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ABSTRACT

We present constraints on the flat ΛCDM cosmological model through a joint analysis of galaxy abundance, galaxy clustering
and galaxy-galaxy lensing observables with the Kilo-Degree Survey. Our theoretical model combines a flexible conditional stel-
lar mass function, to describe the galaxy-halo connection, with a cosmological N-body simulation-calibrated halo model to de-
scribe the non-linear matter field. Our magnitude-limited bright galaxy sample combines 9-band optical-to-near-infrared photom-
etry with an extensive and complete spectroscopic training sample to provide accurate redshift and stellar mass estimates. Our faint
galaxy sample provides a background of accurately calibrated lensing measurements. We constrain the structure growth parameter
S 8 = σ8

√
Ωm/0.3 = 0.773+0.028

−0.030, and the matter density parameter Ωm = 0.290+0.021
−0.017. The galaxy-halo connection model adopted in the

work is shown to be in agreement with previous studies. Our constraints on cosmological parameters are comparable to, and consistent
with, joint ‘3 × 2pt’ clustering-lensing analyses that additionally include a cosmic shear observable. This analysis therefore brings
attention to the significant constraining power in the often-excluded non-linear scales for galaxy clustering and galaxy-galaxy lensing
observables. By adopting a theoretical model that accounts for non-linear halo bias, halo exclusion, scale-dependent galaxy bias and
the impact of baryon feedback, this work demonstrates the potential and a way forward to include non-linear scales in cosmological
analyses.

Key words. gravitational lensing: weak – methods: statistical – cosmological parameters – galaxies: haloes – dark matter – large-
scale structure of Universe.

1. Introduction

In the last quarter of the century we have seen the rise and es-
tablishment of the concordance cosmological model which de-
scribes the formation and subsequent evolution of the cosmic
structure. In this concordance model the Universe at present time
is modelled as a flat, cold dark matter (CDM) and cosmological
constant (Λ) dominated Universe with a negligible contribution
from neutrinos, and gravity described by the law of General Rel-
ativity. Furthermore, the initial power spectrum of density fluc-
tuations is assumed to be a single power-law. Such ΛCDM mod-
els are described using only six free parameters, which govern
the energy densities of baryons, Ωb, and cold dark matter, Ωdm,

the spectral index, ns, and normalisation, σ8, of the density per-
tubations power spectrum, the Hubble parameter, H0, and the
optical depth of reionisation. The flat geometry, implying that
ΩΛ = 1 − Ωb − Ωdm, is strongly supported by high precision
early-Universe measurements of the cosmic microwave back-
ground (CMB) temperature fluctuations combined with super-
nova and/or baryon acoustic oscillation distance measurements
(Planck Collaboration et al. 2020; Scolnic et al. 2018; Alam et al.
2021). Formally the models also include the total neutrino mass,
but the value of the parameter is too small for the current preci-
sion of observations (Gerbino & Lattanzi 2018).

A powerful probe of late-time cosmology is the large-scale
distribution of galaxies. Even though the stars contribute neg-
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ligibly to the overall energy density of the Universe, the light
from stars in galaxies can be used to trace the evolution of the
underlying distribution of dark matter in two complementary
ways. Firstly, the light-path from distant galaxies is impacted
by the distribution of foreground mass. This ‘gravitational lens-
ing’ effect leads to a correlation between the observed shapes
of galaxies, commonly referred to as cosmic shear. This observ-
able can be used to probe the statistical properties of the total
matter distribution in the Universe, typically quantified through
the shape and amplitude of the matter power spectrum (Heymans
et al. 2013; Hikage et al. 2019; Hamana et al. 2019; Asgari et al.
2021b; Secco et al. 2022; Amon et al. 2022a; Van Den Busch
et al. 2022). Secondly, galaxies are expected to reside within
dark matter haloes which form from the highest density peaks
in the initial Gaussian random density field (e.g. Mo et al. 2010,
and the references therein). Galaxies are therefore tracers of the
underlying dark matter distribution, and with an accurate under-
standing of how biased these tracers are, the measurement of
galaxy clustering as a function of redshift and scale provides
strong constraints on the properties of the ΛCDM model (see
for example Alam et al. 2021). It is becoming increasingly com-
mon to combine these two different ‘two-point’ (2pt) statistics,
along with a third measurement of the gravitational lensing of
background galaxies by foreground galaxies, otherwise known
as galaxy-galaxy lensing. These joint ‘3×2pt’ large-scale struc-
ture cosmological studies already have the precision to directly
constrain some cosmological parameters independently of CMB
measurements (Heymans et al. 2021; DES Collaboration et al.
2022).

In this analysis we focus on exploiting the significant preci-
sion recovered with small-scale measurements of galaxy cluster-
ing and galaxy-galaxy lensing. These non-linear scales are typi-
cally excluded from cosmological analyses owing to insufficient
or uncertain modelling of the complex relationship between
galaxies and the underlying matter distribution on these scales
(Davis et al. 1985; Dekel & Rees 1987). Galaxy bias is scale-
dependent, stochastic and changes as a function of galaxy lu-
minosity, colour and morphological type (Dekel & Lahav 1999;
Zehavi et al. 2011; Cacciato et al. 2012; Dvornik et al. 2018).
Based on these facts, it is not surprising that galaxy bias is gener-
ally considered a nuisance to be marginalised over in the recov-
ery of cosmological constraints. Many studies limit their anal-
yses to scales where the galaxy bias is considered to be linear
and scale independent (see for example van Uitert et al. 2018;
Yoon et al. 2019; DES Collaboration et al. 2022). An alternative
approach uses perturbation theory (Desjacques et al. 2018), to
expand galaxy bias modelling into the mildly non-linear regime
(e.g. Mandelbaum et al. 2013; Sánchez et al. 2017; Heymans
et al. 2021; Pandey et al. 2022). However, as a measurement
of small-scale galaxy bias also contains a wealth of information
regarding galaxy formation, we argue that it is preferential to
utilise all the data, along with an appropriate galaxy bias model,
to facilitate joint constraints on both cosmology and galaxy bias.

Given our previous attempts to shine the light on the galaxy
bias and its properties (Dvornik et al. 2018), in this analysis
we adopt a realistic and physically motivated halo model for
galaxy bias. Under the assumption that all galaxies reside in dark
matter haloes, we adopt a halo occupation distribution (HOD)
model, a statistical description for how galaxies are distributed
between and within the dark matter haloes (Peacock & Smith
2000; Scoccimarro et al. 2001; Mo et al. 2010; Yang et al. 2009;
Cacciato et al. 2013; van den Bosch et al. 2013; Cacciato et al.
2014). When combined with the halo model, which describes the
non-linear matter distribution as a sum of spherical dark matter

haloes (Seljak 2000; Cooray & Sheth 2002), these models pro-
vide a fairly complete, broadly accurate1, and easy to understand
description of galaxy bias, halo masses, and galaxy clustering
(Cacciato et al. 2013).

Our approach builds on the cosmological analysis presented
in Cacciato et al. (2013); More et al. (2015), where the halo
model is used to coherently analyse the clustering of galaxies,
the galaxy-galaxy lensing signal (Guzik & Seljak 2002; Yoo
et al. 2006; Cacciato et al. 2009) and the galaxy abundances as
a function of luminosity or stellar mass (van den Bosch et al.
2013; Cacciato et al. 2013). Furthermore, the same approach
was used to study the galaxy-halo connection exclusively, with
a fixed cosmology, by Leauthaud et al. (2011); Coupon et al.
(2015). This combination of probes is hereafter referred to as
‘2×2pt+SMF’, representing the combination of the two two-
point statistics galaxy-galaxy lensing and galaxy clustering with
the one-point stellar mass function.

Since early applications, there has been significant interest
in using the halo model to interpret large-scale structure probes
Seljak et al. (2005); Cacciato et al. (2009); Li et al. (2009). The
analysis of 2×2pt statistics, down to non-linear scales, has been
shown to lead to tight constraints for both Ωm and σ8 (Cacciato
et al. 2013; Mandelbaum et al. 2013; More et al. 2015; Wibking
et al. 2019). The halo model can also constrain extensions to the
standard ΛCDM cosmologies, such as the equation of state of
dark energy and neutrino mass (More et al. 2013; Krause & Ei-
fler 2017). The choice of observables is motivated by the focus
on a feasibility study on smaller scales which achieves similar
precision, thus allowing for a direct and/or independent compar-
ison to cosmic shear studies. In the era of high-precision cos-
mology, however, Miyatake et al. (2020) showed that the use of
only a ‘broadly accurate’ standard halo model leads to significant
offsets in the recovered cosmological parameters from a 2×2pt
analysis of HOD-populated numerical simulations. Consistency
studies between the observed small-scale clustering and galaxy-
galaxy lensing signals cast similar doubt on the accuracy of any
standard halo model analysis (Leauthaud et al. 2017; Lange et al.
2021; Amon et al. 2022b).

Arguably the two most flawed approximations in the stan-
dard halo model formalism are that (i) haloes, and therefore
galaxies, can overlap, and (ii) that haloes trace the matter dis-
tribution with a linear and scale independent halo bias. Previous
attempts to improve these approximations have used halo exclu-
sion formulations (Giocoli et al. 2010) to solve the first problem,
combined with radial bias functions which add scale dependence
to the halo bias model (Tinker et al. 2005; van den Bosch et al.
2013; Cacciato et al. 2013).

In this analysis we instead follow the method proposed by
Mead & Verde (2021), accounting for both scale-dependent non-
linear halo bias and halo exclusion by incorporating the halo bias
measured directly from the DarkEmulator suite of cosmological
simulations (Nishimichi et al. 2019). As shown by Mahony et al.
(2022), this necessary upgrade to the standard halo model leads
to sufficient accuracy in the recovered cosmological parameters
from a 2×2pt+SMF analysis, for the statistical power of current
imaging surveys.

Other approximations in a halo model analysis include that
the halo mass is the sole variable that determines the properties
of the haloes and their occupying galaxies. Galaxy properties
and the clustering of haloes are, however, expected to have a

1 The standard halo model of dark matter haloes estimates the true
power spectrum to within 20% accuracy on non-linear scales (Mead
et al. 2015).
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secondary dependence, on their local environment and assembly
history (see Wechsler & Tinker 2018, and references therein).
Furthermore the adopted halo density profile is modelled from
dark matter-only numerical simulations, even though hydrody-
namical simulations show that these profiles are modified by the
presence of active galactic nuclei (Schaller et al. 2015; Wang
et al. 2020). In Debackere et al. (2021), it is shown that to ac-
count for baryon physics, it is sufficient to leave the concentra-
tion of dark matter haloes free. Amon et al. (2022b) review the
literature studies on the impact of these two approximations on
2×2pt halo model studies with luminous red galaxies. Motivated
by their conclusions, we choose to adopt nuisance parameters in
our halo model to encapsulate the uncertainty of the impact of
assembly bias and baryon feedback within our error budget.

In this paper, we analyse the most recent data release from
the Kilo-Degree Survey (KiDS-1000, Kuijken et al. 2019; Giblin
et al. 2021; Hildebrandt et al. 2021), spanning over 1000 square
degrees of imaging in nine bands from the optical through to
the near-infrared. Our main ‘KiDS-Bright’ galaxy sample (Bil-
icki et al. 2021) benefits from the 180 square degree overlap be-
tween KiDS and the spectroscopic Galaxy And Mass Assem-
bly (GAMA) survey (Driver et al. 2011). As an essentially com-
plete spectroscopic survey to r < 19.8, GAMA serves as an ex-
tensive training set for machine learning and the calibration of
different sample selections. The resulting GAMA-trained photo-
metric redshifts and stellar mass estimates for the KiDS-Bright
sample have an enhanced accuracy and precision that benefits
this galaxy-galaxy lensing and galaxy clustering study. In order
to simultaneously constrain cosmology and galaxy bias, we use
the 2×2pt+SMF combination of galaxy clustering and galaxy-
galaxy lensing, as well as constraints on galaxy abundances in
the form of the stellar mass function.

We improve previous related 2×2pt+SMF studies by (i) us-
ing a more accurate analytical model with the addition of non-
linear halo bias (Mead & Verde 2021), taking into account the
halo exclusion and scale dependence, (ii) taking the latest lens-
ing and clustering data from a single survey, and (iii) using the
full analytical covariance matrix including the cross-variance be-
tween all observables. Our analysis is highly complementary
to the emulator based 2×2pt halo model analysis of the Hyper
Suprime Camera Survey (HSC, Miyatake et al. 2021).

Throughout this paper, all radii and densities are given in
comoving units, ‘log’ is used to refer to the 10-based logarithm,
and ‘ln’ for natural logarithm. All the quantities that depend on
the Hubble parameter adopt units of h, where h = H0/100 km
s−1Mpc−1. We also use ρm as the present day mean matter density
of the Universe, ρm = Ωm,0 ρcrit, where ρcrit = 3H2

0/(8πG) and the
halo masses are defined as M = 4πr3

∆
∆ ρm/3 enclosed by the

radius r∆ within which the mean density of the halo is ∆ times
ρm, with ∆ = 200.

This paper is organised as follows. In Sec. 2, we review our
analytical model to compute the galaxy stellar mass function, the
galaxy-galaxy correlation function, and the galaxy-galaxy lens-
ing signal using the halo model combined with a model that de-
scribes halo occupation statistics as a function of galaxy stellar
mass. In Sec. 3, we introduce the 2×2pt+SMF KiDS measure-
ments, specifics of the covariance calculation and our Bayesian
analysis methodology. Our main results are presented in Sec. 4,
concluding our findings in Sec. 5.

2. The Halo model

The halo model is an analytic framework that can be used to
describe the clustering of matter and its evolution in the Uni-

verse (Seljak 2000; Peacock & Smith 2000; Cooray & Sheth
2002; van den Bosch et al. 2013; Mead et al. 2015). It is built
upon the statistical description of the properties of dark matter
haloes (namely the average density profile, large scale bias and
abundance) as well as on the statistical description of the galax-
ies residing in them, using halo occupation distributions (HOD).
The model is sufficiently flexible to consistently describe the sta-
tistical weak lensing signal around a selection of galaxies, their
clustering, abundances and cosmic shear signal.

2.1. Halo model ingredients

We assume that dark matter haloes are spherically symmetric
on average, and have density profiles, ρ(r|M) = M uh(r|M), that
depend only on their mass M, and uh(r|M) is the normalised
density profile of a dark matter halo. Similarly, we assume that
satellite galaxies in haloes of mass M follow a spherical number
density distribution ns(r|M) = Ns us(r|M), where us(r|M) is the
normalised density profile of satellite galaxies. All central galax-
ies are positioned at the centre of their halo: r = 0. We assume
that the density profile of dark matter haloes follows a Navarro-
Frenk-White (NFW) profile (Navarro et al. 1997). Since centrals
and satellites are distributed differently, we write the galaxy-
galaxy power spectrum, Pgg(k), as a combination of the central
‘c’, satellite ‘s’ and cross power spectrum, with

Pgg(k) = A2
c Pcc(k) + 2AcAsPcs(k) + A2

s Pss(k) , (1)

and the galaxy-matter power spectrum, Pgm(k),

Pgm(k) = AcPcm(k) + AsPsm(k) . (2)

Here Ac = nc/ng and As = ns/ng = 1 − Ac are the central and
satellite fractions, respectively, and the average number densities
ng, nc and ns follow from:

nx =

∫ ∞

0
〈Nx|M〉 n(M) dM , (3)

where ‘x’ stands for ‘g’ (for galaxies), ‘c’ (for centrals) or ‘s’
(for satellites), 〈Nx|M〉 is the average number of galaxies given
halo mass M, and n(M) is the halo mass function in the following
form:

n(M) =
ρm

M2 ν f (ν)
d ln ν
d ln M

, (4)

with ν = δc/σ(M) being the peak height. Here δc is the criti-
cal overdensity required for spherical collapse at redshift z, and
σ(M) is the mass variance. For f (ν) we use the fitting function
to the numerical simulations presented in Tinker et al. (2010). In
addition, it is common practice to split two-point statistics into
a 1-halo term (both points are located in the same halo) and a
2-halo term (the two points are located in different haloes). The
1-halo terms are:

P1h
cc (k) =

1
nc
, (5)

P1h
ss (k) = P

∫ ∞

0
H2

s (k,M) n(M) dM , (6)

and all other terms are given by:

P1h
xy(k) =

∫ ∞

0
Hx(k,M)Hy(k,M) n(M) dM . (7)
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Here ‘x’ and ‘y’ are either ‘c’ (central), ‘s’ (satellite), or ‘m’
(matter), P is a Poisson parameter that captures the scatter in the
number of satellite galaxies at fixed halo mass (in this case a free
parameter – we define the P in detail using equations 24 and 25)
and we have defined the mass, central and satellite profiles as

Hm(k,M) =
M
ρm

ũh(k|M) , (8)

Hc(k,M) =
〈Nc|M〉

nc
, (9)

and

Hs(k,M) =
〈Ns|M〉

ns
ũs(k|M) , (10)

with ũh(k|M) and ũs(k|M) the Fourier transforms of the halo den-
sity profile and the satellite number density profile, respectively,
both normalised to unity [ũ(k=0|M)=1]. The various 2-halo terms
are given by:

P2h
xy(k) = Plin(k)

∫ ∞

0
dM1Hx(k,M1) bh(M1) n(M1)

×

∫ ∞

0
dM2Hy(k,M2) bh(M2) n(M2)

+ Plin(k) INL
xy (k) (11)

where Plin(k) is the linear power spectrum, obtained using the
Eisenstein & Hu (1998) matter transfer function, and bh(M, z) is
the halo bias function. We adopt the Tinker et al. (2010) halo bias
function which together with their halo mass function provides
for consistent normalisation of the halo model integrals. The sec-
ond term in equation 11 encompasses the beyond-linear halo bias
correction βNL proposed by Mead & Verde (2021) where,

INL
xy (k) =

∫ ∞

0

∫ ∞

0
dM1dM2 β

NL(k,M1,M2)

×Hx(k,M1)Hy(k,M2)
× n(M1) n(M2) bh(M1) bh(M2) . (12)

βNL is measured using the DarkQuest emulator (Nishimichi
et al. 2019; Miyatake et al. 2020; Mahony et al. 2022), by mea-
suring the non-linear halo-halo power spectrum and then divid-
ing it by the linear matter power spectrum multiplied with the
product of linear bias factors (Mead & Verde 2021, Eq. 23). Due
to the definition of βNL, this measurement also holds true for
galaxy-galaxy and galaxy-matter correlations. As shown in Ma-
hony et al. (2022), this function is cosmology dependent, but
does not account for assembly bias effects. In this paper, owing
to the volume-limited mix of all galaxies used in our analysis,
we consider any assembly bias to be a subdominant effect. Nu-
merically, the integrals in the halo model are not integrated from
zero to infinity, but rather between a wide range of halo masses.
Special care has to be taken to account for the masses outside
of the integration limits, for which an appropriate correction is
applied (as derived in Cacciato et al. (2009), Eqs. 24 and 25, and
in Mead et al. (2020); Mead & Verde (2021), Appendices A in
both papers). The two-point correlation functions corresponding
to these power-spectra are obtained by Fourier transformation:

ξxy(r) =
1

2π2

∫ ∞

0
Pxy(k)

sin kr
kr

k2 dk . (13)

For the halo bias function, bh, we use the fitting func-
tion from Tinker et al. (2010), as it was obtained using the
same numerical simulation from which the halo mass func-
tion was obtained. We have adopted the parametrisation of the
concentration-mass relation, given by Duffy et al. (2008):

c(M, z) = 10.14
[

M
(2 × 1012M�/h)

]−0.081

(1 + z)−1.01 . (14)

We allow for an additional normalisation fh,s, such that

ch,s(M, z) = fh,s c(M, z) , (15)

where fh is the normalisation of the concentration-mass relation
for dark matter haloes ũh(k|M), and fs is the normalisation of
the concentration-mass relation for the distribution of satellite
galaxies ũs(k|M). Our adoption here of separate concentration-
mass relations for dark matter haloes and satellite galaxies pro-
vides enough flexibility in the model to capture the uncertain
impact of baryon feedback (for the scales adopted, Debackere
et al. 2020, 2021; Amon et al. 2022b), and it has been used in
the literature (Cacciato et al. 2013; Viola et al. 2015; van Uitert
et al. 2016; Dvornik et al. 2018) to account for such effects. This
additional flexibility is motivated by the fact that in the simu-
lations, the AGN feedback pushes the baryons and dark mat-
ter from halo centres towards outskirts, and by that effectively
changing the concentration of the matter distribution (Debackere
et al. 2020; Mead et al. 2020). This is also supported by observa-
tions (Viola et al. 2015), which showed that the preferred value
for the concentration normalisation is lower than 1. Using the
halo model with these extra parameters is a benefit over the em-
ulators that are based on dark-matter only simulations (as for
instance the DarkQuest emulator Nishimichi et al. 2019; Miy-
atake et al. 2020; Mahony et al. 2022), since they do not offer
a simple way to accommodate for such flexibility, nor require
simulations (Schneider & Teyssier 2015).

In the halo model we do not consider the mis-centred central
term, as for a selection of galaxies the signature is accounted for
through the terms for satellite galaxies, which do not reside in
the centres of haloes by definition. What is more, the satellite
galaxies populate haloes regardless of the existence of central
galaxy, which further removes the need for a mis-centred term.

2.2. Conditional stellar mass function

We model the galaxy stellar mass function and halo occupation
statistics using the Conditional Stellar Mass Function (CSMF,
motivated by Yang et al. 2008; Cacciato et al. 2009, 2013; Wang
et al. 2013; van Uitert et al. 2016). The CSMF, Φ(M?|M), spec-
ifies the average number of galaxies of stellar mass M? that re-
side in a halo of mass M. In this formalism, the halo occupation
statistics of central galaxies are defined via the function:

Φ(M?|M) = Φc(M?|M) + Φs(M?|M) . (16)

In particular, the CSMF of central galaxies is modelled as a log-
normal,

Φc(M?|M) =
1

√
2π ln(10)σcM?

exp
[
−

log(M?/M∗c )2

2σ2
c

]
, (17)

and the satellite term as a modified Schechter function,

Φs(M?|M) =
φ∗s
M∗s

(
M?

M∗s

)αs

exp

− (
M?

M∗s

)2 , (18)
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where σc is the scatter between stellar mass and halo mass and
αs governs the power law behaviour of satellite galaxies. Note
that M∗c , σc, φ∗s , αs and M∗s are, in principle, all functions of halo
mass M, but here we assume that σc and αs are independent of
the halo mass M. Inspired by Yang et al. (2008), who studied the
halo occupation properties of galaxies in the Sloan Digital Sky
Survey, we parametrise M∗c , M∗s and φ∗s as:

M∗c (M) = M0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
, (19)

M∗s (M) = 0.56 M∗c (M) , (20)

and

log[φ∗s (M)] = b0 + b1(log m13) , (21)

where m13 = M/(1013M�h−1). In their analysis of the stellar-to-
halo mass relation of GAMA galaxies van Uitert et al. (2016)
find that varying the pre-factor of 0.56 in Equation 20 does not
significantly affect the results, therefore we retain this normali-
sation in our analysis. We can see that the stellar to halo mass
relation for M � M1 behaves as M∗c ∝ Mγ1 and for M � M1,
M∗c ∝ Mγ2 , where M1 is a characteristic mass scale and M0 is a
normalisation. Here γ1, γ2, b0 and b1 are all free parameters that
govern the two slopes of the stellar-to-halo mass relation and
the normalisation of the Schechter function. The choice of func-
tional form of the CSMF is motivated by the good performance
as seen in previous lensing and combined lensing and clustering
studies. In Eq. 19, we adopt an effective stellar-to-halo mass re-
lation for our mixed-population of red and blue galaxies. Bilicki
et al. (2021) demonstrate a strong colour-dependence to this rela-
tionship, and future studies will investigate including a red/blue
galaxy split in our analysis, which can also help to improve the
modelling of intrinsic galaxy alignments (e.g. Li et al. 2021).

From the CSMF it is straightforward to compute the galaxy
stellar mass function (SMF) and the halo occupation numbers.
The galaxy stellar mass function is in this case given by

Φ(M?) =

∫ ∞

0
Φ(M?|M) n(M) dM , (22)

and the average number of galaxies with stellar masses in the
range M?,1 ≤ M? ≤ M?,2 is given by:

〈N |M〉 =

∫ M?,2

M?,1

Φ(M?|M) dM? . (23)

In order to predict the satellite-satellite term for the galaxy clus-
tering power spectra (Eq. 6), we use that

〈N2
s |M〉 = P(M)〈Ns|M〉2 + 〈Ns|M〉 , (24)

where P(M) is the mass-dependent Poisson parameter defined
as:

P(M) ≡
〈Ns(Ns − 1)|M〉
〈Ns|M〉2

, (25)

which is unity if 〈Ns|M〉 is given by a Poisson distribution, larger
than unity if the distribution is wider than a Poisson distribution
(also called super-Poissonian distribution) or smaller than unity
if the distribution is narrower than a Poisson distribution (also
called sub-Poissonian distribution). We limit ourselves to cases
in which P(M) is independent of halo mass, i.e., P(M) = P, and
we treat P as a free parameter.

Overall, all the free parameters used to describe the halo oc-
cupation distributions and the connection with the dark matter
are:

λHOD = [ fh,M0,M1, γ1, γ2, σc, fs, αs, b0, b1,P] . (26)

Priors on these parameters are broad, assuming wide uniform
distributions, similar to the priors used in two studies of the
galaxy-halo connection that both used GAMA and KiDS data
(van Uitert et al. 2016; Dvornik et al. 2018). Priors and their
ranges can be found in Table 2.

2.3. Projected lensing and clustering functions

Once Pgg(k) and Pgm(k) have been determined, it is fairly
straightforward to compute the projected galaxy-galaxy corre-
lation function, wp(rp), and the excess surface density (ESD)
profile, ∆Σ(rp). The projected galaxy-galaxy correlation func-
tion, wp(rp), is related to the real-space galaxy-galaxy correlation
function, ξgg(r), according to

wp(rp) = 2
∫ rπ,max

0
ξgg(rp, rπ, z) drπ

= 2
2∑

l=0

∫ rπ,max

0
ξ2l(s, z)L2l(rπ/s) drπ . (27)

Here ξgg(rp, rπ, z) is the redshift-space galaxy-galaxy correlation
function, rπ is the redshift-space separation perpendicular to the
line-of-sight and rπ,max is the maximum integration range used

for the data (here we use rπ,max = 233h−1Mpc), s =

√
r2

p + r2
π

is the separation between the galaxies, Ll(x) is the lth Legendre
polynomial, and ξ0, ξ2, and ξ4 are given by

ξ0(r, z) =

(
1 +

2
3
βk +

1
5
β2

k

)
ξgg(r, z) , (28)

ξ2(r, z) =

(
4
3
βk +

4
7
β2

k

) [
ξgg(r, z) − 3J3(r, z)

]
, (29)

ξ4(r, z) =
8
35
β2

k

[
ξgg(r, z) +

15
2

J3(r, z) −
35
2

J5(r, z)
]
, (30)

where

Jn(r, z) =
1
rn

∫ r

0
ξgg(y, z) yn−1 dy . (31)

and

βk = βk(z) =
1

b̄(z)

(
dlnD(z)

dlna

)
z

(32)

with a = 1/(1 + z) the scale factor, D(z) the linear growth factor,
and

b̄(z) =
1

n̄g(z)

∫ ∞

0
〈Ng|M〉 bh(M, z) n(M, z) dM , (33)

the mean bias of the galaxies in consideration. Eq. 27 accounts
for the large-scale redshift-space distortions due to infall (the
‘Kaiser’-effect), which is necessary because the measurements
for wp(rp) are obtained for a finite rmax. We note that whilst
this Kaiser (1987) formalism is only strictly valid in the linear
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regime, we adopt the non-linear galaxy-galaxy correlation func-
tion, ξgg(r), in Eqs. 28 - 30, with the non-linearities captured
through the halo model power spectra in Eq. 13. van den Bosch
et al. (2013) show that this modification provides a more accu-
rate correction for the residual redshift space distortions, and that
ignoring the presence of residual redshift space distortions leads
to systematic errors that can easily exceed 20 percent on scales
with rp > 10h−1 Mpc (Cacciato et al. 2013).

The excess surface density profile (ESD), ∆Σ(rp), is defined
as

∆Σ(rp) =
2
r2

p

∫ rp

0
Σ(R′) R′ dR′ − Σ(rp) . (34)

Here Σ(rp) is the projected surface mass density, which is related
to the galaxy-dark matter cross correlation, ξgm(r), according to

Σ(rp) = 2ρ̄m

∫ ∞

rp

ξgm(r)
r dr√
r2 − r2

p

. (35)

2.4. Cosmological parameters

The cosmological parameters in our model are described by the
vector:

λcosmo = [Ωm, σ8, h, ns,Ωb] . (36)

As mentioned in Sect. 1, the goal of this paper is to use the ESD,
wp and SMF data to constrain σ8 and Ωm. Because of that, we
set the priors for those two parameters to be uninformative and
set their ranges following the latest KiDS cosmic shear analy-
sis (Asgari et al. 2021b). The last 3 cosmological parameters are
shown to be poorly constrained using the ESD, wp, and SMF
data (Cacciato et al. 2013; Mandelbaum et al. 2013), thus they
form a set of secondary cosmological parameters with informa-
tive priors. Priors and their ranges can be found in Table 2. In
Appendix B we verify that our choice of priors do not inform
the main cosmological parameters.

3. Data and sample selection

In this analysis we combined three observables from the Kilo-
Degree Survey (KiDS): galaxy abundances in the form of the
galaxy stellar mass function, galaxy clustering in the form of the
projected galaxy correlation function, and galaxy-galaxy lens-
ing in the form of excess surface density profiles. Our KiDS ob-
servations were taken with OmegaCAM (Kuijken 2011), a 268-
million pixel CCD mosaic camera mounted on the VLT Survey
Telescope. These instruments were designed to perform weak
lensing measurements, with the camera and telescope combina-
tion providing a fairly uniform point spread function across the
field-of-view (de Jong et al. 2013).

We analysed the latest data release of the KiDS survey
(KiDS-1000, Kuijken et al. 2019), containing observations from
1006 square-degree survey tiles. Specifics of the survey, the cal-
ibration of the source shapes and photometric redshifts are de-
scribed in Kuijken et al. (2019); Giblin et al. (2021); Hildebrandt
et al. (2021), respectively. The companion VISTA-VIKING
(Edge et al. 2013) survey has provided complementary imag-
ing in near-infrared bands (ZYJHKs), resulting in a unique deep,
wide, nine-band imaging dataset (Wright et al. 2019). The de-
fault photo-z estimates provided as part of the KiDS survey were
derived with the Bayesian Photometric Redshift approach (BPZ,
Benitez 2000).

We used shape measurements based on the r-band images,
which have an average seeing of 0.66 arcsec. The galaxy shapes
were measured using lensfit (Miller et al. 2013), which has been
calibrated using image simulations described in Kannawadi et al.
(2019). This provides galaxy ellipticities (ε1, ε2) with respect to
an equatorial coordinate system, and an optimal weight.

The galaxies used for our lens and clustering sample were
taken from the ‘KiDS-Bright’ sample (Bilicki et al. 2021). This
sample mimics the selection of GAMA galaxies (Driver et al.
2011), by applying the condition mr < 20.0. For these galax-
ies a different method of determining the photometric redshifts
was employed using the ANNz2 (Artificial Neural Network) ma-
chine learning method (Sadeh et al. 2016), with the spectro-
scopic GAMA survey, which is 98.5% complete to r < 19.8, as
a training set (Bilicki et al. 2018, 2021). Comparing the obtained
redshifts with the spectroscopic redshifts from the matched
galaxies between KiDS-Bright and GAMA, Bilicki et al. (2021)
concluded that the ANNz2 photo-z are highly accurate with a
mean offset of δz = 5 × 10−4, and a scaled mean absolute devia-
tion scatter of σz = 0.018(1 + z).

Stellar mass estimates for the KiDS-Bright sample are ob-
tained using the LePhare template fitting code (Arnouts et al.
1999; Ilbert et al. 2006). In these fits, ANNz2 photo-z estimates
are used as input redshifts for each source, treating them as if
they were exact, neglecting the percent error associated with
the ANNz2 redshift. In practice, this error has little impact on
the fidelity of the stellar mass estimates (Taylor et al. 2011).
The estimates assume a Chabrier (2003) initial mass function,
the Calzetti et al. (1994) dust-extinction law, Bruzual & Char-
lot (2003) stellar population synthesis models, and exponentially
declining star formation histories. The input photometry to LeP-
hare is extinction corrected using the Schlegel et al. (1998) maps
with the Schlafly & Finkbeiner (2011) coefficients, as described
in Kuijken et al. (2019).

Bilicki et al. (2021) found that the KiDS-Bright stellar mass
estimates are in excellent agreement with independent stellar
mass estimates from Wright et al. (2016) that combine GAMA
spectroscopic redshifts with multi-wavelength imaging from 21
broadband filters from the far-UV to the far-IR. The median
offset is MKiDS

? /MGAMA
? = −0.09 ± 0.18 dex. Brouwer et al.

(2021) estimated the overall systematic uncertainty on the stel-
lar mass estimates of the KiDS-Bright sample, combining the
uncertainty arising from the LePhare model fit, the photometric
redshift scatter, and the difference found when exchanging el-
liptical aperture magnitudes for Sérsic model magnitudes. They
estimated an overall uncertainty ofσM∗ = 0.12 dex for the KiDS-
Bright sample. This systematic uncertainty also includes the esti-
mated Eddington systematic bias of ∼ 0.027 dex (Brouwer et al.
2021), which is estimated from the population of red and blue
galaxies and it is considered a worst-case scenario. We choose to
account for both statistical and systematic uncertainty in the stel-
lar mass estimates through the nuisance parameter σc, in equa-
tion 17, which provides the freedom to model both the intrinsic
and measurement noise scatter in the stellar-to-halo mass rela-
tion (Leauthaud et al. 2012; Bilicki et al. 2021). Furthermore,
as the systematic and statistical uncertainties are comparable in
power, the entries in the SMF and cross-covariances are inflated
by a factor of 2 to account for the uncertainty arising from Ed-
dington bias and the systematic shift in stellar masses, and not
only through the σc parameter. Due to the weak cosmology de-
pendence of the SMF, this primarily increases only the uncer-
tainty of our HOD parameters, as the SMF is in the first place
used to break degeneracies in our HOD part of the halo model.
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3.1. Stellar mass function measurements and sample
selection: SMF

Our SMF measurements are performed using the maximum-
volume weighting method (Schmidt 1968; Saunders et al. 1990;
Cole 2011; Baldry et al. 2012; Wright et al. 2017). We weight
each galaxy i by the inverse of the comoving volume over which
the galaxy would be visible, given the magnitude limit of the
whole sample, 1/Vmax,i. To estimate the number density Φ(M?),
we have to derive M?,lim(z), the completeness in stellar mass as
a function of redshift for our flux-limited sample. For the 1/Vmax
technique, we need to know zmax,i, the maximum redshift be-
yond which galaxy i with stellar mass M?,i would no longer be
part of the subsample (Weigel et al. 2016). This is done by deter-
mining the point at which the sample begins to become incom-
plete. Usually this process contains a potentially biased visual
inspection. To avoid any bias, we instead adopt the automated
method presented by Wright et al. (2017), using the MassFunc-
FitR package. The algorithm estimates the turn-over point of the
number density distribution in bins of comoving distance and
stellar mass independently. In each fine bin of comoving dis-
tance, we take the mass at the peak density as the mass turn-over
point. In each fine bin of stellar mass, we take the largest co-
moving distance at median stellar mass density as the distance
turn-over point. The obtained turn-over points are then fit with a
high-degree polynomial resulting in a smooth form for the stellar
mass limit as a function of redshift. This limit can be compared
to the M∗ − zANNz2 distribution of the full KiDS-Bright galaxies
in Fig. 1.

In Fig. 2 we present the stellar mass function of the volume-
limited KiDS-Bright sample from the galaxies in the 6 stellar
mass bins, Φ(M?), which has a median redshift of z = 0.25.
This is determined from the galaxy counts within the stellar mass
limit, with errors derived analytically in Appendix A. We find
good agreement between the KiDS measurement and the stellar
mass function from Wright et al. (2018), evaluated at the median
redshift of our sample. Wright et al. (2018) is based on from an
analysis using spectroscopic data from GAMA, COSMOS and
HST. This comparison therefore demonstrates the agreement in
the SMF between spectroscopic data and our photometric KiDS-
Bright sample of galaxies, demonstrating that our stellar mass
estimates are robust to the uncertainty in the photometric red-
shifts (Taylor et al. 2011; Bilicki et al. 2021; Brouwer et al.
2021).

As galaxy bias is inherently dependent on the stellar mass of
the galaxy (Dvornik et al. 2018), we analyse the weak lensing
and galaxy clustering of the KiDS-Bright galaxies grouped into
6 stellar mass bins. We choose to limit our analysis to galaxies
within the stellar mass range of 9.1 < log(M?/h−2 M�) ≤ 11.3,
with the number of bins, and bin limits chosen in such a way
to achieve a similar and significant signal-to-noise ratio in all
bins. Using the redshift-dependent stellar mass limit, we define
upper redshift bounds to ensure each stellar mass bin is volume-
limited, as indicated with red boxes in Fig. 1. The lower redshift
bound is set to contain 95 percent of the volume-limited sample.
The number of galaxies, median stellar mass and redshift of each
bin is reported in Table 1.

3.2. Galaxy-galaxy lensing measurement: ESD

As shown in Bilicki et al. (2021), the excellent ANNz2 pho-
tometric redshift estimates for the galaxies in the KiDS-Bright
sample allow for robust estimates of their physical characteris-
tics, in particular the stellar mass. In this section we combine this
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zANNz
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g(
M
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�

)

M? limit

Volume limited sample

Fig. 1: Galaxy stellar mass as a function of ANNz2 photometric
redshift for the KiDS-Bright sample. The full sample is shown
with a logarithmic hexagonal density plot. The blue line shows
the stellar mass limit determined using the automated method
presented by Wright et al. (2017). Red boxes show the six stellar
mass bins used in the analysis, with individual galaxies plotted
as black dots. The bin ranges were chosen in such a way as to
achieve a good signal-to-noise ratio in all bins for our galaxy-
galaxy lensing and galaxy clustering measurements.

Table 1: KiDS-Bright stellar mass samples: overview of the
number of galaxies/lenses, median stellar masses M?,med and
median redshifts zmed. Stellar masses are given in units of
log(M?/h−2 M�). The final sample of galaxies used is a small
subsample of all KiDS-Bright galaxies (∼ 1 million).

Bin Range Ngal M?,med zmed

1 (9.1, 9.6] 32 846 9.33 0.12
2 (9.6, 9.95] 35 559 9.77 0.15
3 (9.95, 10.25] 39 487 10.09 0.18
4 (10.25, 10.5] 38 544 10.36 0.22
5 (10.5, 10.7] 28 814 10.58 0.27
6 (10.7, 11.3] 22 560 10.79 0.32

information with accurate shape measurements for more distant
KiDS sources from Giblin et al. (2021) to measure the galaxy-
galaxy lensing signal. To quantify the weak gravitational lens-
ing signal we use source galaxies from KiDS DR4 with a BPZ
photo-z in the range 0.1 < zB < 1.2.

The lensing signal of an individual lens is too small to be
detected, and hence we compute a weighted average of the tan-
gential ellipticity εt as a function of projected distance rp using
a large number of lens-source pairs. In the weak lensing regime
this provides an unbiased estimate of the tangential shear, γt,
which in turn can be related to the excess surface density (ESD)
∆Σ(rp), defined as the difference between the mean projected sur-
face mass density inside a projected radius rp and the mean sur-
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Fig. 2: Upper panel: The KiDS-Bright galaxy stellar mass func-
tion (crosses) compared to the model from Wright et al. (2018),
evaluated at the median redshift of our sample (black dashed).
The blue line and shaded region indicates the best fit model and
68% confidence levels of our best fit halo model (Eq. 22). We
caution that the quality of the fit cannot be judged by eye, be-
cause of the covariance in the data, between the data points and
between the other observables. The reduced χ2 value for this ob-
servable is 1.05 (DoF = 14.58, p-value = 0.39), estimated using
the method presented in Appendix C. Lower panel: The frac-
tional errors on the data and the model, ∆Φ/δΦ.

face density at rp (as in Eq. 34, for more details see appendix C
from Dvornik et al. 2018).

We compute a weighted average to account for the varia-
tion in the precision of the shear estimate, captured by the lensfit
weight ws (see Fenech Conti et al. 2017; Kannawadi et al. 2019,
for details), and the fact that the amplitude of the lensing sig-
nal depends on the source redshift. The weight assigned to each
lens-source pair is

w̃ls = ws

(
Σ̃−1

cr,ls

)2
, (37)

the product of the lensfit weight ws and the square of Σ̃−1
cr,ls – the

effective inverse critical surface mass density, which is a geo-
metric term that downweights lens-source pairs that are close in
redshift (e.g. Bartelmann & Schneider 2001).

We compute the effective inverse critical surface mass den-
sity for each lens using the photo-z of the lens zl and the full
normalised redshift probability density of the sources, n(zs). The
latter is calculated employing the self-organising map calibra-

tion method (Wright et al. 2020) as applied to KiDS DR4 in
Hildebrandt et al. (2021). The resulting effective inverse critical
surface density can be written as:

Σ̃−1
cr,ls =

4πG
c2

∫ ∞

0
(1 + zl)2D(zl)

(∫ ∞

zl

D(zl, zs)
D(zs)

n(zs) dzs

)
p(zl) dzl ,

(38)

where D(zl), D(zs), D(zl, zs) are the angular diameter distances
to the lens, source, and between the lens and the source, re-
spectively. For the lens redshifts zl we use the ANNz2 photo-z
of the KiDS-Bright foreground galaxy sample. We implement
the contribution of zl by integrating over the redshift probability
distributions p(zl) of each lens. The lensing kernel is wide and
therefore the resulting ESD signals are not sensitive to the small
wings of the lens redshift probability distributions. We can thus
safely approximate p(zl) as a normal distribution centred at the
lenses photo-z, with a standard deviation σz/(1 + zl) = 0.018
(Bilicki et al. 2021).

For the source redshifts zs we follow the method used in
Dvornik et al. (2018), by integrating over the part of the red-
shift probability distribution n(zs) where zs > zl. Thus, the ESD
can be directly computed in bins of projected distance rp to the
lenses as:

∆Σgm(rp) =

∑ls w̃lsεt,sΣ
′
cr,ls∑

ls w̃ls

 1
1 + m

. (39)

where Σ′cr,ls ≡ 1/Σ̃−1
cr,ls, the sum is over all source-lens pairs in the

distance bin, and

m =

∑
i w
′
imi∑

i w
′
i
, (40)

is an average correction to the ESD profile that has to be ap-
plied to account for the multiplicative bias m in the lensfit shear
estimates. The sum goes over thin redshift slices for which mi
is obtained using image simulations (Kannawadi et al. 2019),
weighted by w′ = ws D(zl, zs)/D(zs) for a given lens-source sam-
ple. The value of m is −0.003 for the 6 stellar mass bins, inde-
pendent of the scale at which it is computed.

We note that the measurements presented here are not cor-
rected for the contamination of the source sample by galax-
ies that are physically associated with the lenses (the so-called
‘boost correction’). The impact on ∆Σ is minimal, because of
the weighting with the inverse square of the critical surface den-
sity in Eq. (38), (see for instance the bottom panel of fig. A4 in
Dvornik et al. 2017) and the removal of the sources physically
associated with the lens from our signal measurements. The ef-
fect of using photometric lenses in the ESD measurements is
directly accounted for in our estimator and the covariance ma-
trix. We subtract the signal around random points, which sup-
presses any large-scale systematics and sample variance (Singh
et al. 2017). This empirical ‘random’ correction for large-scale
sample variance has been shown to improve robustness on the
measurement scales which are particularly relevant to constrain
linear bias (Dvornik et al. 2018). We find the random correc-
tion for the KiDS-Bright sample becomes significant at scales
R & 3h−1 Mpc, rising to more than 100% of the ESD signal in
the three lowest stellar mass bins. On these large scales the ran-
dom correction is more than four times larger than the statistical
uncertainty (see Appendix D for details). The resulting random-
corrected galaxy-galaxy lensing ESD measurements for the six
stellar mass bins are shown in Fig. 3
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Fig. 3: Galaxy-galaxy lensing: The stacked ESD profiles of the
six stellar mass bins in the KiDS-Bright galaxy sample defined
in Table 1. The solid lines represent the best-fitting fiducial ESD
halo model (Sec. 2.3, Eq. 34) as obtained using an MCMC fit,
with the 68 percent confidence interval indicated with a shaded
region. We caution that the quality of the fit cannot be judged by
eye, because of the covariance in the data between the observed
bins and also between the observables. The reduced χ2 value for
this observable is 1.28 (DoF = 73.18, p-value = 0.05), estimated
using the method presented in Appendix C.

3.3. Projected galaxy clustering measurements: wp

We measure the clustering of the KiDS-Bright galaxy sample
using the Landy-Szalay (Landy & Szalay 1993) estimator for
the galaxy correlation function

ξ̂gg(rp, rπ) =
DD − 2DR + RR

RR

∣∣∣∣∣∣
rp,rπ

. (41)

Here we count the number of galaxy-galaxy (DD), random-
random (RR) and galaxy-random (DR) pairs, as a function of
the pair’s transverse rp and radial rπ comoving separation. The
accuracy of galaxy clustering measurements with this estima-
tor depends critically on the quality of the random, R, cata-
logues. We use the Johnston et al. (2021b) organised random

methodology that has been shown to recover unbiased cluster-
ing measurements in a series of mock galaxy catalogue anal-
yses for the KiDS-Bright sample. Using machine learning, we
infer the high-dimensional mapping between the observed on-
sky galaxy number density and three systematic-tracer variables;
atmospheric seeing, point spread function ellipticity and limit-
ing magnitude. Systematically-induced density variations across
the survey footprint can then be defined. We randomly distribute
clones of the real galaxies across the survey footprint, preserving
the on-sky systematic density patterns, and matching the on-sky
systematic-tracer properties to that of the clone’s parent galaxy.
By retaining the photometric properties of the parent for each
clone, selection effects are accurately mirrored in the organised
randoms for any galaxy sub-sample, for example the 6 different
stellar mass bins in our analysis.

The projected clustering correlation function is estimated
through an integral over the line-of-sight separation, limited by
a maximum defined distance rπ,max,

ŵp(rp) =

∫ rπ,max

−rπ,max

ξ̂gg(rp, rπ) drπ . (42)

When analysing spectroscopic data, this continuous integral is
estimated using a discrete sum, typically adopting uniform bins
in rπ ranging from 40h−1Mpc to 100h−1Mpc (as in for instance
Mandelbaum et al. 2010; Farrow et al. 2015). Here the rπ,max
limits are chosen to maximise the number of correlated galaxy
pairs along the line-of-sight in the presence of redshift space
distortions, whilst minimising the noise arising from the inclu-
sion of uncorrelated objects. With our KiDS-Bright photometric
sample we have an additional uncertainty in the true redshift,
σz = 0.018(1 + z), which translates into an uncertainty on the
radial distance of the order ∼ 100h−1Mpc, This renders the ap-
proach taken for spectroscopic samples sub-optimal in terms of
signal-to-noise. We therefore choose to follow the approach of
Johnston et al. (2021a) who optimised the projected galaxy clus-
tering analysis of the photometric Physics of the Accelerating
Universe Survey (PAUS), using dynamic binning in rπ out to a
maximum rπ = 233h−1Mpc. This is motivated by the fact that
PAUS photometric redshifts show a similar uncertainty as the
KiDS-Bright sample. Using a mock galaxy catalogue, Johnston
et al. (2021a) demonstrated that by allowing for an increase in
the bin size from small to large values of rπ, their approach max-
imises the count of physically associated objects, whilst min-
imising noise at large-rπ with the broader bin size. Given the sim-
ilar photometric redshift properties of KiDS-Bright and PAUS,
we adopt their 12-rπ-bin adapted Fibonacci sequence in our es-
timator.

Johnston et al. (2021a) analysed mock GAMA galaxy cat-
alogues with PAU-like photometric redshifts to compare the
projected clustering correlation function estimator ŵp(rp) with
the measurements using spectroscopic redshifts. Adopting dy-
namic binning and random galaxy catalogues that mimic both
the position and photometric redshift uncertainty of the real
galaxy sample, they found a roughly scale-independent bias with
ŵp/wpspec ' 0.8. As such the dynamic binning and organised ran-
doms only partially correct the correlation functions for the dilu-
tion introduced by photometric redshift uncertainty. Future work
will focus on accounting for this dilution effect accurately in the
theoretical prediction. For the purposes of this analysis, however,
we choose to include a free dilution parameterD, which is used
to correct the galaxy clustering measurements in the following
way:

ŵp,corr(rp) = [1 +D] ŵp(rp) . (43)
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We adopt a uniform prior forDwith the range between 0 and 0.3
and use a single parameter to scale all six stellar mass bins. This
prior was motivated by a series of mock KiDS-Bright galaxy
clustering analysis using MICE2 (Fosalba et al. 2015a,b; Crocce
et al. 2015; Carretero et al. 2015; Hoffmann et al. 2015), where
we confirmed the findings of Johnston et al. (2021a) and found
no strong dependence of the dilution effect on stellar mass. We
note that a similar correction was applied to the Dark Energy
Survey (DES) photometric clustering measurements (Pandey
et al. 2022; DES Collaboration et al. 2022, referred therein as
Xlens). The prior and motivation behind the introduction of their
systematic nuisance parameter differs, however. The resulting
projected clustering measurements for the six stellar mass bins
are shown in Fig. 4.

3.4. Accounting for the cosmology dependence of distance
measures

To obtain estimates of the stellar mass function (SMF, Sect.
3.1, Fig. 2), the galaxy-galaxy lensing (ESD , Sect. 3.2, Fig. 3),
and the projected galaxy clustering (wp, Sect. 3.3, Fig. 4), we
have adopted a fiducial flat ΛCDM cosmology with Ωm = 0.3
to compute distances. As such our 2×2pt+SMF data vector
is cosmology-dependent, with changes in the fiducial cosmol-
ogy changing the distance-redshift relation, which in turn shifts
galaxies between the stellar mass bins and lens-source pairs be-
tween the radial separation bins.

At the mean redshift of the KiDS-Bright sample, the effect of
changing Ωm within our prior limits introduces changes in dis-
tance estimates at the level of few percent. The approximation
that the measurements are effectively independent of cosmologi-
cal parameters within their observational uncertainties (Mandel-
baum et al. 2013; Cacciato et al. 2013) no longer holds for sur-
veys with a statistical power that is similar or better than KiDS.

In this analysis we account for the cosmology dependence of
our data vector following the correction procedure presented in
More (2013) and More et al. (2015), which modifies the model
prediction for each cosmology targeted by the likelihood sam-
pler.

First we define a cosmology-dependent comoving separation
rmodel

p for our target model, relative to the comoving separation rp
that has been used to calculate our data vectors at a fixed fiducial
cosmological model,

rmodel
p = rfid

p

[
χ(zmed,C

model)
χ(zmed,Cfid)

]
. (44)

Here χ is the comoving distance to the median lens redshift zmed
in our target cosmological model Cmodel, or in our fiducial cos-
mological model Cfid. The galaxy clustering prediction for our
target model is then given by

w̃p(rp) = wp(rmodel
p )

[
Emodel(zmed)

Efid(zmed)

]
, (45)

where E(z) is the Hubble parameter. The galaxy-galaxy lensing
prediction for our target model is given by

∆̃Σ(rp) = ∆Σ(rmodel
p )

[
Σmodel

cr (zmed, zs)
Σfid

cr (zmed, zs)

]
, (46)

where Σcr is the critical surface density calculated for the median
redshift of the lenses zmed and a fixed source redshift zs = 0.6.
Note that calculating the more precise estimate for Σcr using
Eq. 38 is not necessary in this instance, as Σcr only has a weak
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Fig. 4: Galaxy clustering: The projected galaxy clustering signal
of the six stellar mass bins in the KiDS-Bright galaxy sample de-
fined in Table 1. The solid lines represent the best-fitting fiducial
halo model (Sec. 2.3, Eq. 27) as obtained using an MCMC fit,
with the 68 percent confidence interval indicated with a shaded
region. We caution that the quality of the fit cannot be judged by
eye, because of the covariance in the data, between the observed
bins and between the observables. The reduced χ2 value for this
observable is 1.42 (DoF = 71.62, p-value = 0.01), estimated us-
ing the method presented in Appendix C.

cosmology dependence. Finally the predictions of abundances of
galaxies in the target cosmology is given by

ñg = nmodel
g

[
χ3(zu,C

model) − χ3(zl,C
model)

χ3(zu,Cfid) − χ3(zl,Cfid)

]
, (47)

which is implicitly correcting the surveyed volume in the stellar
mass function calculation. Here the zl and zu are the lower and
upper redshift limits in our samples.

3.5. Covariance matrix

The covariance matrix used in this analysis is based on the ana-
lytical approach detailed in Dvornik et al. (2018) and Joachimi

Article number, page 10 of 24



A. Dvornik et al.: KiDS-1000: 2×2 point cosmology with SMF

et al. (2021), with the addition of the analytical covariance ma-
trix for the SMF and the cross terms between the SMF and
2-point correlation functions. The new terms for the SMF co-
variance and the cross covariance between the SMF and 2-point
functions are presented in Appendix A. Our implementation of
the analytical covariance derivation was validated against theory
(Pielorz et al. 2010; Takada & Hu 2013; Li et al. 2014; Mar-
ian et al. 2015; Krause & Eifler 2017), independent software by
Joachimi et al. (2021) and simulations (MICE2 Fosalba et al.
2015a,b; Carretero et al. 2015; Crocce et al. 2015; Hoffmann
et al. 2015), following the validation approach of Blake et al.
(2020) and Joachimi et al. (2021). Survey area effects on the vari-
ance were calculated using the accurate, survey dependent and
data based Healpix method presented in Joachimi et al. (2021),
equation E.10.

3.6. Likelihood and iterative updates

We use Bayesian inference to determine the posterior probability
distribution P(θ |d) of the model parameters θ, given the data d.
According to Bayes’ theorem, P(θ |d) is:

P(θ |d) =
P(d | θ)P(θ)

P(d)
, (48)

where P(d | θ) is the likelihood of the data given the model pa-
rameters, P(θ) is the prior probability of these parameters, and

P(d) =

∫
P(d| θ) P(θ) dθ (49)

is the evidence for the model. Since, we do not perform model
selection in this analysis, the evidence just acts as a normalisa-
tion constant which we do not need to calculate. Given this, the
likelihood distribution P(d | θ) is assumed to be Gaussian:

P(d | θ) =
1

√
(2π)n|C|

exp
[
−

1
2

[
(m(θ) − d)T C−1 (m(θ) − d)

]]
,

(50)

where C is the full covariance matrix for all the observables,
containing their auto- and cross-correlations, |C| its determinant,
m(θ) the model given the parameters θ, and n the number of
observable bins. Priors can be found in Table 2. For the Bayesian
inference we use the MCMC sampler emcee (Foreman-Mackey
et al. 2013).

The posterior distribution in such highly multi-dimensional
parameter spaces has numerous degeneracies and can be very
difficult to sample from. Thus the choice of proposal distribu-
tions is very important in order to achieve fast convergence and
reasonable acceptance fractions for the proposed walker posi-
tions. To do so, we combine the default stretch move in the
emcee with the proposal function based on the kernel density
estimator of the complementary ensemble of walkers (Foreman-
Mackey et al. 2013)2 in such way that at every step of the sam-
pler run, there is a 50% chance to use one of the proposal meth-
ods. This setup has one downside, and that is that it uses many
walkers, and thus computing power. On the other hand, the con-
vergence is faster and the resulting auto-correlation times are
shorter, giving us shorter MCMC chains overall.

2 The moves are further defined in the documentation of the emcee
package at https://emcee.readthedocs.io.

During the MCMC runs we iteratively update the βNL mea-
surement (as it is cosmology dependent), as running the emula-
tor at each step of the chain is computationally not feasible. Thus
the βNL measurement is evaluated using the median of the cur-
rent position of the walkers in the parameter space. This returns
an effective value for the non-linear halo bias correction that is,
over the run of the MCMC, representative of the median of cor-
rections that would be applied to every single model iteration in
the chain. In our pipeline, the number of steps between iterations
can be set by the user and we find that updating the βNL values
every 20 steps allows for a reasonable run time while providing
enough updates to the βNL correction. On the other hand, the co-
variance matrix is only re-evaluated with the new parameters at
the end of the MCMC run and checked. We find that the updated
covariance matrix and halo model parameters do not affect the
results of our fit as our initial cosmological and HOD parame-
ters were set to the one of Heymans et al. (2021) and van Uitert
et al. (2016) which are close to our final results. The covariance
matrix is dominated by the shot and/or shape noise on the ma-
jority of scales.

To report our result we use two methods to estimate our con-
straints and parameter values. One method uses the maximum
statistics of the marginal posterior distributions for each param-
eter (MMAX). Here the asymmetric errors are estimated around
the maximum point in iso-distribution levels to cover 68% of the
marginal distribution. For the second method we use the full pos-
terior distribution to find the best-fitting parameters (maximum
a posteriori point, MAP) and use the methodology presented in
Joachimi et al. (2021) to associate an error to this measurement
with the projected highest posterior density (PJ-HPD) approach.
While the former method produces more stable parameter errors,
especially when the likelihood surface is sparsely sampled, its
point estimates, in general, do not correspond to the best fitting
parameter values. In contrast the latter method will in general
produce noisier error estimates with unbiased parameter values.

4. Results

Now we turn the focus to our results, presenting cosmologi-
cal parameter constraints in Sect. 4.1, large-scale analysis in
Sect. 4.2, and constraints on the galaxy-halo connection in
Sect. 4.3. Further details are presented in Appendix E. To recap,
our theoretical 2×2pt+SMF model consists of 17 free parame-
ters, two of which are our main cosmology parameters, with 3
more secondary cosmology parameters that are harder to con-
strain given the combination of observables, and 11 parameters
describing the galaxy-halo connection in the form of the CSMF.
With six stellar mass bins, and three observables, our combined
data vector consists of 156 data points. In Appendix C we use
mock data realisations to estimate the effective number of de-
grees of freedom for our analysis finding νeff = 147.55. Follow-
ing the likelihood analysis described in Sect. 3.6 we are able to
constrain 12 parameters, listed in Table 2 along with their prior
ranges. We find the MAP to provide a good fit3 to the data, with
a reduced χ2 value of 1.07 and p(χ2|νeff) = 0.27.

We compare the prediction from our fiducial model, and
its 68% confidence regions, to the measured galaxy abundance

3 We define an acceptable fit when p(χ2|νeff) ≥ 0.003, corresponding
to less than a 3σ event, (see the discussion in Heymans et al. 2021).
We note that DES Collaboration et al. (2022) define a more stringent
requirement where p(χ2|νeff) ≥ 0.01. We find the goodness of fit for
our 2×2pt+SMF analysis, and each individual component of the data
vector, to be acceptable given both these definitions.
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Table 2: Marginal constraints on all model parameters listed to-
gether with their priors.

Parameter Prior Fiducial
MMAX MAP+PJ-HPD

Ωm [0.1, 0.6] 0.290+0.021
−0.017 0.307+0.002

−0.031

σ8 [0.4, 1.2] 0.781+0.033
−0.029 0.801+0.013

−0.041

h [0.64, 0.82] < 0.726 < 0.711

Ωb [0.01, 0.06] > 0.01 > 0.01

ns [0.92, 1.1] < 1.004 < 0.978

S 8 – 0.773+0.028
−0.030 0.809+0.001

−0.055

fh [0.0, 1.0] > 0.645 > 0.939

M0 [7.0, 13.0] 10.519+0.039
−0.062 10.521+0.062

−0.044

M1 [9.0, 14.0] 11.138+0.099
−0.132 11.145+0.136

−0.098

γ1 [2.5, 15.0] 7.096+2.144
−1.406 7.385+1.441

−1.824

γ2 [0.0, 10.0] 0.201±0.010 0.201±0.009

σc [0.0, 2.0] 0.108+0.067
−0.011 0.159+0.007

−0.070

fs [0.0, 1.0] > 0.377 > 0.84

αs [−5.0, 5.0] −0.858+0.048
−0.052 −0.847+0.013

−0.097

b0 [−5.0, 5.0] −0.024+0.108
−0.117 −0.120+0.199

−0.001

b1 [−5.0, 5.0] 1.149+0.091
−0.081 1.177+0.058

−0.096

P [0.0, 2.0] 0.403±0.029 0.417+0.024
−0.013

D [0.0, 0.3] 0.144+0.091
−0.085 0.051+0.172

−0.006

χ2
red – 1.07

p-value – 0.27

Notes: This table lists all the free parameters in our model: the
energy density of cold matter Ωm, the normalisation of power
spectrum σ8, the dimensionless Hubble parameter h, the spec-
tral index ns, the energy density of baryonic matter Ωb, the de-
rived parameter S 8, the normalisation of the concentration-mass
relation for dark matter haloes fh, the normalisation of stellar-to-
halo mass relation M0, the characteristic scale of the stellar-to-
halo mass relation M1, the slope parameters of the stellar-to-halo
mass relation γ1 and γ2, the scatter between stellar mass and halo
massσc, the normalisation of the concentration-mass relation for
distribution of satellite galaxies fs, the power law behaviour of
satellites αs, the normalisation constants of the Schechter func-
tion b0 and b1, and the Poisson parameter P. Parameters are
deemed unconstrained when the marginal probability at 2σ level
exceeds 13% of the peak probability (see appendix A of Asgari
et al. 2021b). In cases where one side is constrained we report
the 1σ lower/upper limit. The MMAX estimate is the marginal
maximum statistic, reporting the point of maximum marginal
posterior distribution to the iso-posterior levels above and be-
low the maximal point. The MAP+PJ-HPD (maximum poste-
rior with projected joint highest posterior density) estimates are
calculated following Joachimi et al. (2021).

SMF in Fig. 2, the galaxy-galaxy lensing ESD in Fig. 3, and the
galaxy clustering wp in Fig. 4, for all of the six stellar mass bins.
We find that the model reproduces the overall trends in the data,
such as the presence of the bump at ∼ 1h−1 Mpc in ESD due to
satellite galaxies, and the fact that the stronger signal is present

where galaxies have higher stellar mass, showing that massive
galaxies reside in more massive haloes. We note that some cau-
tion is needed when interpreting the results, as the quality of the
fit cannot be judged by eye due to highly correlated data points.
We find acceptable fits to each component of our 2×2pt+SMF
data vector (for details see Appendix C). We note that the poor-
est fit is found for the wp section of our joint data vector with
p[χ2(wp)|νwp

eff
] = 0.01. Whilst a formally acceptable fit, this may

indicate that our model is lacking the ability to correctly describe
the photometric redshift dilution effect discussed in Sect. 3.3.

4.1. Cosmology constraints

We find the following cosmological parameter constraints from
our simultaneous 2×2pt+SMF analysis of the ESD, wp and SMF
signals of galaxies in the KiDS-Bright sample,

Ωm = 0.290+0.021
−0.017

σ8 = 0.781+0.033
−0.029

S 8 = 0.773+0.028
−0.030 ,

where S 8 = σ8
√

Ωm/0.3, and we quote the maximum statistics
of the marginal posterior distributions (MMAX). The remain-
ing cosmological parameters are unconstrained by our analysis,
and informed by our choice of prior (see Fig. E.2). In Fig. 5
we present the 68% and 95% confidence levels of the joint two-
dimensional, marginalised posterior distribution in the S 8 − Ωm
plane. The 2×2pt+SMF constraints are shown to be in good
agreement with constraints from KiDS cosmic shear and KiDS
with BOSS 3×2pt constraints (Asgari et al. 2021b; Heymans
et al. 2021). They are formally consistent, but in some mild ten-
sion with the Planck Collaboration et al. (2020) TT,TE,EE+lowE
CMB results. Using the Hellinger distance as a tension measure
(see Heymans et al. 2021), the mild tension between our fiducial
results and Planck is 1.9σ in S 8.

In Fig. 6 we compare our constraints to a broader range of
joint-probe large-scale structure analyses, finding consistency
with all. Cacciato et al. (2013) and More et al. (2015) adopt a
similar methodology to this study, using a halo model formalism
to jointly analyse galaxy-galaxy lensing, galaxy clustering and
galaxy abundance observables. Cacciato et al. (2013) analysed
the Sloan Digital Sky Survey (SDSS-DR7). More et al. (2015)
combined data from the Baryon Oscillation Spectroscopic Sur-
vey (BOSS) and the Canada France Hawaii Telescope Lensing
Survey (CFHTLenS). The improved constraining power in this
KiDS analysis reflects the significant increase in depth for the
lensing sample relative to SDSS-DR7, and the ten-fold increase
in area relative to CFHTLenS. We can also compare to 2×2pt
analyses that combine galaxy-galaxy lensing and galaxy cluster-
ing that introduce conservative scale cuts to reflect known limi-
tations their adopted galaxy bias models. These include the fidu-
cial analyses from DES, which adopt a linear galaxy bias model4
(Porredon et al. 2021; Pandey et al. 2022), and from the Hyper
Suprime Camera survey (HSC, Miyatake et al. 2021). The HSC
analysis is highly complementary to our study as both analy-
ses used a form of halo model with a halo occupation distribu-
tion. Miyatake et al. (2021) use the Zheng et al. (2005) HOD
built into the dark-matter N-body DarkQuest emulator to pre-
dict the 2×2pt observables (Nishimichi et al. 2019; Miyatake
et al. 2020). We use the same emulator to calibrate the non-linear
4 Porredon et al. (2021); Pandey et al. (2022) also explore small-scale
2×2pt analyses using non-linear galaxy bias models, finding a 20-30%
gain in cosmological constraining power.
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Fig. 5: Marginalised constraints for the joint distributions of S 8 and Ωm. The 68% and 95% credible regions for the 2×2pt+SMF
fiducial analysis (blue) can be compared with constraints from KiDS cosmic shear (Asgari et al. 2021b, pink), KiDS with BOSS
3×2pt (Heymans et al. 2021, purple), and the CMB Planck Collaboration et al. (2020, black).

halo bias in our model (see Sect. 2.1). Compared to this analy-
sis, HSC adopts more conservative scale cuts arising from con-
cern over unmodeled baryon feedback on small-scales, which
our methodology can account for through the free normalisation
of the mass-concentration relation(see Sect. 4.3). Miyatake et al.
(2021) also choose scale cuts to mitigate small-scale assembly
bias for the relatively rare luminous red galaxies in their sample,
which cannot be modelled using an HOD. Owing to the volume-
limited mix of all galaxies used in our KiDS-Bright analysis, we
consider any assembly bias to be a subdominant effect in our
theoretical model.

The constraining power of the KiDS 2×2pt+SMF anal-
ysis in the S 8 − Ωm plane is the same as that of the
3×2pt studies from DES Collaboration et al. (2022), with
σS 8σΩm

[DES 3×2pt]/σ
S 8σΩm

[KiDS 2×2pt+SMF] = 0.97. This may be sur-
prising given the five-fold increase in area for DES relative
to KiDS, and the addition of the cosmic shear probe in the
3×2pt analysis. This comparison therefore highlights the sig-
nificant constraining power from the inclusion of non-linear
scales in the 2×2pt+SMF analysis that are excluded from
the DES 3×2pt analysis. Comparing KiDS 2×2pt+SMF con-
straints to the KiDS with BOSS 3×2pt analysis (Heymans
et al. 2021), we first review the BOSS spectroscopic clustering

constraints where σS 8σΩm
[BOSS 1×2pt]/σ

S 8σΩm
[KiDS 2×2pt+SMF] = 1.03.

Finding the same constraining power between these analyses
may again be surprising, given the nine-fold increase in area
for BOSS relative to KiDS. As such it demonstrates the sig-
nificant constraining power from non-linear scales when the
galaxy bias can be constrained using galaxy-galaxy lensing and
galaxy abundance. Comparing to the full 3×2pt analysis we find
σS 8σΩm

[KiDS+BOSS 3×2pt]/σ
S 8σΩm

[KiDS 2×2pt+SMF] = 0.39, where the ex-
tra constraining power in the 3×2pt analysis is driven by the cos-
mic shear. Future studies with KiDS will combine 2×2pt+SMF
with cosmic shear data, including further development and vali-
dation of our adopted halo model methodology.

In Appendix E we explore a number of extensions to our
fiducial analysis. In Appendix E.1 we quantify the expected con-
tamination to our observables from intrinsic galaxy alignments
and magnification. The contamination levels are found to be neg-
ligible relative to our statistical errors, justifying our choice to
not account for these astrophysical effects in our model. In Ap-
pendix E.2 we demonstrate that our S 8 and Ωm constraints are in-
sensitive to our choice of prior on ns. In Appendix E.3 we quan-
tify the bias in Ωm without the inclusion of our nuisance param-
eterD to model photometric redshift dilution in our galaxy clus-
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Fig. 6: A joint-probe comparison of S 8 and Ωm constraints. Our fiducial results (KiDS 2×2pt +SMF) can be compared to a similar
2×2pt +SMF analysis from SDSS (Cacciato et al. 2013); a series of 2×2pt studies including the latest results from DES (Porredon
et al. 2021; Pandey et al. 2022) and HSC (Miyatake et al. 2021); 3×2pt analyses from KiDS with BOSS (Heymans et al. 2021) and
DES (DES Collaboration et al. 2022). The last entry shows the Planck Collaboration et al. (2020, TT,TE,EE+lowE) constraints. Our
results are consistent with all studies, including Planck Collaboration et al. (2020), although we find a mild tension between our S 8
constraints and those from Planck, at the level of 1.9σ.

tering measurement. In Appendix E.4 we quantify the impact of
assumptions governing the behaviour of satellite galaxies.

4.2. Large-Scale Analysis

Amon et al. (2022b) present a detailed analysis of the uncer-
tainty on the amplitude of the small-scale galaxy-galaxy lens-
ing and galaxy clustering signal for BOSS galaxies that arises
from our imperfect knowledge of baryon feedback and assem-
bly bias. They conclude that the introduction of scale cuts with
rp > 5h−1 Mpc fully isolates these effects. Following the method-
ology in Appendix C we determine νrp>5

eff
= 60.31 for a large-

scale only 2×2pt+SMF data vector analysis, calculating the
large-scale goodness of fit of our fiducial best-fit model (see Ta-
ble 2) to be p[χ2(rp > 5)|νrp>5

eff
] = 0.19. As such we find no sign

of tension between our fiducial all-scale analysis and a restricted
large-scale analysis.

The majority of the information in our (rp > 5) data vector
comes from the SMF as there are only 4 highly correlated data
points remaining in the ESD and wp measurements, per stellar
mass bin. We found that a full likelihood analysis of the (rp > 5)
data vector was unable to converge in our highly-flexible 17-
parameter model space. Where larger scales are used exclusively,
either more precise data or the use of a less flexible model is
necessary (such as in More 2013; Miyatake et al. 2021; Amon
et al. 2022b, amongst others). The extra flexibility afforded in
our model is, however, essential when analysing small scales in
order to capture baryonic effects (Debackere et al. 2020, 2021)

4.3. Galaxy-halo connection

The powerful aspect of the method used in this work is that it
is able to simultaneously constrain both cosmological parame-
ters as well as the halo occupation statistics. The full results are

listed in Table 2 and the marginalised posterior distributions of
all the parameters are shown in Fig. E.2. The HOD parameters
are tightly constrained, with some strong degeneracies between
the parameters M0, M1 and γ1 that govern the characteristic mass
of the stellar-to-halo mass relation knee and the high mass slope
of centrals, and between the b0 and b1 parameters, which govern
the normalisation of the satellite CSMF. The first degeneracy is
somewhat expected given the data, as the stellar mass function
at the high mass end is highly uncertain and dominated by the
Eddington bias. The second degeneracy also arises from the fact
that both parameters compete for the overall normalisation of the
satellite CSMF.

We find the parameters of our HOD model to be in good
agreement with the previous studies using GAMA-like galaxies
(van Uitert et al. 2016; Dvornik et al. 2018; Bilicki et al. 2021).
In order to show the agreement in a more intuitive way, we take
the parameters of the stellar-to-halo mass relation and combine
them using the same functional form (Eq. 19), which results in
the relation shown in Fig. 7. In the same figure we show good
agreement with the results from van Uitert et al. (2016), where
the HOD parameters were constrained using galaxy-galaxy lens-
ing combined with a SMF for KiDS and GAMA data, adopting
a fixed Planck cosmology. We also find qualitative agreement
with constraints from abundance matching to numerical simu-
lations (Moster et al. 2013) and constraints from a 2×2pt+SMF
analysis of COSMOS with a fixed WMAP5 cosmology (Leau-
thaud et al. 2012, note here we compare to constraints from the
most similar 0.22 < z < 0.48 COSMOS sample) as well as the
CFHTLenS/VIPERS analysis by Coupon et al. (2015). We find
our constraints on the scatter of the central CSMF, σc, and the
low mass end slope of the satellites, αs, to be in agreement with
Yang et al. (2009); Cacciato et al. (2013); van Uitert et al. (2016);
Dvornik et al. (2018); Bilicki et al. (2021). The Eddington bias
at the high mass end is captured by the σc parameter, leaving the
other parameters mostly unaffected.
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Fig. 7: The stellar-to-halo mass relation, as defined by Eq. 19
using the best-fit HOD parameters from our 2×2pt+SMF anal-
ysis (blue). The result can be compared to results from Leau-
thaud et al. (2012, green), Moster et al. (2013, black), Coupon
et al. (2015, orange), and van Uitert et al. (2016, purple). The
grey area shows the range in stellar masses where the obtained
stellar-to-halo mass relation is extrapolated beyond the range of
median stellar masses used in this analysis.

We account for the impact of baryon feedback in our model
by allowing for freedom in the normalisation of the mass-
concentration relation for both the haloes, fh, and the satellite
galaxy distribution, fs (Eq. 15). With these independent free pa-
rameters we can capture the expected small-scale baryon feed-
back power suppression shown in hydrodynamical simulations
(Debackere et al. 2021; Amon et al. 2022b). We find fh and fs
to be consistent with 1, with a preference for lower values, with
1σ lower limits fh > 0.65 and fs > 0.38. Our results are con-
sistent with Viola et al. (2015), indicating that the concentra-
tions of real haloes and satellite distributions are smaller than
the haloes in dark matter only simulations (see also Debackere
et al. 2020, 2021). Future work will compare direct measure-
ments from hydrodynamical simulations (e.g. McCarthy et al.
2017) with our halo model approach to account for the mass de-
pendence of baryonic effects on the radial profiles of dark matter
haloes.

5. Discussion and conclusions

In this paper we combined measurements of galaxy clustering,
galaxy-galaxy lensing and galaxy abundances in the form of the
stellar mass function, in order to simultaneously set constraints
on cosmological parameters and galaxy bias. Using a flexible
halo model, we analysed the fourth data release of the Kilo-
Degree Survey (KiDS) (KiDS-1000, Kuijken et al. 2019), where
the source sample, used to measure the galaxy-galaxy lensing
signal, has undergone a rigorous study to assess robustness and
accuracy (Asgari et al. 2021b; Giblin et al. 2021; Hildebrandt
et al. 2021). For our lens sample we used the KiDS-Bright sam-

ple (Bilicki et al. 2021) whose selection was calibrated against
a complete and representative spectroscopic sample from the
GAMA survey (Driver et al. 2011), with the photometric red-
shifts calibrated using a neural network (ANNz2, Sadeh et al.
2016). The resulting accuracy of the estimated redshifts for the
KiDS-bright sample is sufficient for galaxy-galaxy lensing and
galaxy clustering studies.

We used the halo model to analyse our data, building upon
the cosmological analyses presented in Cacciato et al. (2013) and
More et al. (2015). We used a single halo occupation model to
compute the clustering of galaxies and the galaxy-galaxy lens-
ing signal (Guzik & Seljak 2002; Yoo et al. 2006; Cacciato et al.
2009), and the galaxy abundances (van den Bosch et al. 2013;
Cacciato et al. 2013). This model was shown to be able to simul-
taneously constrain cosmology and halo occupation statistics, as
well as constrain the extensions to the standard ΛCDM cosmolo-
gies, such as the equation of state of dark energy and neutrino
mass (More et al. 2013; Krause & Eifler 2017).

We improved upon previous studies by (i) using a more accu-
rate N-body simulation calibrated analytical model, taking into
account halo exclusion, scale dependence and the non-linear na-
ture of halo bias (Mead & Verde 2021; Mahony et al. 2022), (ii)
using the latest lensing and clustering data from a single survey
(KiDS-1000), and (iii) using the full analytical covariance ma-
trix that accounts for cross-covariance between all observables
and in particular the cross-covariance between the stellar mass
function and two point statistics.

We have adopted a Bayesian approach to constrain our model
parameters, using the MCMC to probe the posterior distribu-
tions. For a flat ΛCDM cosmology we find Ωm = 0.290+0.021

−0.017
and S 8 = 0.773+0.028

−0.030, which is consistent and comparable to con-
straints from 3×2pt studies that also include a cosmic shear ob-
servable (Heymans et al. 2021; DES Collaboration et al. 2022).
Our results follow the trend seen in other lensing studies for
a tension in S 8 when compared to Planck Collaboration et al.
(2020). Using the Hellinger distance as a tension metric, this dif-
ference is at the 1.9σ level for our 2×2pt+SMF analysis.

Combining galaxy clustering and galaxy-galaxy lensing with
cosmic shear measurements has been a standard approach for
large-scale structure analyses in recent years (van Uitert et al.
2018; Joudaki et al. 2017; Abbott et al. 2018; DES Collabora-
tion et al. 2022; Heymans et al. 2021). We anticipate that comb-
ing our halo model approach with cosmic shear data will allow
for additional constraints on astrophysical systematics arising
from the intrinsic alignment of galaxies and baryon feedback.
So far, intrinsic alignments in cosmic shear analysis have either
been included using a non-linear modification of the linear align-
ment model (Bridle & King 2007, NLA) or a perturbation the-
ory approach (TATT Blazek et al. 2019). For a consistent halo
model approach this effect could also be modelled within the
framework adopted in this analysis (e.g. Fortuna et al. 2021).
In this analysis we have varied the halo concentration parame-
ter to account for baryon feedback. With additional data, a more
complex halo model could be adopted allowing for the inclu-
sion of gas observables to constrain baryon feedback through
the Sunyaev-Zeldovich effect (Mead et al. 2020; Tröster et al.
2022). The flexibility of the halo model also allows for exten-
sions to the underlying cosmological model without having to
employ a myriad of costly simulations to cover a large range of
parameters (Cataneo et al. 2019). We therefore see a significant
role for our adopted methodology in future cosmological analy-
ses of upcoming large-scale structure surveys.

Article number, page 15 of 24



A&A proofs: manuscript no. 2x2pt

Acknowledgements. We acknowledge support from the European Research
Council under grants 770935 (AD, CM, HHi, RR, AHW) and 647112 (CH,
MA), and the UK Science and Technology Facilities Council (STFC) under
grants ST/V000594/1 (CH, MA) and ST/V000780/1 (BJ). HHi is further
supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft (Hi
1495/5-1). CH and AM acknowledge support from the Max Planck Society and
the Alexander von Humboldt Foundation in the framework of the Max Planck-
Humboldt Research Award endowed by the Federal Ministry of Education and
Research. MB is supported by the Polish National Science Center through
grants no. 2020/38/E/ST9/00395, 2018/30/E/ST9/00698, 2018/31/G/ST9/03388
and 2020/39/B/ST9/03494, and by the Polish Ministry of Science and Higher
Education through grant DIR/WK/2018/12. EC and HJ acknowledges support
from the Delta ITP consortium, a program of the Netherlands Organisation for
Scientific Research (NWO) that is funded by the Dutch Ministry of Education,
Culture and Science (OCW), project number 24.001.027. HHo acknowledges
support from Vici grant 639.043.512, financed by the Netherlands Organisation
for Scientific Research (NWO). KK acknowledges support from the Royal
Society and Imperial College. HM was supported in part by World Premier
International Research Center Initiative (WPI Initiative), MEXT, Japan, by
JSPS KAKENHI Grant Numbers 20H01932, by JSPS Core-to-Core Program
Grant Number JPJSCCA20200002, and by Japan Science and Technology
Agency (JST) CREST JPMHCR1414 and JST AIP Acceleration Research Grant
Number JP20317829, Japan. TN is supported in part by MEXT/JSPS KAK-
ENHI Grant Numbers P19H00677, P20H05861, JP21H01081, JP22K0363, and
Japan Science and Technology Agency (JST) AIP Acceleration Research Grant
Number JP20317829.
Based on observations made with ESO Telescopes at the La Silla Paranal
Observatory under programme IDs 177.A-3016, 177.A-3017, 177.A-3018 and
179.A-2004, and on data products produced by the KiDS consortium. The KiDS
production team acknowledges support from: Deutsche Forschungsgemein-
schaft, ERC, NOVA and NWO-M grants; Target; the University of Padova, and
the University Federico II (Naples).
This work has made use of Python (http://www.python.org), in-
cluding the packages numpy (http://www.numpy.org), scipy
(http://www.scipy.org), astropy (http://www.astropy.org As-
tropy Collaboration et al. 2013, 2018), and hmf (Murray et al. 2013). Plots have
been produced with matplotlib (Hunter 2007) and chainconsumer (Hinton
2016). This work has made use of CosmoHub for validation of our covariance
matrices. CosmoHub has been developed by the Port d’Informació Científica
(PIC), maintained through a collaboration of the Institut de Física d’Altes Ener-
gies (IFAE) and the Centro de Investigaciones Energéticas, Medioambientales
y Tecnológicas (CIEMAT) and the Institute of Space Sciences (CSIC & IEEC),
and was partially funded by the “Plan Estatal de Investigación Científica y
Técnica y de Innovación” program of the Spanish government.

Author contributions: All authors contributed to writing and development
of this paper. The authorship list reflects the lead authors (AD,CH,MA,CM,BJ)
followed by an alphabetical group that includes those who are key contributors
to the scientific analysis.

References
Abbott, T. M. C., Abdalla, F. B., Alarcon, A., et al. 2018, Phys. Rev. D, 98,

043526
Alam, S., Aubert, M., Avila, S., et al. 2021, Phys. Rev. D, 103, 083533
Amon, A., Gruen, D., Troxel, M. A., et al. 2022a, Phys. Rev. D, 105, 023514
Amon, A., Robertson, N. C., Miyatake, H., et al. 2022b, ArXiv e-prints, 1
Arnouts, S., Cristiani, S., Moscardini, L., et al. 1999, Mon. Not. R. Astron. Soc.,

310, 540
Asgari, M., Friswell, I., Yoon, M., et al. 2021a, Mon. Not. R. Astron. Soc., 501,

3003
Asgari, M., Lin, C.-a., Joachimi, B., et al. 2021b, Astron. Astrophys., 645, A104
Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, Astron.
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Appendix A: Stellar mass function covariance matrix

We derive the covariance of the SMF in direct analogy to the flux-limited case considered in Smith (2012), but neglect the halo
occupation variance contribution because it was demonstrated to be always subdominant (Smith 2012). To simplify the expression
we neglect the mapping from true stellar mass to observed stellar mass, where the corresponding integrations would appear explicitly
as this relation is expected to be fairly tight. The SMF covariance is composed of a shot noise and super-sample covariance (SSC)
contribution,

Cov
[
Φi
µ,Φ

j
ν

]
= CovSN

[
Φi
µ,Φ

j
ν

]
+ CovSSC

[
Φi
µ,Φ

j
ν

]
, (A.1)

with

CovSN
[
Φi
µ,Φ

j
ν

]
= δi, j δµ,ν

Φi
µ

∆M?V i
max,µ

, (A.2)

where Φi
µ = Φi(M?,µ) and V i

max,µ = V i
max(M?,µ) are the shorthands for the stellar mass function and Vmax of stellar mass bin µ and

generally a tomographic bin i. We define:

Φ̃µ =

∫ ∞

0
Φ(M?,µ|M, [z]) n(M, z) bh(M, z) dM , (A.3)

using which the SSC terms are given by

CovSSC
[
Φi
µ,Φ

j
ν

]
=

A2
survey f i f j

V i
max,µ V j

max,ν

∫
dχ

pi(χ)
ptot(χ)

p j(χ)
ptot(χ)

f 2
K(χ)σ2

s (χ) Φ̃µ[z(χ)] Φ̃µ[z(χ)] , (A.4)

where σ2
s is the variance of density fluctuations within the angular survey window (see Appendix E of Joachimi et al. (2021)

for definition), pi are the tomographic bin-wise redshift distributions, ptot the overall redshift distribution for all galaxies in the
sample/survey, fK the comoving angular diameter distance, χ the comoving radial distance and f i the fraction of galaxies in bin i
relative to all galaxies. Asurvey is the survey area.

The cross-variance is derived in close analogy to Takada & Bridle (2007), with the consistency checks by Schaan et al. (2014).
The cross-variance receives contributions from two terms,

Cov
[
Φi
µ,O

jl(rp)
]

= CovCV
[
Φi
µ,O

jl(rp)
]

+ CovSSC
[
Φi
µ,O

jl(rp)
]
, (A.5)

a cosmic variance (CV) and a super-sample covariance (SSC) term, respectively. Here we determine the cross-variance with a
projected two-point function O jl(rp) either WP, wp(r), or ESD, ∆Σ(r), in bins j and l, respectively. The cosmic variance contribution
is a three-point correlation given by

CovCV
[
Φi
µ,O

jl(rp)
]

= ρx f i
∫

dχ
pi(χ)

ptot(χ)

∫
dk k
2π

Jx(krp) (nBcmm) jl
µ

[
k, z(χ)

]
, (A.6)

where ρx = 1 and Jx = J0 in the case when observable is wp, and ρx = ρm and Jx = J2 in the case when observable is ∆Σ. Jn are
Bessel functions of n-th kind. Here we have defined the count-matter cross-bispectrum (evaluated for a collapsed triangle) in close
analogy to Takada & Bridle (2007). It can be expressed in the halo model formalism as

(nBcmm)µ (k, z) =

∫
dM n(M, z) Φ(M?,µ|M, [z])

(
M
ρm

)2

ũ2
h(k|M) (A.7)

+ 2Plin(k, z)
∫

dM n(M, z) Φ(M?,µ|M, [z]) bh(M, z)
M
ρm

ũh(k|M)
∫

dM′ n(M′, z) bh(M′, z)
M′

ρm
ũh(k|M′) .

Finally, the SSC term reads

CovSSC
[
Φi
µ,O

jl(rp)
]

= ρxAsurvey f i
∫

dχ
pi(χ)

ptot(χ)

∫
dk k
2π

Jx(krp)
∂P jl

xy(k, z(χ))
∂δb

σ2
s (χ) Φ̃µ[z(χ)] , (A.8)

where Pxy(k, z) is either Pgg(k, z) for wp or Pgm(k, z) for ∆Σ, and the derivative is with respect to a super-survey density fluctuation δb
(Takada & Hu 2013; Dvornik et al. 2018). As the systematic and statistical uncertainties on stellar masses are comparable in power
(Brouwer et al. 2021), the entries in the SMF and cross-covariances are inflated by a factor of 2 to account for uncertainty arising
from Eddington bias and the systematic shift in stellar masses.
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Fig. B.1: Prior range for the Ωm and S 8 parameters compared to
the 2σ contour from our fiducial cosmological analysis.

Appendix B: Prior space

We adopt informative priors for three cosmological parameters;
ns, Ωb, and h. Our priors are also informative on the parameters
which scale the mass-concentration relation for haloes and satel-
lite galaxies; fh and fs. In Fig. B.1 we verify that our choice of
priors does not inform the Ωm and S 8 parameters, noting that our
prior combination does not result in trivial square prior coverage.

Appendix C: Estimating the goodness of fit

To assess the goodness-of-fit of our model to the data it is nec-
essary to determine the effective number of degrees of freedom,
νeff , (see the discussion in section 6.3 of Joachimi et al. 2021,
on why νeff , Ndata − Nθ, for a typical cosmology analysis with
Ndata data points and Nθ cosmological parameters). We follow a
simulation approach to determine νeff following Joachimi et al.
(2021); Miyatake et al. (2021).

We generate 200 noisy mock data vectors, drawing samples
from the multivariate distribution defined by the mean, which
is our best-fit signal, and the full covariance matrix. We find
the maximum posterior point using a Nelder-Mead minimisa-
tion and its corresponding χ2 value for the fit. From the resulting
distribution of χ2 values, shown in Fig. C.1, we fit a χ2 distri-
bution to find the effective degrees of freedom5, νeff = 147.55,
finding that our model provides a good fit to the data with
p(χ2|νeff) = 0.27.

We can use our simulation approach to also determine the
goodness of fit for each of the three sections of the data vec-
tor: ESD (galaxy-galaxy lensing), wp (galaxy clustering), and
SMF (stellar mass function). To estimate the degrees of freedom
for each observable we find the χ2 value for that section of the
data vector corresponding to the maximum posterior point that is

5 We note that our simulation approach finds a slightly larger νeff com-
pared to the estimation using the Raveri & Hu (2019) approach, for
which we find νeff = 138.5,

100 125 150 175 200

χ2(θMAP)

F
re

q
u

en
cy

200 noisy mocks

Fit to mocks P (χ2
ν=147.55)

χ2
real data = 157.84

Fig. C.1: An estimation of goodness of fit of the fiducial best
fit model at the maximum a posteriori (MAP) values. The his-
togram shows the distribution of the χ2 values from 200 noisy
mock data vectors (see text for detailed procedure). The orange
line shows the fit of the χ2 distribution to the histogram, obtain-
ing the effective number of degrees of freedom in the data. The
black vertical line shows the χ2 value as obtained from the best
fit model to the real data.

found using the full data vector. In other words the partial χ2 val-
ues are not separately minimised. Fig. C.2 presents the resulting
χ2 distributions and fit. We note that some alternative methods to
define νeff , such as Raveri & Hu (2019), would be ill defined for
these sub-data vectors owing to the number of free parameters in
the model. We find νESD

eff
= 73.18 with p[χ2(ESD)|νESD

eff
] = 0.05,

ν
wp

eff
= 72.62 with p[χ2(wp)|νwp

eff
] = 0.01, and νSMF

eff
= 14.58 with

p[χ2(SMF)|νSMF
eff

] = 0.39. We conclude that the goodness of fit
of the full data vector and each of the individual sections is ac-
ceptable. This procedure is repeated for the remaining modelling
cases considered in this paper.

Appendix D: Galaxy-galaxy lensing random signal

The ratio between the lensing signal measured around random
galaxies from the organised randoms catalogue and the fiducial
model prediction in our six stellar mass bins is presented in Fig.
D.1. A non-zero random signal indicates systematic effects in
the ESD signal measured from the KiDS survey. The strong de-
pendence of the random signal on the stellar mass of the lens bin
indicates that this systematic is unlikely to be caused by resid-
ual uncorrected distortions in the source lensing catalogue, for
example those associated with the point spread function of the
camera. Such a data-related systematic would impact the ESD
signal of each lens bin similarly given the similar source sam-
ples (see also Giblin et al. 2021, which presents a series of di-
agnostic tests). Instead we conclude that this signal arises from
large scale structure sample variance that differs as the volume
of the sample grows with the increasing stellar mass (Singh et al.
2017). We calculate the error on the mean random signal, mea-
sured using 1000 samples of the random catalogue, finding it to
be indistinguishable from the thickness of the blue curve, and
sufficiently small that we do not include it in our overall error
budget. We find that the random correction applied to the data
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Fig. C.2: Same as Fig. C.1, but for the 3 different observables in
our analysis. The fits to the distributions are used to determine
the number of degrees of freedom for each observable which are
in turn are used to determine the reduced χ2 values for each of
them respectively. Note that the χ2 distributions are not a result
of a maximising the posterior for that section of the mocks. The
vertical lines show the χ2 values from the real data, matching in
colours with the histograms.

exceeds 100% in the first three stellar mass bins on large scales,
and can be up to 4 times larger than the statistical uncertainty.

Appendix E: Extensions to the fiducial
cosmological analysis

In this appendix we review the impact of modelling choices on
our fiducial cosmological parameter constraints (Sect. 4) to a se-
ries of extensions to our fiducial theoretical model. The results,
in terms of S 8 and Ωm are summarised in Fig. E.1 with the full
parameter space quantified in Table E.1 and Fig. E.2.

Appendix E.1: Modelling intrinsic galaxy alignments and
magnification

We quantify the contribution of lens galaxy magnification and
intrinsic galaxy alignments to our data, which we do not account
for in our fiducial model. We estimate the contribution of intrin-
sic alignments (IA) using the NLA model (Bridle & King 2007)
by

PgI(k, z) = −AIAC1ρcrit
Ωm

D(z)
Pgm(k, z) , (E.1)

where AIA is the amplitude of the intrinsic alignment signal, C1
is a normalisation constant, D(z) the linear growth factor. We set
C1ρcrit = 0.0134, motivated by Brown et al. (2002). In order to
estimate the contribution of intrinsic alignments to the galaxy-
galaxy lensing signal, we set AIA = 1, which is a good ‘worst-
case’ scenario for our complete magnitude-limited KiDS-Bright
sample. We project the PgI power spectrum to the galaxy-galaxy
lensing signal. We subtract the additional contribution from the
intrinsic alignments from the measured lensing signal and com-
pare the relative difference between the corrected and uncor-
rected data to quantify the impact of neglecting intrinsic galaxy
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Fig. D.1: The ratio between the lensing signal measured around
random galaxies from the organised randoms catalogue and the
fiducial model prediction in our six stellar mass bins. For com-
parison we show the uncertainty of the data as a purple band.

KiDS 2× 2 pt + SMF

S8 Ωm

Planck ns prior

Poissonian satellite dist.

No photo-z dilution

0.8 0.9 1.00.275 0.300 0.325 0.350

Fig. E.1: Comparison between S 8 and Ωm values for our fiducial
results and the tests for different modelling choices. All results
are shown for maximum statistics of the marginal posterior dis-
tributions (MMAX) and corresponding credible interval.

alignments in our theoretical model. Such model is only describ-
ing the IA well on large scales and becomes increasingly ad hoc
on small scales, but it nevertheless provides for a sensible am-
plitude estimation. Future studies will use the halo model based
approach as presented in Fortuna et al. (2021) and Georgiou et al.
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Table E.1: Marginal constraints on all model parameters listed together with their priors, for fiducial and extension setups considered.

Parameter Prior Fiducial Planck ns prior Poissonian satellite dist.
MMAX MAP+PJ-HPD MMAX MAP+PJ-HPD MMAX MAP+PJ-HPD

Ωm [0.1, 0.6] 0.290+0.021
−0.017 0.307+0.002

−0.031 0.285+0.024
−0.017 0.289+0.010

−0.026 0.330 ± 0.019 0.323+0.019
−0.011

σ8 [0.4, 1.2] 0.781+0.033
−0.029 0.801+0.013

−0.041 0.792+0.035
−0.031 0.791+0.038

−0.020 0.902+0.044
−0.034 0.953+0.009

−0.067

h [0.64, 0.82] < 0.726 < 0.711 < 0.716 < 0.715 < 0.720 < 0.712

Ωb [0.01, 0.06] > 0.01 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01

ns [0.92, 1.1] < 1.004 < 0.978 0.964+0.005
−0.004 0.965+0.003

−0.005 < 0.988 < 0.979

S 8 – 0.773+0.028
−0.030 0.809+0.001

−0.055 0.777+0.031
−0.029 0.776+0.030

−0.023 0.951+0.037
−0.036 0.989+0.020

−0.057

fh [0.0, 1.0] > 0.645 > 0.939 > 0.665 > 0.948 > 0.652 > 0.938

M0 [7.0, 13.0] 10.519+0.039
−0.062 10.521+0.062

−0.044 10.520+0.042
−0.060 10.537+0.051

−0.054 10.446+0.053
−0.044 10.511+0.010

−0.088

M1 [9.0, 14.0] 11.138+0.099
−0.132 11.145+0.136

−0.098 11.129+0.115
−0.126 11.168+0.080

−0.141 11.039+0.153
−0.123 11.197+0.033

−0.238

γ1 [2.5, 15.0] 7.096+2.144
−1.406 7.385+1.441

−1.824 7.026+2.157
−1.454 6.774+2.174

−1.014 8.364+2.831
−2.028 6.334+4.370

−0.343

γ2 [0.0, 10.0] 0.201±0.010 0.201±0.009 0.201±0.011 0.211±0.010 0.201±0.010 0.207±0.007

σc [0.0, 2.0] 0.108+0.067
−0.011 0.159+0.007

−0.070 0.105+0.062
−0.015 0.098+0.063

−0.014 0.178+0.021
−0.023 0.123+0.062

−0.008

fs [0.0, 1.0] > 0.377 > 0.84 > 0.394 > 0.858 > 0.223 > 0.808

αs [−5.0, 5.0] −0.858+0.048
−0.052 −0.847+0.013

−0.097 −0.874+0.059
−0.042 −0.898+0.062

−0.043 −0.844+0.042
−0.043 −0.916+0.092

−0.002

b0 [−5.0, 5.0] −0.024+0.108
−0.117 −0.120+0.199

−0.001 −0.016+0.098
−0.118 −0.077+0.163

−0.028 −0.239±0.092 −0.267+0.104
−0.058

b1 [−5.0, 5.0] 1.149+0.091
−0.081 1.177+0.058

−0.096 1.139+0.091
−0.078 1.181+0.037

−0.111 1.045+0.076
−0.060 1.019+0.092

−0.029

P [0.0, 2.0] 0.403±0.029 0.417+0.024
−0.013 0.403±0.030 0.411+0.014

−0.011 1.0 fixed 1.0 fixed

D [0.0, 0.3] 0.144+0.091
−0.085 0.051+0.172

−0.006 0.150+0.090
−0.082 0.195+0.029

−0.147 0.067+0.082
−0.064 0.140+0.016

−0.132

χ2
red – 1.07 1.07 1.25

p-value – 0.27 0.27 0.02

Notes: This table lists all the free parameters in our model: the energy density of cold matter Ωm, the normalisation of power
spectrum σ8, the dimensionless Hubble parameter h, the spectral index ns, the energy density of baryonic matter Ωb, the derived
parameter S 8, the normalisation of the concentration-mass relation for dark matter haloes fh, the normalisation of stellar-to-halo
mass relation M0, the characteristic scale of the stellar-to-halo mass relation M1, the slope parameters of the stellar-to-halo mass
relation γ1 and γ2, the scatter between stellar mass and halo mass σc, the normalisation of the concentration-mass relation for
distribution of satellite galaxies fs, the power law behaviour of satellites αs, the normalisation constants of the Schechter function b0
and b1, and the Poisson parameter P. Parameters are deemed unconstrained when the marginal probability at 2σ level exceeds 13%
of the peak probability (see appendix A of Asgari et al. 2021b). In cases where one side is constrained we report the 1σ lower/upper
limit. The MMAX estimate is the marginal maximum statistic, reporting the point of maximum marginal posterior distribution to
the iso-posterior levels above and below the maximal point. The MAP+PJ-HPD (maximum posterior with projected joint highest
posterior density) estimates are calculated following Joachimi et al. (2021).

(2019), which links the IA signal to the properties of the galaxies
an their parent dark matter haloes.

The magnification contribution to the total lensing and clus-
tering signal is modelled as

∆Σmag(rp) = 2(αd − 1) ∆Σmm(rp) (E.2)

and

wp,mag(rp) = 4(αd − 1)wgm(rp) + 4(αd − 1)2 wmm(rp) , (E.3)

where ∆Σmm(rp) and wmm(rp) are the lensing signal and projected
clustering contributions from the convergence power spectrum,
respectively (Joachimi & Bridle 2010; Simon & Hilbert 2018;
Unruh et al. 2020). The wgm(rp) is the same quantity as the
Σ(rp), but without the mean density ρm (see Eq. 35). We esti-
mate the contribution from lens magnification using the values
for a KiDS and GAMA like survey, given by Unruh et al. (2020).
We adopt αd = 0.85 corresponding to a lens redshift of 0.21, and

αd = 2.11 corresponding to a lens redshift of 0.36. These values
are representative of the magnification effect we would expect
for the two highest stellar mass bins in our analysis, with other
bins predicted to have a somewhat smaller contribution, due to
their redshifts (Unruh et al. 2020). We subtract the magnification
contribution from our data to quantify the impact of neglecting
magnification in our theoretical model.

The relative contributions of intrinsic alignments and magni-
fication to the ESD and wp observables are presented in Fig. E.3.
We present the contribution for the largest stellar mass bin only,
as the contribution to magnification and intrinsic alignments is of
the same order for all of them. On the same figure we also show
the changes to the galaxy-galaxy lensing and galaxy clustering
signals if we change the two main cosmological parameters. The
contributions of both intrinsic alignments and magnification are
well below 1%, as also found in Unruh et al. (2020) and are well
within the error budget of the data. Moreover, they are also sub-
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Fig. E.2: The full posterior distributions of the model parameters (where the priors are listed in Table 2). The contours indicate 1σ
and 2σ confidence regions.

dominant to the changes due to the cosmological parameters of
interest. Such contributions have negligible effects on the over-
all signal, and are unlikely to be a significant source of bias. To
some extent the effects cancel each other out, as for the redshifts
of our lens galaxies the magnification effect dilutes the signal,
while the intrinsic alignments add a similar contribution.

Appendix E.2: Changing the ns prior

Inspecting Fig. E.2 we note that the marginalised posteriors of
our prior-informed cosmological parameter set, ns, Ωb and h,
have a tendency to push up against one side of the prior. As the

KiDS 2×2pt+SMF data vector is expected to be insensitive to
changes in this parameter set, we conclude that this effect arises
from projection effects or the MCMC not fully sampling this part
of parameter space. Given that there are no strong degeneracies
between this set and the rest of the parameters, and that the set is
already well constrained from other studies (see the discussion
in appendix B of Heymans et al. 2021) we find no motivation
to investigate the impact of widening the priors. Instead we in-
vestigated reducing the prior range by adopting a Gaussian prior
with the mean and uncertainty fixed to the Planck Collaboration
et al. (2020) constraint for ns. This parameter is the most inter-
esting to investigate of the three, as any tension between small
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Fig. E.3: Relative difference between the lensing signal with and
without the contribution of intrinsic alignments and lens magni-
fication. The intrinsic alignment contribution is modelled with
AIA = 1, which is a reasonable ‘worst case’ scenario for the
KiDS-Bright sample, and the magnification is modelled with
αd = 0.85 and αd = 2.11, typical for GAMA-like lenses at
a redshift of 0.21 and 0.36. Grey areas show the error on the
data. We also show the changes to the galaxy-galaxy lensing and
galaxy clustering signals if we change the two main cosmologi-
cal parameters. The behaviour is only shown for the largest stel-
lar mass bin, as the contribution to magnification and intrinsic
alignments is of the same order for all of them.

and large scales may be expected to manifest in a biased spectral
index constraint (Tröster et al. 2021).

The results are presented in Table E.1 and Fig. E.2. We find
that the marginal contours for the parameters do not change sig-
nificantly with the addition of a restrictive prior on ns. For exam-
ple, the MMAX estimate of S 8, shifts by 0.13σ, which is con-
sistent with the expected MCMC run-to-run variance (Joachimi
et al. 2021). In future studies we will explore the impact of using
more restrictive priors on all externally-constrained parameters
which we are insensitive to, noting that this may also help to
reduce projection bias for posteriors with many parameters.
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Fig. E.4: Marginalised constraints for the joint distributions of
S 8 and Ωm, showing 68% and 95% credible regions. We com-
pare our fiducial analysis (blue) with an analysis neglecting the
impact of photometric redshift uncertainties which dilute the es-
timated projected galaxy clustering signal (grey).

Appendix E.3: The effect of unmodelled photometric redshift
errors on the projected galaxy clustering measurements

In Sect. 3.3 we introduce a free nuisance parameter,D (Eq. 43),
to account for our uncertainty on the amplitude of the true pro-
jected galaxy clustering signal. The expected dilution is a re-
sult of unaccounted photometric redshift errors in our theoret-
ical model for wp(rp). In Figure E.4 we compare our fiducial
constraints in S 8 and Ωm with the constraints from an analy-
sis where the photometric redshift dilution effect is neglected
and D = 1. We find that while the omittance of the photometric
redshift dilution effect does not impact the S 8 constraints, Ωm
becomes biased and more constrained. This is expected as the
galaxy clustering is more sensitive to Ωm compared to σ8 (cf.
Fig. E.3). This motivates future work to improve the estimator
for, or theoretical modelling of, the projected galaxy clustering
signal in the presence of photometric redshift errors, following
Joachimi et al. (2011); Chisari et al. (2014).

Appendix E.4: Modelling satellite galaxies

In our fiducial model we used the findings of Dvornik et al.
(2018) that showed that the occupation distribution of satellite
galaxies does not follow a Poisson distribution, and that gener-
ally the parameter P (Eq. 25) is not unity, with our fiducial run
preferring a sub-Poissonian behaviour. Following Cacciato et al.
(2013), we quantify the impact of removing this flexibility in the
model, by fixing the parameter P to unity,

P(M) ≡
〈Ns(Ns − 1)|M〉
〈Ns|M〉2

≡ 1 , (E.4)

thus assuming that the satellite galaxies obey the Poisson dis-
tribution. We run another set of MCMC chains using the same
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setup as in the fiducial case, but with one less parameter to
constrain. The resulting constraints are shown in Fig. E.2, with
marginalised constraints quoted in Table E.1. We find signifi-
cant shifts for the two main cosmological parameters with Ωm =
0.330±0.019 and S 8 = 0.961+0.037

−0.036 and a formally acceptable fit
with p(χ2|νeff) = 0.02 for the whole data vector. In this case
we find that the fixed Poisson parameter non-trivially affects
the other parameters governing the satellites in the halo model.
Specifically the normalisation of the satellite conditional stellar
mass function, b0 and b1, shifts, and these parameters are in turn
non-trivially correlated with the main cosmological parameters.

There are several reasons to reject the Poissonian satel-
lite distribution model. Using the GAMA group catalogue
(Robotham et al. 2011) we can directly measure P(M) as a
function of the dynamical mass Mdyn (Driver et al. 2022). We
find the satellite distribution to be sub-Poissonian for Mdyn <

1013h−1M�, ranging from P(Mdyn) ∼ 0.4 at Mdyn = 1011h−1M�,
to P(Mdyn) ∼ 1 at Mdyn = 1013h−1M�. Assuming the GAMA dy-
namical mass is a reasonable estimate of the halo mass Mh, using
Fig. 7 we expect the satellite distribution to be sub-Poissonian
across the full stellar mass range of our 2×2pt+SMF analysis.
This finding is supported by hydrodynamical simulations (see
figure 7 of Dvornik et al. 2018).

Finally, even though we find an acceptable fit of this model
to our full 2×2pt+SMF data vector, there is an unacceptable fit
to the wp part of the data vector for this P = 1 analysis, with
p[χ2(wp)|νwp

eff
] ∼ 10−4. Our results are therefore consistent with

Cacciato et al. (2013), confirming their conclusion that including
flexibility in the form of the satellite galaxy model is critically
important in order to both constrain the galaxy bias (Cacciato
et al. 2012; Dvornik et al. 2018; Asgari et al. 2021a), and to
obtain unbiased cosmological parameters.
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