
Annotating traversable gaps in walkable environments

Jordi L. Vermeulen Arne Hillebrand Roland Geraerts

(a) (b) (c) (d)

Fig. 1. The annotation process of traversable gaps in a 3D environment. (a) An unprocessed 3D environment. (b) The red areas are not walkable because
the slope is too high or the vertical clearance to obstacles is too low. (c) The blue areas denote the walkable areas in the environment; note that there are
gaps between the steps. (d) Our algorithm identifies and fills these gaps with the green polygons such that agents can continuously navigate the environment.

Abstract— Autonomous agents typically need a navigation
mesh of a 3D virtual environment to allow efficient path
planning. This mesh needs as input a continuous representation
of the walkable areas. However, the walkable environment (WE),
i.e. the parts of the 3D environment that an agent can walk
on, may contain gaps. These may be due to the filtering steps
performed to compute the WE, because of modelling errors
in the 3D model, or simply be part of the geometry of the
environment.

We provide an algorithm that identifies and fills these gaps.
We detect gaps, up to a given distance, between pairs of
boundary edges of the walkable environment, and fill them
with polygons. We employ a heuristic for choosing which pairs
of edges should be connected.

We compare our algorithm to Recast [10], a voxel-based
method for navigation mesh generation. We find that our
method gives more accurate results in many environments: it
retains the exact representation of the walkable environment,
semantically separates the gaps from the walkable areas, and
requires no tweaking of parameters to obtain good results.
However, our method is currently slower than Recast, and
requires more memory.

I. INTRODUCTION

A big challenge for mobile autonomous agents (such

as robots or virtual humans) is to navigate complex 3D

environments. The 3D environment is typically represented

as the free configuration space [9] of a cylinder of given

height and radius, with an extra restriction on the slope of

the surface. This free configuration space is computed as

a walkable environment (WE) [5], [12], [14], from which a

navigation mesh is generated for efficient path planning [16].

To allow accurate navigation, the WE needs to present a

continuous representation of the 3D environment: agents can

only navigate between connected parts of the WE. However,

if we simply extract the WE, small steps or obstacles

The authors are with the Department of Information and Computing
Sciences, Utrecht University, Utrecht, the Netherlands
{J.L.Vermeulen; A.Hillebrand; R.J.Geraerts}@uu.nl

may cause traversable regions to become disconnected, as

illustrated in Fig. 1. In addition, gaps may also be present

in the environment due to modelling errors, or as part of

the input geometry (e.g. metal grate floorboards). Such gaps

need to be dealt with to allow realistic navigation of the

environment.

Contribution. We present a novel method that identifies

and fills gaps in a walkable environment so that an agent

can continuously navigate the environment. We only annotate

traversable gaps – that is, gaps that the agent can realistically

navigate across. These gaps are annotated, allowing them

to be taken into account during path- and motion planning

(e.g. a foot placement system can avoid the gaps). This

method preserves the full detail of the walkable environment,

facilitating the generation of high-quality navigation meshes.

The rest of this paper is structured as follows. In Section II,

we discuss related work in navigation mesh generation and

gap filling techniques in polygonal environments. In Section

III, we give some definitions and notational conventions.

Section IV defines our problem more formally. In Section V,

we describe our algorithm for detecting and filling gaps in

walkable environments. Section VI describes the experiments

we performed; the results are described and interpreted in

Section VII. In Section VIII, we conclude that our method

gives more detailed and semantically useful results than

existing methods, and we discuss current limitations of our

method.

II. RELATED WORK

There are several areas of research that deal with the

detection and filling of gaps in 3D environments. In this

section we summarise how existing methods that determine

the walkable area (and/or build a navigation mesh) deal with

the presence of gaps in the input. We also consider the

problem from the perspective of mesh repair.

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3081-5/18/$31.00 ©2018 IEEE 3045

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:05:37 UTC from IEEE Xplore. Restrictions apply.

A. Walkable areas

Several automated methods for finding the walkable areas

of a polygonal 3D environment exist. They can be subdivided

into two groups: volumetric and surface-based methods.

Volumetric approaches work on a voxelised representation

of the environment. The main advantage of such methods is

that they circumvent many complicated and sometimes am-

biguous cases involving degeneracies, overlaps, intersections

and gaps. These cases often occur within a single voxel,

making them simple to solve. A disadvantage is that these

methods tend to be sensitive to the size of the voxels: small

voxels will cause increased computation times and mem-

ory consumption on environments with large dimensions,

whereas large voxels may result in a lack of detail. The

result may also depend on how the input aligns with the grid.

Two well-known volumetric methods are Recast [10] and

NEOGEN [11]. Li and Huang [7] apply the morphological

closing operator to a voxelised environment to close gaps.

Surface-based methods work directly on the polygonal

representation of the environment, and thus have no problems

with limited resolution. The downside is that these methods

need to deal with the full complexity and possible ambiguity

of each environment. Methods such as TopoPlan [6] assume

the input contains no intersections between triangles, while

others, like the method by Polak [12], incorporate processing

steps to resolve such errors. Lopez et al. [8] solve the

navigation of gaps during simulation, but this would make

the simulation of large numbers of agents slow. We choose

a surface-based approach for our algorithm, as we want to

retain the full detail of the input.

B. Mesh repair

Mesh repair is concerned with the detection and repa-

ration of errors in polygonal meshes. The objectives and

requirements of mesh repair are typically quite different from

our own. For one, mesh repair may not restrict itself to

the creation of new polygons, but may also alter the input

geometry. This is undesirable for our application, as we

wish to maintain a clear distinction between the walkable

surfaces and traversable gaps, to facilitate accurate path

planning. Moreover, the goal will often be to create a closed

mesh, having a clearly defined inside and outside, which is

not a property we want. A good overview of mesh repair

techniques, including common sources of errors, is given by

Attene et al. [3]. These techniques offer good inspiration, but

are too general for our purposes.

III. PRELIMINARIES

A. Notation

We work in 3D Euclidean space, with points p =
(px, py, pz) ∈ R

3. We denote the magnitude of a vector

v as |v|. We take the XY-plane as the ground plane (the

plane perpendicular to the gravity vector), with the positive

Z-axis pointing up. We work on polygonal meshes containing

only triangles, where each triangle T is a list of vertices

〈v1,v2,v3〉, which we assume to be given in counter-

clockwise order. Each vertex corresponds to a point in

R
3. The normal of a triangle is the unit vector given by

(v2−v1)×(v3−v1)
|(v2−v1)×(v3−v1)|

. We define the slope of a triangle to be

the angle between its normal and that of the ground plane.

B. Walkable environments

We take the definition of a walkable environment from Van

Toll et al. [14], which is compatible with the definition given

by Hillebrand et al. [5]. Specifically, the walkable environ-

ment (WE) of a 3D environment is the set of triangles that

can be traversed by an agent. Hence, the WE is constrained

by a minimum vertical clearance vmin and a maximum slope

αmax. Triangles in the WE are adjacent if and only if agents

can move directly from one to the other.

C. Additional definitions

We define several terms to allow an unambiguous discus-

sion of gaps.

Definition 1. An edge e = {v1,v2} is a boundary edge

when it is part of only one triangle.

Definition 2. The associated plane of a boundary edge e =
{v1,v2} is the plane through v1 and v2 perpendicular to

the ground plane. We orient the associated plane such that

the triangle that e is a part of falls on the negative side. In

point-normal notation, it is the plane formed by any point

on e (we arbitrarily take v1), and the normal calculated as

n = (v2−v1)×Z

|(v2−v1)×Z| , where Z is the vector pointing straight up.

IV. PROBLEM STATEMENT

Informally, a gap is a region where parts of the mesh are

close to each other, but not directly connected. We first make

two assumptions:

Assumption 1. The input to our algorithm is a walkable

environment WE characterised by a minimum vertical clear-

ance vmin and a maximum slope αmax.

Assumption 2. The output of our algorithm is the given

WE, augmented with polygons indicating traversable gaps.

Triangles of the input WE may be subdivided, but are not

otherwise modified.

Assumption 3. We fill gaps up to a maximum distance of

dmax < vmin

2 .

The first and second assumption simply define our input and

output. The third assumption prevents ambiguous cases in

our algorithm. Note that this assumption is not restrictive in

practice: for agents representing humans, dmax will be on

the order of 0.3 metres (large enough to cover typical stairs

and steps), while vmin will be on the order of 2 metres,

roughly the height of a person.

We only consider boundary edges for filling gaps, ignoring

the interior of each triangle. This avoids the creation of

singular edges (i.e. edges incident to more than two poly-

gons), which would occur when we fill a gap between a

boundary edge and the interior of a connected component.

Most navigation mesh generation methods do not handle

such geometry well.

3046

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:05:37 UTC from IEEE Xplore. Restrictions apply.

e1

e2

v1

v2

v3

v4

c1c2 G′

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

dmax

Fig. 2. Two boundary edges e1 and e2, with the triangles they are part
of shown in blue, are connected by a gap filler G′, shown in green. G′ is
bounded by connections c1 and c2, both having length at most dmax.

We first define the part of a boundary edge that may be

used to connect to another boundary edge:

Definition 3. The connectable section of a boundary edge

e1 with respect to boundary edge e2 is the part of e1 that is

on the non-negative side of the associated plane of e2.

The restriction by the associated planes ensures that a

boundary edge cannot be connected to something that lies

“behind” it (this is further explained in Section V-B.3).

Our definition of a gap in a walkable environment is then

as follows:

Definition 4. There is a gap between two boundary edges

e1 and e2 iff the connectable section of e1 with respect to

e2 is a non-degenerate line segment and vice versa.

We define the gap G between two boundary edges e1
and e2 as the set of points that lie on a line segment of

length at most dmax with its endpoints on the connectable

sections of e1 and e2. Unfortunately, the resulting shape is

not necessarily linear, so we cannot represent it with a finite

set of triangles. Therefore, we use the representation depicted

in Fig. 2. The gap between boundary edges e1 and e2 is filled

by a gap filler G′, which is defined by two connections c1
and c2, which are line segments with their endpoints on the

two boundary edges. Connections must have a length of at

most dmax, which implies that G′ ⊆ G. We can choose any

two connections with length at most dmax, but we want the

gap filler to be as wide as possible. In this context, we define

the width of a gap as follows:

Definition 5. If the gap filler G′ between boundary edges

e1 and e2 is given by connections c1 = {p1,p2} and c2 =
{p3,p4}, with p1 and p3 on e1 and p2 and p4 on e2,

then the width of G′ is defined as width(G′) = min(|p1 −
p3|, |p2 − p4|).

We want the gap fillers to be as wide as possible to allow the

agents passing over it to be as wide as possible. In addition,

this guarantees that the gap between e1 and e2 is always the

same as the gap between e2 and e1.

For many cases (as shown in Section V-B), we have

multiple ways of connecting a maximum width gap. When

the width is limited by the length of the shorter edge, we

make the other side as wide as possible. In other cases, we

maximise the width by making |p1−p3| and |p2−p4| equal

Fig. 3. An environment with five cycles of boundary edges, highlighted
in different colours.

and as large as possible.

It is important to note that the presence of a gap filler does

not imply an agent can step directly between any two points

on its boundary: if a gap filler is very wide, many such pairs

of points may be much further than dmax apart. Such cases

will need to be handled during simulation by the path- or

motion planning algorithm. For instance, this algorithm may

give a higher cost to sections of the path running over a gap

filler, or it may place one foot of the agent on one side of

the gap and the other foot on the other side when travelling

along a long, narrow gap.

V. THE ALGORITHM

Our algorithm consists of four major steps:

1) Find cycles of boundary edges.

2) Detect gaps for each pair of boundary edge cycles.

3) Use the detected gaps to connect cycles.

4) Use the detected gaps to fill holes.

In this section we will describe each of these steps in more

detail. Note that filling a hole means connecting the gaps

between boundary edges in the same cycle. When analysing

complexity, we use n for the number of triangles and m

for the number of boundary edges in the input. Note that

m ∈ Θ(n) in the worst case, but we typically expect the

number of boundary edges to be lower.

A. Finding cycles of boundary edges

In the first step, we simply find the cycles of boundary

edges in the WE, which we can do in O(n) time, as

connectivity information is contained in the WE. Note that

we consider multiple cycles touching in a single vertex to be

separate cycles, as we do not consider triangles touching in

one point to be adjacent. See Fig. 3 for an example.

B. Detecting gaps

In this step we detect gaps between pairs of boundary

edges. For each boundary edge e1 = {v1,v2} we determine

its axis-aligned bounding box and expand it by dmax along

all positive and negative axes. This allows us to query an

R-tree containing all the boundary edges in the environment

to efficiently find boundary edges that may be within dmax

of the edge. For each boundary edge e2 = {v3,v4} in the

query result, we attempt to make a connection with e1. As

each bounding box can intersect at most O(m) boundary

edges, we need to consider a total of at most O(m2) pairs

of boundary edges. Connecting a pair of edges consists of

four steps:

1) Split edges at closest points.

3047

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:05:37 UTC from IEEE Xplore. Restrictions apply.

2) Find two connections between pairs of split edges.

3) Limit result to non-negative side of associated plane.

4) Test for intersection with obstacles.

The first three steps take constant time, while the last step

takes at most O(f) time, with f being the number of

triangles in the 3D environment (note that in practice, this

typically takes much less time). This gives an overall time

complexity of O(fm2) for the detection of all gaps.

1) Split edges: We first find the pair of points on e1 and

e2 with minimum distance to each other; call these points u1

and u2, with u1 on e1 and u2 on e2. If |u1−u2| > dmax, we

know that there exist no points on e1 and e2 with distance

at most dmax, so the gap is too large, and we discard it.

Similarly, unless the edges are parallel, if |u1−u2| = dmax,

there is only one pair of points with distance at most dmax:

the gap is discarded, as the resulting connection would have

no area. Otherwise, we use the closest points to split the

edges into e11 = {v1,u1}, e12 = {u1,v2}, e21 = {v3,u2}
and e22 = {u2,v4}. Because our edges are always counter-

clockwise with respect to the polygon they are a part of, we

know that we must make one connection between e11 and

e22 and another between e12 and e21.

This approach does not work when e1 and e2 are parallel:

we have no unique closest points u1 and u2. In this case, we

connect each vertex as far along the other edge as possible.

2) Connect pairs of split edges: When e1 and e2 are not

parallel, we need to connect the pairs of split edges to each

other. For e11 and e22, we do this by finding the points p1

on the supporting line of e11 and p2 on the supporting line

of e22 which are equally far from the closest points and

have distance dmax to each other. In other words, we have

|p1 − u1| = |p2 − u2| and |p1 − p2| = dmax. If either of

these points is not on its respective edge, the vertex of that

edge must be within dmax of the other edge, and we connect

that vertex as far along the edge as possible. The connection

between e12 and e21 is found in the same way.

3) Restrict by associated plane: After we have found

two connections using the method described above, we need

to further refine the result. Specifically, we do not want

any connection to go “backwards” from either edge it is

connected to. More formally, we do not want to connect to

any point on the negative side of the associated plane of

either edge; see Fig. 4 for an example. This is because it

would make no semantic sense: an agent cannot traverse a

e1

e2

c1

c2

p
P −

+

Fig. 4. Connection c2 has a vertex on the negative side of the associated
plane P of e1. We restrict that vertex of c2 to the intersection of P and e2,
represented by point p. If no intersection exists, we detect no gap between
the two edges.

e1

e2

c1 c2

Fig. 5. A connection that cannot be oriented consistently. Such a connection
is invalid.

gap by stepping backwards. Furthermore, in non-coplanar

3D situations such as the one seen in Fig. 5, it could mean

that the resulting polygons could no longer be oriented

consistently, making the interpretation of the walkable sur-

face ambiguous. If an endpoint of a connection is on the

wrong side of the associated plane, we replace it with the

intersection of the associated plane and the edge the point is

on. If no intersection exists, we discard the gap filler.

4) Test obstacle intersection: The space between two

boundary edges is not necessarily empty; obstacles may be

present in the 3D environment, such as walls. To prevent

connecting two boundary edges through obstacles, we test

the final gap filler for intersection with the 3D environment.

We discard any gap filler that has an intersection, unless the

intersecting geometry is coplanar with the gap filler. This

exception prevents discarding gap fillers when they overlap

with the vertical parts of steps that were removed when

computing the WE.

C. Connecting cycles

For the connections made between distinct cycles of

boundary edges, we employ a heuristic. We do this because

there is no unique way to connect these cycles, and because

considering all possible choices is too expensive. The heuris-

tic is based on three principles:

1) Any section of an edge can be connected to only one

other edge, as otherwise singular edges are introduced.

2) A connection to an edge that is nearby when projected

onto the ground plane is preferable to one that is far

away.

3) It is important that chains of close edges are generally

handled well, meaning they are connected by one

continuous sequence of gap fillers.

(a) (b)

Fig. 6. Two gap fillers before and after being restricted by vertical planes
along the bisectors of adjacent edges. The blue polygons are the original
input, the light green and light cyan colours show the different gap fillers,
and the dark green shows the part where they overlap. Fig. (a) shows the
two gap fillers originally constructed, while Fig. (b) shows the result of
limiting the gap fillers by using the vertical planes along the bisectors of
adjacent edges (shown as dashed lines).

3048

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:05:37 UTC from IEEE Xplore. Restrictions apply.

As such, our heuristic has three main components. It first

uses vertical planes along the bisectors of adjacent edges

to limit every detected gap, as seen in Fig. 6. Then, it

determines which gaps are connected to each part of every

boundary edge. Finally, for each of these segments, it selects

the gap with the best heuristic score.

The restriction by planes is done in the same way as with

the associated plane. The remaining gap fillers are used to

build interval maps of fillers along each edge. The interval

maps subdivide each edge into intervals that are connected

by the same set of fillers. For each interval, we heuristically

choose one of the fillers using a score based on the squared

projected distance between the edges in that interval. The

score is calculated as follows. Assume that we want to know

the score on the interval [t1, t2] of edge e1 = {v1,v2} for

the filler connecting it to edge e2 = {v3,v4}, with the

filler having points p1 and p2 on e1 and p3 and p4 on

e2. We first calculate the points on e1 corresponding to the

interval as i1 = e1(t1) and i2 = e1(t2). We then convert

the interval on e1 to an interval on the filler, which we

calculate as [t′1, t
′
2], with t′1 = |i1−p1|

|p2−p1|
and t′2 = |i2−p1|

|p2−p1|
. We

obtain the corresponding part of the filler on e2 by taking

i3 = p4 + t′1 ∗ (p3 − p4) and i4 = p4 + t′2 ∗ (p3 − p4).
Note that p3 and p4 are reversed with respect to the usual

counter-clockwise order; this is because t = 0 on one end of

the filler corresponds with t = 1 on the other. The score is

then calculated as the sum of the squared shortest distances

of i3 and i4 to the line segment {i1, i2} when projected onto

the ground plane.

This heuristic score is desirable for several reasons. First,

it favours connecting edges that are close together when

projected onto the ground plane. We prefer this over the

closest edge in 3D because it prevents us from connecting

“over” or “under” other components. Second, by taking the

sum of distances of the endpoints rather than the shortest

distance between the line segments on each edge, we favour

segments that are close together over a large range, rather

than just at one point.

After taking the gap filler with the lowest score for each

interval of each edge, we need to find the mutual intervals

between pairs of edges:

Definition 6. An interval [a, b] on edge e1 with a desired

connection to edge e2 is a mutual interval iff edge e2 has

a desired connection to edge e1 on the interval [1− b, 1−a].

The mutual intervals are easily found by taking each interval

[a, b] on each edge e1 with a desired connection to e2 and

intersecting each interval on e2 that has a desired connection

with e1 with [1−b, 1−a]. Each non-empty intersection gives

us a mutual interval. The last step takes each mutual interval

and connects the edges with two triangles on that interval.

As each boundary edge can be connected to at most m−1
other boundary edges, construction of all interval maps takes

at most O(m2 log m) time. As each interval map has a

number of intervals equal to the number of elements inserted,

finding the mutual intervals takes O(m2) time per boundary

edge in the worst case, for a total worst case complexity

of O(m3). The calculation of the heuristic scores also takes

O(m3) time in the worst case: we have O(m) boundary

edges with at most O(m) intervals containing at most O(m)
elements each. This gives the entire heuristic a worst-case

complexity of O(m3).

D. Filling holes

Holes are filled using the gap fillers detected between

boundary edges in the same boundary edge cycle. We cur-

rently only handle holes that have a boundary that is a simple

polygon when projected onto the ground plane. When this

is the case, we also project all the gap fillers between the

cycle and itself onto the ground plane, giving us a set of 2D

polygons. To prevent connecting the same interval on an edge

twice, we disregard the parts of the gap fillers that connect

to an interval already used by the heuristic. We then take

the union of these polygons, yielding a new set of polygons

where each polygon may contain holes. We intersect this set

with the polygon representing the projected boundary edge

cycle, to ensure we only take the parts inside this boundary

into account. Finally, we triangulate each polygon in the

resulting set and use those triangles to fill the hole. As we

may be taking the union of up to O(m2) gap fillers, we

obtain a worst-case time complexity of O(m2 log m).

The resulting set of polygons may contain new vertices

that are not on the existing boundary, for which we need to

derive a Z-coordinate. We take a weighted average of the Z-

coordinates of all boundary vertices, with weight inversely

proportional to the distance to the new vertex.

VI. EXPERIMENTS

We evaluate our algorithm by looking at several metrics:

- Number of components: as our algorithm’s purpose is

to connect parts of the walkable areas to each other, we

consider the number of connected components in the

environment before and after applying our algorithm.

The difference between these two numbers can give

an indication of how well the algorithm manages to

connect previously unconnected regions.

- Agent width: we have also tried to make the result-

ing environment traversable by as wide an agent as

possible. To evaluate this aspect, we attempt to find a

path through the environment between 100,000 pairs of

random points for varying sizes of agents. The success

rate can give some insight into the size of agents that

would be able to navigate the environment.

- Performance: we are interested in the computational

performance of our algorithm, so we measure the time

it takes to apply our algorithm to each environment.

In addition, we perform a manual visual inspection to

look for possible defects or errors. We compare the results

obtained with our algorithm to those obtained by Recast [10].

We also attempted a comparison with NEOGEN [11], but the

implementation made available to us gave an empty output

on most of our environments, so we disregard it here.

3049

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:05:37 UTC from IEEE Xplore. Restrictions apply.

TABLE I

DESCRIPTION OF THE FOUR TEST ENVIRONMENTS.

Name Vertices Triangles Source Description

Holes 399 431 Our own A horizontal plane with holes of different shapes and sizes.

Platforms 128 192 Our own Several floating platforms at differing distances and angles, representing different kinds of
steps. Contains a mix of steps that are intersecting, exactly aligned and horizontally separated.

Terrace house 2400 6155 3D Warehouse1 A two-storey house. We removed the doors and windows to allow passage between different
areas, as well as the cars in the parking space and the toilet bowl and kitchen sink.

Town house 1476 2676 3D Warehouse2 A two-storey house on a road. We removed the doors and windows. We also removed the
roof beams to decrease the time needed to find the WE. We added a large rectangle under
the entire scene to model the ground.

1 https://3dwarehouse.sketchup.com/model.html?id=ud50c65de-58f8-4018-95cd-8b524733e14c
2 https://3dwarehouse.sketchup.com/model.html?id=ufceb8906-a322-426a-8cea-f0e60120447d

A. Test environments

We tested our algorithm on 17 different inputs taken from

a variety of sources. Eight of the environments were created

by us to test specific aspects of the algorithm’s performance,

the other nine were taken from online sources and chosen

to more closely represent real use cases. We highlight four

of the results here, but the reader is encouraged to view

the full results in reference [17]. Table I describes the four

environments.

B. Implementation

Our algorithm was implemented in C++ and makes ex-

tensive use of CGAL [2]. In particular, we use the exact

computation provided by CGAL’s CORE library. This means

we never have problems with errors due to limited precision,

but have higher memory consumption and running times. We

do not use exact computation for the building of intervals

maps and for the calculation of scores. The interval maps are

constructed with a fixed-point data type, having 32 integer

and 480 fractional bits, which is sufficiently precise. The

scores simply use 64-bit floating-point values, as a high

precision is not important in these calculations.

We obtain a walkable environment from a 3D environment

by applying the pipeline proposed by Polak [12]. We used

the ECM crowd simulation framework [15] to measure the

success rate of planning paths for agents of different widths.

C. Testing system

Our tests were performed on a machine running Windows

7, with an Intel Core i7-2600K processor (4 cores, 8 threads,

clocked at 4.3 GHz) and 16 GB of DDR3 RAM. Our program

was compiled for 64-bit with Visual Studio 2015, using

compiler version 19.00.24213.1. Our program uses CGAL

version 4.9 [2] and Boost version 1.63 for the R-tree and the

interval maps [1].

D. Recast

We used a slightly modified version of Recast [10], used

in a comparative study of navigation meshes by Van Toll et

al. [16]. This version allows the program to be run from the

command line, and exports the results to a file. To make a

fair comparison possible, we used the smallest allowed voxel

size (i.e. 0.1 metres). In addition, we set the climb height to

the value of dmax, took 45◦ as the maximum slope, and

used an agent height of 1.8 metres and a radius of 0. We

also had to disable the three available filtering steps (“low

hanging obstacles”, “ledge spans” and “walkable low height

spans”) in most environments, as these caused no result to

be given in small environments, and tended to remove steps

from stairs when they only occupied a single voxel row. Our

other settings mimicked those from reference [16].

VII. RESULTS

We will discuss the results for each of the test environ-

ments. For all images, we render the walkable area in blue,

gaps in green, and the input in transparent grey. The images

with a top-down perspective are rendered orthographically to

prevent perspective distortions near the edges.

A. Holes environment

We include this environment to explore the effects of using

different values of dmax, as seen in Fig. 7. As expected,

the holes are progressively more filled as dmax increases,

expanding from the places where the boundaries are closest

together, until they are all completely filled when dmax =
1.0. The time needed to run our algorithm is dominated

by the step in which holes are filled, and decreases from

66 seconds at dmax = 0.1 to 11 seconds at dmax = 1.0.

This is because fewer new vertices are introduced in the

environment, as more holes are filled completely.

Recast also progressively fills the holes more as the voxel

size increases, but this method is less predictable, and the

shape of the remaining holes is often only loosely related to

the shape of the hole in the input. Setting the voxel size to

1.0 ensures coverage of the entire area, but makes the result

protrude over the edges of the input. Recast processes the

environment in 0.1 ms.

B. Platforms environment

Fig. 8a shows that our algorithm performs as expected,

connecting each step to the one above and below. At the two

bigger platforms, the first steps are also connected towards

the sides, indicating the possibility of stepping onto each set

of stairs from the sides. In the left set of stairs, at the point

where it makes a right angle, one step is connected to two

3050

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:05:37 UTC from IEEE Xplore. Restrictions apply.

(a) dmax = voxel size = 0.1 (b) dmax = voxel size = 0.3 (c) dmax = voxel size = 1.0

Fig. 7. The results for the Holes environment. The top row contains the results from our algorithm and the bottom row those obtained with Recast.

(a) Platforms (b) Terrace house (c) Town house

Fig. 8. The results for the Platforms, Terrace house and Town house environments. The top row shows the results obtained with our algorithm and the
bottom row those obtained with Recast.

3051

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:05:37 UTC from IEEE Xplore. Restrictions apply.

steps above it, indicating that it is possible to cut that corner

of the stairs. Our algorithm takes about 50 seconds.

Recast handles all the steps well, resulting in one large

connected area, but there is much overshoot near the curved

stairs, and the shape is not followed particularly well there,

because it is not aligned to the axes of the voxel grid. Recast

processes the environment in 0.9 ms.

C. Terrace house environment

Fig. 8b shows that our algorithm outputs two main compo-

nents: the interior of the house, containing both the ground-

and first floor, and the roof. Our algorithm takes about 18

seconds on this environment.

Recast loses all information about steps in the environ-

ment: the stairs become a ramp, and the thresholds between

the rooms are lost. There is also a walkable area on the railing

of the stairs which is much wider than the input geometry.

Recast processes the environment in 203 ms.

D. Town house environment

Fig. 8c shows that our algorithm succeeds in connecting

all the steps to the floor or each other, resulting in three main

connected components: outside and the ground floor, the first

floor, and the roof. Our algorithm needs about 946 seconds to

process this environment, but about 98% of the time is spent

discarding the gap fillers that intersect the environment.

Recast loses all the steps again. The front parts of the

lower roof are at inconsistent heights due to the protruding

beams below it. The ramps over the two stairs are also

significantly less wide than the passages in the original

geometry. Recast processes the environment in 400 ms.

E. Agent width

The path planning experiments gives similar results be-

tween our method and Recast, indicating that both methods

produce results with roughly equally wide corridors.

VIII. CONCLUSION

We have presented a method for finding and filling gaps in

walkable environments. Our algorithm does not modify the

input and makes a clear distinction between the walkable

areas and the gaps that can be traversed.

We compared our algorithm to Recast [10], a voxel-based

method for navigation mesh generation. Our algorithm gives

a more accurate representation of the walkable environment

and the way gaps can be traversed, and the result is more

useful to path planning and animation systems, due to the

semantic annotation. However, Recast is much faster than

our own method.

Limitations. Discarding gaps when they intersect an ob-

stacle is too restrictive. For instance, we do not typically

care about intersections where only a small part of the

environment protrudes through a gap filler. In addition, we

only handle direct intersections; gap fillers with low vertical

clearance are not accounted for.

Our method currently ignores holes when their projected

boundary is not a simple polygon. Solving this would require

a modification of the algorithm such that projection is not

necessary, or a different projection method. The field of mesh

parameterisation [13] may offer mapping algorithms from

3D to 2D that would suit our application. Such an algorithm

must also map newly created vertices from 2D back to 3D.

Our algorithm will in some cases leave holes in the output

when the boundary of two cycles do not follow each other

closely, even though the distance is less than dmax. This

could be resolved by considering chains of boundary edges

forming a continuous connection. Residual holes may also

appear when there is an interaction between more than two

cycles of boundary edges. These holes could be explicitly

detected and filled in a post-processing step to our algorithm.

For both cases, we refer to Barequet and Sharir [4], who take

a similar approach in the context of mesh repair.

Finally, our implementation is slow, and may require

large amounts of memory. We could improve this with a

robust implementation using finite precision, but this is often

challenging for complex geometrical algorithms.

REFERENCES

[1] “Boost C++ libraries,” 2016, http://www.boost.org (version 1.63).
[2] “Computational geometry algorithms library,” 2016, http://www.cgal.

org (version 4.9).
[3] M. Attene, M. Campen, and L. Kobbelt, “Polygon Mesh Repairing:

An Application Perspective,” ACM Computing Surveys, vol. 45, no. 2,
pp. 15:1–15:33, 2013.

[4] G. Barequet and M. Sharir, “Filling gaps in the boundary of a
polyhedron,” Computer Aided Geometric Design, vol. 12, no. 2, pp.
207–229, 1995.

[5] A. Hillebrand, M. van den Akker, R. Geraerts, and H. Hoogeveen,
“Performing multicut on walkable environments,” in International

Conference on Combinatorial Optimization and Applications, 2016,
pp. 311–325.

[6] F. Lamarche, “Topoplan: a topological path planner for real time
human navigation under floor and ceiling constraints,” Computer

Graphics Forum, vol. 28, no. 2, pp. 649–658, 2009.
[7] T.-Y. Li and P.-Z. Huang, “Planning humanoid motions with striding

ability in a virtual environment,” in Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, vol. 4. IEEE, 2004,
pp. 3195–3200.

[8] T. Lopez, F. Lamarche, and T.-Y. Li, “Space-time planning in changing
environments: using dynamic objects for accessibility,” Computer

Animation and Virtual Worlds, vol. 23, no. 2, pp. 87–99, 2012.
[9] T. Lozano-Perez, “Spatial planning: A configuration space approach,”

IEEE Transactions on Computers, no. 2, pp. 108–120, 1983.
[10] N. Mononen, “Recast navigation toolkit,” 2016, https://github.com/

recastnavigation/recastnavigation.
[11] R. Oliva and N. Pelechano, “NEOGEN: Near optimal generator of

navigation meshes for 3D multi-layered environments,” Computers &

Graphics, vol. 37, no. 5, pp. 403–412, 2013.
[12] R. M. Polak, “Extracting walkable areas from 3D environments,”

MSc thesis, Utrecht University, 2016.
[13] A. Sheffer, E. Praun, and K. Rose, “Mesh Parameterization Methods

and their Applications,” Foundations and Trends in Computer Graph-

ics and Vision, vol. 2, no. 2, pp. 105–171, 2006.
[14] W. van Toll, A. F. Cook IV, M. J. van Kreveld, and R. Geraerts, “The

Medial Axis of a Multi-Layered Environment and its Application as
a Navigation Mesh,” 2017, https://arxiv.org/abs/1701.05141.

[15] W. van Toll, N. Jaklin, and R. Geraerts, “Towards Believable
Crowds: A Generic Multi-Level Framework for Agent Navigation,”
in ICT.OPEN 2015, 2015.

[16] W. van Toll, R. Triesscheijn, M. Kallmann, R. Oliva, N. Pelechano,
J. Pettré, and R. Geraerts, “A Comparative Study of Navigation
Meshes,” in Proceedings of the 9th International Conference on

Motion in Games, 2016, pp. 91–100.
[17] J. L. Vermeulen, “Bridging Gaps in Walkable Environments,” MSc

thesis, Utrecht University, 2017.

3052

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:05:37 UTC from IEEE Xplore. Restrictions apply.

		2018-09-08T00:32:13-0400
	Preflight Ticket Signature

