global functor Σ•
+ : S

gl → Spgl, and this admits a pointwise
adjoint RΩ• as Quillen adjunctions induce adjunctions of∞-categories. In fact we
have:

Proposition 7.1.10. The global functor Σ•
+ : S

gl → Spgl admits a parameterized
right adjoint, given pointwise by the right derived functors RΩ•.

We will denote this right adjoint simply by RΩ• again.

Proof. As we already know that these form pointwise right adjoints, it only re-
mains to verify the Beck-Chevalley condition, i.e. that for every α : H → G the
canonical mate α∗RΩ• ⇒ RΩ•α∗ is an equivalence. This can be checked on the
level of homotopy categories, for which we pick a fibrant replacement functor for
the projective H-global model structure on H-Spectra, i.e. an endofunctor P tak-
ing values in projectively fibrant objects together with a natural transformation
ι : id ⇒ P that is levelwise an H-global weak equivalence. As Σ•

+ and α∗ are ho-
motopical (Lemma 7.1.9 and Lemma 7.1.5, respectively) and Ω• is right Quillen
(Lemma 7.1.9 again), the mate is then represented for any fibrant G-spectrum X
by the lower composite α∗Ω•X → Ω•Pα∗X in the diagram

α∗Ω•X Ω•Σ•
+α

∗Ω•X Ω•α∗Σ•
+Ω

•X Ω•α∗X

Ω•PΣ•
+α

∗Ω•X Ω•Pα∗Σ•
+Ω

•X Ω•Pα∗X

η

ι

ε

ι ι

ε

in which the two squares commute simply by naturality. However, the top composite
is simply the identity (as the adjunction was defined by pulling through the actions);
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on the other hand, ι : α∗X → Pα∗X is an H-global weak equivalence of fibrant
objects (α∗ being right Quillen), hence Ω•ι : Ω•α∗X → Ω•Pα∗X is an H-global
weak equivalence by Ken Brown’s Lemma (Ω• being right Quillen). The claim now
follows by 2-out-of-3. �

7.1.2. A t-structure. The model structures from Theorems 7.1.3 and 7.1.6 are stable
[Len20, Proposition 3.1.48], and so SpglG is a stable ∞-category. We will close this
discussion by establishing a t-structure on it which generalizes Schwede’s t-structure
on the global stable homotopy category from [Sch18, Theorem 4.4.9]. For this we
first introduce:

Construction 7.1.11. LetH be a finite group, let ϕ : H → G be a homomorphism,
and let k ∈ Z. If X is any G-global spectrum, then the k-th ϕ-equivariant homotopy
group πϕk (X) is the usual equivariant homotopy group πHk (ϕ∗X), i.e. the hom set

[ΣkS, ϕ∗X ] in theH-equivariant stable homotopy category, with the group structure
coming from semiadditivity.

Equivalently (but more intrinsically), we can also describe πϕk (X) as the hom

set [Σ•+k
+ I(H, –) ×ϕ G,X ] in the homotopy category of SpglG, see [Len20, Corol-

lary 3.3.4].

Theorem 7.1.12. The stable∞-category SpglG is compactly generated by the objects
Σ•

+I(H, –)×ϕG for homomorphisms ϕ : H → G from finite groups to G. Moreover,
it admits a right complete t-structure with

(1) connective part (SpglG)≥0 those G-global spectra that are G-globally connective,
i.e. πϕkX = 0 for all k < 0,

(2) coconnective part (SpglG)≤0 those G-global spectra that are G-globally cocon-
nective, i.e. ϕϕkX = 0 for all k > 0.

Here we recall [Lur17, p. 44] that a t-structure on a stable ∞-category C is called
right complete if the truncations exhibit C as the inverse limit

· · ·
τ≥−2
−−−→ C≥−2

τ≥−1
−−−→ C≥−1

τ≥0
−−→ C≥0.

By [Lur17, Proposition 1.2.1.19] this is equivalent to demanding that
⋂
n C≤−n

consist only of zero objects.

Proof. We first observe that theG-global spectra Σ•
+I(H, –)×ϕG for finite groupsH

(up to isomorphism) and homomorphisms ϕ : H → G form a set of compact gener-
ators. Indeed, the ϕ-equivariant homotopy groups for varying ϕ detect zero objects
as the H-equivariant homotopy groups for everyH do [Hau17, Proposition 4.9-(iii)],
and they moreover commute with coproducts as the classical equivariant homotopy

groups do (by the same argument) and since ϕ∗ : SpglG → SpH is a left adjoint by
[Len20, Corollary 3.3.4].

With this established, [Lur17, Proposition 1.4.4.11] yields a t-structure on SpglG
with connective part (SpglG)≥0 the smallest subcategory closed under small colimits
and extensions containing all the Σ•

+I(H, –) ×ϕ G. We claim that this has the
desired properties.

To see this, we let Y be a G-global spectrum. Then the non-negative homotopy
groups of Y vanish if and only if maps(Σ•

+I(H, –)×ϕ G, Y ) ≃ 0 for all ϕ : H → G.
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On the other hand, the class of objects X for which maps(X,Y ) ≃ 0 is closed

under colimits and extensions, so it has to contain all of (SpglG)≥0 in this case,

i.e. (SpglG)≤−1 consists precisely of those objects with trivial non-negative homotopy
groups. As suspension shifts (H-equivariant, henceG-global) homotopy groups, this
proves the characterization of the coconnective objects.

On the other hand, the connective G-global spectra contain all the Σ•
+I(H, –) ×ϕ

G’s and they are closed under small coproducts (see above) as well as cofibers

and extensions (by the long exact sequence), i.e. every object in (SpglG)≥0 is G-
globally connective. Conversely, if X is G-globally connective, then there is a

cofiber sequence X≥0 → X → X≤−1 with X≥0 ∈ (SpglG)≥0 and X≤−1 ∈ (SpglG)≤−1

by what it means to be a t-structure. But then X≥0 is G-globally connective by
the above, whence so is the cofiber X≤−1. But on the other hand X≤−1 has trivial

non-negative homotopy groups, so X≤−1 ≃ 0 and hence X ≃ X≥0 ∈ (SpglG)≥0 as
claimed.

This finishes the construction of the desired t-structure. Right completeness is

immediate as any object in
⋂
n≥0(Sp

gl
G)≤−n has trivial homotopy groups. �

7.2. From global Γ-spaces to global spectra. Segal’s classical Delooping The-
orem [Seg74] relates (very special) Γ-spaces to connective spectra. We will now
recall a G-global refinement of this from [Len20] and interpret it in the parameter-
ized context.

Construction 7.2.1. We define a functor E⊗ : Γ-I-SSet∗ → Spectra from the
1-category of global Γ-spaces X satisfying X(0+) = ∗ to symmetric spectra via the
SSet∗-enriched coend

E⊗X :=

∫ T+∈Γ

S
×T ⊗X(T+)

with the evident functoriality in X ; here ⊗ denotes the pointwise smash product
of a spectrum with a pointed I-simplicial set, see [Len20, Construction 3.2.9].

For any finite group G, pulling through the G-actions yields a functor

E⊗ : Γ-G-I-SSet∗ → G-Spectra

that we again denote by E⊗.

Proposition 7.2.2. For any finite G, there is a model structure on Γ-G-I-SSet∗
in which a map f is a weak equivalence or fibration if and only if f(S+) is a weak
equivalence or fibration in the model structure on (G×ΣS)-I-SSet from Theo-
rem 3.1.12 for every finite set S; in particular, its weak equivalences are precisely
the G-global level weak equivalences.

Moreover, the above functor E⊗ is homotopical and part of a Quillen adjunction

E⊗ : Γ-G-I-SSet∗ ⇄ G-SpectraG-gl inj :Φ
⊗.

Proof. The existence of the model structure is part of [Len20, Theorem 2.2.31],
while the remaining statements appear as Corollaries 3.4.20 and 3.4.24 of op. cit. �

Remark 7.2.3. While the precise form of the above right adjoint will not be
relevant below, we record that there is a natural isomorphism (Φ⊗X)(1+) ∼= Ω•X ,
see [Len20, Construction 3.2.17]. Restricting to injectively fibrant objects, we in
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particular immediately obtain an equivalence URΦ⊗ ≃ RΩ• of derived functors for
any fixed G.

Passing to localizations, E⊗ induces a global functor ΓS gl
I,∗ → Spgl.

Lemma 7.2.4. The global functor E⊗ : ΓS gl
I,∗ → Spgl admits a parameterized right

adjoint which is pointwise given by the RΦ⊗.

We will denote this parameterized right adjoint simply by RΦ⊗ again.

Proof. It only remains to prove that for every α : H → G the mate transformation
α∗RΦ⊗ ⇒ RΦ⊗α∗ at the level of homotopy categories is an equivalence. By the
same computation as in Proposition 7.1.10 this reduces to showing that for any
injectively fibrant G-global spectrum X and some (hence any) injectively fibrant
replacement ι : α∗X → Y of G-global spectra the induced map Φ⊗ι : Φ⊗α∗X →
Φ⊗Y = RΦ⊗α∗X is an H-global level weak equivalence. This is precisely the
content of [Len20, claim in proof of Proposition 3.4.30]. �

Definition 7.2.5. A special G-global Γ-space X ∈ Γ-G-I-SSet∗ is called very
special if for every finite group H , every homomorphism ϕ : H → G, and some
(hence any) completeH-set universe UH the induced monoid structure on πϕ0 (X) :=
π0

(
(ϕ∗X)(1+)(UH)

)
coming from the zig-zag

X(1+)×X(1+)
ρ
←−
∼
X(2+)

X(µ)
−−−→ X(1+),

where µ is defined by µ(1) = µ(2) = 1, is a group structure. We write ΓS gl, vspc
I,∗ ⊂

ΓS gl
I,∗ for the full global subcategory of very special objects.

Remark 7.2.6. The above condition is equivalent to ϕ∗X(UH) being very special
as an H-equivariant Γ-space in the sense of [Ost16, Definition 4.5] for every H and
ϕ as above, see [Len20, discussion after Definition 3.4.12].

We can now rephrase the G-global delooping theorem [Len20, Theorem 3.4.21] in
our setting as follows:

Theorem 7.2.7. The parameterized adjunction E⊗ ⊣ RΦ⊗ restricts to an equiva-

lence ΓS gl, vspc
I,∗ ≃ Spgl

≥0
. �

Finally, we want to reinterpret this in terms of stabilizations:

Theorem 7.2.8. The global ∞-category Spgl is Orb-stable and the functor

RΦ⊗ : Spgl → ΓS gl, spc
I,∗ (17)

is the universal Orb-stabilization.

For the proof of the theorem we will need two lemmas:

Lemma 7.2.9. The adjunction incl : (SpglG)≥0 ⇄ SpglG :τ≥0 is the universal stabi-
lization in the world of presentable ∞-categories.

Proof. By Theorem 7.1.12, (SpglG)≥0 is the connective part of a right complete t-
structure. As mentioned without proof in the introduction of [Lur18, Appendix
C], this formally implies the statement of the lemma. Let us give the argument
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in this generality for completeness: given a right complete t-structure on a stable
∞-category C we consider the diagram

· · · C≥0 C≥0 C≥0

· · · C≥−2 C≥−1 C≥0

Ω

Ω2≃

Ω Ω
≃

Ω≃ id≃

τ≥−2 τ≥−1 τ≥0

where the little squares are filled by the total mates of the identity transforma-
tions Σn ◦ incl = Σn−1 ◦ Σ. Passing to row-wise homotopy limits we then get a
commutative diagram

Sp(C≥0) = limn C≥0

C≥0

limn C≥−n

Ω∞=pr0

limn Ωn

pr0

in which the vertical map on the left is an equivalence as a homotopy limit of
equivalences. On the other hand, by right completeness the lower map agrees up to
equivalence with τ≥0 : C → C≥0; the claim follows immediately as Ω∞ : Sp(C≥0)→
C≥0 is the universal stabilization by [Lur17, Remark 1.4.2.25]. �

Lemma 7.2.10. Let T be an∞-category and let U : D → C be a T -functor such that
D is fiberwise stable, C has fiberwise finite limits, and each U(A) : D(A)→ C(A) is
a stabilization in the non-parameterized sense. Then U is a fiberwise stabilization.

Put differently, if we already know fiberwise stability of the source, then fiberwise
stabilizations can be checked pointwise without regards to any homotopies or higher
structure.

Proof. In the naturality square

Spfib(D) Spfib(C)

D C

Ω∞

Spfib(U)

Ω∞

U

the left hand vertical arrow is an equivalence as D is fiberwise stable, and so is the
top horizontal map as

(
Spfib(U)

)
(A) = Sp

(
U(A)

)
and each U(A) was assumed to

be a stabilization. Finally, the right hand vertical map is a fiberwise stabilization
by construction, so the claim follows immediately. �

Proof of Theorem 7.2.8. As each SpglG is stable and all restriction maps between
them are exact (being right adjoints), it will suffice by the previous lemma that

RΦ⊗ : SpglG → ΓS gl, spc
I,∗ (G)

is a stabilization in the non-parameterized sense for every fixed G, for which it
suffices by stability of the source that this induces an equivalence after applying
spectrification. By Lemma 7.2.9, it suffices to show this for the restriction to

(SpglG)≥0, for which it is then in turn enough by Theorem 7.2.7 that the inclusion
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incl : ΓS gl, vspc
I,∗ (G) →֒ ΓS gl, spc

I,∗ (G) of very special G-global Γ-spaces induces an
equivalence after spectrification.

For this we observe that the loop space functor Ω: ΓS gl, spc
I,∗ (G) → ΓS gl, spc

I,∗ (G)

factors through ΓS gl, vspc
I,∗ (G) as for any special G-global Γ-space X the commuta-

tive monoid structure on πϕ0 (ΩX) coming from the Γ-space structure agrees with
the group structure coming from Ω by the Eckmann-Hilton argument. It is then

clear that for the induced functor Sp(Ω): Sp(ΓS gl, spc
I,∗ (G)) → Sp(ΓS gl, vspc

I,∗ (G))

the composites Sp(incl) Sp(Ω) and Sp(Ω) Sp(incl) are given by the respective loop
functors, so they are equivalences by stability. The claim follows by 2-out-of-6. �

7.3. Proof of Theorem C. Using the above we now easily get:

Theorem 7.3.1. The functor RΩ• : Spgl → S
gl exhibits Spgl as the Orb-stable

envelope of S
gl, i.e. for every Orb-stable global ∞-category C postcomposition with

RΩ• induces an equivalence

FunOrb-lex
Glo (C,RΩ•) : FunOrb-ex

Glo (C,Spgl)→ FunOrb-lex
Glo (C,S gl).

Moreover, the left adjoint Σ•
+ exhibits Spgl as the Orb-stable completion in the

following sense: for any globally cocomplete Orb-stable global ∞-category D pre-
composition with Σ•

+ yields an equivalence

FunLGlo(Σ
•
+,D) : Fun

L
Glo(Sp

gl,D)→ FunLGlo(S
gl,D).

Proof. By Theorem 6.2.12 and Corollary 6.2.17, respectively, together with Corol-
lary 5.3.6 it will suffice to show that the diagrams

Spgl S
gl

ΓS gl, spc
I,∗

RΩ•

RΦ⊗ U

and

Spgl S
gl

ΓS gl, spc
I,∗

Σ•
+

E⊗ P

of global functors commute up to equivalence.

By uniqueness of adjoints, it suffices to prove this for the second diagram, for which

it is enough by the universal property of global spaces to chase through ∗ ∈ S
gl
1 ;

in particular, it suffices to show that this commutes after evaluation at the trivial
group. But by uniqueness of adjoints again, it is then enough to prove this for the
diagram on the left instead, where this is immediate from Remark 7.2.3. �

Together with Theorem 3.3.2 we then immediately get Theorem C from the intro-
duction:

Theorem 7.3.2. Let D be any globally cocomplete Orb-stable global ∞-category.

Then evaluation at the global sphere spectrum S ∼= Σ•
+(∗) ∈ Spgl1 defines an equiv-

alence

FunLGlo(Sp
gl,D)

≃
−−→ D.

Put differently, Spgl is the free globally cocomplete (or presentable) Orb-stable global

∞-category on one generator (namely, the global sphere spectrum S). �

Comparing universal properties we can also reformulate this as follows:
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Corollary 7.3.3. The essentially unique left adjoint functor SpOrb

Glo
→ Spgl sending

Σ∞
+ (∗) to S is an equivalence. �

Appendix A. Slices of (2, 1)-categories

In this short appendix we will prove that for a strict (2, 1)-category the∞-categorical
and 2-categorical slices agree. More precisely:

Proposition A.1. Let C be a strict (2, 1)-category. Then the cocartesian fibration

ev1 : N∆(C )∆
1

→ N∆(C ) classifies the homotopy coherent nerve of the composition

C
C/•
−−→ Cat(2,1)

N∆−−→ Cat∞.

Proof. We begin by making the 2-categorical Grothendieck construction π : Gr→ C

(Construction 5.2.5) of the functor C/• : C → Cat(2,1) explicit, which, upon passing
to homotopy coherent nerves, will then yield a concrete model of the unstraighten-
ing:

(1) An object of Gr is a morphism f : X → Y in C .
(2) A morphism f → g is a diagram

X1 X2

Y1 Y2

x

f g

y

θ (18)

(the pair (x, θ) being a morphism from the pushforward C/y(f) to g in C/Y2
).

Composition of morphisms is given by composition of 1-cells and pasting of
2-cells in C .

(3) A 2-cell between two such morphisms (x, θ, y), (x′, θ′, y′) is a pair of a 2-cell
σ : x⇒ x′ and a 2-cell τ : y ⇒ y′ such that the pastings

X1 X2

Y1 Y2

f

x′

x

σ

g

y

θ
and

X1 X2

Y1 Y2

f

x′

g

y′

y

θ′

τ

agree. Horizontal and vertical composition of 2-cells is given by horizontal and
vertical composition, respectively, in C .

The projection π : Gr → C sends an object f : X → Y to Y , a morphism (18) to y,
and a 2-cell (σ, τ) to τ .

The homotopy coherent nerve N∆(Gr) is then a strictly 3-coskeletal simplicial set,
hence it suffices to describe the 2-truncation and to characterize which diagrams
∂∆3 → N∆(G ) extend over ∆3. Unravelling the definitions, we get:

(1) A vertex of N∆(G ) is a morphism f : X → Y in C .
(2) An edge f → g in N∆(G ) is a diagram (18).
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(3) A 2-simplex with boundary

X0 X1

Y0 Y1

f0

x01

f1
θ01

y01

X1 X2

Y1 Y2

f1

x12

f2
θ12

y12

X0 X2

Y0 Y2

f0

x02

f2
θ02

y02

amounts to the data of a natural transformation σ : x02 ⇒ x12x01 and a natural
transformation τ : y02 ⇒ y12y01 such that the two pastings

X0 X1 X2

Y0 Y1 Y2

f0

x01

f1
θ01

x12

f2
θ12

y02

y01

τ

y12

and

X1

X0 X2

Y0 Y2

x12x01

f0

x02

σ

f2
θ02

y02

agree.
(4) A diagram ∂∆3 → N∆(Gr) corresponding to

X1

X0 X2

x12x01

x02

σ012

X1

X0 X3

x13x01

x03

σ013

X2

X0 X3

x23x02

x03

σ023

X2

X1 X3

x23x12

x13

σ123

Y1

Y0 Y2

y12y01

y02

τ012

Y1

Y0 Y3

y13y01

y03

τ013

Y2

Y0 Y3

y23y02

y03

τ023

Y2

Y1 Y3

y23y12

y13

τ123

(19)

extends to ∆3 if and only if the pastings

X0 X1

X3 X2

x02

x01

x03 x12

σ012

σ023

x23

and

X0 X1

X3 X2

x01

x03 x12x13

x23

σ123

σ013

agree, and likewise for the τ ’s. Put differently, ∂∆3 → N∆(Gr) extends over
∆3 if and only if the two maps ∂∆3 → N∆(C ) defined by (19) extend over ∆3.

The degeneracy map N∆(Gr)0 → N∆(Gr)1 is given by sending f : X → Y to the
square

X X

Y Y

id

f f

id

id

and similarly the degeneracies N∆(Gr)1 → N∆(Gr)2 are given by inserting identity
arrows and identity 2-cells.

The map N∆(π) : N∆(Gr)→ N∆(C ) is the evident forgetful map. It then remains to

construct an equivalence N∆(Gr) ≃ N∆(C )∆
1

of cocartesian fibrations over N∆(Gr).
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For this we observe that N∆(C )∆
1

is again strictly 3-coskeletal (as N∆(C ) is), and
that unravelling definitions it can be described as follows:

(1) A vertex of N∆(C )∆
1

is a morphism f : X → Y in C .

(2) An edge f → g in N∆(C )∆
1

is a diagram

X1 X2

Y1 Y2.

f

x

g

θ

θ′

y

(20)

(3) A 2-simplex in N∆(C )∆
1

with boundary

X0 X1

Y0 Y1

f0

x01

f1
θ01

y01

X1 X2

Y1 Y2

f1

x12

f2
θ12

y12

X0 X2

Y0 Y2

f0

x02

f2
θ02

y02

(where we have pasted the two natural isomorphisms and omitted the middle
arrow) amounts to the data of a natural transformation σ : x02 ⇒ x12x01 and
a transformation τ : y02 ⇒ y12y01 satisfying the same conditions as for N∆(G ).

(4) A diagram ∂∆3 → N∆(C )∆
1

corresponding to (19) extends to ∆3 if and only if
it satisfies the same pasting condition as for N∆(G ), i.e. if and only if the two
maps ∂∆3 → N∆(C ) defined by the above extend to ∆3.

In each case, the degeneracy maps are again given by inserting identity arrows and
2-cells.

It is then straight-forward to check that we have a unique map Φ: N∆(C )∆
1

→
N∆(Gr) that is the identity on vertices, sends an edge (20) to the edge given by

pasting of θ and (θ′)−1, and that sends a 2-simplex of N∆(C )∆
1

corresponding to
σ : x02 ⇒ x12x01, τ : y02 ⇒ y12y01 to the 2-simplex of N∆(Gr) corresponding to
the same transformations. This is clearly a map over N∆(C ) and so by [Lur09,
Proposition 3.1.3.5] it only remains to show that it induces equivalences on fibers.

It is bijective on objects by definition, so it only remains to prove that for all
f : X1 → Y , g : X2 → Y the induced map

HomL
(N∆(C )∆1)Y

(f, g)→ HomL
N∆(Gr)Y (f, g) (21)

is a weak homotopy equivalence. However, both sides are nerves of groupoids, so
it is enough to show that it is surjective on vertices and that for any two vertices
α, β on the left hand side it induces a bijection between edges α → β and edges
between their images.

For the first statement, it suffices to observe that by definition (21) is given on
vertices by the effect of Φ on edges f → g; thus, given any edge (x, idY , σ) of
N∆(G )Y , a preimage is given by

X1 X2

Y Y .

f f

x

g

σ

id

id
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Similarly, the effect of (21) on edges is induced by the effect of Φ on 2-cells, so it
follows immediately from the above description that it induces bijections between
edges α→ β and edges between their images. �

Remark A.2. Let I be a (say, strict) (2, 1)-category; as announced in [Dus01], the
∞-categorical functor category N∆(C )N∆(I ) can be identified with the homotopy

coherent nerve of the strict (2, 1)-category Funpseudo(I ,C ) of normal (i.e. strictly
unital) pseudofunctors I → C , pseudonatural transformations, and modifications.
If one is willing to take this for granted, the proof of the proposition can be sig-
nificantly shortened, as the above Grothendieck construction Gr is canonically iso-
morphic to Funpseudo([1],C ).

However, the authors are unaware of any place in the literature where such a com-
parison is actually proven: in particular, the announced sequel to [Dus01] appar-
ently never appeared. On the level of objects (i.e. that maps N∆(I ) → N∆(C )
correspond to normal pseudofunctors I → C ) a detailed proof is given as [Lur23,
Tag 00AU]. The statement that at least every pseudonatural transformation of func-
tors I → C gives rise to a transformation of maps N∆(I ) → N∆(C ) appears as
[BFB05, Proposition 4.4], but its proof is left as an exercise.
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