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Abstract: Drug-induced nephrotoxicity is a major cause of kidney dysfunction with potentially
fatal consequences. The poor prediction of clinical responses based on preclinical research hampers
the development of new pharmaceuticals. This emphasises the need for new methods for earlier
and more accurate diagnosis to avoid drug-induced kidney injuries. Computational predictions of
drug-induced nephrotoxicity are an attractive approach to facilitate such an assessment and such
models could serve as robust and reliable replacements for animal testing. To provide the chemical
information for computational prediction, we used the convenient and common SMILES format. We
examined several versions of so-called optimal SMILES-based descriptors. We obtained the highest
statistical values, considering the specificity, sensitivity and accuracy of the prediction, by applying
recently suggested atoms pairs proportions vectors and the index of ideality of correlation, which
is a special statistical measure of the predictive potential. Implementation of this tool in the drug
development process might lead to safer drugs in the future.

Keywords: SAR; nephrotoxicity; Monte Carlo method; semi-correlation; CORAL software

1. Introduction

Nephrotoxicity refers to the harmful effects that occur in the kidneys due to chemicals
and medicines, known as nephrotoxicants, often resulting in their rapid deterioration.
The kidneys are uniquely susceptible to drug-induced injury due to their high cardiac
output and their role in the excretion of waste compounds from the body. Due to their
pivotal role in concentrating and reabsorbing the glomerular filtrate, the kidney proximal
tubular cells are particularly prone to elevated levels of circulating toxicants. Drug-induced
nephrotoxicity (DIN) has been identified as a major contributor to both acute kidney
injury (AKI) and chronic kidney disease (CKD). Prospective cohort studies of AKI have
shown the estimated incidence of DIN to be between 14 and 26% in adult populations [1,2].
Furthermore, 16% of hospitalised AKI cases in paediatrics can be attributed to nephrotoxic
drugs [3]. AKI arising from DIN often results in the development of progressive CKD or
end-stage kidney disease, both associated with a high mortality rate [4]. Experimental
testing of all potential nephrotoxic drugs is not possible, which makes computer analyses
of available data in order to preliminarily evaluate substances of interest for nephrotoxic
activity a very attractive alternative to experiments.

The ability to discern nephrotoxic structures during the initial stages of drug development
presents an opportunity to improve patient health outcomes. However, the mechanisms of DIN
are intricate and can vary between drug classes. These distinctions are typically generalised
based on the histological component of the kidney that is primarily affected. Several processes
can cause nephrotoxicity involving diverse segments, such as glomerular damage, glomeru-
lonephritis and interstitial nephritis, renal tubular injury and cytotoxicity, leading to necrosis
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and tubular obstructions due to drug-induced crystallopathy [5,6]. Drug metabolism also plays
a role in toxicant bioactivation, by forming either proximate toxic metabolites or stable reactive
intermediates. This process can occur during phase I reactions, when new or modified functional
groups are formed or cleaved, often followed by phase II reactions, involving conjugation with
an endogenous substance, as, for example, seen with cadmium or aristocholic acid also coupling
the liver to the kidney [7,8]. An accurate prediction and evaluation of nephrotoxicity during
the initial stages of drug development is necessary to identify new therapeutics. Currently,
preclinical testing of compounds relies heavily on in vivo systemic toxicity animal studies to
examine their effects throughout varying dosage regimens over different durations. However,
the establishment, processing and analysis of kidney histopathology samples acquired from
these studies are expensive, time-consuming and insufficient for screening large numbers of
compounds, and also raise several ethical issues concerning animal welfare [9,10]. Further-
more, animal models may not accurately predict human renal drug handling [11]. In contrast,
numerous cell-based in vitro assays have been developed towards the early identification of
toxicity traits for potential drug candidates, yet such studies have been limited due to the
number and type of cells employed, the simulated microenvironments and methods of drug
exposure [12,13]. Despite the advancements in increasingly predictive in vitro models, the
development of improved in silico approaches is of paramount importance [14]. Successful
assimilation of in silico models would permit the adoption of endpoints from the clinical and
regulatory setting. These computational tools could better utilise high quality ‘known’ data
points to form predictions based on biological complexities and experimental scalability, both
essential for producing meaningful and robust datasets that permit improved integration of
predictive in silico models.

Experimental and clinical testing of drugs of their toxic potential are expensive and
time-consuming actions. Computational analyses of available databases on drug-induced
toxicity is an attractive alternative. Some models have been developed on nephrotoxicity,
addressing general nephrotoxicity and/or specific endpoints, such as tubular necrosis [15–21].
However, these studies focus on different perspectives and relate, for instance, to some
particular categories of substances (e.g., andrographolide derivatives, traditional medicines
and drugs) based on different exposure scenarios, and address endpoints that do not overlap.
Thus, more efforts have to be made to produce better predictive models for nephrotoxicity.

The use of CORAL software (http://www.insilico.eu/coral, accessed on 15 March 2023)
is one of the ways to solve this task. The most common approach to computational modelling
is to calculate molecular descriptors first, and then, using them, to develop an in silico model.
Compared to the traditional approach, CORAL has the advantage that it does not require the
calculation of the molecular descriptors; instead, it simply uses the molecular formula of the
potential toxicant represented as SMILES [22]. The purpose of this study was to evaluate the
possible use of CORAL to develop better, simpler models to accurately predict nephrotoxicity.
The general scheme of the study is represented in Figure 1.
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Figure 1. The general scheme of the study using CORAL software.

2. Materials and Methods

Categorical data on drug induced nephrotoxicity (n = 565) were taken from the litera-
ture [19]. Table 1 contains an overview of the selection of reported nephrotoxic drugs and
their toxicity profiles.
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Table 1. Frequently reported nephrotoxic chemicals and their toxicity profiles.

Compounds
Renal Toxicity Profile

AIN * ATN Altered Haemo-
dynamics CIN Crystal

Nephropathy
Glomerulo-
Nephritis Inflammation PTCT PTI Thrombotic

Micropathy
Tubular

Obstruction

Acyclovir X X X X X

Amphotericin B X X X

Ampicillin X X X X

Ceftriaxone X X X

Cidofovir X X X

Ciprofloxacin X X

Cisplatin X X X X X

Cyclosporine X X X X

Foscarnet X X X X

Ganciclovir X X

Gentamicin X X

Ibuprofen X X X X X

Indinavir X X X X

Mannitol X

Methotrexate X X X

Naproxen X X

Penicillin X X X X

Rifampicin X X

Streptozocin X X

Sulphadiazine X X X X

Sulphamethoxazole X X X X

Tacrolimus X X X

Tenofovir X X

Triamterene X X

Vancomycin X X X X X

(*) AIN = acute interstitial nephritis, ATN = acute tubular necrosis, CIN = chronic interstitial nepthritis, PTCT = proximal tubular cell toxicity,
PTI = proximal tubular injury, RAS = renal artery stenosis.
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The endpoint addressed contained 565 diverse chemical structures, including real
world data on 287 nephrotoxic drugs in humans and 278 non-nephrotoxic approved drugs.
These compounds were randomly distributed in the active training (≈25%), passive training
(≈25%), calibration (≈25%) and validation sets (≈25%). Each of these sets has a special
task: (i) the active training set provides the foundation of the model, i.e., compounds of
this set are used for building up the predictive model; (ii) the passive training set is the
inspector of the model, i.e., compounds of this set are used to verify whether the model is
satisfactory for substances which are absent in the active training set; (iii) the aim of the
calibration set is to detect the start of the overtraining; and (iv) the validation set is used for
the final validation of the predictive potential of the model, using substances that were not
used to develop the model.

2.1. Optimal SMILES-Based Descriptors

Two optimal descriptors calculated with attributes of SMILES are examined here:

DCW1(T, N) =
NA

∑
k=1

CW(Sk) +
NA−1

∑
k=1

CW(SSk) +
NA−2

∑
k=1

CW(SSSk) (1)

DCW2(T, N) = CW(AAP) +
NA

∑
k=1

CW(Sk) +
NA−1

∑
k=1

CW(SSk) +
NA−2

∑
k=1

CW(SSSk) (2)

Two descriptors which are the sum of the so-called correlation weights are examined
here. The correlation weights are coefficients calculated with the Monte Carlo method. The
second version of the optimal SMILES-based descriptor was calculated with atoms pairs
proportions (APP) correlation weights [23].

Using descriptor values, one can calculate y (category qualifier) using the so-called
semi-correlation technique [24]:

y = C0 + C1 × DCW(T, N) (3)

and then define the category of a substance:

Category(SMILES) =
{

active i f , y ≥ 0.5
inactive i f , y < 0.5

(4)

Sk is a SMILES atom, i.e., one symbol (‘C’, ‘O’, ‘N’) or group of symbols which cannot
be examined separately (‘Cl’, ‘Br’, ‘%11). SSk and SSSk combines two and three SMILES
atoms, respectively. CW(Sk), CW(SSk) and CW(SSSk) are the correlation weights of the
above SMILES fragments.

2.2. Monte Carlo Optimisation

The optimal SMILES-based descriptor requires numerical data on the correlation
weights. Monte Carlo optimisation is a tool to calculate these correlation weights. Here,
two target functions for the Monte Carlo optimisation were examined:

TF1 = rAT + rPT − |rAT − rPT | × 0.1 (5)

TF2 = rAT + rPT − |rAT − rPT | × 0.1 + I IC× 0.5 (6)

where rAT and rPT are the correlation coefficients between the observed and predicted
endpoint for the active training set and passive training set, respectively. IICC is the index
of ideality of correlation calculated with data on the calibration set as follows [25]:

I IC = rC
min(−MAEC,+ MAEC)

max(−MAEC,+ MAEC)
(7)
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min(x, y) =
{

x, i f x < y
y, otherwise

(8)

max(x, y) =
{

x, i f x > y
y, otherwise

(9)

−MAEC =
1
−N ∑|∆k|,−N is the number o f ∆k < 0 (10)

+MAEC =
1

+N ∑|∆k|, +N is the number o f ∆k ≥ 0 (11)

∆k = observedk − calculatedk (12)

where the observedk and calculatedk are the observed and calculated values of
endpoint, respectively.

The calculations were carried out in fifteen epochs. An epoch is a step-by-step modi-
fication of all correlation weights. The sequences of these modifications are random and
different for each epoch.

3. Results

We tried different approaches to develop in silico models. Table 2 contains the statisti-
cal quality of model 1 for DIN obtained with DCW1(T,N) and the Monte Carlo optimisation
with target function calculated with Equation (5). This approach is the classical CORAL
approach. Table 3 contains the statistical quality of model 2 for the endpoint observed in
the case of DCW2(T,N) and target function calculated with Equation (5). In this case, a more
sophisticated algorithm is used, adopting Equation (2) and not Equation (1). Comparing
the results shown in Tables 2 and 3 on the total set of compounds, it is noted that all the
statistical parameters are better in Table 3; thus, the use of Equation (2) is preferable. Table 4
contains the statistical quality of model 3 observed in the case of DCW2(T,N) and the target
function calculated with Equation (6). In this case, we applied a further improvement in the
algorithm, using the index of ideality of correlation. Considering the results for the total
set, we observe that all statistical parameters are better (the value for sensitivity remains
the same). There are other preferable aspects that can be interpreted from Table 4. With the
previous models, comparing Tables 2–4, it is possible to observe a larger spread of values
obtained for the different sets. In some cases, the values are very high, but then the results
are worst for other sets. This indicates a lower robustness of the model compared to the
results of the model in Table 4. For instance, the Matthews correlation coefficient (MCC)
values range from 0.28 to 0.71 in Table 2, from 0.27 to 0.94 in Table 3 and from 0.61 to 0.89
in Table 4. Furthermore, considering Tables 2 and 3, the results of the validation set were
not always high. Conversely, the results in Table 4 are the highest of the three tables for
all the statistical parameters. The results on the validation set are those obtained once the
model is complete, and are used to predict a set of substances never used in the steps of
model building. Thus, this value can indicate the expected performance when the model is
used for new substances.

Figure 2 demonstrates the difference between models 1, 2 and 3. Again, on visual
inspection, it is clear that the spread of values is smaller using model 3, and the values are
higher for the validation set. Furthermore, we can see 15 epochs are sufficient in our case to
reach the plateau, after which, no further significant improvement is obtained.
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Table 2. The statistical quality of model observed for the first optimal descriptor with the first version
of the Monte Carlo optimisation of the correlation weights.

Set Set Observed Classification Quality The SAR Statistics

TP TN FP FN N Sensitivity Specificity Accuracy MCC

Training A 55 62 10 10 137 0.85 0.86 0.85 0.71

P 73 51 6 11 141 0.87 0.89 0.88 0.75

C 48 45 27 25 145 0.66 0.63 0.64 0.28

Validation 46 51 26 19 142 0.71 0.66 0.68 0.37

Total set 222 209 69 65 565 0.77 0.75 0.76 0.53

Table 3. The statistical quality of model observed for the second optimal descriptor with the first
version of the Monte Carlo optimisation of the correlation weights.

Set Set Observed Classification Quality The SAR Statistics

TP TN FP FN N Sensitivity Specificity Accuracy MCC

Training A 63 70 2 2 137 0.97 0.97 0.97 0.94

P 82 54 3 2 141 0.98 0.95 0.96 0.93

C 48 44 28 25 145 0.66 0.61 0.63 0.27

Validation 44 60 17 21 142 0.68 0.78 0.73 0.46

Total set 237 228 50 50 565 0.83 0.82 0.82 0.65

Table 4. The statistical quality of model observed for the third optimal descriptor with the second
version of the Monte Carlo optimisation of the correlation weights.

Mission Set Observed Classification Quality The SAR Statistics

TP TN FP FN N Sensitivity Specificity Accuracy MCC

Training A 47 63 9 18 137 0.72 0.88 0.80 0.61

P 61 52 5 23 141 0.73 0.91 0.80 0.63

C 69 68 4 4 145 0.95 0.94 0.94 0.89

Validation V 60 70 7 5 142 0.92 0.91 0.92 0.83

Total set 237 253 25 50 565 0.83 0.91 0.87 0.74
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4. Discussion

Alternative (without the use of animals) methods for testing chemicals involve an
entire arsenal of tools developed for QSAR analyses. This includes gradient machine
learning methods [26], artificial neural networks and support vector machines [27]. An
important component of the modelling of toxicity to various organs is the involvement of
the toxicokinetic ideas [28]. Nevertheless, drug-induced nephrotoxicity remains a common
problem with exposure to medications and diagnostic agents [29].

Incorporating data on drug molecular operating environment (MOE) descriptors al-
lowed the construction of highly predictive models, as characterised by values of sensitivity
of 0.87, specificity of 0.87 and MCC of 0.74.

Thus, the described approach results in a model comparable with related models in
the literature [19]. Compared to the models in the literature, the advantage of the CORAL
model is its simplicity. There is no need to calculate chemical descriptors, and all the
necessary chemical information used by the algorithm is contained within the SMILES
structure. The traditional approach calculates molecular descriptors from the chemical
structure and then applies the algorithm to build up the model. Our simplified approach,
instead, has a great advantage not only in the development phase of the model, but also
in its use. Indeed, the approach is much more direct and reproducible (Supplementary
materials, Tables S1–S3).

We will implement this model for nephrotoxicity within the VEGAHUB platform
(www.vegahub.eu, accessed on 15 March 2023), and in this way the model will be freely
and openly available. The availability of this model will help industry to screen new
substances they want to develop, anticipating possible critical effects. It must be noted
that the model is suitable only if the compounds fall within the applicability domain of the
model. This is the usual limitation of any in silico model, since the model learns from the
available experimental data. Modern software tools, such as the one we have developed,
can cope with this considering the chemical structure of the substance to be evaluated. In
this particular case, the model refers to pharmaceutical substances. Since there are multiple
pharmaceutical classes, it is likely that the model does not cover all pharmaceuticals, and for
this the implementation within VEGAHUB will be useful, since in this way the applicability
domain will be measured automatically. We are also developing further models for kidney
toxicity at different levels, addressing adverse outcome pathways and the no observed
adverse effect level.

5. Conclusions

The best predictive potential was observed for model 3, which gave an accuracy of 0.87,
a specificity of 0.91 and a sensitivity of 0.83; thus, the model is quite balanced. This model
was obtained using an advanced approach, with the optimal SMILES-based descriptor
calculated with correlation weights of the APP vector and obtained with a Monte Carlo
optimisation based on the target function calculated with Equation (6), i.e., with application
of the index of ideality of correlation. Thus, (i) the suggested APP vector correlated with
the nephrotoxicity and (ii) the index of ideality of correlation as a measure of the predictive
potential of a model improves the model performance and is an effective component of the
target function for the Monte Carlo optimisation used to develop the model.

In the final analysis, we present a novel deployment of CORAL software to predict
drug-induced nephrotoxicity. Our model was optimised using previously published and
widely accessible SMILES data and is comparable to similar techniques for classifying
drugs as toxic or non-toxic. Thus, this in silico model may prove useful for predicting
nephrotoxicity for novel substances as a stand-alone method or as part of an integrated
approach at a much earlier stage of clinical development, therefore saving resources in
terms of animal models, human resources and indeed sponsor investment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxics11040293/s1, Tables S1–S3 contain technical details on the splits 1–3, respectively.

www.vegahub.eu
https://www.mdpi.com/article/10.3390/toxics11040293/s1
https://www.mdpi.com/article/10.3390/toxics11040293/s1
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Abbreviations

Abbreviation Comments
QSAR Quantitative stricture–activity relationship
DIN Drug-induced nephrotoxicity
AIN Acute interstitial nephritis
ATN Acute tubular necrosis
SMILES Simplified molecular input-line entry system
CIN Chronic interstitial nephritis
PTCT Proximal tubular cell toxicity
PTI Proximal tubular injury
RAS Renal artery stenosis
IIC Index of ideality of correlation
DCW Descriptor of correlation weights
TP True positive
TN True negative
FP False positive
FN False negative
MCC Matthews correlation coefficient
A Active training set
P Passive training set
C Calibration set
V Validation set
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