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Abstract: This paper introduces a novel method to predict when a Google translation is better than
other machine translations (MT) in Dutch. Instead of considering fidelity, this approach considers
fluency and readability indicators for when Google ranked best. This research explores an alternative
approach in the field of quality estimation. The paper contributes by publishing a dataset with
sentences from English to Dutch, with human-made classifications on a best-worst scale. Logistic
regression shows a correlation between T-Scan output, such as readability measurements like lemma
frequencies, and when Google translation was better than Azure and IBM. The last part of the results
section shows the prediction possibilities. First by logistic regression and second by a generated
automated machine learning model. Respectively, they have an accuracy of 0.59 and 0.61.
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1. Introduction

Translating from a source language to a target language is a difficult task. An author
must be competent in both the source and the target language [1]. An excellent assistant
for this task is machine translation (MT). MT is faster than any human. The speed of MT is
a huge advantage, but what good is the speed if you can’t estimate the quality? With a few
words, manually estimating the quality is easy. However, weighting the translation quality
manually is quite difficult when there are a bulk of documents.

Two automatic options for estimating MT quality are (1) machine translation eval-
uation (MTE) and (2) quality estimation (QE) [2]. With the option of MTE, the methods
demand a human-translated text to measure how close the MT is to a human translation.
With metrics like BLEU (bilingual evaluation understudy), a score shows how close the MT
comes to human translation. Nevertheless, for every new translation, new human transla-
tion tasks are needed to measure to which extent the MT comes to a human translation.

With QE, the need for reference texts is gone. Although, when QE came from a
machine learning perspective, it is needed for training purposes. The outcome of QE can
be binary: good or bad. Additionally, also an estimation of how good the translation is. In
several attempts for QE, data are necessary to build a QE model. Much data come from
the Conference on Machine Translation (WMT) [3], which has multiple datasets. Other
domains provide, for example, legal QE datasets [4].

In this research, the focus is on readability and text metrics. Text metrics score text on
different axes. With those metrics, readability can be scored. The domain of readability has
multiple measurement methods. For the Dutch language, there is a tool to measure many
facets of text, namely T-Scan [5]. Simple readability metrics like sentence lengths and more
complex measurements such as word probability scores can be calculated.
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When reading a text, a reader should experience coherence between words. In a
coherent text, readability and fidelity should go together. Fidelity indicates how accurate
semantically the translation is [6]. The task and purpose of this paper are quite simple:
predict if the Google translation is better than the translations of Azure and IBM using
readability metrics. Another purpose is to find text analytic features corresponding to the
previously written task.

Hence the research question: Is it possible to predict if Google is better than Azure and
IBM with T-Scan readability features? Several sub-questions divide the research question:
Which T-Scan features can help score the best machine translation? Which combinations of
features of T-Scan will perform the best prediction?

We present the potential of readability features in combination with QE as an alterna-
tive method to estimate QE in Dutch. In the experimental setting, 213 English sentences
are translated to Dutch with Microsoft Azure’s Translator API, IBM Language Translator
and Google Translator v3. We provide these translated sentences as a new dataset for
further research: These sentences are humanly ranked and are further analysed by T-Scan.
Logistic regression analysis examined the correlation between the Google translations and
the T-Scan features. The prediction possibilities of such a model are further explored with
a logistic regression model and a Gradient Boosting Classifier, which was generated by
automated machine learning (AutoML).

The paper is structured as follows: the related section will elaborate on the read-
ability, the text analysing tool T-Scan and quality estimation. In the methods section, the
setup of the experiment is explained. The results show the logistic regression summary
matrix and the classification matrix. The last part of the work is the discussion, future
work, and conclusion. All code and data are made publicly available (Code and data on
https://github.com/7083170/Readability-metrics-for-machine-translation (accessed on
20 March 2023)).

2. Related Work

In this section, we first explain readability, second readability tooling, third examining
T-Scan, fourth machine translation and fifth and last, QE.

2.1. Readability

Readability is an essential subject in text analysis. A clear definition of readability is
the ease a reader can understand a text [7]. The definition can be extended by adding the
ease of understanding the author’s writing style. Important to address is that fonts and
layout are not parts of readability [8].

For analysing readability, many features are available. These features assume a particular
knowledge of the reader [9]. Humans learn words from other humans [10]. Humans learn by
talking with other people and by reading texts. Many readability features use this assumption,
namely the degree of word knowledge and the degree of word predictability [11].

2.2. Readability Tooling

There are a tremendous number of text analysing tools. Most of these text analysing
tools say something about readability. For example, the number of words in a sentence:
longer sentences are harder to read. There are many of these features, and some of the tools
are also a combination of features. Instead, this part focuses on some of the critical features.

As readability stands for ease of understanding, various features can be measured
by analysing the texts. For example, word prevalence, entropy, perplexity, word count,
particular character count, word probability, morpheme count, word frequencies, named
entity recognition, sentence analysing features and many more. Some tooling uses more
than 200 features [12], or even more than 400 formulas [5].

Which of those features are relevant? With word frequencies, the assumption is that
a reader has encountered words before. In Dutch, there are, for example, the Staphorsius
frequency [13] and the newer Basilex corpus [14]. These corpora hold a large part of words
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from schoolbooks. The proliferation of these words is due to compulsory education in the
Netherlands. Hence, the chance that readers saw these words earlier in their lives is high.
Therefore, these frequencies can indicate some part of readability [11].

Another attempt for measuring readability is with word prevalence. The feature
represents the number of people who know the word [15]. These kinds of corpora are
created by asking people whether they know the word.

The uncertainty of language is measured with entropy. “Word entropy is a ‘forward-
looking’ metric and models the degree of the listener’s or reader’s uncertainty about the
upcoming word given the words encountered so far” [16] (p. 285). The entropy rises when
a sentence contains many words that do not occur in a common language model. On
the other hand, perplexity measures the possibilities of a language model. “Perplexity is
defined as the exponential transformation of surprisal” [16] (p. 285).

2.3. T-Scan

T-Scan is a tool which provides 457 different kinds of measurement features for a
Dutch document [17]. The 457 features are divided into nine groups. The first group is
the default features, like the number of sentences and paragraphs. The second group is
word difficulty and contains 88 features, like word frequencies, number of morphemes,
characters per word, and word prevalence. The third group is sentence complexity and
holds 73 features, about words per sentence, subordinate clauses and more.

The fourth group is reference coherency and lexical diversity. The group contains
26 features. These features are context words per subordinate clause or the number or the
density of lemmas compared to a previous sentence. The fifth group, relational coherency
and situation model metrics, stores 40 features. These features vary in the density of time
and emotional and causal words.

In the sixth group, the semantic classes, concreteness and generality of texts are
measured. The group covers a high number of 133 features. The features vary from the
proportion of the nouns with different kinds of references to the density of general adverbs.
The seventh group contains five features about personal elements. The eighth group is
about other lexical information and includes 76 features about entity names like products,
events, persons, and organisations, based on the Dutch named entity recognition and word
analysing tool “Frog” [18].

The last group are the probability metrics, with 16 features. With measurements such
as perplexity, entropy, and the logarithm of the trigram probability.

T-Scan is provided with other Dutch text analytics tools at the Lamachine web services.
The tool is used for testing text comprehension [19], lexical en sentence complexity [20],
analysing text genres [21] and other textual-related research for the Dutch language. T-Scan
output divides document, paragraphs, and sentence-oriented scores in a CSV.

2.4. Machine Translation

Machine translation moved from a statistical machine translation (SMT) approach to a
neural machine translation (NMT) approach [22]. SMT uses machine learning models to
translate source texts to a target language [23]. SMT can build new sentences with a (large)
parallel text corpus. NMT replaced most of the SMT approaches in cases when there is a
large corpus.

An NMT approach uses two recurrent neural networks (RNN) to consume the source
text and the second to create a target text. NMT gives better translation quality than SMT,
but when in a low-resource situation, SMT outperforms the NMT approach [22]. Not
finding rare words or not translating all words are sometimes failures in the early attempts
of NMT [24].

Other attempts in comparing NMT approaches were made in [25]. In this part between
Azure’s Translator, Deepl and Google Translation. In this case, the parliamentary texts from
French to English were compared. The outcome was that Azure and Deepl didn’t have sig-
nificant differences; on the other hand, Google Translation had fewer collocational bigrams.
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Google presents its translation machine as Google’s Neural Machine Translation
system. The system uses long short-term memory RNNs [24]. Further, it breaks words into
wordpieces (later also used in BERT models [26]).

Microsoft Azure’s Translator API, IBM Language Translator and Google Translator v3
all use the NMT approach [27–29].

2.5. Quality Estimation

The goal of QE for MT is to evaluate the quality of the translated text without reference
texts [30]. The estimation can be binary (good or bad) or with a discrete or continuous
score. QE applications can be different: identifying bad translations, selecting the best
translation between multiple MT providers, and indicating time for post-editing an MT.
QE is not necessarily worse than MTE. Results from attempts show for specific languages
(Spanish-English, English Spanish, no significantly different results (QE score) than with
reference texts (Meteor score) [30].

For example, the approaches for QE are executed with support vector machines and
with neural network approaches [31]. A large amount of annotated data is needed to give
insights for QE. However, there are also unsupervised methods [32]. Some of these ideas
are worked out in the open-source community. The open-source framework of OpenKiwi
provides a machine-learning approach for QE [33]. The approach requires training material
for estimation. OpenKiwi is built in python and uses PyTorch. Another approach is
QuEst [34]. Like OpenKiwi, QuEst is also a python-built framework. QuEst makes use of
the WMT data for QE.

QE now uses data provided by WMT but can also use revision tracking, readability,
comments and publication acceptance metrics [35,36]. One of the state-of-the-art QE
frameworks (according to the WMT QE shared task) is TransQuest [37]. Besides the
WMT datasets, there is also a framework and datasets for English-to-Dutch, -French and
-Portuguese in the legal domain [4]. However, the English-to-Dutch dataset is built on legal
documents instead of general wiki texts. With the lack of *-to-Dutch datasets, this paper
tries to combine readability metrics with QE.

3. Methods

A research path is taken to estimate when Google translation is better than Azure and
IBM. The Figure 1 below sketches the steps. These steps can be categorised into two paths,
namely (1) the construction of the dataset and (2) the analysis part, where the automatic
text analysis from T-scan is compared with the best-worst scale.

Figure 1. Global research design. The first part is dataset creation, and the second part is analysis.

3.1. Construction of the Manually Classified Dataset

Figure 2 graphically displays the dataset creation. Because this study originates
from research on translating question and answering datasets, the SQUAD 2.0 dataset is
chosen [38]. The SQUAD dataset contains a variety of subjects. The dataset is divided
into paragraphs, questions, and answers. In May 2020, a translation request was executed
at three MT cloud providers: Microsoft Azure, IBM Cloud and Google Cloud. The titles,
paragraphs, questions, and answers are translated from English to Dutch.
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Figure 2. Dataset creation. First selecting the sentences, second translating the sentences from
English to Dutch, third a human best-worst scale rating, fourth putting the texts into T-Scan and last
combining the translations, T-Scan output and best-worst scale into one dataset.

A random selection of paragraphs from the SQUAD dataset is taken for selecting
sentences. Then, the original English paragraph and the Dutch translated paragraphs are
divided with a sentence splitter of the NLTK package in Python (sent_tokenize) [39].
The paragraphs without an equal count of sentences compared with the source text were
ruled out. The reason for ruling these sentences out is that it is more difficult to select
them automatically. From the rest of the sentences, 146 sentences are selected. Because
the SQUAD dataset also contains questions, 67 questions were added as sentences to the
dataset. These questions are randomly chosen from all the SQUAD questions.

Next, the machine-translated sentences are classified in the best-worst scaling [40].
Sentences are positioned as best translated (1) to least well translated (3). The task presented
the sentences in random order, and the ids of the different sentences were hashed so that a
classifying participant could never see the MT provider behind the sentence. Thereby, the
annotator could give extra information about the rating process. Table 1 shows an example
of the task.

As shown in Table 1, the annotators could give extra information about their best-
worst scaling. In the task. ’No extra information’ was default selected. Sometimes the
annotators were confused or had doubts about the selection and could specify that further
under the best-worst scale. They could have doubts about two or all translated sentences.

Table 1. Example of different machine-translated texts with the original. In this example, Google is
selected as best.

Position Provider Sentences Drag &
Drop

Original By the early 20th century balloon, or airship, guns,
for land and naval use were attracting attention.

1 Google Tegen het begin van de 20e eeuw trokken de ballon,
of het luchtschip, kanonnen voor land- en marinege-
bruik de aandacht.

×

2 Azure Door het begin van de 20e eeuw ballon, of luchtschip,
geweren, voor land en marine gebruik waren het
aantrekken van de aandacht.

×

3 IBM Door de vroege 20e-eeuwse ballon, of luchtschip,
wapens, voor land en marine gebruik trok aandacht. ×

l No extra information
m I’ve doubts between position 1 and 2
m I’ve doubts between position 2 and 3
m They are all equal to me

After classifying the sentences on the best-worst scale by one human rater (author),
a ranking is created, visible in Table 2. Remarkably, Google translations score far better
than the other providers. The same findings were also with the other annotators. Google
translations are hardly scaled as worst.
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Table 2. Number of sentences of the three MT providers selected as best (one), second, or third.

Main Annotator Other Annotators

One Two Three One Two Three

Azure 45 83 85 24 34 28
Google 135 53 25 47 18 21
IBM 33 77 103 15 34 37

To ensure the classification is correct, other annotators are added to expose a kappa
score to test the correctness of the human-annotated dataset. Five different annotators
checked the classifications of the first annotator. The five annotators each classified an
average of seventeen translations. The translations were randomly selected for the anno-
tators, but the random selection considered that there was not much overlap with other
annotators, only with the main annotator. Again, they couldn’t know which sentences were
from the MT providers.

A kappa score indicates the interrater agreement between annotators and is measured
by the following equation: κ = (Pr(o)− Pr(e))/(1− Pr(e)). Pr(a) is the observed agree-
ment, the Pr(e) is the expected agreement. The inter-agreement kappa score is 0.63. This
score can be interpreted in different ways, namely moderate [41] or good [42]. A high
agreement score in machine translation is considered to be difficult [43].

3.2. Analysing the Dataset

T-Scan also analyses the sentences chosen in the first part of the methods section.
As mentioned, T-Scan analyses texts and outputs over 400 features in a CSV file. Not all
features were filled in; many had a non-available placeholder. The outcome of the best-worst
scaling task is morphed into a binary classification: when was Google best (1) and when not
(0)? Google sentences are 135 times (63%) ranked as number one and 78 times (37%) ranked
as second or third. The T-Scan features are balanced with the SMOTE method [44].

Figure 3 visualise the research steps for analysing the dataset globally. We choose a
logistic regression because the method explains how the features operate in the model [45].
Before the logistic regression, a recursive feature elimination (RFE) method removes
most of the features of the T-Scan output [46]. After RFE, some features are added
back to the analysis. These were the probability features (T-Scan group nine: proba-
bility metrics), other word frequency features and word prevalence. Not all features were
added because not all features had a low p-value (p = 0.05 or lower). These features are
Lem_freq_zn_log_zonder_abw, Hzin conj and Perplexiteit_bwd. We also used an Extra
Tree Classifier (ETC) to identify correlating features because, in our analysis, we noticed
that the pseudo R-squared was low. Therefore, we used ETC to find more features. The
fitted features were Pv_ww1_per_zin and Ontk_tot_d.

Figure 3. Data Analysis. First, the data are loaded; second, the dataset is SMOTE balanced. Third, in
the feature selection phase with RFE and ExtraTreeClassifier, and fourth, the features are examined
and tested. Fifth, a descriptive logistic regression and a prediction with logistic regression.

The software for the logistic regression comes from Statsmodels [47]. The reason for
choosing a logistic regression analysis is because of the simplicity of the method. It is easily
understandable which features influence the regression. Still, some features surviving the
RFE had a p-value above 0.05 and were removed.

After the logistic regression, a prediction model is created for when Google translations
are better than the other two providers. Herefore, the dataset is split into 70 per cent of the
dataset for training a logistic regression. The other 30 per cent is used as a test dataset. The
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training data are also balanced with SMOTE, and the features are the same at the logistic
regression. The model is also logistic regression.

For further predictive examination, an AutoML test is done. For the AutoML test,
TPOT is used [48]. TPOT is easy to use and works with the Scikit-Learn [49] toolbox. The
library is like Scikit-Learn, a Python library. The settings in TPOT are ten generations and
the whole population size (total training dataset). TPOT then searches for the optimal
pipeline using genetic programming, a technique to build mathematical trees. Hence,
several generations are needed to find the best pipeline.

4. Results

The logistic regression and prediction model will be explained in the results part.

4.1. Logistic Regression Analysis

Table 3 shows the logistic regression results with the balanced dataset. The table
holds a pseudo R2 of 0.2, and according to [50], logistic regression with a pseudo R2

between 0.2 and 0.4 is well fitted. All p-values are lower than 0.05 and are significant
features of the regression. The features are plotted individually in Figure 4. In Table 4,
three example translations are given to show which characteristics will affect some logistic
regression features.

Table 3. Logistic regression results, balanced with SMOTE.

Dep. Variable: y Df Residuals: 262

Model: Logit Df Model: 7

Method: MLE Pseudo R-squ.: 0.2091

converged: True Log-Likelihood: −148.02

Covariance Type: nonrobust LL-Null: −187.15

No. Observations: 270 LLR p-value: 3.124 × 10-14

coef std err z p > |z| [0.025 0.975]

Freq1000_inhwrd 2.0691 1.026 2.016 0.044 0.057 4.081

Lem_freq_zn_log_zonder_abw 0.3637 0.113 3.211 0.001 0.142 0.586

Hzin_conj −0.6250 0.258 −2.423 0.015 −1.131 −0.119

Pv_ww1_per_zin −0.8707 0.304 −2.862 0.004 −1.467 −0.274

Ontk_tot_d −0.0331 0.008 −4.281 0.000 −0.048 −0.018

Conn_TTR 0.9554 0.336 2.844 0.004 0.297 1.614

Ww_d −0.0084 0.002 −4.456 0.000 −0.012 −0.005

Perplexiteit_bwd −0.0120 0.005 −2.267 0.023 −0.022 −0.002

Eight of the features originate from five of the feature groups of T-Scan. These groups
are (1) word difficulty, with features freq1000_inhrwd and Lem_freq_zn_log_zonder_abw,
(2) sentence complexity, with features Ontk_tot_d, Pv_ww1_per_zin, and Hzin_conj, (3) re-
lational coherency and situation model metrics, with feature Conn_TTR, (4) other lexical
information, with feature Ww_d and (5) probability metrics with feature Perplexiteit_bwd.
Figure 4 presents the individual regression plots.
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Figure 4. Regression plots. For each feature, it is hard to distinguish between the best scale and the
other scale.

Table 4. Examples of when Google was classified as the worst.

En: Under the regulations of the California Constitution, no runoff election
was required.

Nl: Volgens de voorschriften van de grondwet van Californië waren geen verkiez-
ingsverkiezingen vereist.

Exp: In this case, the translation created a new word: verkiezingsverkiezingen.
Which means election elections. It is not a real word; in this case, it negatively
affected the Lem_freq_zn_log_zonder_abw and the Freq1000_inhwrd feature.

En: There is also the related British Empire Medal, whose recipients are affiliated
with, but not members of, the order.

Nl: Er is ook de gerelateerde Medaille van het Britse Rijk, waarvan de ontvangers
zijn aangesloten bij, maar niet zijn aangesloten bij, de orde.

Exp: The sentence contains two times the same word: aangesloten (affiliated). First,
in a positive matter, and the second time in a negative. The double word
‘aangesloten’ affects the Ww_d positive and adds another verb to the sentence.
While the feature correlates negatively.

En: How was the Portuguese bailout implemented?

NL: Hoe is de Portugese reddingsoperatie geïmplementeerd?

Exp: In this case, the preference went to the word bailout instead of reddingsoperatie
(rescue operation) because the question was about some Portuguese economic
event. These kinds of sentences are difficult to translate; context is essential
here. In this case the feature Lem_freq_zn_log_zonder_abw was lower than
the other two.
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4.1.1. Features from Word Difficulty

Feature Freq1000_inhwrd is the proportion of content words compared with the
thousand most frequent words. The coefficient is positive. Hence, frequently used words
have a positive effect on the translations.

Lem_freq_zn_log_zonder_abw is also a frequency-based feature. In this case, the words
are lemmatised, and names and adverbs are excluded. The score is a result of the logarithm
of the frequency.

4.1.2. Features from Sentence Complexity

Feature Pv_ww1_per_zin is a metric for the finite verbs at the beginning of a sentence.
The coefficient correlates negatively. The reason that the feature is significant and fits in the
regression is possible to the fact that 22% of the sentences were questions.

Hzin_conjn means the number of secondary declarative main clauses and is also
negative. The negative coefficient can also be explained when a translation makes a too-
long sentence of the translation. From the 25 times that Google was ranked worst, it had
twelve times a higher word count than the best-scaled translation, five times there was no
difference, and eight times the translation had fewer words.

Both features Pv_ww1_per_zin and Hzin_conjn are strange because most of the fea-
tures are 0. However, both fitted in the logistic regression.

4.1.3. Features from Relational Coherency and Situation Model Metrics

Conn_TTR is a token type ratio for temporal, contrastive, comparative, and causal
connectives and is also a positive coefficient. Words in this context are, for example,
because, and, before.

4.1.4. Features from Other Lexical Information

Feature Ww_d refers to the density of verbs. It has a slightly negative coefficient. The
mean of the Ww_d feature is at the negative group 199 and at the positive group 148. The
density of verbs correlates negatively in this dataset. This is also seen in Figure 4, where
most of the points in the plot are close to each other, but when the density rises, the more
likely it is that it correlates negatively.

4.1.5. Features from Probability Metrics

Perplexiteit_bwd is perplexity backwards and is positively correlated to the regres-
sion. The probability coefficient only applies to content words. The feature has a p-value of
0.023 and is manually added to explore if it fits the model.

The mean when Google was not ranked as best is two points lower than when Google
was rated as best, respectively 11.7 negatives and 13.4 when it is positive. Most of the
points are close to each other, with some extreme outliers.

4.2. Predicting: Test Statistics

The prediction results are divided into a logistic regression and a generated model
from TPOT AutoML.

4.2.1. Logistic Regression

A logistic regression model predicts when the Google translation is better than the
other two translations. The confusion matrix of the logistic regression is presented in the
upper part of Table 5. A machine learning model is created in this part with the features
shown in Table 3. A recall of 0.72 when Google was not better than other providers could
be better. However, the accuracy of 0.59 leaves room for improvement. When a dataset
is larger than the current one, the scores of the test statistics would probably increase.
The logistic regression is insufficient to predict when Google is better than the other two
translator providers.
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Table 5. Classification report of the logistic regression model and the Gradient Boosting Classifier,
generated by TPOT. The numbers in bold represent the highest score in the table.

Classification Report: Logistic Regression

Precision Recall F1-Score Support

0 0.62 0.45 0.52 40

1 0.57 0.72 0.64 40

accuracy 0.59 80

weighted avg 0.59 0.59 0.59 80

Classification Report: Gradient Boosting Classifier

Precision Recall F1-Score Support

0 0.68 0.42 0.52 40

1 0.58 0.80 0.67 40

accuracy 0.61 80

weighted avg 0.63 0.61 0.60 80

Figure 4 also gives an insight into the individual features of the model and it makes a
combined model for the use case probably unsuitable.

4.2.2. AutoML

A pipeline was generated with the Python library TPOT, an AutoML tool. TPOT
identified the Gradient Boosting Classifier as the best pipeline for predicting when Google
is ranked best.

Best p i p e l i n e :
G r a d i e n t B o o s t i n g C l a s s i f i e r (

Normalizer (
MaxAbsScaler (

PolynomialFeatures ( input_matrix , degree =2 ,
in c l ud e_ b i as=False , i n t e r a c t i o n _ o n l y =Fa l se

)
) ,
norm= l 2

) , l e a r n i n g _ r a t e = 0 . 1 , max_depth =3 ,
max_features =0.6000000000000001 , min_samples_leaf =11 ,
min_samples_spl i t =14 , n_es t imators =100 , subsample =0.55

)

The bottom part of Table 5 shows that the effort to optimize an ML model through
AutoML does not give extraordinary results compared to the upper part. Of course, there
is a recall of 0.80 for predicting when Google was better than the other providers, but the
recall of when Google was worse is 0.42. Overall, the accuracy went up by 0.02 points.

5. Discussion and Future Work

With only eight features from T-Scan, we could relatively predict when Google was
better than Azure and IBM. Of course, the accuracy stopped at 0.61, almost as high as our
Kappa score. The task is difficult for a statistical model as it is for humans.

The kappa score shows that human quality estimation is not unambiguous as we
hoped. With more annotators per translation, the consensus should be better determined
with, for example, election [51]. In our case, we should have multiple judges to appoint the
best. For the ease selecting the winning sentence, a uneven number of judges need to be
applied. The downside of this is, of course, that it takes more time to rank the sentences.
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The results show a simple logistic regression; most features make sense. For example,
the backward metric of perplexity Perplexiteit_bwd, because the feature showed con-
text between words when Google was number one compared with Azure and IBM. The
test statistics show that this dataset can generate a reasonable model. However, a more
significant number of data will help increase the test statistics’ robustness.

Another interesting point is a different kind of data. This research only used Wikipedia
data and related questions from the SQUAD 2.0 dataset. These texts are subject-oriented
and written to be informative. Not all texts look like Wikipedia texts. Hence, will the same
features apply to prose, poetry, news bulletins, and crowd-created messages, such as social
media state utterances? Not only various kinds of texts are interesting, but also diverse
kinds of source languages and target languages.

However, a multilevel logistic regression model in future work should create a better
comparison between the three APIs or even with more APIs. Moreover, neural networks,
support vector machines and other statistical models must be considered. Another per-
spective is an analysis of the text metrics between the source and target languages. What
would be the critical features between the two languages to predict which API is better
than others?

6. Conclusions

Machine translation evaluation is a challenging task. This paper gives insights into
a novel and alternative approach to explain the quality of the translation without the
time-consuming jobs of machine translation evaluation. Text metrics can show something
about the quality and what characteristics wrong machine-translated texts have.

We expected that word probability and entropy should fit the regression, but this did
not happen. The same applied to word prevalence. On the other hand, two features of
word probability and one lemma frequency feature fit well into the regression.

As expected, perplexity backward correlates positively with better-written machine
translations. T-Scan’s readability and text metrics show insights into translation correct-
ness. When balanced, eight features correlate with the dataset. However, the predictive
model is still insufficient for an English-to-Dutch QE setting. More data are needed for
model development.
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