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PARALLEL SPARSE LU DECOMPOSITION ON A MESH
NETWORK OF TRANSPUTERS*

A. FRANK VAN DER STAPPENt, ROB H. BISSELINGt, AND

JOHANNES G. G. VAN DE VORST

Abstract. A parallel algorithm is presented for the LU decomposition of a general sparse
matrix on a distributed-memory MIMD multiprocessor with a square mesh communication network.
In the algorithm, matrix elements are assigned to processors according to the grid distribution.
Each processor represents the nonzero elements of its part of the matrix by a local, ordered, two-
dimensional linked-list data structure. The complexity of important operations on this data structure
and on several others is analysed. At each step of the algorithm, a parallel search for a set of m
compatible pivot elements is performed. The Markowitz counts of the pivot elements are close to
minimum, to preserve the sparsity of the matrix. The pivot elements also satisfy a threshold criterion,
to ensure numerical stability. The compatibility of the m pivots enables the simultaneous elimination
ofm pivot rows and m pivot columns in a rank-m update of the reduced matrix. Experimental results
on a network of 400 transputers are presented for a set of test matrices from the Harwell-Boeing
sparse matrix collection.

Key words, sparse matrices, LU decomposition, parallel algorithms, distributed-memory mul-
tiprocessor, transputers

AMS subject classifications. 65F05, 65F50, 65Y05

1. Introduction. Sparse linear systems of equations need to be solved in many
application areas, such as oil reservoir simulation, chemical plant modelling, and linear
programming. A sparse linear system of equations has the form

(1) Ax b,

where A is an n n sparse matrix, and x and b are vectors of length n. Vector b is
given, and x is the unknown solution vector. In this paper we assume that the matrix
A is nonsingular, sparse (i.e., cn of its n2 elements have a nonzero value, with c << n),
and general (i.e., A has an arbitrary, not necessarily symmetric pattern of nonzeros).
The computing time and the amount of memory needed to solve (1) can be reduced
greatly by exploiting the sparsity of A.

Several methods exist for solving the sparse system Ax b [12], [34]. One of
these methods is based on LU decomposition [19], which is closely related to Gaussian
elimination. LU decomposition produces an n n unit lower triangular matrix L, an
n n upper triangular matrix U, and permutations r and p of {0,..., n- 1} such
that

A,,# (LU)ij for all i, j, 0 _< i, j < n.

Permutations r and p appear in this equation because rows and columns may have to
be permuted during the LU decomposition to preserve sparsity and ensure numerical
stability.
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The system Ax b can be solved in five stages:
1. Decompose A to obtain matrices L, U and permutations r, p satisfying (2).
2. Permute b according to d b, 0 <_ i < n, to obtain a vector d.
3. Solve Ly d to obtain a vector y. This unit lower triangular system of

equations is solved by forward substitution.
4. Solve Uz y to obtain a vector z. This upper triangular system of equations

is solved by back-substitution.
5. Permute z according to x z, 0 _< j < n, to obtain the solution vector x.

This paper deals exclusively with the first stage: we present an algorithm for the
LU decomposition of a sparse matrix on a distributed-memory parallel computer. A
suitable algorithm for the parallel solution of sparse triangular systems can be derived
from the parallel dense triangular system solving algorithm in [2]. For a symmetric
positive definite matrix A, it is more efficient to use Cholesky factorisation [19] instead
of LU decomposition; an extensive review of parallel sparse Cholesky factorisation
algorithms is given in [21].

Sequential sparse LU decompositions usually consist of many steps, each of which
contains a search of the reduced matrix for one pivot element, followed by row and
column permutations, and a rank-1 update of the reduced matrix. Sparsity can be
preserved during the LU decomposition by choosing appropriate pivot elements. A
heuristic pivot search strategy that achieves this aim is the Markowitz strategy [24]
(see [14] for an experimental evaluation of its performance). The choice of a pivot
element A leads to the creation of at most M (R- 1)(C 1) new nonzeros,
where Ri (C) is the number of nonzeros in row (column j) of the reduced matrix.
The upper bound Mi is called the Markowitz count of Aii [12, Chap. 7]. A pivot
element that has the lowest Markowitz count, mincount, is chosen. Many variants of
this basic Markowitz strategy exist. Zlatev [33] limits the search for pivot elements to
the sparsest three rows, to prevent long searches; his experiments show that the total
number of new nonzeros created, the fill-in, is not necessarily reduced by searching
more rows.

Numerical stability must be maintained during LU decomposition to obtain an
accurate solution. Sequential general-purpose programs for sparse LU decomposition
such as MA28 [11] and Y12M [35] incorporate a mechanism to prevent small matrix
elements from being chosen as a pivot. One variant is to accept only those pivot
candidates Aiy that are nonzero and that satisfy

(3) IAijl >_ u. max IAjI,

where u, 0 _< u _< 1, is a threshold parameter [12, Chap. 9].
The aim of this paper is to present a parallel general-purpose sparse LU decom-

position algorithm that includes features such as Markowitz pivoting to preserve spar-
sity and threshold pivoting to ensure numerical stability. The algorithm is suitable
for distributed-memory message-passing multiprocessors such as transputer networks
and hypercubes. The functionality of our parallel implementation is comparable to
that of sequential programs such as MA28 and Y12M.

The potential parallelism in sparse LU decomposition is twofold: first, in dense
LU decompositions the operations of each rank-1 update can be done in parallel;
this parallelism is inherited by sparse algorithms. Second, the sparsity of the matrix
allows for the parallel execution of some computations which in the dense case have
to be performed in sequence. In the sparse case, several rank-1 updates of the matrix
can be combined into one multiple-rank update with many potentially simultaneous
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operations, thereby avoiding synchronisation and idling of processors after each rank-1
update.

Both forms of parallelism have been exploited in shared-memory parallel sparse
LU decomposition algorithms of Smart and White [29], Alaghband [1], Davis and
Yew [8], [9], Gallivan, Sameh, and Zlatev [17], and others. In these algorithms the
Markowitz strategy is modified to obtain a set S of pivot elements that can be handled
simultaneously. To make this set as large as possible, pivot elements with a Markowitz
count higher than mincount are accepted. Calahan [5] was the first to exploit the
fact that two pivot elements Aij and Akl can be handled simultaneously if

(4) Ai, Akj O.

Such pivots are called compatible [1] or independent [29]. For a detailed discussion of
compatibility, see [9].

Smart and White [29] investigate the parallel time complexity of sparse LU de-
composition for an unlimited number of processors, by using task graph depths as
a complexity measure. They present an algorithm in which the pivot set S con-
tains compatible diagonal elements with a Markowitz count between mincount and
mincount + a, where a is an input parameter. The set S is constructed by starting
with the empty set and successively adding new compatible pivot elements in order of
increasing Markowitz count. For a 1000 1000 tridiagonal matrix, the algorithm with
a 2 leads to a task graph depth of 27, which is close to the theoretical minimum of
23; in this case, the basic Markowitz strategy leads to a much higher depth of 1998.
For most of the examined electronic circuit matrices, however, the improvement in
depth over the Markowitz strategy was only about 50 percent.

Alaghband [1] presents an algorithm which generates candidate pivot sets and
then chooses a pivot set S of maximum size; ties between sets are decided according
to the minimum total Markowitz sum. The pivot search uses an n n table that rep-
resents the mutual compatibility of diagonal pivot candidates. Pivot elements with a
Markowitz count higher than a user-specified value or with a numerical absolute value
lower than a user-specified threshold are discarded from S. Experimental results on
the Denelcor HEP shared-memory computer show a speedup of 4.8 on eight proces-
sors, for a 144 144 electronic circuit matrix with 616 nonzeros. In this example
many pivots are handled in parallel: the matrix is decomposed in 10 steps, with pivot
sets of sizes m 72, 25, 16, 11, 6, 5, 3, 2, 2, 1, 1.

Davis and Yew [8], [9] present a shared-memory parallel algorithm and a program,
D2, which has the full functionality of programs such as MA28 and Y12M. In this
algorithm, the pivot set S contains compatible elements with a Markowitz count
between mincount and a. mincount, where a is an input parameter (a 4 in the
experiments). All processors search for acceptable pivot candidates, and then try to
add them to the current set S. If a candidate is compatible with all the elements of S,
it is added to S. Conflicts between processors that simultaneously try to add a pivot
are prevented by critical sections in the program. The processor that is the first to
arrive at the entry of a critical section gains access to it. This implies that operating
system factors influence the pivot choice; the program is therefore nondeterministic.
Experiments on an Alliant FX/8 shared-memory computer show that D2 is a median
3.9 times faster on eight processors than on a single processor, and that the sequential
version of D2 is 4.3 times faster than the sequential program MA28.

Gallivan, Sameh, and Zlatev [17] (see also [34, Chap. 10]) present three shared-
memory parallel versions of the sequential program Y12M [35]: Y12M1, which is
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based on rank-1 updates; Y12M2, which is based on rank-m updates; and Y12M3,
which exploits coarse-grain parallelism created by ordering the matrix A to an upper
block-triangular form (see also [16] for alternative ordering techniques). Here, the
enhanced parallelism of Y12M2 compared to Y12M1 is important. In the algorithm
Y12M2, an ordered set S of m pivots is formed with the property that Akj 0 if the
element Aij precedes the element Ak in the ordering of the set. This relaxation of
the compatibility requirement (4) allows for the creation of larger pivot sets, at the
expense of a more complicated matrix update. Experimental results on an Alliant
FX/80 shared-memory parallel computer with eight processors show that Y12M1 is
faster than Y12M2 for matrices that are relatively dense or become so during the LU
decomposition, whereas Y12M2 is faster for matrices that are very sparse and remain
so. The speedup of Y12M1 is between 2.4 and 5.4 and that of Y12M2 is between 2.3
and 5.0, for a set of 27 test matrices from the Harwell-Boeing sparse matrix collection

Sadayappan and Rao [26] analyse the amount of communication in sparse LU de-
composition on a distributed-memory parallel computer. They present the fragmented
distribution which splits rows and columns into parts and distributes these parts over
different processors; this is in contrast to the shared-memory algorithms above that
treat rows or columns as basic indivisible units. Compared to a row/column-wrapped
distribution, the fragmented distribution decreases the communication volume (i.e.,
the total length of the messages) of dense LU decomposition by a factor of Q, for
Q2 processors. Statistics for a number of circuit simulation matrices confirm that the
communication volume for sparse matrices is reduced in the same way as for dense
matrices, showing up to a five-fold decrease for Q 8.

Skjellum [28] presents a distributed-memory parallel algorithm that is valid for a
range of data distributions, including the grid distribution defined below. The gener-
ality of this algorithm enables the user to tune the granularity of the distribution to
the characteristics of a particular computer architecture. In the current implementa-
tion, the partial row pivoting strategy is used, which gives one pivot element per step.
Experimental results on a Symult s2010 for a 2500 x 2500 random sparse matrix with
c 51 nonzeros per row show a speedup of 9.7 on a 96 processor machine, compared
to a 6 processor machine.

Our distributed-memory parallel LU decomposition algorithm for sparse matrices
is based on an algorithm for dense matrices [3]. The dense algorithm allocates matrix
elements to processors according to the grid distribution [32], defined by the mapping

Aij -+ processor (i mod Q, j mod Q) for all i, j, 0 <_ i, j < n,

for Q2 processors (s, t), 0 <_ s, t < Q. This distribution splits each row i into Q row
parts, i.e., sets of the form {Aij 0 <_ j < n A jmodQ t}, and it also splits
each column into Q column parts. The grid distribution is also called scattered square
decomposition [15] and cyclic storage [22]; it is similar to the fragmented distribution

We choose the grid distribution (5) as the distribution scheme for sparse matrices
because it has an optimal load balance and a low communication complexity for LU
decomposition of dense matrices [3]. The optimal load balance in all steps of the dense
LU decomposition algorithm implies that in the sparse algorithm all processors are
responsible for an approximately equal number of (zero or nonzero) elements. If the
statistical assumption holds that every element of the matrix has an equal probability
of being nonzero, it follows that the nonzero elements are spread evenly over the
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processors. If this assumption does not hold because nonzeros cluster at certain
places in the matrix, e.g., in the lower right-hand corner or in dense submatrices,
then these nonzeros are scattered over many processors, still giving a good overall
load balance. Memory use is also efficient, since the scattering effect makes it unlikely
that one processor runs out of memory while the others still have much storage space
available. (For a theoretical analysis of one-dimensional scattering applied to an
irregular computational domain, see [25].)

Figure 1 shows four snapshots of the parallel LU decomposition of the 59 59
sparse matrix IMPCOL B from the Harwell-Boeing collection. At the start (a) of the
LU decomposition, the matrix has 3169 zero elements and 312 nonzero elements, and
at the end (d) it has 3053 zeros and 428 nonzeros. The zero elements are shown in
yellow. The nonzero elements are assigned to the processors of a 2 2 mesh, according
to the grid .distribution. The elements of processor (0, 0) are shown in blue; those of
(0, 1) in red; those of (1, 0) in green; and those of (1, 1) in purple. The matrix is shown
at the start of step k of Algorithm 1, for (a) k 0; (b) k 18; (c) k 38; (d) k 59.
The horizontal lines in (b) and (c) separate the matrix elements (i, j) with i < k
from those with i >_ k, and similarly for the vertical lines. The diagonal blocks of
(d) are formed during the steps of the decomposition. Each block contains the per-
muted pivot elements of one step. These elements are found in a search for at most
mmax 10 compatible pivot elements. The block sizes are m 9, 4, 5, 8, 7, 5, 6, 6, and
nine times 1.

An alternative to the matrix-independent grid distribution is a distribution that
exploits knowledge of the sparsity pattern of the matrix to obtain an optimal load
balance. Unfortunately, at every step of the LU decomposition of a general sparse
matrix the sparsity pattern changes due to permutations and fill-in that are unpre-
dictable, because they depend on the pivot choice and hence on the numerical values
of the matrix elements. Adjustment to the changing sparsity pattern would necessi-
tate frequent redistribution of the matrix, which is undesirable. For this reason, we
do not adopt this approach and instead we rely on statistical expectations.

The low communication complexity of the dense LU decomposition algorithm
implies a low communication complexity for the sparse algorithm, provided that the
same statistical assumption as above holds. This can be seen as follows. In the dense
case, the broadcast of a row of length n is done by simultaneously broadcasting Q row
parts of length n/Q to Q processors each, with a time complexity of O(n/Q/Q). (The
expressions (.0(x), (x), and (x) denote, respectively, at most, at least, and equal
to a constant times x.) Similarly, in the sparse case, the broadcast of a row of length
c is done by simultaneously broadcasting Q row parts of length c/Q to Q processors
each, with a time complexity of ((c/Q + Q). This communication complexity is less
than, for instance, the ((c -Q) complexity of a row broadcast for the row-wrapped
distribution on a square mesh of processors. (The gain can be significant even for small
values of c, where Q dominates c/Q, because in our algorithm m row broadcasts can be
combined into one multiple-row broadcast of complexity O(mc/Q + Q).) Sadayappan
and Rao [26] observed a similar reduction in communication.

The pivot search strategy of a distributed-memory parallel algorithm must be
kept simple, to avoid excessive communication between searching processors. The
chosen data distribution strongly influences the choice of the search heuristic. In our
algorithm, each column (.,t) of Q processors is responsible for about n/Q matrix
columns. Each processor column searches a few of its sparsest matrix columns for
numerically stable pivots with low Markowitz counts. A pivot set S of size m is



858 VAN DER STAPPEN, BISSELING, AND VAN DE VORST

then constructed by starting with the empty set and adding new compatible pivot
candidates in order of increasing Markowitz count, similar to the algorithm of Smart
and White [29]. This is done by a parallel algorithm which uses the distributed
compatibility information supplied by the distributed matrix A. The pivot set is
constructed by a pipeline of Q processors, and then broadcast to all Q2 processors.
After the pivot search, the matrix is permuted according to S and then modified by
a rank-m update.

An important issue in sparse matrix computations is the choice of a data struc-
ture. In this paper, we analyse the theoretical time complexity of important parallel
computations on several data structures. For reasons of simplicity, we decide to rep-
resent the nonzero elements of each processor in a local, ordered, two-dimensional
linked-list data structure. This data structure has been introduced by Knuth [23] for
sequential sparse matrix computations; it has been used by Alaghband [1] and Skjel-
lure [28] for parallel computations. (Davis and Yew [8], [9] use two one-dimensional
doubly linked-list structures, one for rows and one for columns. Each entry in such a
structure represents a block of nonzeros.)

The remainder of this paper is organised as follows. In 2 we present the details of
the parallel sparse LU decomposition algorithm. In 3 we review the possible choices of
a local data structure for the local part of the sparse matrix and we compare their time
complexity and memory use. In 4 we present the results of numerical experiments
on square meshes of up to 400 transputers, for a test set of eleven matrices from the
Harwell-Boeing sparse matrix collection [13]. In 5 we draw the conclusions.

2. Parallel algorithm. In this section we present an algorithm for the parallel
LU decomposition of sparse matrices on a square processor mesh with distributed
memory. The algorithm consists of a number of steps, each of which has three phases:
a pivot search, row and column permutations, and an update of the reduced matrix
and its row and column nonzero counts.

2.1. Outline of the parallel algorithm. We may choose to distribute a matrix
over the processors and then find a local representation for each matrix part. On the
other hand, we may choose to find a representation for the entire matrix and then
distribute this representation. We decide to distribute the matrix first. This choice is
justified by the following arguments:

If distribution is accomplished first, the representation details of a matrix are
always local. This locality eases the implementation of operations that change the
sparsity pattern of the matrix. As an example, the insertion or deletion of an element
in a local representation is an operation performed by a single processor.

If representation is accomplished first, both the matrix itself and its repre-
sentation details have to be distributed. This dual requirement has the consequence
that operations that change the sparsity pattern of the matrix are always of a global
nature. Hence, several processors have to cooperate to perform such operations. This
cooperation makes these operations unnecessarily inefficient and difficult to imple-
ment.

Matrices are distributed over a square mesh of Q2 processors. Each processor is
identified by Cartesian coordinates (s, t), with 0 _< s, t < Q; in what follows we shall
omit these bounds on s and t for the sake of brevity. We define grid(s, t) as the set
of index pairs of an n n matrix assigned to processor (s, t) according to the grid
distribution (5),

(6) grid(s,t) ( (i,j) O <_ i,j < n A mod Q=sAjmodQ=t}.
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We introduce an n x n matrix variable X, and distribute it according to the grid
distribution. The permutation variables r and p of (2) are replicated and distributed:
it turns out to be convenient to maintain a copy of r in all processors (i mod Q, .),
and a copy of pj in all processors (., j mod Q). Initially X A and r p id, the
identity permutation. At the end of the computation the matrix variable X contains
the factor L in its strictly lower triangular part and U in its upper triangular part,
and the permutation variables r and p contain their final values. Row nonzero counts
are maintained in a vector variable R which is replicated and distributed in the same
manner as r. The component R equals the number of nonzero elements of row i in
the reduced matrix, which is defined as the (n- k) x (n- k) submatrix of elements
Xj, k _< i, j < n, at the start of step k of the algorithm below. (For the purpose of
explanation, we assume throughout this paper that there are no accidental zeros in
the computations. Therefore, the number of nonzeros in a row equals the number of
entries in the sparse representation of that row.) Similarly, column nonzero counts
are maintained in a vector variable C which is replicated and distributed in the same
manner as p. The Appendix presents a formal description of the aim of the algorithm
and of the relation between X, r, p, R, and C that is maintained throughout the al-
gorithm. An outline of the algorithm follows.

ALGORITHM 1 (parallel sparse LU decomposition).
X:-A;
r :- id;
p :- id;
initialise R and C;
k 0;
while k < n do begin

find pivot set S- {(it,jr) 0 _< r < m};
permute rowsie{i k<_i<k+m}U(ir 0_<r<m};
permute corresponding ri and Ri;
permute columnsje(j k_<j<k+m}t{jr 0_<r<m};
permute corresponding pj and Ci;
update matrix elements (Xij k -t- m _< i < n A k <_ j < k + m};
update matrix elements (Xi k + m <_ i,j < n};
update row nonzero counts {Ri k -+-m _< i < n};
update column nonzero counts {Cj k + m _< j < n};
k:-k+m

end.

In the notation of this outline, it is implied that each processor (s, t) performs its
part of the computations on its own data. The details of the separate parts of the
algorithm are presented in 2.2-2.4. The algorithm is illustrated in Fig. 1.

2.2. Parallel pivot search. A simple and effective pivot search strategy is to
choose pivot elements from a limited number of the sparsest rows or columns; see

[33]. Since we choose the column-oriented stability criterion (3), it is most convenient
to search columns. The pivot search consists of three parts" searching columns to
find candidate pivot elements; determining mutual compatibility of candidates; and
constructing a pivot set of mutually compatible elements.

2.2.1. Search for candidates. In the first part of the pivot search, columns
are inspected in parallel. Processor (s, t) has one column part of each column j with
k _< j < n and j mod Q t, and it participates in the search of ncol of these columns
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that have lowest nonzero counts Cj. Here, ncol is an input parameter. (If less than
ncol columns remain, these are searched.) The set of columns to be searched by pro-
cessor (s, t) is denoted by SearchCols(t); this set is available in all processors (., t).
Together, the processors (., t) search the complete columns of SearchCols(t). A set
ColCandidates(t) is formed which includes one optimal pivot candidate per searched
column; this set becomes available in all processors (., t). An outline of the program
text for processor column (., t) follows.

ALGORITHM 2 (find candidate pivot elements).
ColCandidates(t) :=
determine SearchCols(t) from C;
for all j e SearchCols(t) do begin

find r, k <_ r < n, such that IXjl max{IXl" k <_ < n A Zi 0};
threshold := u.
find i, k N i < n, such that

Mij min {Mj k <_ < n A IXjI >_ threshold A Xj 7 0};
ColCandidates(t) "= ColCandidates(t) U { (i, j) }

end

The statements of Algorithm 2 are implemented as follows. The set SearchCols(t)
is determined by using a local data structure for column nonzero counts (see [12,
Chap. 9]). The index r of an element with maximum absolute value in column j
is determined by first searching locally in processor (s, t), and then communicating
and comparing these local maxima to obtain the index r of the global maximum.
This maximum IXrjl is broadcast to all processors (.,t). Markowitz counts Mij,
(i, j) E grid(s, t), are computed from locally available nonzero counts Ri, i mod Q s,
and Cj, j mod Q t. The index i is determined in the same fashion as the index r.

After the sets ColCandidates(t) are formed, they are collected into one set
Candidates JQt__-oI ColVandidates(t). The total number of candidates is ncand
min(Q.ncol, n-k). The pivot candidates are sorted according to increasing Markowitz
count, Candidates {(ir,j)" 0 <_ r < ncand}, with M,j <_ M,,, if r < r’.
This ordering is used later on to give preference to candidates with low Markowitz
counts. Now, candidates (i, j) that have an unacceptably high Markowitz count,
Mij > a. Mio,j0, are discarded.

The set Candidates is sorted during its construction by using a pipeline of proces-
sors (0, .) as follows. First, each processor (0, t) sorts its own set ColCandidates(t) by
increasing Markowitz count. After that, processor (0, t) inserts its candidates at the
appropriate places in the ordered stream of candidates that passes by, going from pro-
cessor (0, t- 1) to (0, t + 1). Processor (0, 0) starts the pipeline. Processor (0, Q- 1)
collects the ordered sequence into Candidates and broadcasts this set to all other
processors.

2.2.2. Compatibility of candidates. In the second part of the pivot search,
the compatibility of each pivot candidate with all other candidates is determined.
The second part is separated from the third part, the construction of the pivot set, to
avoid frequent synchronisation of processors, which would occur if these parts were
combined. To determine compatibility, it is sufficient to inspect for each candidate
(i,j) the column j, and to check whether there are nonzeros Xi,j in rows i’ that
contain candidates (i’,j’) (i, j). Pivot candidate (i, j) is marked as incompatible
with these candidates (i’,j’).

The work is distributed by letting each processor search its local part of the sparse
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FIG. 1. Snapshots o] the sparse matrix IMPCOL B at step k o] its parallel LU decomposition.
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matrix for nonzeros that make two candidates mutually incompatible. Processor (s, t)
compares candidates from RowCandidates(s) {(i, j) e Candidates: i mod Q s}
with candidates from ColCandidates(t). The set RowCandidates(s) is available in
all processors (s, .). In this way, the processors build a distributed incompatibility
set. This set is often small, because the original matrix is sparse. Processor (s, t)
stores its incompatibilities in a local set Incompatible(s,t) {(i,j,i’,j’) (i,j) e
CoICandidates(t) A (i,j) E RowCandidates(s) A (i, j) (i,j’) A X,j 0}. An
outline of the program text for processor (s, t) follows.

ALGORITHM 3 (determine compatibility of candidate pivot elements).
RowCandidates(s):= {(i,j) e Candidates: i mod Q s};
Incompatible(s, t) := ;
for all (i, j) e ColCandidates(t) do

for all (i’,j’) e RowCandidates(s) do
if (i, j) (i’, j’) A X,j = 0 then

Incompatible(s, t) :- Incompatible(s, t) J ((i, j, i’, j’)}

2.2.3. Construction of the pivot set. In the third part of the pivot search,
the pivot set S is constructed by starting with the empty set and successively adding
new compatible pivot candidates (it,jr) in order of increasing r. This procedure
gives priority to candidates with lower Markowitz counts. The set S is constructed
by a pipeline of processors which generates pivot elements, similar to a parallel sieve
of Eratosthenes which generates prime numbers. Each processor is responsible for
determining the inclusion in S of several pivot candidates. The length L of the
pipeline can be chosen freely, between 1 <_ L <_ min(ncand, Q2). The choice L 1
implies that all the work is done by one processor, giving an upper bound on the
time complexity of O(Q2. ncol2), for a yield of O(ncand) O(Q. ncol) pivots. This
is because in the worst case each candidate is checked for compatibility with all its
predecessors. The best choice (for ncand <_ Q2) is L ncand, so that each processor
determines the inclusion of exactly one candidate. The time complexity for this choice
is O(Q. ncol). For practical reasons, we choose a length L Q, and implement the
pipeline in processor row (0, .); see Algorithm 4 below. This can easily be modified,
if desired. The time complexity for L Q has an upper bound of O(Q. ncol2), which
is close to optimum for small ncol.

The responsibility for including a candidate (it, jr) in the pivot set S or not is dis-
tributed evenly over the processors of the pipeline: each processor (0, t) is responsible
for at most ncol local candidates, i.e., the set S(t) of candidates (it, jr), 0 _< r < ncand,
with Lr/ncolJ t. This set is needed only by processor (0, t). To decide on inclu-
sion in S, a processor (0,t) needs the set I(t) which contains the incompatibilities
(it, jr, it,, jr’) and (it,, jr’, it, jr) of each of the local candidates (it, jr) with all the pre-
ceding candidates (it,, jr,), r’ < r. To provide this information, each (it, jr, it,, jr’)
Incompatible(s,t) is sent from processor (s,t) to processor (0, [max(r, r’)/ncol]), be-
fore the pipeline starts operating.

The pipeline works as follows: processor (0, t) receives a sequence of pivot ele-
ments from its neighbour (0, t- 1) and sends these elements to its neighbour (0, t + 1).
If a pivot element from the sequence is incompatible with a local candidate, that
local candidate is eliminated. After the pivot elements have passed, processor (0, t)
treats the sequence of remaining local candidates in a similar manner. The pipeline is
started by processor (0, 0), and the m pivot elements of S are collected by processor
(0, Q- 1) and then broadcast to all processors. An outline of the program text for
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processor (0, t) follows.

ALGORITHM 4 (construct pivot set).
ift Q- 1 then S :=
S(t) := {(it,jr)" 0 _< r < ncand A [r/ncolJ t};
while a pivot element (i, j) is received from (0, t- 1) do begin

if t < Q- 1 then send (i, j) to (0, t + 1)
else S :- S U {(i,j)};

S(t) := S(t) \ {(i’,j’) (i,j,i’,j’) e I(t) V (i’,j’,i,j) e I(t)}
end;
while S(t) do begin

(i,j) := (il,jl) with l= min {r (ir,j) e S(t)};
s(t) := s(t) \ {(i,j)};
if t < Q- 1 then send (i, j) to (0, t + 1)

else S S t2 {(i,j)};
S(t) := S(t) \ {(i’,j’) (i,j,i’,j’) e I(t) V (i’,j’,i,j) e I(t)}

end

2.3. Parallel permutations. Rows and columns of the matrix X can be per-
muted implicitly [28], [31] by using the permutations r and p to access the matrix
indirectly, or explicitly [3], [6], [18] by moving rows and columns in the matrix. Chu
and George [6] show that explicit permutation leads to a good load balance for parallel
dense LU decomposition with a row-wrapped distribution. Numerical experiments of
Geist and Romine [18] confirm that the gain in load balance more than offsets the
incurred increase in communication time.

For dense LU decomposition with partial pivoting, the grid distribution with ex-
plicit permutation leads to an optimal load balance [3], irrespective of the choice of
pivots. The load balance for implicit permutation, however, hinges on the randomis-
ing effect of the particular pivot sequence. For sparse LU decomposition with the
grid distribution, explicit permutation guarantees that the row and column parts of
the reduced matrix are evenly distributed over the processors. Therefore, the com-
putational workload is well balanced if the assumption holds that the nonzeros of
the matrix are evenly distributed over the row and column parts. Because of these
considerations, we decide to permute rows and columns explicitly.

The aim of the row and column permutations in the matrix X is to create an
m rn diagonal submatrix of elements X, k _< i, j < k / m, with the m elements of
the pivot set S on the diagonal; see Fig. l(d). Because of the compatibility of the pivot
elements this can be achieved, for instance, by moving the rows it, 0 _< r < m, into
position k - r and moving the rows of (i" k _< i < k + m} \ (i" 0 _< r < m} in some
arbitrary order into the vacated positions i >_ k + m. The columns should be treated
accordingly. Note that there is some freedom in determining the row permutation,
particularly for large m; this may be exploited by a heuristic strategy which keeps
row movements local, or even tries to avoid them (if k _< ir < k + m).

The row permutation involves at most the rows of (i k _< i < k + m} (2 (it 0 <_
r < m}; all the other rows remain in place. Note that the intersection of both sets may
not be empty. The source and destination indices of the rows to be moved are stored
in arrays Src and Dest of length ndest. Source processor (s, t) sends its part of row
Src(r) to destination processor (Dest(r)mod Q, t), for each index r, 0 <_ r < ndest,
with Src(r) mod Q s. These communications are most efficiently implemented by
operating 2Q pipelines in parallel, one upwards and one downwards for each processor
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column (., t). Data are injected into the appropriate pipeline by the source processor;
they flow downstream until they are extracted by the destination processor. After
this communication phase, processor (s, t) performs the following assignments.

ALGORITHM 5 (permute rows and row nonzero counts).
for all r" 0 <_ r < ndest A Dest(r) mod Q s do begin

for all j 0 _< j < n A j mod Q t A (Xsrc(r),j 0 V XDst(r),j O)
do XDest(r),j :- XSrc(r),j

rDst() rsc(r);
RDest(r) RSrc(r)

end

2.4. Parallel updates. An algorithm for processor (s,t), which updates the
matrix, follows.

ALGORITHM 6 (update matrix).
broadcast {X" k _< j < k / m A j mod Q t} from (t, t) to (., t);
for alli, j’k+m<_i<nA k <_ j < k + m A (i,j) E grid(s,t) A Xi O

do X := X/X;
broadcast (Xi k / m <_ i < u A k <_ < k + m A (i,l) E grid(s,t) A

Xi 0} from (s, t) to (s, .);
broadcast {Ztj k <_ < k + m A k + m <_ j < n A (l,j) grid(s,t) A

Xtj : O) from (s, t) to (,, t);
for alli, j,l’k+m<_i,j<n A (i,j) grid(s,t) A k <_ < k + mA
X 0 A X,j 0 do Xj := X XX,

After the matrix update, the row and column nonzero counts must be adjusted
because of the decreasing size of the reduced matrix and the creation of new nonzeros.
It is sufficient to adjust the nonzero counts of those rows i _> k+m that have a nonzero
entry Xi in a column l, k

_
< k + m, and of those columns j >_ k + m that have a

nonzero entry Xtj in a row l, k

_
< k + m. Nonzero counts of the other rows are not

affected (for i >_ k + m) or are not needed any more (for i < k + m), and similarly for
the column counts. The local data structure of column nonzero counts that is used
to produce SearchCols(t) (see 2.2.1) must be adjusted accordingly.

The bulk of the computing work of the LU decomposition is formed by the main
matrix-update loop; see the last statement of Algorithm 6. An efficient implementa-
tion strongly depends on the data structure used to represent the sparse matrix. This
is the main subject of 3.

3. Local data structures. In this section we analyse a number of candidate
data structures for the local representation of a grid part of a sparse matrix. The
candidates we consider are sparse data structures, which store only nonzeros. This
leads to efficient use of computing time and memory. In our efficiency considerations,
computing time is of primary importance, and memory use is of secondary impor-
tance. (Usually there is plenty of memory available on distributed-memory parallel
computers.)

3.1. Description of data structures. Grid parts of sparse matrices are sparse
matrices themselves. Therefore, the data structure for a grid part of a sparse matrix
can be chosen from the large variety of data structures that are used in sequen-
tial sparse matrix algorithms. Here, we consider several simple data structures, and
describe them by Pascal-like type definitions. (A formal treatment of useful data
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structures is given in [30].) All data structures enable easy access to rows as well as
to columns, which is required for sparse LU decomposition.

We examine data structures for the x sparse matrix which represents the
local grid part of the matrix A. Here, n/Q. To simplify the analysis, we assume
that n mod Q 0. Local variables and indices are hatted, to distinguish them from
global ones. For processor (s, t), the relation between and A is given by

A{Q+s,SQ+t for all , , 0 _< , < .
The data structures are:

1. Gustavson’s data structure [20], unordered. The nonzeros of are represented
by array entries. The maximum number of nonzeros that can be stored is bnd. For
each column, the nonzeros are stored in a contiguous block of entries, in arbitrary
order. Between the blocks there can be empty space. For column cj of , col]irst[cj]
gives the start of the block, and lencol[cj] its length. For each nonzero of column cj,
both its row index i and its numerical value a are stored. In addition, there is a row
data structure which is similar to the column data structure, except that numerical
values of nonzeros are not stored.

type matrix- record
rowfirst, colfirst" array [0..- 1] of O..bnd- 1;
lenrow, lencol "array [0..-1] of 0..;

"array [O..bnd- 1] of 0..- 1;
entries array [O..bnd- 1] of entry

end;
entry record

0..- 1;
a real

end;

2. Gustavson’s data structure, ordered. This data structure is the same as data
structure 1, except that the nonzeros within each row and column are ordered by
increasing index.

3. Two-dimensional linked-list structure, unordered. This dynamic data struc-
ture links the nonzeros of a row or column into a list, in arbitrary order. The headers
of the linked lists that correspond to the rows (columns) are represented by array
rows (cols). Each entry has a pointer in its next-field to another nonzero in the
same row, and a pointer in its nexti-field to another nonzero in the same column.

type matrix record
rows, cols" array [0..t- 1] of entrypointer

end;
entrypointer T entry;
entry record

i, 0..- 1;
a "real;
nexti, next) entrypointer

end;

4. Two-dimensional linked-list structure, ordered. This is the same data struc-
ture as the previous one, except that the nonzeros within each row and column list
are ordered by increasing index. This data structure is similar to the orthogonal
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linked list structure of Knuth [23]. The related Curtis-Reid data structure [7] can be
obtained by leaving out the i- and -index of each entry and labelling the end of each
row (column) list with the corresponding row (column) index. The Curtis-Reid data
structure saves memory at the expense of an increase in computing time. We do not
consider this data structure here, because memory use is not our primary concern.

5. Two-dimensional doubly linked-list structure, unordered. The idea of data
structure 3 is carried further by representing the nonzeros of a row or column in a
doubly linked list. This extension facilitates the deletion of an entry. We obtain data
structure 5 by modifying the definition of entry in data structure 3"

type entry record
,) 0..fi- 1;
a "real;
previ, prevj, nexti, nextj entrypointer

end;

6. Two-dimensional doubly linked-list structure, ordered. This is the same data
structure as the previous one, except that the nonzeros within each row and column
list are ordered by increasing index.

3.2. Computing time. We analyse the time complexity of a number of impor-
tant computations for all data structures. Since the matrix is distributed over the
processors, these computations are also distributed. Generally, a distributed compu-
tation includes some computation on the local matrix part by each processor, and
some communication between the processors. Communication of rows and columns
requires retrieval of these rows and columns from the matrix, followed by send and
receive operations. Since the retrieval is similar to a local computation that is dis-
cussed below (multiple-row assignment) and since the send and receive operations are
independent of the data structure, it is sufficient only to consider local computations.
We examine the following local computations:

Multiple-row assignment (see Algorithm 5).
for all r" 0 <_ r < ndest A Dest(r) mod Q s do

for all j" 0 _< j < n A j mod Q t A (Xsrc(r),j 0 V XDest(r),j O)
do XDest(r),j Xsrc(r),j

Multiple-column division (see Algorithm 6).
for alli, j’k+m<_i<n A k <_ j < k + m A (i,j) E grid(s,t) A Xij O

do X := X/X
Rank-m update (see Algorithm 6).
for alli, j,l’k+m<_i,j<n A (i, j) E grid(s, t) A k <_ < k + m A
X 0/ X 0 do X X XX

Each of these local computations is performed once in every step of parallel sparse LU
decomposition. Other local matrix computations that are performed within a single
step, such as multiple-column assignment or multiple-column pivot search, very much
resemble the above computations for all our data structures.

We evaluate the performance of the data structures by counting the number
of operations in a local (sequential) computation by processor (s, t). We present a
worst-case analysis, which gives upper bounds tO(x) on the number of operations. The
operation counts are expressed in global constants m and Q and in local constants
and rh; the maximum number of nonzeros in a row or column part is denoted by , and
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TABLE 1
Operation counts O(x) for computations on local data structures.

Data structure Multiple-row Multiple-column Rank-m
assignment division update

1. Gustavson unordered 52r m/Q 2m
2. Gustavson ordered d2r m/Q 2m(1 + log m)
3. 2D list unordered 2r 5m/Q 2m
4. 2D list ordered 2r m/Q 2m(1 T logm)
5. 2D double list unordered rh m/Q .2m
6. 2D double list ordered 2r7 5m/Q 2m(1 + logm)

the maximum number of row parts Dest(r), 0 <_ r < ndest, with Dest(r) mod Q s,
is denoted by . (It can be shown that <_ m + Vm/Q, although it is more likely
that 2m/Q.) The actual performance in the parallel computation will deteriorate
due to load imbalance, but in a manner which is independent of the data structure
chosen. Therefore, our comparison of data structures remains valid for the parallel
case.

Table 1 displays the orders of the operation counts for the different data struc-
tures. In the following, we shall briefly explain these results. The multiple-row assign-
ment can be done by deleting the nonzeros of the old rows and inserting the nonzeros
of the new rows. This involves at most 2 row parts of at most nonzeros, and hence
the total number of nonzeros involved is O(). The number of operations equals
the number of nonzeros for the unordered data structure 5, since matrix elements can
be assigned new values in (9(1) operations: old elements are deleted by making use
of the double links; new elements are inserted at the headers of the row and column
lists. For the corresponding ordered data structure 6, insertion of a new element into
a row takes O() operations, since its column predecessor must be found. This gives a
total of O(27t) operations. Similar considerations hold for the other data structures.

The multiple-column division takes O(6m/Q) operations, since at most nonzeros
in at most [m/Q column parts are modified. This is the operation count for all the
data structures, because they all allow column-wise access to the numerical values of
the nonzeros.

For data structures 3-6, the rank-m update is a sequence of updates of target
row parts. Each target row part is updated by subtracting from it m update row
parts l, each multiplied by a scalar Xi. This is done by: (i) scattering the nonzeros
of the target row part into an array of length that is known to be zero; (ii) scanning
the update row parts and multiplying them by a scalar, while accumulating numerical
values in the array and building a list of new.nonzeros to be created; and (iii) updating
the matrix data structure by adjusting numerical values and inserting new nonzeros,
while resetting the array to zero. This is the second approach of [12, 2.4]. (In certain
cases, such as updates by one row, it may be cheaper to scatter update rows into
the array, instead of the target row. This is the first approach of [12, 2.4].) For
data structures 1 and 2, the rank-m update is performed by columns, because of the
column-wise access to the numerical values of the matrix.

For data structures 3-6, there are m column parts that contain nonzero multipliers
Xi,. Since each column part has at most 6 nonzeros, the total number of nonzero
multipliers and hence of update row parts to be scanned is at most m. Since each
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TABLE 2
Minimum memory requirement of data structures.

Data structure Memory requirement
per processor

1, 2. Gustavson
3, 4. 2D list
5, 6. 2D double list

an/. + 3cn/
2n/Q - 5cn/Q, 2

2n/Q + 7cn/Q2

update row part has at most nonzeros, the total number of operations of (ii) is
(9(2m). For data structures 1 and 2, the same upper bound holds.

In the unordered case, the total complexity of the rank-m update is (O(2m),
because in (iii) new elements can be inserted in (.9(1) operations. This can be done
at the end of row and column blocks for data structure 1, and at the headers of row
and column lists for data structures 3 and 5.

In the ordered case, the nonzeros of the updated target row part must be obtained
in order of increasing column index. This can be done by a symbolic merge-sort. In
the worst case, rn updates of a single target row part may cause it to grow from to
(m / 1) nonzeros. The corresponding merge-sort takes (9(m log m) operations. (All
logarithms in this paper have base two.) In the worst case, this growth occurs for
target rows, so that the total number of operations in the merge-sorts is (..O(2m log m)
and the total number of operations is d0(2m(1 -t- log m)). (On average the differences
between the data structures will be less pronounced than the last column of Table 1
suggests, because the growth rate of target rows may be less than the worst-case rate
that has been assumed.)

3.3. Memory requirements. Table 2 shows the minimum memory require-
ment per processor for each data structure, i.e., the memory needed when the nonze-
ros are evenly distributed over the processors. We assume that the amount of memory
per integer, real, and pointer is equal to 1. Memory requirements are expressed in
terms of global constants n, c, and Q. The number of rows that appear in a grid part
of the matrix is n/Q. The number of nonzeros in a row is assumed to be c, and the
number of nonzeros in a row part is assumed to be c/Q.

All data structures require (n/Q-cn/Q2) memory. In the case of data structures
3-6, the memory needed for the n row headers and the n column headers scales with
Q as O(Q-1), whereas the memory needed for the cn nonzeros scales as (Q-2). This
implies that row and column headers take up more memory in parallel computations
than in sequential computations. Note that the grid distribution is still better in
this respect than a row or column distribution, since in the latter case each processor
would need (n) memory, irrespective of Q. The scaling behaviour of data structures
1 and 2 is similar to that of the other data structures.

3.4. Discussion. Table 1 indicates that the unordered two-dimensional doubly
linked-list structure 5 is superior: it outperforms all other data structures in the
multiple-row assignment, and it is one of the three optimal data structures for the
rank-m update. This conclusion is specific to parallel LU decomposition: in the
sequential case explicit row permutations and hence row assignments often do not
occur because permuting is done implicitly; furthermore, in the sequential case it
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is common to use rank-1 updates, and for m 1 and Q 1 the rank-m update
takes O(c2) operations for all data structures. Therefore, all data structures perform
equally well sequentially.

A series of multiple-rank updates based on compatible pivot sets may be of benefit
even in the sequential case. This gain is derived from updating an initial, small data
structure in one large step, instead of updating a growing data structure in many small
steps, each time accessing a larger and larger structure, with row length increasing
from c to c(m + 1) in the worst case. For an unordered data structure, the sequential
rank-m update has an operation count of O(c2m), whereas a sequence of m rank-
1 updates has a count of 0(c2m2). Note that in this comparison, c is fixed as the
number of nonzeros of a row at the start of the rank-m update or sequence of m rank-1
updates.

Table 1 shows that in all cases the time of the rank-m update dominates the time
of the other computations. It also dominates the communication time: the number
of communications in one step is of the order O(Sm - Q), since O(m) row parts of
length 5 have to be communicated in each processor column of length Q, and similarly
for column parts. For data structure 5, the communication count is about a factor
smaller than the operation count of the rank-m update.

The relative merit of data structures depends not only on operation counts, but
also on other, sometimes machine-dependent, parameters. Linked-list data structures
perform better on fast scalar processors, and hence on RISC-like architectures such as
transputers. In contrast, the Gustavson data structure may perform better on vector
processors.

We have chosen the conventional ordered two-dimensional linked-list structure
4 as the data structure for parallel sparse LU decomposition. Together with the
grid distribution, data structure 4 has become the standard of all the parallel sparse
linear algebra programs of PARPACK, a package developed at Koninklijke/Shell-
Laboratorium, Amsterdam. This package includes among others LU decomposition,
Cholesky factorisation, and triangular system solution. Our choice was made at a
time when we did not recognise the importance of multiple-row assignments and
rank-m updates in the context of parallel LU decomposition. Still, our data structure
is conceptually simple, and it allows the development of programs with a reasonable
amount of effort, so that it serves as an appropriate research vehicle. Also, it performs
efficiently for a wide range of other algorithms, so that it is suitable as a compromise
standard. As a suggestion for future research, we strongly encourage experiments with
data structure 5, which according to our analysis is the most efficient data structure.

4. Experimental results. The algorithm has been implemented in the parallel
programming language occam 2 (for an introduction, see [4]) and experimental re-
sults have been obtained on a Parsytec SuperCluster FT-400 parallel computer. This
machine consists of a square mesh of 400 INMOS T800-20 transputers, each with a
2 Mbyte memory. According to our measurements, a transputer performs a 64-bit
floating point operation (flop), such as addition or multiplication, in ttiop 1.9 its, and
a 32-bit integer operation in tiop 1.8 its. A transputer sends a 64-bit real number
to a neighbouring transputer in the mesh in tcomm,real 8.5 itS and it sends a 32-bit
integer in tcomm,int 6.6 its. In the experiments, all real numbers have a length of
64 bits, and all integers have a length of 32 bits. The machine accuracy for 64-bit
floating point operations is 2.2 10-16. All experimental times were measured by an
internal timer calibrated with a Wall clock.
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TABLE 3
Test set of sparse matrices.

Matrix Origin n nz(A) c(A) c(L\U)

IMPCOL B Chemical engineering 59 312 5.3 7.4
WEST0067 Chemical engineering 67 294 4.4 8.7
FS 541 1 Atmospheric pollution 541 4285 7.9 30.7
STEAM2 Oil reservoir simulation 600 13760 22.9 89.0
SHL 400 Linear programming 663 1712 2.6 2.6
BP 1600 Linear programming 822 4841 5.9 8.8
JPWH 991 Electronic circuit simulation 991 6027 6.1 66.3
SHERMAN1 Oil reservoir simulation 1000 3750 3.8 26.6
SHERMAN2 Oil reservoir simulation 1080 23094 21.4 326.2
LNS 3937 Compressible fluid flow 3937 25407 6.5 107.0
GEMATll Optimal power flow 4929 33185 6.7 10.8

4.1. Test set of Harwell-Boeing matrices. To investigate the properties of
our algorithm, we performed numerical experiments on eleven real unsymmetric as-
sembled (RUA) matrices from the Harwell-Soeing sparse matrix collection [13]. In
our test set we included matrices from diverse application fields, with widely varying
sizes and nonzero densities. Fig. l(a) shows the matrix IMPCOL B from the test set.
Table 3 presents data on the test matrices: n is the matrix order; nz(A) is the num-
ber of nonzeros of the matrix A before LU decomposition; c(A) is the corresponding
average number of nonzeros per row; c(L\U) is the average number of nonzeros per
row of the matrix L\U that contains the L and U factors of A. These L and U factors
were obtained by executing the parallel program on 400 processors.

4.2. Algorithm with standard parallel pivot search strategy. In this sub-
section we compare the parallel program running on p Q2 transputers, 1 _< p _< 400,
with a sequential program running on one transputer. The parallel program is an im-
plementation of the algorithm of 2. The data structure is the ordered two-dimensional
linked-list structure, i.e., data structure 4 of 3. Our standard pivot search procedure
is a specific implementation of the parallel algorithm of 2.2 for ncol 1. (Alternative
pivot search procedures will be examined in 4.3.) Candidate pivot elements must
satisfy (3) with u 0.1, as recommended by Duff, Erisman, and Reid [12, Chap. 7].
Candidates are rejected on sparsity grounds if their Markowitz count is higher than
four times the minimum Markowitz count of the candidates, as in the experiments of
Davis and Yew [9].

The sequential program is a well-optimised version of the parallel program. It
is obtained by simplifying the parallel program, removing all parallel overhead, and
wherever possible exploiting the fact that p 1. The parallel pivot search strategy
is replaced by the common sequential strategy of searching three matrix columns for
numerically acceptable pivot candidates and then choosing one candidate with the
lowest Markowitz count.

The sequential and p 1 times for matrices SHERMAN2 and LNS 3937 had to be
obtained on a separate transputer with 16 Mbyte memory, because these problems do
not fit into the 2 Mbyte memory of a transputer of the FT-400. (The maximum num-
ber of nonzeros per processor is about 70,000.) Incidentally, the separate transputer
is about 1.13 times faster on sparse LU decomposition problems than a transputer
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TABLE 4
Time (in s) of parallel sparse LU decomposition on p transputers.

Matrix seq p 1 4 9 16 25 49 100 400

IMPCOL B 0.34 0.38 0.20 0.15 0.13 0.12 0.12 0.11 0.13
WEST0067 0.47 0.53 0.27 0.20 0.18 0.18 0.15 0.13 0.16
FS 541 1 18.4 18.8 6.74 4.47 2.91 2.25 1.79 1.42 1.29
STEAM2 92.9 93.9 28.2 14.1 9.31 7.15 4.82 3.59 2.58
SHL 400 2.31 2.69 1.40 1.05 0.88 0.82 0.73 0.71 0.66
BP 1600 9.97 10.7 4.46 3.30 2.52 2.20 1.94 1.79 1.74
JPWH 991 121. 131. 34.8 20.4 13.7 10.3 7.33 5.50 3.97
SHERMAN1 36.6 41.0 13.0 7.00 6.08 4.33 3.09 2.75 2.37
SHERMAN2 1668. 1592. 196. 108. 87.8 46.2 32.7 15.6
LNS 3937 2119. 2111. 261. 168. 96.7 77.2 37.9 23.7
GEMATll 75.6 84.3 29.3 18.2 14.1 11.4 9.19 7.73 6.23

of the FT-400. Times measured on the separate transputer were multiplied by 1.13,
to obtain comparable table entries. The p 4 times for matrices SHERMAN2 and
LNS 3937 could not be obtained, because we did not have a four-transputer network
available with sufficient memory.

Table 4 shows the time Tp of parallel LU decomposition on p processors and the
time Tseq of sequential decomposition. The scaling behaviour of Tp with p can be
explained qualitatively by the expression

where c is the average number of nonzeros per row during the LU decomposition and m
is the average rank of a matrix update. The first term represents the computing time
of n/m rank-m updates, each of time O(2m(l +log m)) O(c2m/p); see Table 1. (In
this rough approximation the m log m term is neglected.) The second term represents
mainly the time needed to communicate row and column parts in n/m steps, each
of time O(m) O(cm/v/); see 3.4. The third term includes the startup time of
communication pipelines in n/m steps, each of time O(V). A few smaller terms have
been neglected in the derivation of (8). Usually the first term dominates for small p,
the second term for intermediate p, and the third term for large p. The cross-over
points between these ranges are problem-dependent.

The table shows that Tp is a monotonically decreasing function of p, with the
exception of the increase that occurs in moving from p 100 to p 400 for the
matrices IMPCOL B and WEST0067. This increase is hardly surprising, since at the
start of the computation there are fewer nonzeros (312 or 294) than processors (400),
so there is little to compute per processor and the total time is dominated by the
third term of (8), which increases with p. In the other cases either the first or the
second term dominates. For example, the gain by a factor of two in computing rate
for SHERMAN2 from p 100 to p 400 is probably due to the dominant behaviour
of the second term.

The maximum speedup Sp Tseq/Tp achieved is $400 107 for SHERMAN2.
Tables 3 and 4 show that the speedup is correlated to c(L\U): speedups increase with
increasing c(L\U).
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TABLE 5
Number of steps of parallel sparse LU decomposition on p transputers.

Matrix p 1 4 9 16 25 49 100 400
seq

IMPCOL B 59 35 30 25 22 20 14 15
WEST0067 67 40 33 32 27 24 20 18
FS 541 1 541 318 238 212 179 154 127 104
STEAM2 600 404 337 306 257 228 220 181
SHL 400 663 332 223 171 139 105 83 45
BP 1600 822 561 465 399 347 314 268 190
JPWH 991 991 679 558 506 477 398 376 306
SHERMAN1 1000 616 430 405 327 274 250 200
SHERMAN2 1080 911 857 795 803 785 745
LNS 3937 3937 2252 2140 1830 1634 1318 1237
GEMATll 4929 2589 1799 1389 1152 890 662 386

Table 4 shows that the difference in running time between the sequential program
and the parallel program with p 1 is small. The difference is due partly to par-
allel overhead and partly to differing pivot search strategies: the sequential program
searches three columns per step, whereas the parallel program with p 1 searches
only Q. ncol 1 column. In most cases, the parallel algorithm is slower due to the
parallel overhead and the lower quality (with respect to fill-in reduction) of the piv-
ots. In two cases, SHERMAN2 and LNS 3937, the parallel algorithm is faster because
these slowdown effects are more than offset by a faster search for pivots.

Table 5 shows the number of steps of the LU decomposition. This number is at
least n/v, because at most compatible pivot elements are found in each step,
due to our choice of ncol 1. The near-ideal behaviour shown by matrices SHL
400 and GEMATll can be explained as follows. For a general n x n matrix with c
nonzeros per row, the probability of an arbitrary element being zero is 1 -c/n, so
that the probability of two arbitrary pivot candidates being compatible is (1 -c/n)2;
cf. (4). This probability is even higher for pivot candidates that are chosen from the
sparsest columns of the matrix, as in our pivot search strategy. Both SHL 400 and
GEMATll have a very low nonzero density c/n, before and during LU decomposition.
This implies that pivot candidates are usually compatible, so that most candidates
become pivots and the number of steps is close to minimum. (Note that the number
of steps depends on the ratio c/n and not on c alone.)

For all matrices, the number of steps initially decreases rapidly with increasing
p, until a saturation point is reached. This point represents the situation where the
algorithm proceeds through the sparse part of the matrix in a few steps of high rank
m, and then handles the remaining dense part in steps of rank m 1; see Fig. l(d).

Table 6 displays the number of nonzeros and floating point operations, and the
numerical error of the LU decomposition. The number of nonzeros fluctuates with
p, without a clear trend, and without a clear advantage to either the sequential or
the parallel program. From these results, we conclude that there is at most a limited
penalty in terms of fill-in for relaxing the original Markowitz pivot search strategy.

The number of floating point operations is obtained by incrementing a counter for
every flop performed, including the redundant flops that are introduced by parallelis-
ing the sequential program. The growth in flop count that can be seen for the very
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TABLE 6
Number of nonzeros and floating point operations, and numerical error o] parallel sparse LU

decomposition on p transputers.

Matrix Nonzeros nz(L\U) Floating point operations Numerical error
seq p 16 p 400 seq p 16 p 400 seq p 16 p 400

IMPCOL B 412 445 435 8.8e-2 1.9e-P3 3.9e-3 3e-12 2e-12 3e-13
WEST0067 544 607 583 l.geT3 4.0e-3 8.3e-3 7e- 15 le- 14 3e- 14
FS 541 1 13553 15056 16609 2.2e-5 3.1eT5 5.8eT5 6e-15 7e-15 3e--15
STEAM2 42869 45010 53395 1.7e-6 2.1e-}-6 4.1eT6 6e-9 6e-9 8e-9
SHL 400 1712 1712 1712 0 4.0eT1 2.2e-3 0 0 0
BP 1600 7424 7398 7229 2.6eT4 3.le-4 7.2e-4 5e- 12 4e- 12 7e- 12
JPWH 991 68587 69263 65707 6.9e-6 7.7e-6 7. le-6 9e-12 3e-12 le-ll
SHERMAN1 27089 30989 26602 1.4e-6 1.8e-}-6 1.5e-6 le-11 7e 12 2e-11
SHERMAN2 375316 348651 352301 8.0e-7 6.ge-P7 8.4eT7 6e-7 8e-6 4e-6
LNS 3937 474800 448929 421090 8.3e-7 7.4e-7 7.4e-i-7 2e-4 le-4 2e-3
GEMAT11 53358 54086 53093 4.8eT5 5.8e-5 9.3e-5 2e- i0 4e- 10 3e- 11

sparse matrix SHL 400 is entirely due to such redundant computations. For denser
matrices the redundancy is negligible. In most cases, increasing p leads to a limited
growth in flop count.

The numerical error is defined as the maximum absolute error in the numerical
solution x of a system Ax b, with b chosen such that all components of the exact
solution are one. The system has not been scaled. It has been solved in stages
1-5; see 1. The error shows variations of one order of magnitude, without any
distinguishable trend. We attribute this behaviour to coincidence (e.g., caused by
arbitrary tie breaking in the pivot search) and not to the qualities of any particular
pivot strategy. In most cases the accuracy of our program is comparable to that of the
programs MA28 [11] and D2 [8], [9], with the notable exception of the cases STEAM2,
SHERMAN2, and LNS 3937, for which our program is less accurate (cf. [8, Table
4.3]). The accuracy can be improved by appropriately increasing u, decreasing a,
and increasing ncol. This has been confirmed by experiments, except for LNS 3937,
which could not be solved with a higher accuracy than 10-4, whatever the choice
of parameters. (For this matrix, however, accuracy can be improved significantly by
scaling.)

4.3. Algorithm with alternative pivot search strategies. To investigate
the influence of the chosen pivot strategy, we replaced the pivot search procedure by
alternative search procedures. The other parts of the program remained unchanged.
The first alternative is to search one column per processor column, and then choose
one pivot with the lowest Markowitz count from the Q pivot candidates. This leads
to a rank-1 update in each step, which is the usual method in sequential algorithms.
The second alternative is a general implementation of the pivot search algorithm of
2.2 for arbitrary ncol. We present results for the case ncol 3. Fig. 1 illustrates the
LU decomposition of IMPCOL B for ncol 5 and Q 2.

Figure 2 shows the time of parallel sparse LU decomposition for the standard
pivot search strategy (ncol 1) and the two alternative strategies (rank-l, ncol 3).
We observe that the standard strategy is clearly superior to the rank-1 strategy,
in particular for matrices with low density c/n, such as GEMATll. This is due
to the exploitation of sparsity-based parallelism, which is not used in the rank-1
strategy. The standard strategy is also better than the ncol 3 strategy. We attribute
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this mainly to the simplicity of the pivot search with ncol 1, which requires less
communication than the search with ncol 3. The potential gain in parallelism
caused by increasing the number of pivots (which is at most mmax x/" ncol), and
hence increasing the rank of the updates, does not compensate for the losses incurred
during the more expensive pivot search.
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FIG. 2. Time of parallel sparse LU decomposition for three pivot search strategies. The test
matrices are (a) FS 541 1; (b) STEAM2; (c) JPWH991; and (d) GEMATll. The squares denote
the standard pivot search strategy (with ncol 1); the pentagons the strategy with ncol 3; and
the circles the rank-1 strategy. The time of the sequential program is shown by a triangle. For
GEMATll the curves of ncol 1 and ncol 3 nearly coincide, and only the first curve is shown.

A possible application of the pivot search strategy with high ncol is when several
matrices have to be decomposed that have an identical sparsity pattern but slightly
different numerical values. In that case, the permutations 7r and p of (2) are de-
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termined during the decomposition of the first matrix. The remaining matrices are
ordered according to 7r and p and then decomposed without pivot searching or per-
mating. This saves the parallel pivot search and the parallel permutations which may
consume up to 80 per cent of the computing time. This procedure has been shown to
lead to significant gains in the sequential case [12, Chap. 5], and also in the parallel
case [28]. In our case, an initial investment in determining a high-quality ordering by
using the alternative pivot strategy with high ncol (and low a and high u) would pay
off handsomely in subsequent decompositions.

Number of steps Number of steps
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400[ 400
FS 541
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100
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100 200 3;0 4}0 ll0 2;0 30
Number of processors Number of processors
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5oooJ-::::_-1000L

800 40001
600 JPWH 991 3000

400 2000

200 \
lO0O
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____
400

Number of processors Number of processors

FIG. 3. Number of steps of parallel sparse LU decomposition for three pivot search strategies.
The test matrices and the marker symbols are the same as in Fig. 2. The dashed line denotes
the minimum number of steps, n//, for the standard strategy; and the dashed-dotted line, the
minimum number, n/3/-, for the ncol 3 strategy.

Figure 3 shows the number of steps of parallel sparse LU decomposition for the
standard strategy and the two alternatives. The rank-1 strategy gives n steps in all
cases. The ncol 3 strategy gives a smaller number of steps than the standard
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strategy, in particular for a small number of processors. For a larger number of
processors the difference between these two strategies is relatively small. Note that
the curves of the matrix GEMAT11 are close to the ideal curves.

The results with respect to number of nonzeros, number of floating point oper-
ations, and numerical error of the alternative pivot strategies are similar to those of
the standard strategy.

5. Conclusions. In this paper, we have presented a scalable parallel sparse LU
decomposition algorithm which is based on the grid distribution and the ordered two-
dimensional linked-list data structure. The algorithm scales reasonably well with the
number of processors, and it achieves a speedup of up to 107 on 400 processors for
large problems, i.e., problems with a large matrix order n and a high average number
c of nonzeros per row. The potential of the algorithm is best exploited in the solution
of large problems, such as the larger problems in the Harwell-Boeing collection.

Our general-purpose algorithm exploits both density-based and sparsity-based
parallelism. In a way, these two kinds of parallelism supplement each other: matrices
with high c have many potentially simultaneous operations in each rank-1 update;
matrices with low nonzero density c/n have many potentially simultaneous rank-1
updates. Matrices with high c and low c/n benefit from both kinds of parallelism.
Matrices with low c but high c/n (and hence small n) offer little hope for parallelism.

The timing results of our sparse LU decomposition program on 400 transputers
show that a distributed-memory parallel computer can successfully compete in the
field of sparse matrix computations with today’s fastest uniprocessor supercomputers.
As an example, the problem SHERMAN2 is solved in 15.6 s by our program running on
the FT-400, and in 34.4 s by MA28 running on one processor of the CRAY YMP/832
[27]. (This is only an indication of relative speeds, as computing speeds are obviously
problem-dependent: for SHERMAN1 the CRAY YMP/832 is four times faster than
the FT-400.)

Future research may lead to significant improvement of the algorithm of this
paper. First, the data structure can be changed into the unordered two-dimensional
doubly linked-list structure 5, which theoretically has the lowest time complexity; see

3. Second, the distributed-memory parallel sparse algorithm can be combined with
a parallel dense algorithm [3] which is invoked as soon as the nonzero density of the
reduced matrix exceeds a certain value and sufficient memory is available to store the
reduced matrix as a dense matrix. Such a switch from a sparse to a dense program
is performed in the shared-memory parallel algorithm D2 [9] (when c/n >_ 0.2), and
in the shared-memory parallel algorithms Y12M1, Y12M2, and Y12M3 [17] (when
c/n >_ 0.1), with often large gains. This switch prevents, for instance, extensive
searching for compatible pivots when only few compatible pivots exist due to the high
density of the reduced matrix. Third, several pivot search strategies can be combined:
searching for large pivot sets in the first few steps of the algorithm (ncol > 1), then
searching for smaller sets (ncol 1), and after that searching for single pivots, and
finally switching to a dense algorithm. (A similar combination of strategies is proposed
in [17].) We expect future hybrid algorithms with appropriate switch-over criteria to
be considerably faster than the current algorithm.

Appendix. Postcondition and invariant. The aim of the algorithm for pro-
cessor (s, t) is to establish the postcondition [10] R[s, t], which is the following logical
expression:
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i,j i<_j A (i,j)Egrid(s,t)

/ i,j i>j A (i,j)egrid(s,t)

i-1

Xij Uij A,,o- ELihUhj
h--O

h=O

At the start of step k of the algorithm, processor (s, t) guarantees the truth of the
following invariant [10]"

Vi,j: i,j>k ^ (i,j)egrid(s,t)

A Vi,j i<k A i<_j A (i,j)grid(s,t)

A Vi,j: j<k A i>j A (i,j)Egrid(s,t)

A i:i>_k A imodQ--s
A j :j>_k A jmodQ--t

The first three subexpressions of the invariant state which partial sums have been
accumulated so far. The last two subexpressions describe the nonzero counts.
All invariants PIN, t] hold trivially for k 0, after the initialisation X A and
7r p id and the appropriate initialisation of the nonzero count vectors R and C.
At the end of the computation, for k n, all components have their final values, so
that the postcondition R[s, t] is established. The algorithms works towards R[s, t] by
repeatedly incrementing k from 0 to n, while keeping the invariants P[s, t] valid.
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