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Executive Summary 

The increased concentrations of Greenhouse Gases (GHG) in particular carbon dioxide (CO2) 

in the atmosphere, and their impact on climate change is the most crucial issue of the world 

today.   To address that global concern, there is a pressing need to intensify actions required to 

reduce CO2 emissions and decarbonise the energy sector. It is perceived that CO2 capture and 

storage (CCS) in subsurface formations such as oil and gas reservoirs is an effective means to 

meet net-zero emission targets.  

In the last decades, remarkable and rapid breakthroughs have been made in shale gas 

exploitation as a result of the current advancements in multi-stage hydraulic fracturing and 

horizontal wells. Despite that, shale reservoirs have relatively low recovery factor (RF) where 

only up to 30% of the original gas in place (OGIP) could be produced economically. To 

maximise shale RF, releasing shale adsorbed gas has been considered to be a promising method. 

The great affinity of CO2 over Methane (CH4) to be adsorbed on the surface of shale organic 

material has produced a conspicuous potential to unlock the adsorbed CH4. Thus, CO2 enhanced 

gas recovery (CO2-EGR) in shales is taking on an active role in CO2 subsurface storage and 

enhanced shale productivity.  

Although the expected outstanding outcomes, CO2-EGR has not been commercialised nor 

applied in a field-scale yet. In literature, CO2-EGR has been extensively demonstrated through 

accomplished experimental investigations and numerical reservoir studies. Despite that, there 

has been a general lack in research concerning the factors influencing the efficiency. As a result, 

there is no clear screen tool has been yet presented to identify shale properties that yield the 

maximum amounts of enhanced CH4 and sequestrated CO2. From another perspective, 

numerical simulation of shale performance during CO2 injection has evolved recently to 

consider more petrophysical mechanisms such as diffusion and muti-porosity and permeability 

models. However, the industry is still in need not only for a practical modelling framework, but 

also for more accurate modelling approaches. Therefore, constraining the uncertainties 

associated with the factors influencing CO2-CH4 displacement, and presenting a more effective 

and reliable prediction approach of the process are highly recommended.  

To address the above-mentioned aspects, this thesis first aims to enhance the current 

understating of adsorbed gas behaviour, and to constrain the uncertainties around adsorbed gas 

contribution to shale production in respect to reservoir depth and total organic content (TOC).  
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Secondly, this work seeks to present a comprehensive analysis on shale properties and 

engineering parameters that have the most influential effect on CO2-CH4 displacement. The 

results of this analysis provide the industry with a screening tool to delineate a practical 

framework of CO2-EGR and its application on a field-scale. Additionally, due to the complexity 

of shale gas behaviour upon CO2 injection and the intrinsic challenges in predicting CO2-EGR, 

the third part of this work is to develop a more effective and accurate predictive model. 

Basically, our model aims to employ the advancements of the artificial intelligence (AI) 

applications to accurately predict the efficiency of CO2-EGR. This new proposed approach of 

prediction enables the industry to preliminary evaluate the efficiency of CO2-EGR in an 

accurate and cost-effective way. 

To achieve these objectives, a hybrid approach of numerical reservoir simulation, statistical 

analysis, and machine learning (ML) was adopted for this work. For the first objective, a 

reservoir simulation sensitivity study was carried out to collectively examine the impact of 

reservoir depth (pressure) and TOC on desorption behaviour. The model was generated and 

validated using the realistic data for Barnett shale reservoir. Moreover, our model incorporated 

a multi-porosity and multi-permeability model, hydraulic fractures, diffusion model, and local 

grid refinements for more precise capture of free and adsorbed gas behavior. To achieve the 

second and third objectives, the available datasets regarding shale properties and engineering 

parameters, and the amounts of enhanced production and stored CO2 in shale gas were collected 

from the public domain. These data were then further analysed using a correlation analysis 

approach to identify the direction and magnitude of the correlation between the examined shale 

properties and engineering design parameters and the efficiency of CO2-EGR.   Hence the 

results obtained from our correlation analysis provided more demonstration necessary to 

manage and predict the efficiency of CO2-EGR, these results were integrated to machine ML 

methods to develop a supervised ML-based predictive model. To predict CO2-CH4 

displacement in high precision, supervised ML method was employed to train and validate both 

Linear Regression and Artificial Neural Networks (ANNs) models. Afterwards, the predicted 

performance of training and validation was evaluated using the coefficient of determination 

(R2) to assess the accuracy in predicting the enhanced CH4 due to CO2 injection.   

The obtained results from the simulation sensitivity study demonstrate that TOC is a major 

influencing parameter on adsorbed gas production in particular for shallow shale reservoirs. On 

the other hand, reservoir depth is found to have a negative effect of adsorbed gas contribution 

to shale production as adsorbed gas production decreases with increasing reservoir depth. 
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Together, our results indicate that adsorbed gas plays a key role in high TOC and shallow shale 

reservoirs. These findings further suggest that injecting CO2 into deep shale reservoirs does not 

seem to be a viable option in particular with low TOC. This hypothesis is further supported by 

our statistical analysis results which reveal that shallow shale reservoirs with high fractures 

permeability, TOC, and CO2-CH4 preferential adsorption capacity are favourable targets for 

CO2-EGR. Furthermore, our results indicate that a successful hydraulic-fractures network with 

effective values of fractures permeability and conductivity is essential for a higher CO2-EGR 

efficiency. Moving on to developing the ML predictive model, we based our criteria for features 

selection upon the above-mentioned results of correlation to adopt the best predictors for CO2-

EGR efficiency. In this work, supervised machine learning techniques are used to develop, 

train, validate, and compare the prediction performance of linear regression and ANNs model. 

The result of comparison shows that ANNs of 100 gives the best predictive performance with 

R2 of 0.78 compared to the linear regression model with R2 of 0.68. Although preliminary, our 

developed Machine Learning (ML) model is expected to provide the industry with a practical, 

reliable, and cost-effective tool which can accurately predict the incremental enhanced CH4 by 

CO2 injection in shale gas reservoirs. 

This work presents a significant contribution to the energy transition to the net-zero target of 

CO2 emissions by demonstrating important insights into the application of CO2-EGR. 

Moreover, our results offer some important insights into the selection criteria on the physical 

properties and engineering parameters to yield maximum efficiency of CO2-EGR process. This 

work also presents for the first time a ML-based model which can accurately predict the 

incremental enhanced CH4 by CO2 injection in shale gas reservoirs. 
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Chapter 1. Introduction  

1.1 Background 

Natural gas has become a significant contributor to the energy market and currently plays an 

important role in the energy transition to the clean energy. The global energy demand for 

natural gas has been continuously growing over the past two decades. Since 2020, the global 

economy has dramatically changed due to the impact of Covid-19 pandemic together with 

geopolitical instability. Nevertheless, the energy demand increased in 2021 by 4%, and it is 

projected to continue growing further by 1.3% per year up to 2030.  

Moreover, the global increase in natural gas demand by 2030 is projected to reach  up to 15% 

according to IEA [1]. In response to this accelerated trend, the reserves from conventional gas 

reservoirs are declining and are seen to be unable to effectively meet the emerging markets 

consumption. Consequently, due to the huge discovered reserves and clean burning, shale gas 

reservoirs have become increasingly important as a major alternative resource of natural gas 

supply before new energy backs up in future [2]. 

The development of shale gas resources has recently made a series of breakthroughs 

worldwide. With the fast-growing technologies of hydraulic fracturing and multi-stage 

horizontal drilling,  many countries have widely commercialised production from shale gas 

resources [3]. Based on support of the current stated policies of net-zero emissions, natural gas 

production from shale reservoirs is expected to be 1013 (bcm) in 2030 and to increase further 

by 2050 to 1136 (bcm)[1]. China has the largest recoverable shale gas reserves in the world 

which accounted for 115 (tcf) in 2015 [4].  Gas production from shale and tight formations is 

expected to account for two-thirds of the total gas production in the United States (U.S.) in 

2040 [5]. Along with large-scale shale development in U.S. and China, Canada, China, and 

Argentina are currently the top leading counties in commercialisation of shale gas production 

[6].  

1.1  Shale Gas Production 

Shale sediments have a complex geological and petrophysical system characterized by 

extremely low porosity and permeability and high total organic content (TOC) [7]. Shale 

formation is considered an unconventional resource as it is both a reservoir and source rock 

[8]. A typical shale pores system consists of two distinct types, fractures, and matrix pores. 
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Recently, typical 2-D and 3-D high resolution imaging have shown that large and inter-

connected organic matter pockets are dispersed within the shale matrix [9]. Shales store gas as 

free gas in fractures and matrix pores, with adsorbed gas on the surface on the organic materials, 

and dissolved gas in reservoir fluids [9, 10]. Consequently, thermally matured shales with high 

TOC are promising prolific reservoirs for gas production since they hold a considerable amount 

of adsorbed gas [11]. The adsorbed gas is the key component from shale gas recovery as it 

accounts for up to 85% of the total gas content[12]. Despite that, due to the extremely low-

permeability nature, shale gas reservoirs typically show a very low recovery factor (up to 30%) 

compared with the conventional reservoirs [13]. In typical primary production of shales, gas 

production dramatically declines after a high initial rate. This early stage production is short-

term and is mainly dominated by free gas flow within natural and induced fractures. As gas 

production decreases and reservoir pressure declines with time, the adsorbed gas presents as 

free gas in the shale matrix as a result of desorption phenomenon, hence contributing to total 

gas production.  Unlike the early stage, this later stage is a long-term production which is 

dominated by the adsorbed and free gas [14]. Hence, the later stage of shale gas production is 

the significant contributor toward total shale gas production. In other words, the pintail of shale 

gas production curve over time has attracted a great attention associated with desorption 

behaviour. This process has a huge potential to increase shale productivity and achieve more 

shale gas at commercial rates. 

Previous studies on shale gas production have paid a particular attention to adsorption and 

desorption behaviour. A few studies identified governing factors on gas desorption during shale 

gas production. Some of them focused only on the impact of hydraulic fracture parameters on 

both free and adsorbed gas [15, 16]. Additionally, several studies have attempted to examine   

the influencing reservoir parameters on shale gas production [14, 17]. However, the multi-

porosity and diffusion models have not been considered in their studies. Although further 

investigations have been conducted to consider the multi-porosity and permeability model [18, 

19], the impacts of TOC and reservoir pressure and depth have been widely investigated. Based 

on the publications, it appears that the parameters which govern the contribution of adsorbed 

gas on shale gas production remains unclear, which presents a substantial impediment on 

management and performance predictions of shale gas reservoirs. Whilst several sensitivities 

studies have been carried out in the literature to evaluate the desorption behaviour, to the best 

of our knowledge, no research has been carried out to investigate the impact of reservoir depth 

on the production of adsorbed gas considering TOC with a combination of the multi-
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permeability and diffusion models. Therefore, the roles of reservoir depth (i.e., pressure) 

coupled with TOC have been taken into account as a part of this thesis, examining the 

contribution of adsorbed gas to quantify shale gas production.  

 

1.3  Motivations of CO2 Injection in Shale Gas Reservoirs  

As mentioned above, the adsorbed gas plays a key role in shale gas production by maintaining 

the long-term production plateau. The pressure difference between the free and adsorbed gas 

is the key controller of the desorption phenomenon [20].  Given the low pressure drop due to 

the ultra-low matrix permeability nature of shales, adsorbed gas is very unlikely to desorb from 

the surface of organic matter. [7]. Furthermore, the transport of adsorbed gas is even more 

complex and takes longer time than free gas[21].  Consequently, the contribution of adsorbed 

gas can account for up to only 26% of the total gas production depending on initial reservoir 

pressure (depth), pressure draw drown, and TOC [22]. Thus, presenting effective techniques to 

unlock the adsorbed CH4 has been an increasingly important area in enhancing shale gas 

recovery.  

One of the promising techniques is the injection of Carbon Dioxide (CO2) into shale gas 

reservoirs to enhance CH4 recovery which can be referred to (CO2-EGR). The potential of 

enhanced shale gas recovery (ESGR) was first presented experimentally by Nuttal in 2005 [23]. 

In his study, he concluded that shale gas reservoirs can behave very similarly to coal bed 

methane, CBM, where CO2 molecules preferentially adsorb to the surface of shale organic 

materials over CH4 at a ratio of 5:1. As a result of this remarkable finding, shale gas reservoirs 

have become potential targets not only for  enhanced gas recovery, but also for long-term 

geological CO2 sequestration to mitigate the adverse effect of anthropogenic CO2 emissions 

which are strongly related to the global concern of climate change [24, 25].  Further studies 

have proven that the injected CO2 into shale matrix could be permanently sequestrated with a 

potential of additional CH4 recovery up to 59%  [7, 10, 26-34]. 

1.3.1. CO2 Sequestration  

CO2 emission generates a global public concern as being the direct cause of global climate 

change [35]. Since the industrial revolution, the emissions of Greenhouse Gases (GHG) in 

particular CO2 have been increasing as a result of the extensive consumption of fossil fuels  to 

meet the global energy demand as shown in Figure 1.1 [36]. For this reason, global agreements 
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have been made and net-zero emissions policies have been stated to intensify actions needed 

to mitigate the emissions of CO2 [37]. To solve this problem, several approaches have been 

proposed. CO2 geological sequestration is one of the most practical approaches that has been 

proposed for CO2 long-term storage [38, 39].   

The geological sequestration is a permanent storage solution in which CO2 is injected into deep 

geologic formations such as Depleted oil and gas reservoirs, CBM, and deep saline formations 

have the potential to store CO2 permanently [39, 40].  

 

[41] 

Figure 1. 1 Global energy-related CO2 emissions (1990-2021) [41] 

 

Despite the reduction gained in 2019 and 2020 due to COVID-19 outbreak, according to IEA 

[1], CO2 emissions increased in 2021 and are projected to further increase due the expected 

increased energy demand as a result of global economic recovery after the COVID-19 

pandemic. Obviously, this highlights the need for accelerating implementations of carbon 

capture and storage (CCS) projects. As previously mentioned, the great affinity of CO2 to be 

adsorbed on the surface on shale organic materials more than CH4, presents an encouraging 

prospect for CO2 injection due its dual benefit for CO2 sequestration and improved shale gas 

recovery[42].  
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In the process of injecting CO2 into shale reservoirs, identifying driving factors of the 

subsurface geochemical and geophysical process is the critical role to minimize the potential 

of CO2 breakthrough and to minimise the costs [43]. The published work on evaluating the 

efficiency of CO2-EGR has been mostly restricted to limited sensitivity studies. These studies 

tended to examine the effect of influencing parameters on EGR and/or CO2 sequestration in a 

separate approach of investigation. The key challenging issue is that some parameters have a 

profound dual-effect on the effectiveness of the process. For example, enhanced CH4 

production decreases with increasing the well spacing, while the amount of stored CO2 

increases as a limited amount of CO2 is less likely to migrate to the zone of CH4 producers due 

to the ultra-low matrix permeability of shale matrix. Similarly, although injection CO2 at a high 

injection rate increases the total enhanced CH4, to some extent, it increases the mechanical 

mixing of CO2-CH4 which results in  an early CO2 breakthrough [24]. Therefore, a correlation 

analysis must be carried out to investigate the controlling factors of CO2 sequestration more 

broadly taking into consideration their effect on the enhanced CH4. By employing correlation 

analysis approach, the direction and the strength of the relationship between the examined 

parameters and both CO2 sequestration and EGR need to be identified. 

1.3.2. Enhanced Shale Gas Recovery by CO2 Injection  

In the process of CO2-EGR, the main mechanism of EGR and CO2 storage is CH4 desorption 

which is mainly driven by CO2 competitive adsorption. Whilst shale reservoirs present a 

complexity in mechanisms by which free and adsorbed gas are stored and transmitted, more 

key challenges arise with CO2 injection into shale matrix.  Upon injection, a competitive 

adsorption phenomenon takes place where CO2 molecules start to release the adsorbed CH4 

from the organic surface. Consequently, the desorbed CH4 transports towards fractures and 

producers [33]. In addition to competitive adsorption, the injected stream of CO2 initiates a 

counter-diffusive process in shale matrix between CH4 and CO2 molecules. With considering 

the multi-porosity system of organic, inorganic, and fractures pores, gas flow process can be 

represented as shown in Table.1.1 [44]. 

Table 1. 1 A summary of gas transport mechanisms during the process of CO2-EGR 

Pores system Transport mechanism Transported gas 

Fractures Convective and dispersive Injected CO2, free, and desorbed gas  

Inorganic pores Convective-diffusive Free gas 
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Organic Pores Surface diffusion  Free and desorbed gas 

 

Even though, EGR- CO2 injection has not been commercialised yet, a considerable amount of 

laboratory tests and simulation studies have been carried out on the feasibility of the technique 

and to examine the driving factors of the process efficiency. CO2-EGR is a complex 

geophysical process as the efficiency of the process  displacement is governed by shale 

properties (such as TOC, matrix permeability, and adsorption capacities) and engineering 

design parameters (such as injection pressure and well spacing) [45] [46]. Given the above-

mentioned complexity in predicting gas transport, the previous research extensively 

investigated these factors to constrain the intrinsic uncertainties of the modelling of CO2-EGR 

process[26, 27, 47-52].  

An in-depth review of scientific literature on CO2-EGR (discussed in detail in Chapter.2), 

shows that there are still uncertainties presenting a substantial impediment in determining the 

main factors that control CO2 sequestration and enhanced CH4 recovery in shale reservoirs. In 

addition, no quantitative framework and accurate CO2-EGR modelling, and design process has 

been developed. 

 The knowledge gap mentioned above may be attributed to the following reasons: 

1. The complexity of storage and transport mechanisms coupled with the heterogeneity 

nature of shale formations are presenting challenges when modelling and predicting 

CO2-EGR in lithology, TOC, pore size, texture, and petrophysical properties [53]. 

2. Most researchers to date have tended to conduct sensitivity analysis to investigate the 

effect of a few parameters individually rather than treating the controlling parameters 

collectively in much detail. 

3. The lack of field-scale test observations. 

Therefore, there is a need to bridge this gap and thus provide a comprehensive understanding 

on the correlation between shale properties as well as engineering parameters and the efficiency 

of CO2-EGR. The outcome of this analysis helps the industry with conceptual understanding 

whilst designing and implementing CO2-EGR in shale gas reservoirs. 

Numerical reservoir simulation techniques are widely accepted as indispensable tools for 

realistic prediction and evaluation of reservoir performance [22]. Reservoir simulation 

techniques have been providing the industry a preliminary stage of CO2-EGR efficiency 
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evaluation on a field-scale. In literature, a considerable volume of numerical simulation studies 

has presented the applicability of CO2-EGR on a wide range of investigations. For example, 

examined the applicability of the process to several shale types such as Barnett shales [7, 31, 

54] and Devonian shales [10, 32].  Furthermore, few studies have been made to evaluate the 

performance of huff-and-puff injection [7, 10, 28, 32, 55] while great attention was paid to 

flooding injection scenario such as studies done by [30, 33, 56, 57]. From previous numerical 

modelling, some of previous studies have employed multi-porosity and permeability model 

[28, 32]. In recent simulation work, the multi-component effect of gas transport and adsorption 

has been taken into consideration [44, 54].  Nevertheless, challenges arise when simulating 

CO2 /CH4 displacement within the complex pores system of shales and quantifying the 

efficiency enhanced CH4 recovery and CO2 sequestrated.   

It is widely accepted that numerical modelling of shale reservoirs has presented unique 

challenges not only due to the heterogeneity nature of shale petrophysical properties , but also 

due to the complex storage and transport mechanisms of free and adsorbed gas [53, 58]. For 

these reasons, more difficulties and challenges arise in modelling CO2-EGR process in shale 

reservoirs. Considering both the cost of field injection tests and many uncertainties in the 

numerical simulation process, the conventional energy industry therefore requires a new 

developed tool/approach to evaluate the potential of applying CO2 injection to shale gas 

reservoirs. The motivation behind this approach is to present a reliable and cost-effective tool 

to manage and predict the incremental enhanced CH4 by CO2 injection in shale gas reservoirs. 

 

1.4 Research Objectives 

The major objectives of this thesis are to clarify several aspects of adsorbed gas contribution 

to total shale production and thus provides practical screening tools to evaluate, manage and 

predict the efficiency of enhanced gas recovery and CO2 sequestrations in shale gas reservoirs. 

In addition, the objectives of this work mainly are to obtain results and develop tools which 

will help address and remedy the research gaps in the area of CO2-EGR that previously 

mentioned in sections 1.2, 1.3.1, and 1.3.2 in the Introduction chapter. Furthermore, this study 

aims to offer significant contributions to reaching the target of net-zero CO2 emissions for 

energy transitions.    

Three major objectives of this thesis are listed as follows 
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Objective#1 – Investigate the effect of reservoir pressure and total organic content (TOC) on 

adsorbed gas production 

Objective#2 - Identify the correlation between shale properties / engineering parameters and 

the efficiency of CO2-EGR 

Objective#3 - Develop a reliable and cost-effective tool to accurately predict the incremental 

enhanced CH4  

To achieve our research objectives, the methodological approach taken in this study is a 

combination of numerical reservoir simulation, statistical analysis, and machine learning 

modelling. This will be discussed in detail in chapter 3. 

 

1.5 Thesis Organisation  

The overall structure of the thesis takes the form of seven chapters including the Introductory 

Chapter. The layout of the thesis can be seen as below. 

Chapter 1 – Introduction and Background – This chapter provides a high-level research 

introduction and background to shale gas production and CO2-EGR technique in shale gas 

reservoirs. 

Chapter 2 – Literature Review This chapter gives a comprehensive literature review of 

previous research studies that have been carried out to investigate adsorbed gas production and 

contribution, as well as the feasibility and the controlling factors of enhanced shale gas 

recovery by CO2 injection. 

Chapter 3 – Research Objectives and Methodologies – This chapter gives a brief overview 

of our work objectives and methodologies.  

Chapter 4 – Effect of Reservoir Pressure and Total Organic Content on Adsorbed Gas 

Production in Shale Reservoirs: A Numerical Modelling Study – This chapter presents and 

discusses the results of a detailed numerical simulation study performed to examine the effect 

of reservoir depth and TOC on the contribution of adsorbed gas to shale gas production. 

Chapter 5 – Statistical Analysis of Controlling Factors on Enhanced Gas Recovery by 

CO2 Injection in Shale Gas Reservoirs – In this chapter, the results of a correlation analysis 
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carried out to identify the strength of the relationship between shale properties and engineering 

design parameters, and the efficiency of CO2-EGR with a detailed discussion of the findings. 

Chapter 6 – Application of Supervised Machine Learning to Predict the Enhanced Gas 

Recovery by CO2 Injection in Shale Gas Reservoirs –This chapter presents and assess 

application of a developed Supervised Machine Learning (ML) based model to preliminary 

evaluate CO2-EGR efficiency. It also presents and evaluates the performance of the proposed 

model.  

Chapter 7 – Conclusion and Recommendations – This final chapter draws upon the entire 

thesis, giving a summary of our results, implications, and recommendations for the future work.  
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Chapter 2. Literature Review 

2.1 Introduction 

Over the past two decades, published studies have shown an increased interest in the promising 

technique of CO2-EGR to achieve enhanced CH4 productivity and CO2 sequestration. More 

recently, the dual benefits of CO2-EGR, the growing demand for natural gas, and the increased 

concerns about climate change has made the petroleum researchers continuously working to 

constrain the uncertainty about the process and to present a framework for field-scale 

applications. Although the same conceptual application, the research on CO2 injection in shale 

reservoirs is less advanced than that for CO2 injection in CBM [59]. These previous studies 

have sought to answer the raised questions about feasibility and the applicability of CO2 

injection in shale reservoirs. More specifically, desorption mechanism in both primary 

production and during CO2 injection, the factor influencing the efficiency of the process, and 

prediction of the amounts of enhanced CH4 and sequestration CO2.   

Since the desorption phenomenon plays the key role in CO2-EGR, the desorption behavior has 

received considerable attention not only for CO2 injection purposes, but also for the primary 

production of shale reservoirs. In literature, the desorption behavior has been studied by 

experimental investigations and numerical simulation. While most of the previous 

investigations were centered on quantifying the desorbed gas production, a few studies 

examined the factors influencing the contribution of adsorbed gas to the total shale gas 

production. In contrast, investigations on the desorption performance during CO2-EGR were 

mainly concerned with the influencing factors rather than quantifying the desorbed gas 

production. In literature, sensitivity studies have been the only approach taken for these 

previous investigations to examine the impact of shale petrophysical properties and engineering 

parameters on CO2-CH4 displacement. However, numerical reservoir simulation has been 

widely used for quantifying the amounts of both enhanced CH4 and sequestrated CO2. 

Nevertheless, a wide range of modelling approaches has been presented in literature. For 

example, some studies have employed a multi-porosity and permeability model [28, 32] while 

other studies have considered a dual-porosity and permeability model [10, 57]. 

In this chapter, firstly, we present a review and identify the gap in knowledge on the work done 

concerning the adsorbed gas production in shale gas primary stage. In particular, highlight the 

previous studies that have attempted to identify the major contributing factors for adsorbed gas 
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production during the primary stage of production. Secondly and more broadly, we explore the 

studies that addressed the controlling factors of both enhanced CH4 and sequestrated CO2. 

Finally, previous attempts were made to predict the efficiency of CO2-CH4> additionally, the 

methodology taken and assumptions for each study are presented.  

 

2.2 Adsorption-Desorption Behaviour 

The adsorption and desorption phenomenon has been investigated in a growing body of 

literature. Although several studies have widely focused on adsorption behavior [60-62], few 

studies identified the factors governing desorption in shale gas production.  While some studies 

focused on the impact of engineering design factors such as well pattern, hydraulic fracture, 

and well spacing, other studies investigated the influencing reservoir parameters on adsorbed 

gas production. However, the majority of the previous studies focused on the effect of reservoir 

parameters. 

Several studies drew attention to the effect of hydraulic fractures configuration on adsorbed 

gas production in shale primary stage. In his study, [16] demonstrated that larger fractures 

possess higher pressure drop which facilitates the desorption process. Similarly, [15] concluded 

that longer and wider fractures are favorable for adsorbed gas production. A recent study by 

[63] presented the impact of well configuration, he stated that the desorption becomes minor 

with vertical wells if compared to horizontal well production.  The effect of network fracture 

conductivity was presented by [64], the reduction in fracture conductivity reduces the 

cumulative production of both free and adsorbed gas. Although this work presented interesting 

findings, the work neglected the diffusion of desorbed gas to primary shale matrix and and/or 

the induced fractures.  

Other studies investigated the effect of shale reservoir parameters on both free and adsorbed 

gas production. For example, as noted by [15, 65, 66], shale matrix permeability was found to 

have a significant impact on adsorbed gas production as higher matrix permeability results in 

releasing more adsorbed gas towards shale matrix. Moreover, [67]in his analysis he reported 

that higher the production of adsorbed gas tends to decrease with increasing the adsorption 

layers thickness. [15] concluded that high Langmuir volume and pressure lead to more 

production from adsorbed gas. However, the multi-porosity and diffusion models have not been 

considered in their studies. Obviously, neglecting the multi porosity and permeability effect of 

shales may lead to inaccurate capturing of desorbed gas transient within shale matrix. Another 
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study by [14] pointed out that longer and sustainable production promotes the production from 

the adsorbed gas. [17, 68] concluded very similar findings as their study highlighted the 

insignificant contribution of adsorbed gas at an early stage of production.  Whilst further 

investigations considered the multi-porosity and permeability models such as [18, 19], the 

impact of TOC and reservoir pressure were not studied. 

2.3 Factors Controlling the Efficiency of CO2-EGR  

Even though CO2-EGR injection has not been commercialised yet, a considerable amount of 

laboratory tests and simulation studies and experimental investigations have been carried out 

on the feasibility of the technique. The concept of CO2 injection was first extended to shale gas 

reservoirs by [23]. His experimental study has demonstrated that shales can react very similarly 

to coal-bed methane where organic matter CO2 is preferentially adsorbed on organic surface 

over CH4 at a ratio of 5:1. These remarkable observations have drawn attention to shales as 

potential geological traps for CO2 permanent sequestration and EGR.  Therefore, many 

numerical simulation and experimental investigations have been conducted to investigate CO2 

storage capacity and prove the viability of enhanced gas production from different shale 

reservoirs. In literature, shale reservoirs have been proven to be promising targets for EGR- 

CO2 [31, 33, 44, 54]. 

Investigating reservoir parameters which govern the applicability of CO2-EGR has been 

extensively undertaken in literature. According to several studies, natural and induced fractures 

permeabilities are the key influencing parameters on the efficiency of EGR and CO2 

sequestration, where a higher fractures permeabilities results in high enhanced gas recovery 

and CO2 thus likely to sequester [20, 34, 69, 70]. Additionally,  matrix permeability has been 

recognised as the most significant factor in many studies [7]. In contrast to those findings,  [26] 

demonstrated that EGR efficiency correlates negatively with  matrix permeability due to higher 

pore fractal dimension. [20] demonstrated that reservoir pressure plays the key role in the 

process where low reservoir pressure facilitates CH4 displacement by injected CO2.  In addition 

to reservoir pressure effect, the TOC has been found as a significant parameter on CO2 storage 

[26, 32]. Later in 2014, [55] pointed out the significance of matrix porosity on the incremental 

recovery.   

A considerable amount of literature has investigated the effect of engineering design 

parameters on CO2-EGR. The injection pressure has been investigated. [31] highlighted that, 

despite the positive correlation between injection pressure and enhanced gas recovery, early 
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severe breakthrough of CO2 is very likely to occur. Conversely, [71] reported no significant 

effect of increasing CO2 injection rates on shale gas recovery. This view was supported by [72] 

in his numerical simulation study. In another investigation, the correlation between the 

production time and enhanced recovery has been addressed.  [28] demonstrated that production 

time and pressure significantly affect CO2 sequestration and shale gas recovery. On the other 

hand, [10] performed a comprehensive simulation work investigating a series of injection 

scenarios of CO2 flooding (continuous injection) and huff and puff (injection-soaking cycle). 

Their simulation results showed that CO2 flooding into shale reservoirs showed a significant 

increase in recovery with about 50% of injected stream being sequestrated. In terms of well 

configuration, [33] reported in his study that 7% incremental recovery could be achieved at 

optimal wells pattern.  

 

2.4 CO2–EGR Efficiency Prediction 

The efficiency of CO2-EGR is represented by two main parameters. First, incremental RF 

which represents the amount and the additional CH4 production due to CO2 injection. Second, 

sequestrated CO2 which represents the amount of adsorbed CO2.Since CO2-EGR has been only 

tested once on a small field-scale, research on that subject has been mostly restricted to 

numerical simulation. Obviously, numerical reservoir simulation techniques are widely 

accepted as indispensable tools for realistic prediction and evaluation of reservoir performance 

[22].Therefore, reservoir simulation studies have offered a preliminary stage of CO2-EGR 

efficiency evaluation on a field-scale. Thus, there has been a large volume of simulation studies 

investigating the applicability of CO2-EGR to several shale types and the effectiveness of 

different injection scenarios. 

In literature, the previous studies were conducted using various modelling techniques and 

approaches. For example, some previous studies employed multi-porosity and permeability 

model to accurately simulate gas transport mechanisms within shale organic, inorganic, and 

fractures [28, 32], while other studies considered single and dual-porosity and permeability 

models [10, 31, 32, 57]. In recent simulation work, the multi-component effect of gas transport 

and adsorption was taken into consideration [44, 54].  Most recently, the effect of multi 

components was considered in many simulation studies [30, 44, 54, 73]. In his simulator, [73] 

considered pressure-dependent permeability associated with CO2 injection into shale 

reservoirs.  Along with modelling approaches, simulation models under different injection 
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scenarios were also considered. In literature, few studies have been made to evaluate the 

performance of huff-and-puff injection [7, 10, 28, 32, 55], while great attention was paid to 

flooding injection scenario such as studies done by [30, 33, 56, 57]. 

Since their revolution, machine learning applications have been broadly applied to various 

domains such as medical applications, biochemical,  natural language processing, finance, and 

social media services [74]. Commonly, the processed datasets associated with the oil and gas 

industry are huge, complex in terms of correlation [75] . Thus, the applications of machine 

learning have also been extended to several areas in the oil and gas industry [76]. Recently, 

ML algorithms have been widely used to enhance and resolve several reservoir engineering 

aspects such as permeability prediction [77, 78]. Additionally, ML-based models have been 

created and employed for production estimation and optimization in several studies presented 

in literature [79, 80]. Furthermore, supervised machine learning models have demonstrated 

potential solution for several issues in the industry, for example the ML model presented by 

[81] for early fault prediction of centrifugal pump in the process engineering, and the ML based 

approach to monitor CO2 geological sequestration and simulate CO2 leakage [40].  

Due to the complexity associated with shale gas modelling, ML applications have been also 

employed to help with shale gas production monitoring, and prediction [82]. In 2020, [79] 

presented a ML based predictive model to estimate the productivity of shale gas wells. Very 

similarly, [83]  integrated ANNs based model with decline curve analysis to predict shale gas 

production curve. More recent studies introduced solutions for shale gas production 

optimization such as [84-87]. Methane adsorption capacity in shale gas was also studied, [88, 

89] developed a supervised machine learning model to predict CH4 adsorption in shale gas.  

Despite this, only a few studies concerned with the application of ML study the performance 

of CO2 injection into shale gas reservoirs.  As an example, ML-based approach was employed 

by [90] to simulate CO2-CH4 displacement to predict CO2 adsorption in fractured shale 

reservoirs. However, his ML model was incorporated with numerical simulation, and it was 

only utilized to expand the computational limits. Very similarly, [50] developed a Support 

Vector Machine (LSSVM) model which is able to estimate the adsorption capacities of both 

CO2 and CH4 in shale reservoirs. In another study, [91] investigated the factors controlling CO2 

sequestration in shale reservoirs using machine learning applications coupled with data analysis 

approaches. However, no previous study employed ML application to develop a predictive 

model to quantify the amount of enhanced CH4 production in shale gas due to CO2 injection.   
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2.5 Knowledge Gaps 

2.5.1. The Effect of Reservoir Pressure and TOC on The Contribution of Adsorbed Gas 

Production. 

Although several sensitivity studies have been carried out in the literature to investigate 

adsorbed gas production, few research works have been conducted to identify the controlling 

parameters on the contribution of adsorbed gas to shale gas production. From the above review 

in section 3.2, this lack in knowledge may be attributed to two main reasons: 

• The modelling approaches used. Most previous numerical studies tended to employ 

conventional single or dual porosity and permeability models which resulted in inaccurate 

capture of the gas transit between shale matrix and fractures. Moreover, the diffusion 

model was not considered in much of the previous work. Since the desorbed and free gas 

are subjected to diffusion transport mechanisms within organic and inorganic shale matrix, 

it becomes essential to consider the diffusion model in shale gas prediction for accurate 

simulation of shale gas production performance. 

• The factors investigated. Whilst extensive research has been carried out on the 

controlling factors of shale gas production, there is a very little understanding on how the 

reservoir depth (pressure) affects the contribution of adsorbed gas on shale gas production. 

Additionally, although TOC is one of the main characteristics of shale reservoirs and plays 

an important role in adsorbed gas storage, the effect of TOC coupled with reservoir depth 

has not been reported in literature.  

From the foregoing, desorption behavior has not been completely elucidated, presenting a 

substantial impediment in the efficient management and performance predictions of shale gas 

reservoirs. Consequently, the uncertainty of adsorbed gas production has extended to CO2-

EGR where the adsorbed gas plays the key role of the process.  Therefore, there is a pressing 

need to constrain the uncertainty around desorption behavior and to present a better 

understanding of the factors controlling adsorbed gas during shale gas primary production. To 

the best of our knowledge, few works have been carried out with consideration of the multi-

permeability and diffusion models to investigate the impact of reservoir depth on the 

production of adsorbed gas considering TOC. Therefore, in this work, we employ multi-

porosity and multi permeability model incorporating diffusion model along with Langmuir 

isotherms and instant sorption models to quantify the contribution of adsorbed gas to total gas 

production. with respect to reservoir depth and TOC. The sensitivity analysis aims to provide 
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a greater understanding of transient and desorption behavior with respect to reservoir depth and 

TOC. 

2.5.2. Factors Controlling the Efficiency of CO2-EGR 

In the review of work done on studying CO2-EGR, the factors influencing the amounts of 

sequestrated CO2 and enhanced CH4 have been extensively investigated by numerical 

simulation studies and experimental investigations. Nevertheless, no quantitative framework 

and accurate CO2-EGR modelling, and design process has been identified in literature. Thus, 

there are still uncertainties in determining the main factors that control CO2 sequestration and 

enhanced CH4 recovery in shale reservoirs. In the light of the literature review in section 3.3, 

three discrete reasons may account for this knowledge gap: 

• The complexity of shale gas reservoirs. Shale reservoirs are widely characterized as 

heterogeneous formations in lithology, TOC, pore size, texture, and petrophysical 

properties [60]. Consequently, a complexity is presented whilst modelling and predicting 

shale gas performance. Furthermore, injecting CO2 into shale matrix even presents more 

complexity in terms of predicting the behavior of CO2-CH4 displacement behavior.  

• The approaches of previous studies. Most researchers to date have tended to conduct 

sensitivity analysis to investigate the effect of a few parameters individually rather than 

treating the controlling parameters collectively in much detail.  

Overall, this gap highlights the need for a new approach of investigation that presents a better 

understanding of the key factors controlling CO2-CH4.  With regard to the sensitivity methods, 

previous studies were carried out by using a sensitivity analysis approach which does not take 

into account the magnitude of relationship between independent and dependent variables 

collectively. As a sequence, this indicates a need to employ the correlation analysis methods to 

study the effect of the parameters more broadly and effectively.  Thus, this work provides a 

comprehensive investigation on the correlation between shale properties as well as engineering 

parameters and the efficiency of CO2-EGR. Our correlation analysis yields a direction and a 

magnitude of correlation which helps to conceptual understanding when designing and 

implementing CO2-EGR in shale reservoirs. 

2.5.3. Prediction of CO2-EGR Efficiency  

As previously discussed, numerical reservoir simulation techniques have been widely used to 

predict the amount of enhanced CH4 in shale reservoirs due to CO2 injection.  Nevertheless, 
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challenges arise when employing the conventional simulating methods to predict CO2 /CH4 

displacement within the complex pores system of shales. Moreover, the lack of a clear 

identification of the predictors (i.e., the features that have the most impact on enhanced CH4) 

adds even more challenges in quantifying the efficiency of CO2-EGR. Furthermore, with the 

high cost of field testing if compared to simulation costs, the petroleum industry therefore 

requires a cost-effective tool/approach to evaluate the potential of applying CO2 injection to 

shale reservoirs.  

Apart from the conventional simulation studies, no studies in literature have taken the 

advantages of ML applications to develop a new innovative model that enables the industry to 

predict the enhanced recovered CH4. ML models can predict preliminary and focused values 

based on input features or predictors. Additionally, the accuracy of prediction from supervised 

ML models can challenge the current uncertainties in the conventional numerical simulation 

methods. Despite this, the review presented in section 3.4 concludes that the previous studies 

that have utilized the ML application to study CO2-EGR, have been concerned only with the 

adsorption capacities prediction. Although the availability of  data in literature that presents a 

wide range of input and output variables, data-driven approaches have not been considered for 

CO2-EGR efficiency prediction. For these reasons, more difficulties and challenges arise in 

modelling CO2-EGR process in shale reservoirs. Thus, this work provides a solution by the 

effective utilization of data available in literature to develop a Supervised Machine Learning 

(ML) based model to preliminary evaluate CO2-EGR efficiency. 
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Chapter 3. Research Framework and Methodologies 

3.1 Research Framework 

Since the adsorbed gas plays a key role in shale gas primary production as well as in CO2-EGR, 

the first purpose of this study is to examine the effect of reservoir pressure (depth) and TOC 

on adsorbed gas production and test the hypothesis that shallow shale gas reservoirs are more 

adsorbed gas producer, hence favorable targets for CO2-EGR. Therefore, the second objective 

is to set out to prove this tested hypothesis and to determine what shale properties and 

engineering parameters affect both enhanced CH4 and CO2 sequestration. Thirdly, the strength 

of the relationship between the examined parameters and the efficiency of CO2-EGR are 

employed to adapt the best predictors (features) to develop a machine learning (ML) model 

which can predict the incremental enhanced CH4 by CO2 injection in shale gas reservoirs. To 

achieve our research objectives, the methodological approach taken in this study is a 

combination of numerical reservoir simulation, statistical analysis, and machine learning 

modelling. Figure 3.1 summarizes the research framework and methodologies.  
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Figure 3. 1 A summary of the research framework and methodology approach taken for each 

objective 

 

3.2 Research Methodologies 

The research methodologies and the adopted methodologies can be described as follows:  

1. Whilst several sensitivities studies have been carried out in the literature to evaluate the 

desorption behavior, to the best of our knowledge, few research work has considered the 

multi-permeability and diffusion models to investigate the impact of reservoir depth on the 

production of adsorbed gas considering TOC. Therefore, there is a pressing need to 

combine all these models to examine the impact of reservoir depth (i.e., pressure) coupled 

with TOC on adsorbed gas production performance in shale gas reservoirs. To achieve this 

objective, we employed a multi-porosity and multi permeability model incorporating 

Langmuir isotherms and instant sorption option to quantify the contribution of adsorbed 

gas to total gas production. The model was calibrated using core data analysis from 

literature for Barnett shales. Then, sensitivity analysis was performed on a range of 

reservoir depth and TOC to quantify and investigate the contribution of adsorbed gas to 

total gas production with respect to reservoir depth and TOC. 

 

2. The efficiency of CO2-EGR is mainly dominated by several factors of shale properties and 

engineering design parameters. However, due to the heterogeneity of shale reservoirs and 

the complexity of modelling CO2-CH4 displacement process, there are still uncertainties in 

determining the controlling factors. Therefore, in view of the previous sensitivity analysis 

studies, quantitative framework and accurate CO2-EGR modelling together with designing 

process remains unclear. Thus, this work aims to provide a screening tool of CO2-EGR 

efficiency and to delineate a practical framework of its application at field scale. To achieve 

this objective, we performed correlation analysis to identify the strength of the relationship 

between the examined shale properties and engineering design parameters and the 

efficiency of CO2-EGR.  Data for this study was gathered across the publications that have 

examined the feasibility of CO2 sequestration with potential of enhanced gas recovery in 

shale reservoirs. For the most generalizable results, we gathered data across the available 

studies in literature on a wide subset of numerical modelling studies and experimental 
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investigations. The sensitivity of these data was further improved by handling the missing 

values using imputation approaches. The methodological approach taken in this study is 

the Spearman correlation coefficient to identify the direction and the strength of correlation 

in the dataset. 

 

3. Since enhanced shale recovery by CO2 injection technology has not been commercialised 

yet, reservoir simulation studies have offered a preliminary stage of CO2-EGR efficiency 

evaluation on a field-scale. Thus, there has been a large volume of simulation studies 

investigating the applicability of CO2-EGR to several shale types and the effectiveness of 

different injection scenarios. Nevertheless, key challenges arise when simulating and 

predicting CO2/CH4 displacement within the complex pore systems of shales. Therefore, 

the petroleum industry needs development of a cost-effective tool/approach to evaluate the 

potential of applying CO2 injection to shale reservoirs.  To achieve this objective, this work 

proposed a solution by employing Machine Learning (ML) based regression models for 

preliminary evaluation of CO2-EGR efficiency. The motivation behind our model is to 

present a reliable and cost-effective tool which can manage and accurately predict the 

incremental enhanced CH4 by CO2 injection in shale gas reservoirs. 
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Chapter 4. Effect of Reservoir Pressure and Total Organic 

Content on Adsorbed Gas Production in Shale Reservoirs: A 

Numerical Modelling Study 

 

4.1 Abstract 

Adsorbed gas plays a key role in organic-rich shale gas production due to its potential to 

contribute up to 60% of the total gas production. The amount of gas potentially adsorbed on 

organic-rich shale is controlled by thermal maturity, total organic content (TOC), and reservoir 

pressure.  While those factors have been extensively studied in literature, the factors governing 

desorption behavior have not been elucidated, presenting a substantial impediment in managing 

and predicting the performance of shale gas reservoirs. Therefore, in this paper, a simulation 

study was carried out to examine the effect of reservoir depth and TOC on the contribution of 

adsorbed gas to shale gas production.  

The multi-porosity and multi-permeability model, hydraulic fractures, and local grid 

refinements were incorporated in the numerical modelling to simulate gas storage and transient 

behavior within matrix and fracture regions. The model was then calibrated using core data 

analysis from literature for Barnett shales. Sensitivity analysis was performed on a range of 

reservoir depth and TOC to quantify and investigate the contribution of adsorbed gas to total 

gas production. 

The simulation results show the contribution of adsorbed gas to shale gas production decreases 

with increasing reservoir depth regardless of TOC. In contrast, the contribution increases with 

increasing TOC. However, the impact of TOC on the contribution of adsorbed gas production 

becomes minor with increasing reservoir depth (pressure). Moreover, the results suggest that 

adsorbed gas may contribute up to 26% of the total gas production in shallow (below 4,000 

feet) shale plays. 

These study findings highlight the importance of Langmuir isothermal behavior in shallow 

shale plays and enhance understanding of desorption behavior in shale reservoirs; they offer 

significant contributions to reaching the target of net-zero CO2 emissions for energy transitions 

by exhibiting insights in the application of enhanced shale gas recovery and CO2 sequestration 

– in particular, the simulation results suggest that CO2 injection into shallow shale reservoirs, 
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rich in TOC, would give a much better performance to unlock the adsorbed gas and sequestrate 

CO2 compared to deep shales.   

 

4.2 Introduction 

Shale gas resources have been identified as an important component in current clean geo-

energy, which plays an important role in the energy transition to net-zero target of carbon 

dioxide emission. Therefore, in recent years, there has been increasing interest in the 

commercial development of shale gas resources worldwide; in 2018, shale gas accounted for 

nearly 65% of The United States (U.S.) total gas production [5], and 21% in China [92]. This 

significant breakthrough in the exploitation of shale gas resources has extended to other 

countries such as Canada and Australia. However, shale gas reservoirs have presented new 

challenges due to their ultra-low permeability and recovery factors [58]. Consequently, it is 

essential to enhance the matrix permeability to achieve economical production from shale 

reservoirs.   

The advanced technologies of horizontal drilling and multi-stage hydraulic fracturing 

techniques create and establish the conductivity between fractures and matrix with induced 

fractures network. These technologies enable the oil and gas industry to achieve the shale gas 

reservoirs’ potential with commercial production. Similar to coalbed methane, shale gas 

reservoirs hold a tremendous amount of gas on the surface of organic minerals which can be 

referred to as adsorbed gas [9]. The adsorbed gas has been a key parameter in shale gas 

reservoirs evaluation and development and may account for up to 60% of the total gas in place 

[12]. Unlocking adsorbed methane on organic-rich shale surface has attracted great attention 

in industry due to its potential to produce considerable amounts of gas. 

The adsorption and desorption phenomenon has been investigated in a large, growing body of 

literature. Although several studies have widely focused on adsorption behavior [60-62], 

desorption behavior has not been completely elucidated, presenting a substantial impediment 

in the efficient management and performance predictions of shale gas reservoirs. Of the few 

studies identifying factors governing desorption in shale gas production, some have focused 

only on the impact of hydraulic fracture parameters on both free and adsorbed gas [15, 16]. 

Researchers have investigated the influencing reservoir parameters on shale production [14, 

17]– however, the multi-porosity and diffusion models have not been considered in their 
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studies. Further investigations considering the aforementioned models [18, 19] have neglected 

the effect of TOC and the impact of reservoir pressure. 

Currently, research regarding the parameters governing the contribution of adsorbed gas to 

shale production is lacking. Whilst several sensitivities studies have been carried out in the 

literature to evaluate the desorption behavior, however, to the best of our knowledge, no single 

study exists which has considered the multi-permeability and diffusion models to investigate 

the impact of reservoir depth on the production of adsorbed gas considering TOC. Therefore, 

there is a pressing need to combine all these models to examine the impact of reservoir depth 

(i.e., pressure) coupled with TOC on adsorbed gas production performance in shale gas 

reservoirs. 

In this work, we employ multi-porosity and multi permeability model incorporating with 

Langmuir isotherms and instant sorption option to quantify the contribution of adsorbed gas to 

total gas production.  In particular, this research seeks to investigate the factors influencing 

adsorbed gas production in shale reservoirs. The sensitivity analysis aims to provide a greater 

understating of transient and desorption behavior with respect to reservoir depth and TOC. The 

results of this paper could provide important insights into the selection of optimal depth to 

inject CO2 in shale reservoirs which can potentially enhance both CH4 recovery and CO2 

sequestration. 

This study has been divided into five parts: the first part includes this introductory section. The 

second consists of a brief overview focusing on the key theory of shale gas reservoirs 

production and modelling. Thirdly, the methodology used for this study including model 

development and calibration will be covered. The fourth section presents the simulation results 

and discussion.  Finally, the conclusion gives a summary of the findings and implications. 

 

4.3 Theory 

4.3.1. Shale Gas Production  

Shale gas mainly exists in three different forms: (a) free gas in the fractures with various length 

scales and in the interconnected micro-pores of the organic content [59]; (b) adsorbed gas on 

the organic surfaces; (c) dissolved gas in the reservoir fluids [9]. The primary production profile 

of a single shale well dramatically declines after a few years of high initial production rate. As 

the reservoir pressure declines, adsorbed gas begins to be desorbed form the organic matter 
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surface contributing to the total production with a considerable amount accounting up to 60% 

of the total gas in [12]. This stage of production extends and contributes significantly to the 

cumulative production. 

Figure 4.1 below shows the gas primary production profile for the base case from our 

simulation results. Therefore, the contribution of adsorbed gas in production has been 

considered as a pintail of shale reservoirs long term production [14]. However, challenges arise 

when quantifying and predicting the recoverable adsorbed gas due to complex transport of 

desorbed gas within organic and matrix micropores towards fractures and then to the producing 

wells. The production from the adsorbed gas has been found difficult to be produced compared 

with the free gas, as a result of different mechanisms of storage (adsorption) and the transport 

mechanism (surface diffusion) through the shale pores system [93]. Moreover, the adsorbed 

gas tends to behave differently in terms of density and accumulation [94, 95].  

 

 Figure 4. 1 The production profile of free and adsorbed gas for Barnett shale reservoir 

calculated by our predictive simulation model. 

 

The prospective production from adsorbed gas is influenced by many factors such as reservoir 

permeability and the fracture network [15]. The initial reservoir pressure and the amount of 

total organic content are playing the main role in the adsorption capacities [96]. The adsorption 

capacities of shales and TOC show a direct linear correlation, where the adsorbed gas typically 

increases with increasing TOC [97]. With increasing the thermal maturation, the adsorption 

capacities are found to increase as a result of generated microporosity from the organic matter 
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[61]. In addition, it has been proven that clay minerals can also adsorb gases and vapors [98]. 

In respect to pressure, the adsorption capacity, hence the original adsorbed gas in place, yields 

a general trend of increasing with pressure. Figure 4.2 shows how the adsorbed CH4 typically 

relates in a non-linear correlation to pressure in different shale samples. However, the 

adsorption capacity tends to increase slowly at high pressure. This observed change in 

adsorption behavior at high pressure environment could be attributed to the completion of 

mono-layer adsorption, which is typically followed by the equilibrium saturation [23]. 

  

 

Figure 4. 2 Methane adsorption isotherms analysis at a range of pressure values calculated for New 

Albany Shale and Ohio Shale [23] 

 

4.3.2. Multi-Porosity and Multi-Permeability Model 

Shale gas reservoirs have two distinct types of porosity, the fractures and matrix porosity. The 

matrix pores are in nano-scale and only occupied by free gas. The analysis of three-dimensional 

high-resolution imaging has recently shown a large and interconnected pores of organic 

pockets within the shale matrix [9]. The organic pores have a much smaller length compared 

to the inorganic matter (typically less than 10 nm) [99], and are more likely than matrix to be 

interconnected [100]. The contribution of organic pores lies in the range of 34 to more than 

50% to the total pore volume [60, 101, 102]. According to the complex mechanisms by which 

gas is trapped in shale structure, in this work, a multi-porosity and multi- permeability model 

became essential to simulate gas transport behavior from sub-matrix cells to the primary matrix 

cells towards the natural and/or the induced fractures, and then to the wellbore. 
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4.3.3. Gas Adsorption Isotherm 

In shale reservoirs, the original gas in place is estimated in terms of gas content for both free 

and adsorbed gas. The relative contribution of free vs adsorbed gas varies with the total organic 

content, reservoir pressure and temperature, pore size distribution, and rock texture [103]. The 

free gas reserve is defined using shale porosities (fractures, organic, and inorganic). In this 

study, Langmuir isotherm (monolayer molecules of the adsorbed gas) was used to define the 

shale gas adsorption and desorption process. Langmuir isotherms can be expressed as shown 

in Equation (4.1) [104]: 

𝑉𝑝 =
𝑉𝑙 𝑃

𝑃𝑙+𝑃
                                 Equation (4.1) 

Where: 

𝑉𝑝 is the predicted amount of adsorbed gas at gas pressure P, 

𝑉𝑙 is Langmuir’s volume,  

𝑃𝑙 is Langmuir’s pressure at which 50% of gas is adsorbed.  

Commonly, Langmuir isotherm is the most applied kinetic model for shale gas adsorption and 

desorption process  [105], it is a simple and practical model which is based upon two main 

assumptions. Firstly, molecules of free and adsorbed gas are in a state of dynamic equilibrium 

at constant temperature. Secondly, the adsorption thickness is a monolayer molecules of the 

adsorbed gas [25]. In contrast, Emmet and Teller (BET) isotherm is a model in which an infinite 

number of multi-layer adsorption is taken into account [106]. 

Whilst Langmuir isotherm has been proven in previous study to fit accurately over a range of 

pressure and temperature [106], it may not be always valid for organic-rich shale of a large 

effective pore size greater than 10 nm [107]. Therefore, in this work, it was decided not to 

consider the effect of multi-layer adsorption. The main reason for this is that organic porosity 

of 2 % was defined in our predictive model, which is an indication of small effective organic 

pore size typically < 10nm [9]. Consequently, multi-layer adsorption model consideration in 

this study will result in underestimating free gas volume occupying the organic pores. 

Moreover, in respect to surface diffusion, the upper layer may not necessarily contribute if the 

lower layer is not completely formed [108]. Hence, the formation of multi-layers of adsorption 

may not play a significant role in our undertaken investigation. 
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4.3.4. Gas Transport Mechanism 

Gas transport in shale reservoirs is a complex flow process as a result of different gas storage 

mechanisms and pore size distribution. Gas flow mechanism in shale reservoirs varies in 

organic from inorganic pores and significantly different from that in conventional gas 

reservoirs [93]. Typically, within the shale pores system, gas flow comes from the matrix 

region to fractures region to feed the wells [13]. With regard to the channel size, Darcy’s law 

can be used to simulate the free gas flow within the fractures network [109]. In contrast, the 

capillary size is considerably much smaller in the matrix pores, therefore, the free gas transport 

is subjected to diffusion transport mechanism [18]. Finally, in inorganic pores, where the gas 

is adsorbed on the surface organic matter, the desorption process governs gas transport to 

fractures and to inorganic matrix pores. Consequently, accurate simulation of shale gas 

reservoirs needs to consider the effects of different flow and storage mechanisms associated 

with the different pore types described above. Therefore, a combination of desorption, 

diffusion, and Darcy flow mechanisms were considered in our simulation study. 

4.4 Methodology of Reservoir Modelling 

4.4.1. Model Development  

The Numerical reservoir simulation technique has been one of the effective tools used to 

analyse the realistic flow mechanism of free and desorbed shale gas.  In this study, Eclipse-300 

compositional reservoir simulator was used to simulate gas production for Barnett shale 

reservoir. The numerical simulation model of Barnett shale reservoir was generated using data 

in the public domain. The key input parameters were defined in the model within the range 

which consists with that presented in literature for the realistic shale. Tables 4.2 & 4.3 show 

the reservoir parameters and Langmuir constants of CH4 for Barnett shale gas reservoir [13, 

17, 54, 60, 95, 99, 110-114]. 

Many previous simulation studies used the traditional dual-porosity model which neglects the 

transient behavior within matrix regions [10, 55]. To accurately simulate the storage and 

transient behavior of the matrix region, multi-porosity and multi-permeability models were 

employed in our predictive model. Thus, our model can predict gas flow from sub-matrix cells 

to the primary matrix cells towards the natural and/or the induced fractures, and then to the 

wellbore. 
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Mass accumulation and flow within the matrix region is dominated by the adsorption and 

desorption process. Therefore, an accurate capture of adsorption-desorption behavior is of 

crucial importance for shale gas modelling.  The instant sorption option was used in our model 

to offer an effective way to represent the gas volumes (free and adsorbed) simultaneously 

within the organic matrix pores. 

In this model, a horizontally producer well and five stages of hydraulic fractures were generated 

in the middle of the reservoir segment intersecting. Table.4.1 shows the fracture parameters 

used for the simulation model. For more accurate gas flow simulation, a local grid refinement 

option was also generated around the fractures. Given that the gas is non-wetting phase in 

inorganic matter [115], conceptually, two relative permeability curves were assigned in this 

case study for shale bulk and organic matter separately. 

 

Table 4. 1 The fracture data for used for Barnett model 

Parameter Value Unit 

Hydraulic fracture spacing 300 feet 

Hydraulic fracture height 200 feet 

Hydraulic fracture width 0.15 feet 

Total number of fractures 25  

Fracture half length 350 feet 

Number of Stages 5  

 

 

Table 4. 2 The reservoir properties of Barnett shale reservoir. 

Reservoir Parameter Value, reference  Unit 

Matrix Porosity 2 – 6,  [114] % 

Fracture Porosity 1 – 6, [111] % 

Organic Porosity 2, [60] % 

Matrix Permeability 0.0001 - 0.005, [110, 113] mD 
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Fracture Permeability 0.001, [54] mD 

Organic Permeability 0.0015, [111] mD 

Adsorption Capacity 50 -200, [111] sfc/ton 

TOC 4 – 8, [114] % 

Organic Density 166, [95] lb/ft3 

Bulk Density 156, [17] lb/ft3 

Pressure Gradient 0.43 - 0.52, [99] psi/ft 

Reservoir Temperature 200, [17] F˚ 

Depth 6000 – 9000, [114] ft 

Gross Thickness 100 – 1000 [114] ft 

Diffusion Coefficients 0.1116 [13] ft2/day 

 

 

Table 4. 3 Langmuir constants of CH4 for Barnett shale gas reservoir [17, 114] 

Langmuir constants 

 of CH4 

Value Unit 

VL 880  scf/ton 

PL 400 psi 

 

The shale reservoir of interest in this work is Barnet shale reservoir, which is a fine-grained 

and rich-organic sediments located in the USA. Barnett shale reservoir was discovered in 1981 

[116]. Currently, it is one of the most prolific shale gas producers in USA. For numerical 

modelling, a segment of Barnett shale reservoir was simulated using a 3D reservoir model with 

dimensions of 1,750 × 1,100 ×200 feet. The multi- porosity model has a grid size of 40 × 13 

cells in X, Y directions and 7 cells in Z direction. The cells in Z direction were subdivided into 

1 + 1+ 5, representing fracture, matrix and sub-matrix cells respectively. Figure 4.3 shows by 

a 2D view the matrix and fractures for Barnett shale model represented by fluid in place region 



 
30 

 

1 and 2 respectively, the Figure also illustrates the induced fracture stages and the refined grid 

cells. 

The first stage of prediction was carried out to compare the fractions of adsorbed gas to the 

total gas production at various reservoir depths ranging from 3,000 to 11,000 feet at a fixed 

value of TOC. Afterwards, sensitivity cases were generated for every reservoir depth with 

varying TOC from 4 to 8% to capture the contribution of produced adsorbed gas and the 

corresponding effect of TOC for each case. 

 

Figure 4. 3 2D view of the Barnett shale reservoir model 

 

4.4.2. Calibration of the Shale Mechanistic Model 

In our simulation model, the initial conditions, adsorption capacities, the fractions of free, and 

adsorbed gas volumes to the total gas in place at given reservoir pressures, and the recoverable 

volume were adopted to match the typical data for Barnett shale reservoir. 

To calibrate the shale mechanistic model, static and dynamic simulations were conducted to 

match the gas content and the recovery factor of Barnett Shale. The original gas in place is 

estimated in terms of gas content for both free and adsorbed gas. Shale porosities (fractures 

and inorganic) describe the free gas whereas Langmuir isotherms define the relation between 

the adsorption capacity and pressure at constant temperature. Overall, to estimate the total 
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original gas in place for our predictive model, the gas content (scf/ton) was estimated by Barnett 

shale reservoir data given in literature. 

For model calibration and result robustness, our base simulation model was applied to couple 

Langmuir isotherms and volumetric calculations, estimating the gas content for free and 

adsorbed gas at different values of reservoir pressure. The estimation of adsorbed gas content 

was made by realistic Langmuir isotherms published in literature [17, 114].  

In order to validate the predictive model, the simulated fractions of adsorbed and free gas 

volumes to the total gas in place against the fractions extracted from core data analysis were 

matched for Barnett shale reservoir. This is shown in Figure 4.4 [117]. 

 

Figure 4. 4 Typical gas content measured by core analysis for Barnett shale reservoirs at depth of 

7640 feet and 4% of TOC reproduced from [117] 

To increase the reliability of validation, it was carried out in terms of volume fractions instead 

of gas, eliminating the effect of crushed porosities and in the measured samples. Figure 4.5 

displays an accepted match between the estimated fractions from the calibrated model and by 

core analysis. 
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Figure 4. 5 The simulated fractions of adsorbed and free gas volumes are compared to fractions 

measured by core analysis for Barnett shale reservoirs at depth of 7640 feet and 4% of TOC 

For further validations, the estimated recoverable reserves across the typical range of pressures 

and TOC resulted from the calibrated model were adopted to lie in the range of 10% and 20% 

as shown in Figure 4.6 which typically matches the reported recovery factors of Barnett shale 

[114]. 

 

Figure 4. 6 The recovery factors estimated by our calibrated model at 8% of TOC   



 
33 

 

 

4.5 Results and Discussion  

4.5.1. Effect of Reservoir Pressure on Adsorbed Gas Production 

In order to investigate the impact of reservoir pressure on adsorbed gas production, our 

predictive model quantified the contribution of adsorbed and free gas for 40 years in regard to 

increasing in reservoir depth from 3,000 to 11,000 feet (i.e. pressure) within TOC range of 4 

to 8%. The results obtained from the sensitivity runs show that adsorbed gas production 

strongly decreased with increasing reservoir depth regardless of TOC, as shown in Figure 4.7. 

For example, at a given TOC of 4%, the contribution of adsorbed gas production decreased 

from 18 to 1% with increasing reservoir depth from 3,000 to 11,000 feet. It is important to note 

that the gas volume fractions in this study are presented in surface conditions, as the software 

utilized, Eclipse, employs the use of a formation volume factor to convert the volumes from 

reservoir conditions to surface conditions. 

Based on the simulation results, it can be concluded that the desorption phenomenon becomes 

an insignificant storage mechanism in deep shale reservoirs, particularly for low TOC shales. 

Our findings are also supported by the experimental results [96], who reported that adsorbed 

gas contributed by 21% of the total produced gas at 800 psi which is equivalent to 1,770 feet 

with Barnett shale pressure gradient. Their observations also suggest that the adsorbed gas 

likely contributes to 50% of total gas production at the abandonment pressure.  

It is understandable that desorption process is mainly controlled by pressure decline in matrix 

pores [7], therefore, in high pressure shales (typically higher than 4500 psi) [29, 34] since very 

low pressure decline takes place due to ultra-low matrix permeability, the adsorbed gas is less 

likely to be desorbed form the organic matter surface. It can be seen from Figure 4.8 that the 

reservoir pressure declined approximately by only 30% from the initial pressure across 40 years 

of continuous production. As shown in Figure 4.7, for shale reservoirs deeper than 5,000 feet, 

the contribution of the adsorbed gas is less than 12% across 40 years production, hence, it can 

be concluded that the free gas flow within matrix pores to the induced fractures is the dominant 

contributor of this stage of production. This explains that fracture and matrix permeabilities 

have been found to be the key significant parameters at early and late time of shale gas 

production [7, 15, 66]. 
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Figure 4. 7 Fractions of produced adsorbed gas to the total cumulative production at different 

reservoir depths at a range of 4 - 8% of TOC. 

 

 

 

 

 

Figure 4. 8 The simulated pressure decline profile for 4% TOC and 4000 psi initial pressure. 
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Our results imply that adsorbed gas plays a minor role in deep shale reservoirs production. 

Consequently, this work underscores the importance of Langmuir isothermal behavior to 

manage and predict the performance of shale gas production in shallow shale plays. Moreover, 

the results prove that an enhancement in shale matrix permeability can lead to a higher adsorbed 

and free gas cumulative production since the pressure difference between the adsorbed and free 

gas increases.  

 

4.5.2. Effect of TOC on Adsorbed Gas Production 

In this study, a range of 4 to 8% of total organic content (TOC) was considered to analyse the 

effect of increasing TOC on the adsorbed gas production within a range of 3,000 to 11,000 feet 

of reservoir depth. As shown in Figure 4.9, the predicted adsorbed gas from the simulation 

model shows that increasing TOC increases the contribution of adsorbed gas to the total gas 

production for a given reservoir depth. For example, increasing TOC from 4 to 8% results in 

increasing the cumulative adsorbed gas production from 195 to 335 MMSCF at the same 

reservoir depth of 5,000 feet. 

The observed correlation between TOC and adsorbed gas production could be attributed to the 

fact that the amount of gas originally adsorbed on the surface of organic matter in rich-organic 

shale reservoirs is a function of the pressure and the volume of organic matter in the shale 

matrix.  However, the impact of TOC on the contribution of adsorbed gas production becomes 

minor with increasing reservoir depth. This observation seems to be consistent with that 

presented in literature, for instance, the simulation results study presented by [15], which 

argued that the increase of adsorbed gas (i.e. total organic content) increases the cumulative 

production from both free and adsorbed gas. However, our study proves that the amount of the 

desorbed gas has less contribution to the total production in deep shale reservoirs compared to 

shallow reservoirs. 

This combination of findings offers several contributions to the existing knowledge by 

providing insight into the characterisation, development, and prediction of shale gas reservoirs 

with respect to pressure and TOC. Also, this work has important implications related 

specifically to the application of enhanced shale gas recovery by CO2 injection. Our results 

suggest that CO2 injection in shallow shale (rich in TOC) reservoirs would give a much better 

performance to unlock adsorbed gas compared to deep shales, since the desorbed gas is more 

likely to be desorbed and the injected stream of CO2 could be potentially sequestrated. 
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Figure 4. 9 The cumulative production from adsorbed gas volumes with range of 4 - 8% TOC. 

 

4.6 Conclusions and Implications 

This work aimed to examine the effect of the reservoir depth coupled with TOC on the adsorbed 

gas production. A sensitivity study was performed to examine the desorption behaviour in shale 

reservoirs. The results of this study show that reservoir depth has a significant effect on the 

contribution of adsorbed gas to shale gas production. Regardless of TOC, adsorbed gas 

production decreases with increasing reservoir depth.  Whilst this contribution increases with 

increasing TOC, the impact of TOC on the contribution of adsorbed gas production becomes 

minor with increasing reservoir depth. These results suggest that adsorbed gas may play an 

important role (12% - 26%) in total gas production in shallow shale plays below 4,000 feet.  

This study highlights the importance of Langmuir isothermal behaviour in shallow shale plays 

and contributes to existing research by providing insight into characterisation, development, 

and prediction of shale gas reservoirs with respect to reservoir depth and TOC; it presents a 

significant contribution to the energy transition to net-zero target of CO2 emissions by 

demonstrating important insights into the application of enhanced shale gas recovery and CO2 

sequestration. Based on the simulation results (shallow shale reservoirs have been proven in 

our study to produce more adsorbed gas compared to deep shales) injecting CO2 into shallow 
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shale reservoirs (rich in TOC) would give an improved outcome to unlock the adsorbed gas 

and sequestrate CO2. 
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Chapter 5. Statistical Analysis of Controlling Factors on 

Enhanced Gas Recovery by CO2 Injection in Shale Gas 

Reservoirs  

5.1 Abstract 

Development of shale gas reservoirs is the fastest growing on a large scale globally due to their 

potential reserves. CO2 has a great affinity to be adsorbed on shale organic surface over CH4. 

Therefore, CO2 injection into shale reservoirs initiates a potential for enhanced gas recovery 

and CO2 geological sequestration. The efficiency of CO2 enhanced gas recovery (CO2-EGR) 

is mainly dominated by several shale properties and engineering design parameters. However, 

due to the heterogeneity of shale reservoirs and the complexity of modelling CO2-CH4 

displacement process, there are still uncertainties in determining the main factors that control 

CO2 sequestration and enhanced CH4 recovery in shale reservoirs. Therefore, in view of the 

previous sensitivity analysis studies, no quantitative framework and accurate CO2-EGR 

modelling, and design process has been identified. Thus, this work aimed to provide a practical 

screening tool to manage and predict the efficiency of enhanced gas recovery and CO2 

sequestrations in shale reservoirs. To meet our objectives, we performed correlation analysis 

to identify the strength of the relationship between the examined shale properties and 

engineering design parameters and the efficiency of CO2-EGR.  Data for this study was 

gathered across the publications on a wide subset of numerical modelling studies and 

experimental investigations. The sensitivity of data was further improved by a hybrid approach 

adopted for handlining the missing values to avoid bias in our dataset.  

Our results indicate that CO2 flooding might be the best applicable option for CO2 injection in 

shale reservoirs, whereas the huff and buff scenario does not seem to be a viable option. The 

efficiency of CO2-EGR increases as the pressure difference between injection pressure and 

reservoir pressure increases. The results show that shallow shale reservoirs with high fractures 

permeability, total organic content, and CO2-CH4 preferential adsorption capacity are 

favourable targets for CO2-EGR.  Moreover, our results indicate that a successful hydraulic-

fractures network with effective values of fractures permeability and conductivity is essential 

for a higher CO2-EGR efficiency. Well spacing and fractures half-length are crucial 

engineering features in CO2-EGR process design that must be carefully optimised due to their 

negative effect on CH4 production and positive effect on CO2 storage.  Our statistical analysis 
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lays a foundation for efficient CO2-EGR design and implementation and presents an important 

contribution to the field of reaching the target of net-zero CO2 emissions for energy transitions. 

5.2 Introduction 

The global energy markets have dramatically changed since the Covid-19 outbreak. Despite 

the global economy has been severely affected under lockdown measures, the global energy 

demand increased by 4% in 2021 and is expected to continue growing by 1.3% per year up to 

2030 [1].  In the light of this fact, the clean energy has recently become the central focus of 

global investment and development to meet the accelerated demand in energy consumption. 

Natural gas, as one of cleanest fossil fuels, has become a significant contributor to the world 

energy market [54] and currently plays a key role in the energy transition to clean geo-energy.  

Over the past several years, due to the normal decline in conventional natural gas reserves, 

shale gas reservoirs have become an important alternative source for natural gas. In The United 

States (U.S.), shale gas production accounted for nearly two-thirds of the total gas production 

in 2018 [5]. Due to the revolution in shale gas exploitation since 2005, China has become the 

second largest gas producer [4]. Worldwide, according to the U.S Energy Information 

Administration, the expected production from shale gas resources will account for nearly 70% 

of the total production in 2050 [118]. 

The term ‘unconventional reservoirs’ refers to low reservoir quality formations where artificial 

stimulations are required to achieve production in commercial quantities [119, 120].  Following 

this definition, the recognised types of unconventional gas resources are; tight gas, coal -bed 

methane, gas hydrates, and shale gas reservoirs [121]. At present, development of shale gas 

reservoirs is the fastest-growing not only in North America, but it’s also growing on a large 

scale globally due to their potential reserve [122].  The key technologies of horizontal and 

multilateral drilling, and multi-stages hydraulic fracturing have been perceived techniques to 

achieve commercial development of shale resources [123]. However, despite the recent 

revolution of those technologies, shale gas recovery may account for up to only 30% of the 

original gas in place [13]. The expected low recovery factor (RF) from shale reservoirs 

attributes to a uniquely geological and petrophysical system which is characterised by ultra-

low permeability and porosity, small pore size, high total organic content (TOC) , and complex 

gas storage and  transport mechanisms [7]. Shale reservoirs are multi-permeabilities nature 

formations which typically have two distinct permeabilities, natural fractures permeability, and 

matrix permeability (for organic and inorganic matter).  Typically, shale gas reservoirs have 
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permeabilities of nano to micro Darcy [124] and porosity ranging up to 10% [93, 125]. The 

typical focused two-dimensional images of rich-organic shale gas samples shown a finely 

organic materials dispersed within the inorganic shale matrix, the pore size of these organic 

pores is having a length much smaller if compared to the inorganic matter (typically less than 

50 nm) [7]. Recently, the analysis of three-dimensional imaging has showed that 

interconnected pores of organic pockets are filled with a significant amount of gas with 

different density profiles as illustrated in Figure 5.1 [9]. 

 

Figure 5. 1 -a: 2-D image of shale gas sample showing the organic material in a dark gray dispersed 

in light gray inorganic materials. b: 3-D shale segmentation showing in light color the interconnected 

organic pockets [9] . [Copyright 2011, Society of Petroleum Engineers] 

5.3 Motivation of CO2 Injection in Shale Gas Reservoirs 

In organic-rich shale reservoirs, gas typically exists in different thermodynamic states as free 

gas in fractures and in the interconnected micro-pores of the organic materials, and adsorbed 

gas on the surface of organic materials, and dissolved gas in the reservoir fluids [9, 10]. Figure 

5.2 depicts the pores system and different storage mechanisms within shale gas reservoirs. Very 

similar to coal-bed methane, shale reservoirs hold immense an amount of adsorbed gas 

accounting for up to 60% of the total gas in place [12]. As reservoir pressure naturally declines, 

desorption phenomena takes place and desorbed gas transports by diffusion mechanism 

towards matrix and fractures [126].  In a typical shale gas production profile, gas desorption 

occurs after the initial production of free gas in fractures and matrix pores [127] and plays the 

main role at late stage of reservoir life maintaining the long-term production plateau [14]. 

However, the adsorbed gas may contribute to the total production up to 26% in shallow 
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reservoirs [22]. [127] concluded the factors limit the production capacity of adsorbed gas as 

the ultra-tight nature of shale matrix and high bottom hole pressure. Since pressure is the key 

controller of the desorption capacity, adsorbed gas is very unlikely to desorb from the surface 

of organic matter due to very low-pressure decline occurring in shale pores as a result of ultra-

low permeability. Despite the current challenges presented to shale production, unlocking the 

trapped adsorbed gas has attracted great attention in industry due to the potential to increase 

the productivity of shale at commercial rate. Thus, developing a cost-effective technique to 

enhance gas recovery from shale gas reservoirs has been recently in the centre of attention of 

reservoir engineers. The technique of injection CO2 into shale reservoirs therefore becomes 

more considerable due to its dual benefit as a mechanism for enhanced shale recovery and CO2 

sequestrations. 

 

 

 

Figure 5. 2 Typical shale gas pores system and storage mechanism [110][Copyright 2013, Society of 

Petroleum Engineers] 

 

5.3.2. CO2 Sequestration 

Since the industrial revolution, the increased emission of greenhouse gases (GHG) has been 

recognised as a factor strongly related to the global climate changes [128]. The major portion 

of anthropogenic GHGs emissions is mainly released from the consumption of fossil fuel [36]. 
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As a result of the intensive consumption in fossil fuels due to global energy demand, emissions 

from GHGs, in particular CO2,  have sparked sharp and historical rises in emission levels in 

the past decade [129]. In 2020,  despite the reduction gained due to COVID-19 pandemic, 

global energy-related CO2 emission is on track to increase by 1.2 billion tonnes in 2021, 

recording a historical level [1]. Figure 5.3 depicts the change in consumption trend for fossil 

fuels by fuel from 1900 -2021. 

 

 

 

Figure 5. 3 Global CO2 emission from fossil fuels [1] 

 

Therefore, global agreements have been launched to initiate mechanisms needed for a sharp 

reduction in GHGs. Typically, emissions could be reduced either by switching to alternate 

cleaner energies such as solar and wind or mitigating the effects of GHGs using capturing and 

storage technologies. Geological sequestration has been considered as a potential mechanism 

for a large-scale and effective CO2 subsurface storage. CO2 geological sequestration is injecting  

CO2  into deep geologic formation in which CO2 could be safely stored underground for 

thousands of years [130]. Depleted oil and gas reservoirs, coal-beds, shale, and deep saline 

formation have the potential to store CO2 permanently [131] [40]. Among these geological 

sites, shale is the safest for CO2 sequestration due to its ultra-low permeability [131].   In 
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literature, laboratory work and simulation studies revealed that up to 95% of the injected CO2 

into shale reservoirs could be potentially stored [9, 57, 132, 133]. 

 

5.3.2. Enhanced Gas Recovery 

It is well-known that shale reservoirs are characterised by high organic content which ranges 

from 2% to 10% of the total weight of organic-rich shales and mainly controlled by thermal 

maturity [60]. Significant amounts of gas are stored in shale reservoirs as an adsorbed gas on 

the surface of finely dispersed organic matter [52, 72, 134]. Thus, unlocking adsorbed gas has 

brought more attention to shale reservoirs as a promising  target for enhanced gas recovery and 

has recently been the major area of interest within the exploitation of shale gas resources [8].  

One such method is Carbon dioxide (CO2) injection within shale fracture and matrix system. 

Laboratory tests have proven that CO2 has a great affinity to be adsorbed on organic surface 

over methane and thus initiates the potential not only for enhanced gas recovery (EGR), but 

also for CO2 sequestration [23, 24, 26, 104, 135, 136]. This allows CO2 to release CH4 under 

subsurface conditions which can be referred to the desorption process. As desorption takes 

place, desorbed gas transports by diffusion mechanism from micro pores of organic materials 

(primary porosity system) to macropores of matrix and fractures (secondary porosity system) 

[34]. Theoretically, pressure in the secondary porosity system is dominated by an injection 

effect which drives gas (free and resorbed) by Darcy flow mechanism towards fracture and 

then well bores [12]. In addition, it is believed that desorption process enhances matrix 

permeability as a sequence of increasing in effective diameter [137]. However, CO2-EGR is a 

complex geophysical process as the effectiveness of EGR is governed by many physical 

process such as the diffusion capacity of CO2 into shale matrix [45] and CO2-CH4 competitive 

adsorption [46]. When CO2 presents in the shale pores system, counter diffusion, and 

competitive adsorption between CO2 and CH4 takes place in the shale matrix. Multi-component 

effect is a well-recognised process that modifies gas transport mechanism, particularly, the 

surface diffusion of desorbed gas [44]. 

Previous studies in literature have proved that injection of CO2 into organic-rich shale 

reservoirs can lead up to 59% additional recovery from original gas in place (OGIP) whereas 

up to 100% of the injected CO2 could be permanently sequestrated [31, 33, 44, 54]. Even 

though, EGR-CO2 injection has not been commercialised yet, a considerable amount of 

laboratory tests and simulation studies have been carried out on the feasibility of the technique. 

The concept of CO2 injection was first extended to shale gas reservoirs by [23]. His 
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experimental study has demonstrated that shales can react very similarly to coal-bed methane 

where organic matt CO2 is preferentially adsorbed on organic surface over CH4 at a ratio of 

5:1. The adsorption ratio depends on shale type and reservoir pressure and temperature [20]. 

These remarkable observations have drawn attention to shales as potential geological traps for 

CO2 permanent sequestration and EGR.  Therefore, many studies have been conducted to 

investigate CO2 storage capacity and prove the viability of enhanced gas production from 

different shale reservoirs. [10] performed a comprehensive simulation work investigating a 

series of injection scenarios of CO2 flooding (continuous injection) and huff and puff 

(injection-soaking cycle). Their simulation results showed that CO2 flooding into shale 

reservoirs showed a significant increase in recovery with about 50% of injected stream being 

sequestered. Similarly, [33] reported in his study that 7% incremental recovery could be 

achieved at optimal wells pattern. In another study, [57] [32] employed dual-porosity and dual-

permeability models in their studies that showed the feasibility of CO2 injection to increase 

shale recovery.  

Investigating the controlling factors which govern the applicability of CO2-EGR has been also 

undertaken in literature. According to several studies, the induced and natural fractures 

permeabilities are the key influencing parameters on the efficiency of EGR and CO2 

sequestration, where a higher fractures permeabilities results in high enhanced gas recovery 

and CO2 thus likely to be sequestrated [20, 34, 69, 70]. In contrast to those findings,  [26] 

demonstrated that EGR efficiency correlates negatively with  matrix permeability due to higher 

pore fractural dimension.   In addition to fractures permeability effect, the TOC has been found 

as a significant parameter on CO2 storage [26, 32]. Later in 2014, [55] pointed out the 

significance of matrix porosity on the incremental recovery.  Recently, the effect of multi 

components have been considered in many simulation studies [30, 44, 54, 73]. The results of 

these studies concluded the functionality of CO2 injection to increase shale recovery by 

indicating the importance of surface diffusion as a key driving mechanism in CO2-EGR 

process. The effect of injection pressure has been also investigated. [31] highlighted that, 

despite the positive correlation between injection pressure and enhanced gas recovery, early 

severe breakthrough of CO2 is very likely to occur. Conversely, [71] reported no significant 

effect of increasing CO2 injection rates on shale gas recovery. This view was supported by [72] 

in his numerical simulation study. [20] demonstrated that reservoir pressure plays the key role 

in the process where low reservoir pressure facilitates CH4 displacement by injected CO2. 

Matrix permeability has been recognised as the most significant factor in many studies [7]. In 
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another investigation, the correlation between the production time and enhanced recovery has 

been addressed.  [28] demonstrated that production time and pressure significantly affect CO2 

sequestration and shale gas recovery.  

From the foregoing, no quantitative framework and accurate CO2-EGR modelling, and design 

process has been identified. Thus, there are still uncertainties in determining the main factors 

that control CO2 sequestration and enhanced CH4 recovery in shale reservoirs. Two discrete 

reasons could explain this gap in knowledge. First, shale reservoirs are widely characterised as 

heterogeneous formations in lithology, TOC, pore size, texture, and petrophysical properties 

[53]. As a result of this complexity, the previous studies have been conducted using various 

modelling techniques and approaches. A notable example of this, some authors employed 

single-porosity and single-permeability models, while others considered dual and multi-

porosity and multi-permeability models. Second, most researchers to date have tended to 

conduct sensitivity analysis to investigate the effect of a few parameters individually rather 

than treating the controlling parameters collectively in much detail.  

 

This study therefore seeks to remedy this gap in knowledge by providing a comprehensive 

investigation on the correlation between shale properties as well as engineering parameters and 

the efficiency of CO2-EGR and helps the industry to conceptual understanding when designing 

and implementing CO2-EGR in shale reservoirs. To meet these objectives, data for this work 

were extracted from previous publications that have examined the feasibility of CO2 

sequestration with potential of enhanced gas recovery in shale reservoirs. For most of the 

generalizable results, we gathered data across the available studies in literature on a wide subset 

of numerical modelling studies and experimental investigations. The sensitivity of these data 

was further improved by handling the missing values using imputation approaches. Previous 

studies have been carried out by using a sensitivity analysis approach which does not take 

account of the relationship between independent and dependent variables, Unlike the previous 

studies, this is the first study to employ correlation to identify the strength of the relationship 

between the examined parameters and the efficiency of CO2-EGR. In this study, we provide a 

broader perspective from the collected data on the correlation of factors which have a 

significant impact on enhanced gas recovery and CO2 sequestration in shale gas reservoirs. The 

methodological approach taken in this study is Spearman correlation coefficient to further 

analyse 63 injection cases. Our statistical analysis provides a practical screening tool to manage 

and predict the efficiency of both enhanced gas recovery and CO2 sequestrations in shale 
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reservoirs. Moreover, this study lays a foundation for efficient CO2-EGR design and 

implementation. 

 

5.4 Correlation Coefficient for Factors Analysis 

5.4.1. Exploratory Data Analysis 

The performance of enhancing shale recovery by CO2 injection is a direct function of shale 

properties and engineering features of design and operational parameters.  Therefore, to 

systematically examine the correlation between parameters, in this work totally data for 63 

injection scenarios were collected from literature spanning the years 2009 – 2019. To ensure 

the reliability, our dataset was gathered from two main sources: results obtained from validated 

simulation models (54 simulation cases) and experimental investigations (9 experimental 

cases). Although this extensive range of sources offers a unified correlation for CO2-EGR, one 

of the limitations was the occurrence of unbalance as our dataset heavily relied on simulation 

studies which accounted for about 85% of our dataset. Table 5.1 illustrates the breakdown of 

the studies and shale types used in our dataset. 

 

Table 5. 1 Simulation studies and shale types used for dataset. 

 

Shale Type Study  

No of 

injection 

Cases 

Methodologies/Assumptio

ns 
Author 

Devonian 
Numerical 

Simulation 
6 

• Huff-n-puff 

• Dual porosity and 

permeability model 

[10] 

Synthetic 
Numerical 

Simulation 
4 

• Flooding 

• Discrete fracture network 

model 

• Multi porosity and 

permeability model 

[34] 

Marcellus 
Numerical 

Simulation 
9 

• Flooding 

• Multi porosity and 

permeability model 

[33] 
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Synthetic 
Numerical 

Simulation 
2 

• Flooding 

• Dual porosity and 

permeability model 

• Diffusion model 

[57] 

New Albany 
Numerical 

Simulation 
2 

• Flooding / huff-n-puff 

• Dual porosity and 

permeability model 

• Diffusion model 

• CO2 dissolution 

[32] 

Barnett 
Numerical 

Simulation 
3 

• Flooding 

• Dual porosity and 

permeability model 

[31] 

Barnett 
Numerical 

Simulation 
4 

• Flooding / huff-n-puff 

[7] 

Barnett 
Numerical 

Simulation 
14 

• Flooding / huff-n-puff 

• Multi porosity and 

permeability model 

• CO2 dissolution 

• Stress-dependent model 

[30] 

Yanchang 
Numerical 

Simulation 
4 

• Flooding 

• Diffusion model 
[72] 

Silurian 

Longmaxi 

Numerical 

Simulation 1 

• Huff-n-puff 

• Multi porosity and dual 

permeability model 

• Diffusion model 

[28] 

Synthetic 
Numerical 

Simulation 
3 

• Flooding 

• Non-Darcy effect 

• Instant sorption model 

[29] 

Yanchang 
Numerical 

Simulation 
2 

• Flooding 

• Geochemical interaction 

effect. 

[27] 

Silurian 

Longmaxi 

Experimental 

Study 
9 

• Flooding 

• New NMR experimental 

approach 

[26] 
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Missing values is one of the most common problems frequently occurring in  real-world data 

recording or processing [138]. The most popular handling methods for missing values is either 

deleting rows or columns having null values or imputing the missing values using mean or 

categorical imputing techniques [139].  For the two treatment methods, there is no preferred 

solution, but each method becomes the preferable under certain conditions [140]. 

In this study, therefore a hybrid approach was adopted for handlining the missing values to 

avoid producing the issue of bias in our dataset. However, there are some parameters that we 

could not technically impute such as reservoir thickness.   

Our approach categorises the missing values and treats it accordingly as follows: 

1. Following ‘missingness mechanism’ [139], variables missing at random (MAR) were 

dropped from data. For example, missing values of reservoir thickness.  

2. Impute Missing Not at Random (MNAR) that can be predicted using shale data. For 

example, missing petrophysical values for Barnett shale (e.g., TOC and pressure 

gradient) could be imputed from the typical date for the Barnett shale listed in our 

databank.  

Table 5.2 illustrates the wide range of petrophysical data used in our original dataset. Table 

5.3 shows the operating parameters of different injection cases including flooding scenarios 

denoted by 1, and huff and buff scenario denoted by 0.      

 

 

Table 5. 2 The range of petrophysical parameters used in dataset 

  

Parameter Mean Standard 

deviation 

Minimum Percentile 

25% 

Percentile 

50% 

Percentile 

75% 

Maximum 

Pressure, psi 6792.673 10886.48 780 1396.603 2140 4582.783 48643.61 

Temperature, F° 120.8826 41.2604 85 90.82959 106 150 302 

Reservoir thickness, ft 255.3311 411.2362 3.28084 100 200 300 2913 

Depth, ft 4770.73 1766.632 1378 3720 4102.761 5670 9842.52 

Matrix permeability, md 0.002199 0.005642 5E-20 5.7E-07 0.000236 0.00052 0.018 

Organic permeability, md 0.002293 0.005607 0.000005 0.000228 0.00038 0.00052 0.018 

Natural fracture 

Permeability, md 

2.130345 14.42826 5E-10 0.00227 0.00321 0.00712 100 

TOC, % 3.92 0.252982 3.2 4 4 4 4 

Matrix porosity, % 4.677407 2.421882 1 2.9 4.1 6.875 10 

Organic porosity, % 2.024052 3.097961 0.0352 0.0505 0.06 4.125 10 
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Natural fracture porosity, 

% 

1.966663 3.717878 0.00004 0.029 0.0352 0.7075 14 

 CH4 Langmuir volume, 

scf/ton  

91.22467 120.5147 38.9 39.2 51 90.05 741.615 

 CO2 Langmuir volume, 

scf/ton  

287.4234 481.5702 10.2 74.375 183.6 232.98 2189.53 

 CH4 Langmuir pressure, 

psi 

1302.016 420.1904 145 1000 1458.705 1596 1765.537 

 CO2 Langmuir pressure, 

psi 

36257.35 248008.9 493 973.4727 1253.13 1254 1754870 

Injection scenario  0.698113 0.46347 0 0 1 1 1 

Sequestrated CO2, % 0.350409 0.378015 0 0 0.2 0.7 1 

 Incremental RF,  % 0.086263 0.094658 -0.047 0.0105 0.07 0.1385 0.34 

 

 

Table 5. 3 The range of engineering parameters used in dataset 

 

Parameter Mean Std deviation Minimum 
Percentile 

25% 

Percentile 

50% 

Percentile 

75% 
Maximum 

well spacing, ft 597.9574 401.636 49.2126 249.3438 498.6877 1000 1280 

Fracture 

conductivity, md-ft 
50.3772 45.49276 3.28084 10 31 99 100 

Fracture half 

length, ft 
276.3678 162.3138 82 100 250 425 541 

Hydraulic fracture 

permeability, md 
14321.43 37780.7 1E-07 50 50 50 100000 

Injection scenario 0.692308 0.466041 0 0 1 1 1 

overpressure 

injection, psi 
667 430.1395 0 580 725 870 1160 

Injected CO2, ton 3466.761 4336.405 300 300 1204.603 9291.306 13430.42 

sequestrated CO2, 

ton 
906.2089 2217.973 0 0 274 300 8953.614 

Recovered CO2, % 38.20695 41.57038 0 1.5 14.75 82.29167 100 

Primary RF, % 41.87746 33.81309 2.2 9.897114 51.65 73.75 85.1 

 Injection RF, % 44.49178 36.57873 2 9.502762 48.4 80 95.3 

 Incremental RF, 

% 
8.979585 9.548676 -4.7 1.05 7.5 13.9 34 
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5.4.2. Spearman Correlation Coefficient  

Correlation analysis methods are the most common statistical approaches which are widely 

used for several applications such as exploratory data analysis and structural modelling [141] 

[142]. The main objectives of the correlation analysis tests are to identify whether there is a 

statistically negative or positive relationship between variables, and to determine the statistical 

strength of relationship [141].  The term ‘correlation’ is often referring to a linear relationship 

between two or more continuous variables. In most of the cases, the conventional correlation 

methods may not be suitable for the non-linearity correlations.   

In statistics, the most common correlation methods are Pearson coefficient, Spearman 

coefficient, and Analysis of Variance (ANOVA) [143] [144]. The application of each method 

highly depends on the types of the examined dataset. Pearson coefficient is typically used for 

normally distributed and large observation data [145].  Although Pearson correlation works 

best if the correlation between two variables is a linear relationship, the main limitation of 

Pearson method is that a significant correlation between two variables can result in a non-

significant [146].  On the other hand, Spearman coefficient can be used for non-normally 

distributed data or for data with relevant outliers to measure the monotonic relationship of 

variables whether linear or non-linear [145].  Analysis of variance (ANOVA) is a statistical 

technique used to analyse the variation in responses between several group means [147]. 

Currently, ANOVA continues to be one of the most widely used forms of statistical analysis in 

many areas of science. Nevertheless, ANOVA is a general linear model that quantifies the 

correlation in only parametric and normally distributed data [147].  

The main reason for choosing Spearman correlation for this study is that it does not require the 

assumption that the relationship between the variables in our dataset is linear since it 

determines the monotonic relationship of variables whether linear or non-linear. Additionally, 

Spearman correlation is the most fitting for datasets with nonnormality as previously discussed. 

Consequently, Spearman correlation was a preferred method in our study than Pearson and 

ANOVA if taking into consideration the wide range of resources and shale types in our dataset. 

However, a potential limitation of using Spearman correlation is that the significance in 

Spearman correlation may lead to significance and insignificance in other correlation methods 

as presented in previous studies in literature [144].  

Spearman correlation coefficient can be expressed by formulation (5.1) [148] which yields a 

value that varies from –1 that represents a negative correlation to +1, that represents a positive 

correlation between variables [149]. 
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𝜌 =  
∑ (𝒳𝑖−𝒳)𝑖 ∗(𝒴𝑖−𝒴)

√∑ (𝒳𝑖−𝒳)𝑖 ∗(𝒴𝑖−𝒴)
  Equation (5.1) 

 

Python is widely used in data science and engineering fields for technical computing and 

modelling purposes. In our study, some Python libraries and functions have been written to 

take advantage of spearman correlation computing.  

 

5.5 Results and Discussion  

5.5.2. The Effect of Shale Petrophysical Parameters on CO2-EGR 

The results obtained from correlation analysis are summarized in Figure 5.4 and 5.5 which 

capture the intercorrelation among the whole variables across our dataset as shown in the 

horizontal and vertical axis. However, this work focuses only on the parameters affecting the 

efficiency of CO2-EGR as the intercorrelation between the shale and engineering is beyond the 

scope of this study (e.g., the correlation between TOC and shale porosity or the correlation 

between well spacing and hydraulic fracture conductivity).  The visualisation techniques of 

Figures 5.4 and 5.5 are that they illustrate the direction of the correlation (positive or negative), 

and they depict the magnitude (strength) as colour where darker colours indicate stronger 

correlation.    

In this section, we will discuss in detail the statistical results and the interpretation on the 

correlation between shale properties and the efficiency of CO2-EGR. In our analysis, the 

efficiency of CO2-EGR is represented by two main parameters. First, incremental RF which 

represents the amount and the additional CH4 production due to CO2 injection. Second, 

sequestrated CO2 which represents the amount of adsorbed CO2. In the below discussion, 

interpretation on the observed correlation between each single parameter and both incremental 

RF and sequestrated CO2 will be provided. For example, the explanation on why fracture 

permeability has a negative impact of incremental RF while it has a negative impact on CO2 

sequestration.   
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Figure 5. 4 Spearman correlation for shale properties  

 

 

5.5.1.1. The Effect of Permeability 

Clearly, natural fracture permeability was found to be the most influential parameter on EGR. 

Figure 5.4 shows that natural fracture permeability has a positive correlation to both CH4 

production and CO2 storage.  It is worth to mentioning that higher natural fracture permeability 

could increase the possibilities of CO2 re-production which explains the very low correlation 

of fractures permeability to CO2 storage (3%) compared to CH4 production (58%). These 

results match those observed in earlier studies which clearly demonstrated the pronounced 

effect of fractures permeability on EGR efficiency [20, 34, 69, 70]. This observation could be 

attributed to that higher fracture permeability causes larger pressure drop in natural fractures 

which facilitates free and desorbed gas transport from shale matrix to fractures network.  
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Turning now to matrix permeability, our results demonstrate that shale reservoirs in low 

inorganic matrix permeability are good candidates for EGR by CO2 injection. By contrast, our 

results also showed a positive effect of matrix (inorganic) and organic permeabilities on CO2 

storage.  A similar phenomenon observed by [26, 69] who argued in their studies that EGR 

efficiency tends to decrease with increasing matrix permeability. They attributed their finding 

to the possible negative effect of matrix permeability on CO2-CH4 competitive adsorption; 

additionally, a higher permeability could promote CH4 leakage away from the production area. 

There are, however, other possible explanations: injection CO2 into a low matrix permeability 

does not significantly affect the pressure drawdown within shale matrix, consequently, the 

continuous pressure decline expedites methane desorption from shale surface; in addition, 

ultra-low matrix permeability leads to high partial pressure of CO2 which increases CO2 

adsorption rate and in turn increases the desorption rate of CH4 from shale matrix.  

Organic permeability is found in our study to have the same magnitude of correlation as 

inorganic permeability. This could be attributed to the consideration of the dual-permeability 

model in most previous simulation studies in our dataset, which ignores the effect of sub-cells 

of organic permeabilities such as studies in references [10, 31, 32, 57]. 

 

5.5.1.2. The Effect of TOC 

In our analysis, a significant positive correlation of 49% is found between TOC and enhanced 

CH4 production by CO2 injection as illustrated in Figure 5.4 The is obviously because that the 

key mechanism of enhanced shale recovery is releasing of CH4 from the surface of organic 

matter due to greater affinity of shale to adsorb CO2. Given the adsorbed CH4 may account up 

to 60% of the total shale gas in place [12],   the greater TOC increases competitive adsorption 

of CO2-CH4 and hence increases the contribution of desorbed CH4 to the total shale production. 

Although CO2 adsorption on shale organic materials is the main trapping mechanism of CO2, 

what is unanticipated is that our results showed that less CO2 tends to be trapped on the surface 

of shale with a greater TOC. This result does not support the previous studies [26, 32] that have 

examined the effect of TOC.  However, this finding seems to be consistent with those of [150], 

this phenomenon could be attributed to the induced swelling response of shale matrix due to 

the simultaneous desorption of CH4, permeability decreases and the effective stress increases 

which results in inefficient CO2 sequestration.   
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5.5.1.3. The Effect of Adsorption Capacities 

In literature, laboratory tests have proved that CO2 is preferentially adsorbed over CH4 at a 

ratio of 5:1 [23]. The adsorption ratio across our collected dataset lies in the range of 0.1 to 4.7 

as shown in Table 5.1. The analytical approach taken in our study was to examine the 

preferential adsorption capacity rather than adsorption capacities of CO2 and CH4 separately to 

provide a more realistic perspective of CO2-CH4 displacement. Figure 5.4 clearly shows that 

the preferential adsorption is an important factor that has a substantial positive effect on CO2-

EGR efficiency. Our study indicates that the higher affinity of rich-organic shales to adsorb 

CO2 will promote the release of CH4 from organic surface and increase. 

 

5.5.1.4. The Effect of Reservoir Depth (Pressure) 

As shown in Figure 5.4, our results reveal that deep shale reservoirs are not favourable targets 

for both enhanced shale recovery and CO2 sequestration.  As shown in Figure 5.4, the enhanced 

recovery and CO2 storage are negatively correlating to reservoir depth at coefficients of 42% 

and 47% respectively. Those results further support our previous simulation study [22] which 

demonstrated that desorption of CH4 becomes insignificant with the increase in reservoir depth 

regardless of shale organic volume. Typically, the adsorbed gas relates in a non-linear 

correlation to pressure yielding a general trend of increasing with pressure [23]. Clearly, 

unlocking adsorbed gas which is basically controlled by pressure drop within the shale matrix 

plays key role in both shale primary production and CO2-EGR. For this reason, in deep shale 

reservoirs (i.e., higher reservoir pressure), with taken into consideration the ultra-low 

permeability nature of the shale matrix, adsorbed CH4 is less likely to desorb and transport 

towards fractures network. The results indicate that shallow shale reservoirs are most 

favourable targets for CO2-CH4 displacement, particularly shales with high TOC. 

 

5.5.1.5. The Effect of Porosity 

Usually, shale matrix porosity has a pronounced effect on free gas storage and production. 

Hence CO2 injection basically enhances adsorbed gas production, previous studies reported no 

clear correlation between porosity and both enhanced shale recovery and sequestrated CO2 

[54]. Other studies, however, found a minor positive correlation between shale porosity and 

CO2-EGR efficiency [34] . Contrary to expectations, however, organic and natural fracture 

porosities are showing in our analysis a positive correlation to CO2 storage. Our study also 

shows that any increases in shale porosities (organic, in organic, and natural fractures 
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porosities) will noticeably decrease the incremental CH4 production. This finding is found to 

be consistent with those of Yu and Al-Shalabi [7].  

To further explain our observation, it is essential to understand that CO2-CH4 displacement 

results from CO2-CH4 competitive adsorption. The competitive adsorption takes place within 

organic pores due to CO2 injection into the shale matrix which is dominated by 

diffusion/dispersion gas transport mechanisms [44, 110]. According to Equation 5.2 [24], 

molecular diffusion coefficient (Da) of CO2 decrease with increasing shale porosity (∅) which 

in return mitigates desorbed gas transport towards shale matrix and fractures.  

 

Kd =
Da

N∅
+ γ   (5.2) 

Where: 

Kd : dispersion coefficient 

Da: molecular diffusion coefficient 

 N: formation resistivity factor 

 ∅: porosity 

γ: dispersity 

 

5.5.1.6. The effect of Reservoir Temperature  

In accordance with previous studies, a remarkable negative correlation between reservoir 

temperature and both enhanced CH4 and CO2 sequestration is observed in our analysis as 

shown in Figure 5.4.  As discussed before, a successful CO2-EGR process results from efficient 

CO2-CH4 competitive adsorption within the shale matrix. At high-temperature shale reservoirs, 

less quantities of adsorbed CH4 and thus is less likely to capture CO2. For further explanation, 

Langmuir isotherms are commonly the most applied model for shale gas adsorption and 

desorption behaviours. Langmuir isotherms are based upon the assumption of monolayer 

adsorption thickness at constant temperature [25]. Several studies that examined CH4 

adsorption revealed that the amount of adsorbed CH4 significantly decreases with increased 

temperature [151].  

 

5.5.1.7. The Effect of Reservoir Thickness  

Based on our results, the effect of reservoir thickness on incremental CH4 production is 

negligible. However, as shown in Figure 5.4 a negative correlation is found between the 
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sequestrated CO2 and reservoir thickness. This phenomenon could be attributed to lower CO2 

saturation of fractures and matrix due to large reservoir thickness, if compared to saturation in 

a smaller thickness, which may result in a limited amount of injected CO2 displacing adsorbed 

CH4. However, more in-depth investigations are required to further confirm this observation. 

 

 

5.5.2. The Effect of Engineering Parameters on CO2-EGR 

Even though the significance impact of shale properties on CO2-EGR efficiency is undisputed, 

engineering parameters also play a considerable role in the process of enhanced shale recovery 

by CO2 injection. In this section of our analysis, several engineering parameters are analysed 

as shown in Figure 5.5.  

 

 

Figure 5. 5 Spearman correlation for injection engineering parameters 
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5.5.2.1. The Effect of Injection Scenario 

In our analysis we aimed to investigate the efficiency of enhanced CH4 recovery and 

sequestrated CO2 in shale gas under two injection scenarios of CO2, flooding and huff and buff. 

Our analysis clearly shows that huff-buff injection scenario is not the best option for CO2 

injection into shale reservoirs regardless of the effect of the soaking period as illustrated in 

Figure 5.5. Due to the typical cycle of soaking-production, the injected CO2 cannot efficiently 

migrate to the extension of shale reservoirs which significantly reduces the effect of CO2-CH4 

competitive adsorption, and injected CO2 is consequently re-produced very quickly. However, 

a noticeable amount of CO2 is simultaneously sequestrated which may explain the less effect 

of huff and buff on CO2 sequestration.   

These results further agree with the findings of previous simulation studies which agreed that 

huff and buff injection may not be a viable option for shale production enhancement and 

sequestration of CO2  [10, 30, 32, 55]. Moreover, the huff and buff scenario was found to reduce 

methane recovery if compared to no-injection scenario due the rapid backflow of injected CO2  

[7].Our Study indicates that continuous injection might be the best applicable option for CO2 

injection in shale reservoirs.  

 

5.5.2.2. The Effect of Fracture Conductivity and Permeability 

In our analysis, the conductivity and permeability of the hydraulic-fractures network are found 

to have substantial positive effect on enhanced CH4 production as well as CO2 storage as 

depicted in Figure 5.5. For example, fracture conductivity correlates positively by 44% to 

incremental recovery, and by 36% to CO2 storage. Theoretically, the fracture network promotes 

Darcy flow of free gas (free and desorbed) at an early stage of production and causes a larger 

pressure drop in the shale matrix. As a result, any increase in fractures conductivity will 

noticeably increase the rate of CH4 desorption. This obviously reduces adsorbed gas 

concentration around fractures and facilitates surface diffusion within shale matrix not only for 

desorbed CH4, but also for injected CO2, thus leads to faster and higher CO2-CH4 displacement 

rate. Therefore, a successful hydraulic-fractures network with effective values of permeability 

and conductivity is essential for CO2-EGR efficiency in shale reservoirs.  

 

5.5.2.3. The Effect of Injection Pressure 

According to our results, it is clearly shown that higher injection pressure increase the total 

enhanced CH4 production. Obviously, as the pressure difference between injection pressure 
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and reservoir pressure increases, more driving forces are initiated within the shale matrix [24]. 

As discussed earlier, surface diffusion is the key gas transport mechanism within organic nano-

pores where CO2-CH4 competitive adsorption takes place.  Although surface diffusion 

coefficient is independent on pressure [12], higher injection pressure reduces the flowing 

fraction leading more CO2 to diffuse and displace adsorbed CH4 towards producers [24].  

However, to some extent, injecting CO2 at high pressure increases dispersion coefficient 

(mechanical mixing of CO2-CH4) [24], consequently, early CO2 break-through of injected 

stream may occur. Therefore, the injection pressure effect on CO2 storage capacity is not 

significant as in enhancing CH4 production as shown in Figure 5.5, this finding was also 

obtained by Li, X. and D. Elsworth [31]. 

 

5.5.2.4. The Effect of Well Spacing  

Figure 5.5 depicts that the enhanced CH4 production decreases with increasing the space 

between CO2 Injectors and CH4 producers. The results are expected because with increasing 

well spacing, more pressure is maintained around CO2 injectors and less pressure transient 

extended into organic volumes due to the ultra-low matrix permeability, which results in a 

limited amount of CO2 migrating to the zone of CH4 producers. Although this phenomenon 

reduces CO2-CH4 displacement, it significantly mitigates CO2 breakthrough and increases CO2 

storage as shown in Figure 5.5.  

In summary, our results indicate that well spacing is a critical parameter that has a pronounced 

dual-effect on enhanced production as well as CO2 storage, if the distance between injectors 

and producers becomes far, the amount of stored CO2 increases while the cumulative CH4 

production decreases. Therefore, an optimal injector-producer spacing is essential for 

achieving the highest possible CH4 incremental production and minimizing CO2 reproduction. 

Also, our study presents thus far strong evidence that even though continuous injecting of CO2 

has been proven to unlock CH4 from shale organic surface, some of the desorbed CH4 flows 

towards producers while the remaining amount is trapped as free gas within matrix and 

fractures pores. 

 

5.5.2.5. The Effect of Fracture Half-Length 

In literature, fracture half-length has been identified as one of the most important parameters 

that has significant impact on primary shale production [19]. However, with enhancing shale 

production by CO2 injection, fracture half-length is found in our analysis to have a minor 
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positive effect on EGR as Figure 5.5 illustrates. The cumulative CH4 production tends to 

increase as fracture half-length increases. Despite no correlation between fracture half-length 

and CO2 storage is observed in our study, increasing fractures length could result in  CO2 early 

breakthrough [54]. Therefore, fractures half-length remains an optimal parameter that must be 

considered in CO2-EGR design.  

 

5.6 Conclusions and Implications  

The goal of this work is to present a screening tool of CO2-EGR efficiency and to delineate a 

practical framework of its application on a field scale. By further analysis of the previous CO2 

injection studies in literature, a statistical analysis of the comprehensive correlations among 

shale properties, engineering parameters, and CO2-EGR efficiency is presented. Our results 

offer some important insights into the selection criteria on the physical properties of the shale 

reservoirs and engineering parameters to yield maximum efficiency of CO2-EGR process.  

In reviewing the previous laboratory work and simulation studies, CO2 has proven to have an 

obvious preferential adsorption on shale organic materials over CH4. This result has made shale 

reservoirs potential targets for enhancing gas production and CO2 long-term geological 

sequestration, as one of the alternatives to CO2-EOR in sandstone oil reservoirs.  The amount 

of adsorbed CO2 and the amount of recovered CH4 in shale reservoirs are mainly dominated 

by several parameters of shale properties and engineering design. Therefore, we employed 

Spearman correlation analysis to identify the strength of the relationship between the examined 

parameters and the efficiency of CO2-EGR. Our statistical analysis lays a foundation for 

efficient CO2-EGR design and implementation and presents an important contribution to the 

field of reaching the target of net-zero CO2 emissions for energy transitions. The observations 

can be summarized as follows: 

1) Among shale properties, natural fractures permeability followed by TOC and the capacity 

of shale to preferentially adsorb CO2 over CH4 are the most significant shale parameters 

that have a positive effect on the recovered CH4, while shale porosities are found to have 

a negative impact. On the other hand, shale porosities and matrix permeabilities are found 

to have the most positive impact on CO2 storage.  
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2) Deep shale reservoirs are not favourable targets for both enhanced shale recovery and CO2 

sequestration because desorption of CH4 becomes insignificant with the increase in 

reservoir depth. 

3) CO2 flooding might be the best applicable option for both enhanced CH4 recovery and CO2 

sequestration in shale reservoirs, whereas huff and buff scenario does not seem to be a 

viable option because the injected CO2 cannot efficiently migrate into shale matrix and 

consequently the injected CO2 is then more likely to be re-produced very quickly. 

4)  Successful hydraulic-fractures network with effective values of permeability and 

conductivity is essential to achieve the maximum CO2-EGR efficiency in shale reservoirs. 

5) Higher injection pressure is favourable to increase the total enhanced CH4 production. 

However, to some extent, injecting CO2 at high pressure increases mechanical mixing of 

CO2-CH4 which may result in early CO2 break-through.  

6) Well spacing and fracture half-length are crucial optimal features in CO2-EGR process 

design. As the distance between injectors and producers becomes far, the storage capacity 

of CO2 increases while the cumulative CH4 production decreases. 

7) Within the range of investigated parameters, the effect of reservoir temperature, thickness, 

and organic permeability are negligible.  

 

The results obtained from our correlation analysis provide more demonstration necessary to 

manage and predict and predict the efficiency of CO2-EGR. In our future work, the strength 

and the direction of the relationship between the examined will be the criteria for features 

selection to adapt the best predictors for machine learning (ML) modelling. The findings should 

make an important contribution to ML-based modelling which will enable the industry to 

accurately predict the incremental enhanced CH4 by CO2 injection in shale gas reservoirs. 
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Chapter 6. Application of Supervised Machine Learning to 

Predict the Enhanced Gas Recovery by CO2 Injection in Shale 

Gas Reservoirs 

 

6.1 Abstract 

The technique of Enhanced Gas Recovery by CO2 injection (CO2-EGR) into shale reservoirs 

has brought increasing attention in the recent decade. CO2-EGR is a complex geophysical 

process that is controlled by several parameters of shale properties and engineering design. 

Nevertheless, more challenges arise when simulating and predicting CO2/CH4 displacement 

within the complex pore systems of shales. Therefore, the petroleum industry is in need of 

developing a cost-effective tool/approach to evaluate the potential of applying CO2 injection 

to shale reservoirs. In recent years, machine learning applications have gained enormous 

interest due to their high-speed performance in handling complex data and efficiently solving 

practical problems. Thus, this work proposes a solution by developing a Supervised Machine 

Learning (ML) based model to preliminary evaluate CO2-EGR efficiency. Data used for this 

work was drawn across a wide range of simulation sensitivity studies and experimental 

investigations. In this work, Linear Regression and Artificial Neural Networks (ANNs) 

implementations were considered for predicting the incremental enhanced CH4. Based on the 

model performance in training and validation sets, our accuracy comparison showed that 

(ANNs) algorithms gave 15% higher accuracy in predicting the enhanced CH4 compared to the 

linear regression model.   To ensure the model is more generalizable, the size of hidden layers 

of ANNs was adjusted to improve the generalization ability of ANNs model. Among ANNs 

models presented, ANNs of 100 hidden layer size gave the best predictive performance with 

the coefficient of determination (R2) of 0.78 compared to the linear regression model with R2 

of 0.68. Our developed ML-based model presents a practical, reliable, and cost-effective tool 

which can accurately predict the incremental enhanced CH4 by CO2 injection in shale gas 

reservoirs. 
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6.2 Introduction 

Global energy demand for natural gas has been continuously growing in the last decade and is 

expected to continue growing due to the forecasted exponential demand of recovered 

economics after Covid-19 outbreak [1]. Against this trend, global energy has been exhausting 

fossil fuel natural gas supply and therefore the conventional gas resources are currently unable 

to meet the accelerated demand.  The recent emerging technologies of hydraulic fracturing and 

horizontal drilling have shifted attention towards shale gas reservoirs and made their reserves 

commercially achievable [152].  According to [1], shale gas is the fastest growing component 

of natural gas resources and is projected to account for 22% of global natural gas production 

by the end of 2050. Moreover, the continuous growing technologies in shale gas development 

are anticipated to encourage shale gas exploitation in more counties such as Mexico and 

Algeria. Figure 6.1 depicts natural gas production in bcf/d from shale and other natural gas 

resources for the big six counties in 2015 and 2040. 

 

 

Figure 6. 1 Shale gas production from shale and other resources in selected counties in 2015 and 

2040 [153] 

 

Shale formations are considered as self-contained reservoirs that contain considerable amounts 

of natural gas [154]. These shales are extremely low in permeabilities, therefore, the primary 

shale gas production shows a very low recovery factor (up to 30%) caused by the dramatic 

decline during the early stage of development [123]. This highlights the essential need to 

develop methods to improve shale gas recovery.  Thus, the techniques of enhanced shale gas 

BCF/day 
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production such as gas injection and re-fracturing have brought increasing attention in the 

recent decade [3]. 

In gas shales, during thermal maturation, shales generate hydrocarbons and organic matter 

which can be referred to the total organic content (TOC) [60]. Typically, gas content in shale 

gas reservoirs is composed of free gas stored in nanopores, adsorbed gas on the surface of 

organic matter, and dissolved gas in formation liquids [114].  Since dissolved gas is negligible, 

adsorbed gas has been considered as the key component in shale recovery as it may account 

for up to 85% of total gas content [155]. Therefore, in organic-rich shales, releasing the 

adsorbed gas has been an increasingly important area in enhancing shale gas recovery. In 

literature, CO2 injection into shale gas reservoirs has been perceived as an effective technique 

to unlock the adsorbed CH4 and hence enhance shale recovery [10, 23, 34, 156]. Experimental 

investigations have shown that CO2 has a greater adsorption affinity than CH4 at a ratio of 5:1 

when both co-exist within shale organic matter [23]. In other words, the preferential adsorption 

capacity has initiated a mechanism not only for enhanced shale recovery, but also for CO2 

geological sequestration. As a result, shale reservoirs have become potential targets for long-

term geological CO2 sequestration. Clearly, CO2-EGR technology offers a mechanism for CO2 

storage at a reasonable cost to mitigate the adverse effect of anthropogenic CO2 emissions 

which are strongly related to the global concern of climate change [24, 25].   

Enhanced shale recovery by CO2 injection (CO2-EGR) is a displacement process which is 

mainly controlled by pressure and competitive adsorption between CH4 and CO2 [157].  Upon 

injecting, competitive adsorption phenomenon takes place where CO2 molecules start to release 

adsorbed CH4 from organic surface, and desorbed CH4 transports by surface diffusion towards 

fractures and producers diffusion, the desorption process provides additional recovery 

accounting for up to nearly 59% [33] with a potential of permanent sequestration up to100% 

of the injected CO2  [10, 72].  

Numerical reservoir simulation techniques are widely accepted as indispensable tools for 

realistic prediction and evaluation of reservoir performance [22]. Since enhanced shale 

recovery by CO2 injection technology has not been commercialised yet, reservoir simulation 

studies have offered a preliminary stage of CO2-EGR efficiency evaluation on a field-scale. 

Thus, there has been a large volume of simulation studies investigating the applicability of 

CO2-EGR to several shale types and the effectiveness of different injection scenarios. In 

literature, few studies have been made to evaluate the performance of huff-and-puff injection 
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[7, 10, 28, 32, 55], while great attention was paid to flooding injection scenario such as studies 

done by [30, 33, 56, 57]. Moreover, some of previous studies have employed multi-porosity 

and permeability model to accurately simulate gas transport mechanism within shale organic, 

inorganic, and fractures [28, 32]. In recent simulation work, multi-components effect of gas 

transport and adsorption has been taken into consideration [44, 54].  Nevertheless, challenges 

arise when simulating CO2 /CH4 displacement within the complex pores system of shales and 

quantifying the efficiency of CO2-EGR. It is widely accepted that numerical modelling of shale 

reservoirs has presented unique challenges not only for the heterogeneity nature of shale 

petrophysical properties, texture, and TOC, but also for the complex storage and transport 

mechanisms of free and adsorbed gas [53, 58]. However, CO2-EGR is a more complex 

geophysical process that is controlled by several parameters of shale properties [20, 45] and 

engineering design [7, 54]. For these reasons, more difficulties and challenges arise in 

modelling CO2-EGR process in shale reservoirs. Considering both the cost of field injection 

test and many uncertainties in the numerical simulation process, the petroleum industry 

therefore requires a cost-effective tool/approach to evaluate the potential of applying CO2 

injection to shale reservoirs. Thus, this work proposes a solution by employing Machine 

Learning (ML) based regression models for preliminary evaluation of CO2-EGR efficiency. In 

this study, we used correlation analysis and different ML algorithms to provide a new approach 

for CO2-EGR efficiency prediction. To the best of our knowledge, this is the first study so far 

considering ML applications to predict and evaluate the process of CO2 injection in shale gas 

reservoirs.  The Motivation behind our model is to present a reliable and cost-effective tool 

which can manage and accurately predict the incremental enhanced CH4 by CO2 injection in 

shale gas reservoirs. 

6.3 Methodology 

6.3.1. Machine Learning Methods 

Machine-Learning (ML) is the field that gives computers the ability to learn without  being 

explicitly programmed [158]; in other words, a set of algorithms that use data or past experience 

to optimise a performance criterion [159]. Typically, the provided dataset is known as a 

‘training set’ which is structured into pairs of input and outputs. In literature, the input variables 

are called “features” or “predictors”, and usually defined as ‘independent  variables”, while the 

terms ‘dependent variables” and ‘responses’ refer to the output variables [160]. Hence, the 

main purpose of learning is to infer a function to model the dependency between inputs and 
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outputs. The statistical learning framework distinguishes two types of outputs: quantitative 

outputs when the prediction is ‘regression’ task, and qualitative outputs when the prediction is 

‘classification’ task [160]. 

 

Compared to human learning, ML handles large and complex data easier and learns much faster 

[161]. In recent years, ML applications have gained enormous interest due to their high-speed 

performance in handling complex data and efficiently solving practical problems. Since their 

revolution, ML applications have been broadly applied to various domains such as medical 

applications, biochemical,  natural language processing, finance, and social media services 

[74]. Commonly, the processed datasets associated with the oil and gas industry are huge, 

complex in terms of correlation [75] . Thus, the applications of ML have also been extended to 

several areas in the oil and gas industry [76]. Recently, ML algorithms have been widely used 

to enhance and resolve several reservoir engineering aspects such as permeability prediction 

[77, 78]. Additionally, ML-based models have been created and employed for production 

estimation and optimization in several studies presented in literature [79, 80]. Furthermore, 

supervised ML models have demonstrated potential solution for several issues in the industry, 

for example the ML model presented by [81] for early fault prediction of centrifugal pump in 

the process engineering, and the ML based approach to monitor CO2 geological sequestration 

and simulate CO2 leakage [40].  

Since the purpose of ML is to learn from data and employ different algorithms to solve the 

problem, there are many kinds of ML algorithms. The selection of algorithm used is basically 

depending on the kind of the problem, variables, and the suitable model to solve the problem 

[158]. The commonly used algorithms in ML are: 

 

Supervised Learning  

In broad data scientist terms, supervised learning can be defined as learning a mapping between 

input variables (features) and output variable (target) based on provided data, and then applying 

this map for unseen data to predict the target [162]. Figure 6.2 illustrates the standard workflow 

of supervised ML.  
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Figure 6. 2 The standard workflow of supervised ML 

 

There are many supervised ML methods for both classification and regression problems. Brief 

descriptions of commonly employed supervised learning methods are given below: 

 

a) Support Vector Machine SVMs 

SVMs method was firstly introduced to solve classification and non-linear problems [163]. 

Currently, SVM algorithms are using kernel complex mathematical functions including linear, 

polynomial, splines and radial basis [74]. The basic role of SVM classification methods is 

formulating functions to find the optimal  hyperplanes to separate the different classes in 

training data [162]. Such ways in solving problems can be expressed as ‘optimization’ where 

the larger margin between various classes in the training data gives the best hyperplanes 

(smaller SVM optimization) [164]. Since SVM can adopt generalization properties, overfitting 

is effectively avoided in the training phase [165]. However, the main disadvantage of SVM is 

the high computational burden and long training time associated with large datasets [77]. 

 

b) Artificial Neural Networks (ANNs)  

Artificial Neural Networks (ANNs) is a widely used ML method which is based on simulating 

the human brain in processing data [166]. ANNs Are typically represented by layers, each layer 

consisting of many neurons or nodes [167]. Input layers are connected to the output layer 

through one or more hidden layers [164].   ML by ANNs is obtained by updating the weights 

between nodes after every success training iterations to ensure the performance of the network 

is improved [168]. ANNs method has applications in various industry segments in particular 

performing segmentation tasks in finance and business domain [74]. 
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c) Decision Tree (DT)  

Decision Tree mechanism works through sequential models which originally composed of 

smaller subsequent tests [169].  From the set of tests results, the model finally develops a 

decision tree which is constructed of two types of nodes; branch nodes and leaf nodes [170].  

DT is one of the most powerful methodologies of classification and regression problems which 

has been widely used in chemical and medical fields [171].  It is widely accepted that DT 

technique is found to present best performance when performing classification tasks [172].  

 

d) Random Forests (RF) 

Random Forest (RF) method is an ensembled classification approach which utilize a group of 

classifiers and aggregate their results [173]. As the name suggests, RF is a combination of tree 

predictors. However, unlike normal DT, the best randomly chosen classifiers are used to split 

each node [174]. Therefore, it is a simply-applied technique since it has mainly two parameters; 

the number of variables at the random subset of classifiers at each node, and the number of 

trees [175]. 

 

 

Unsupervised Learning 

Unsupervised learning algorithms are basically used for clustering and dimension reduction 

[176]. Unlike supervised learning, the labels are not provided, hence the task of unsupervised 

algorithms is to identify the correct patterns in the data and present features [177]. The 

previously recognized patterns and features are then used to solve clustering problems in new 

raw data [176]. Therefore, due to the proliferation of unlabeled data, unsupervised ML methods 

have numerous applications as  they are capable of automatically discovering and presenting 

patterns in the dataset [178]. However, compared to supervised learning, unsupervised learning 

techniques are less powerful since the answers in the training data enable an obvious criteria 

for model optimisation [162].  Figure 6.3 depicts a simple workflow for unsupervised learning 

to solve clustering problems. 
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Figure 6. 3 A simple workflow for unsupervised learning to solve clustering problems. 

 

 

Reinforcement Learning 

The concept of Reinforcement Learning is significantly different from supervised and 

unsupervised learning. Reinforcement learning is a goal-directed approach aimed at learning 

the best way to fulfil a task which is obtained through the repeated interactions with its 

environment [179]. As illustrated in Figure 6.4, reinforcement learning algorithms receive 

interaction (observations) from the environment as well as reward which measures the behavior 

response in accomplishing the task [180]. 

 

 

Figure 6. 4 Represents a basic workflow reinforcement learning  

 

Since there are numerous studies in literature investigating CO2-EGR and providing an 

extensive range of resources which contain independent and dependent variables, a supervised 

ML approach was employed in this study to further investigate the potential of enhanced shale 

recovery in unseen data of shale reservoirs. In this work, the input dataset for our ML-based 

model consists of 63 injection scenarios data presented in literature spanning the years 2009 - 

2019. Dataset for this work was constructed by shale properties and engineering parameters 
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(independent variable or features), and incremental recovery factor due to CO2 injection 

(dependent variable or target). Among those independent variables, the variables that have the 

most effect on the target were selected as the best predictive for our model. Afterwards, the 

data was normalized, and several supervised ML models’ performance were tested and 

compared. In this work, Linear Regression and Artificial Neural Networks (ANNs) 

implementations were considered for predicting the incremental enhanced CH4. As previously 

described, by training the model and selecting the best performance based on validation 

outcomes, our predictive model was able to perform prediction (regression) task for accurately 

predicting the efficiency of CO2-EGR.  

 

6.3.2. Exploratory Data Analysis 

The efficiency of applying CO2 injection into shale reservoirs is mainly controlled by shale 

properties and engineering parameters. To increase the reliability of the model, data used for 

this work aimed to cover flooding and huff and puff injection scenarios that have been applied 

to various shale types under different engineering parameters such as well spacing, injection 

pressure, and injection rate. Table 6.1 illustrates the wide range of shale properties and 

engineering design parameters in our dataset. The boxplots in Figure 6.5 show the range of the 

main shale properties, incremental RF, and sequestrated CO2 in our dataset. Moreover, the 

dataset in this work is drawn across a wide range of resources available in literature with data 

being gathered from two main sources: simulation sensitivity studies and experimental 

investigations. In this work, total data for 63 CO2 injection scenarios were collected which 

consist of: 9 experimental cases and 54 simulation cases. Table 6.2 shows the breakdown of 

the studies and shale types used in our dataset.  

Table 6. 1 The wide range of shale properties and engineering design parameters in our dataset 

Parameter Mean Standard 

deviation 

Minimum Percentile 

25% 

Percentile 

50% 

Percentile 

75% 

Maximum 

Pressure, psi 6792.673 10886.48 780 1396.603 2140 4582.783 48643.61 

Temperature, F° 120.8826 41.2604 85 90.82959 106 150 302 

Reservoir thickness, ft 255.3311 411.2362 3.28084 100 200 300 2913 

Depth, ft 4770.73 1766.632 1378 3720 4102.761 5670 9842.52 

Matrix permeability, 

md 

0.002199 0.005642 5E-20 5.7E-07 0.000236 0.00052 0.018 
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Organic permeability, 

md 

0.002293 0.005607 0.000005 0.000228 0.00038 0.00052 0.018 

Natural fracture 

Permeability, md 

2.130345 14.42826 5E-10 0.00227 0.00321 0.00712 100 

TOC, % 3.92 0.252982 3.2 4 4 4 4 

Matrix porosity, % 4.677407 2.421882 1 2.9 4.1 6.875 10 

Organic porosity, % 2.024052 3.097961 0.0352 0.0505 0.06 4.125 10 

Natural fracture 

porosity, % 

1.966663 3.717878 0.00004 0.029 0.0352 0.7075 14 

 CH4 Langmuir 

volume, scf/ton  

91.22467 120.5147 38.9 39.2 51 90.05 741.615 

 CO2 Langmuir 

volume, scf/ton  

287.4234 481.5702 10.2 74.375 183.6 232.98 2189.53 

 CH4 Langmuir 

pressure, psi 

1302.016 420.1904 145 1000 1458.705 1596 1765.537 

 CO2 Langmuir 

pressure, psi 

36257.35 248008.9 493 973.4727 1253.13 1254 1754870 

Injection scenario  0.698113 0.46347 0 0 1 1 1 

Sequestrated CO2, % 0.350409 0.378015 0 0 0.2 0.7 1 

 Incremental RF, % 0.086263 0.094658 -0.047 0.0105 0.07 0.1385 0.34 
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Figure 6. 5 Boxplots show the range of the main shale properties, incremental RF, and sequestrated 

CO2 in our dataset 

 

 

 

 

 

 



 
72 

 

Table 6. 2 The breakdown of shale types and number of cases for each study used in our dataset 

Shale Type Study  

No of 

injection 

Cases 

Methodologies/Assumptio

ns 
Author 

Devonian 
Numerical 

Simulation 
6 

• Huff-n-puff 

• Dual porosity and 

permeability model 

[10] 

Synthetic 

Numerical 

Simulation 
4 

• Flooding 

• Discrete fracture network 

model 

• Multi porosity and 

permeability model 

[34] 

Numerical 

Simulation 
2 

• Flooding 

• Dual porosity and 

permeability model 

• Diffusion model 

[57] 

Numerical 

Simulation 
3 

• Flooding 

• Non-Darcy effect 

• Instant sorption model 

[29] 

Marcellus 
Numerical 

Simulation 
9 

• Flooding 

• Multi porosity and 

permeability model 

[33] 

New Albany 
Numerical 

Simulation 
2 

• Flooding / huff-n-puff 

• Dual porosity and 

permeability model 

• Diffusion model 

• CO2 dissolution 

[32] 

Barnett 

Numerical 

Simulation 
3 

• Flooding 

• Dual porosity and 

permeability model 

[31] 

Numerical 

Simulation 
4 

• Flooding / huff-n-puff 

[7] 

Numerical 

Simulation 
14 

• Flooding / huff-n-puff 

• Multi porosity and 

permeability model 

• CO2 dissolution 

[30] 
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• Stress-dependent model 

Yanchang 

Numerical 

Simulation 
4 

• Flooding 

• Diffusion model 
[72] 

Numerical 

Simulation 
2 

• Flooding 

• Geochemical interaction 

effect. 

[27] 

Silurian 

Longmaxi 

Numerical 

Simulation 1 

• Huff-n-puff 

• Multi porosity and dual 

permeability model 

• Diffusion model 

[28] 

Experimental 

Study 
9 

• Flooding 

• New NMR experimental 

approach 

[26] 

 

The occurrence of missing values in real-world data arise frequently when recording or 

processing data [138]. According to [181] , the main categories of missing data are:  

1. Missing Completely at Random (MCAR) when the missing date is unrelated to any 

observation in dataset. 

2.  Missing at Random (MAR) when the missing data are related to the dataset, but the 

actual missing values are random. 

3. Missing at Random (MNAR) when the missing data are related to the dataset, but the 

actual missing values are not random. 

Typically, removing rows or columns that have null values, and imputing methods are the 

common techniques for handling missing data problems.  Typically, there is no preferred 

method of handling the missing data, but  the applicability of each technique becomes more 

fitting under a specific condition [140]. The common methodology of handling the missing 

values with examples from our dataset are shown in Table 6.3 below: 
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Table 6. 3 The methodology used for handling the missing values in our dataset 

Type of missing data Solution  Example 

Missing Completely at random 

(MCR) 
Deleting Not present in our dataset 

Missing at Random (MAR)  Deleting Missing reservoir thickness 

Missing Not at Random 

(MNAR) that can be predicted 

using shale data 

Imputation Missing TOC- Pressure 

 

Imputation approach taken in handling (MNAR) in our dataset is the median method using the 

typical data for shale type. For example, missing petrophysical values for Barnett shale such 

as TOC were imputed from the typical data for the Barnett shale listed in our dataset. However, 

if a value is missing for a synthetic shale type, the variable was imputed using the data of all 

shale types.  

6.3.3. Feature Selection 

Correlation analysis is one of the most widely used approaches to denote the relationship 

between two or more quantitative variables. The result of correlation analysis is known as “ 

Correlation Coefficients” which identify the strength and the direction of the linear relationship 

between variables [182]. The values of correlation coefficients range from -1 to +1, where -1 

indicates a strong negative correlation, and +1 indicates a strong positive correlation. In ML 

based modelling, the end results of correlation analysis are important not only for 

understanding the dependency between input and output variable, but also for features 

(predictors) selection. Features selection is commonly used in data pre-processing to reduce 

data size and adapt the best predictors for modeling.  Reducing the features set is significant 

because a  high number of features typically causes model overfitting which in return reduces 

model validation accuracy [183].  

In this study, Spearman correlation coefficient method [148] was used to identify the 

relationship between the features and target in our dataset. The features in our data set can be 

categorized into two sets: shales properties and engineering parameters. The approach taken in 

this study aimed to use the properties of shale reservoirs to predict the incremental CH4 

recovery by CO2 injection, rather than using engineering parameters of induced fractures and 
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injection. Therefore, shale gas properties and injection scenario (flooding or huff-puff) were 

only considered as the features set in our prediction. As shown in Figure 6.6, Spearman 

coefficient summarizes the direction (positive or negative) and the strength (0- +100% or -

100%) of correlation between shale properties and enhanced methane recovery across our 

dataset. The results obtained from correlation analysis indicate that natural fractures 

permeability followed by the injection scenario, total organic content (TOC) and the capacity 

of shale to preferentially adsorb CO2 over CH4 are the most significant shale parameters that 

have a positive effect on CO2-EGR efficiency, while a significant negative correlation was 

found between shale porosities and enhanced CH4 production.  Reservoir depth and pressure 

were found to have a negative impact. In addition, our results also showed a minor impact of 

reservoir depth, pressure, and temperature on the enhanced CH4 production. It can also be 

concluded from our results that the effect of matrix and organic permeabilities, and reservoir 

thickness is negligible. 
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Figure 6. 6 Spearman correlation between shale properties and incremental CH4 

Hence, we have based our criteria for features selection upon the end results of correlation 

coefficient analysis shown is Figure 6.6 and assuming the chosen threshold for correlation 

coefficient is ± 40%., the selected predictors for our model were to be natural fracture 

permeability, injection scenario, TOC, matrix porosity, and CO2 preferential adsorption. Figure 

6.7 shows the correlation analysis between the selected features only and the incremental CH4 

recovery.  

To further explain the impact of the selected predictors on incremental CH4 recovery, it is worth 

to mention that natural fracture permeability is the most influential parameter since higher 

fracture permeability causes larger pressure drop in natural fractures which facilitates free and 

desorbed gas transport from shale matrix to fractures network. Obviously, TOC and CO2 

preferential adsorption have also a significant impact because the key mechanism of enhanced 

shale recovery is releasing CH4 from the surface of organic matter, therefore, the greater TOC 
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increases competitive adsorption of CO2-CH4 and hence increases the contribution of desorbed 

CH4 to the total shale production. On the other hand, matrix porosity shows a strong negative 

impact on CH4 production. The main reason for that is molecular diffusion of CO2 decreases 

with increasing shale porosity which in return mitigates desorbed gas transport towards shale 

matrix and fractures. In terms of the injection scenario, CO2 flooding might be the best 

applicable option for CO2 injection in shale reservoirs, whereas the huff and buff scenario does 

not seem to be a viable option. Due to the typical cycle of soaking-production, the injected CO2 

cannot efficiently migrate to the extension of shale reservoirs which significantly reduces the 

effect of CO2-CH4.   

 

Figure 6. 7 Spearman correlation between the selected features and incremental CH4 

 

 



 
78 

 

6.3.3. Model Training and Validation 

To estimate the predictive performance of our model, Scikit-learn train-test-split was used to 

randomly split our dataset into train and validation subsets. Training subset is a sample of data 

from which ML algorithms learn and discover the pattern between predictors and target(s). On 

the other hand, a validation subset is a sample of data not used in training where ML algorithms 

apply the identified pattern, and the model is then tuned to the best predictive performance. In 

our dataset, the ratio of training/validation was selected to be 80/20 which is very common in 

small datasets.  

After the models are proposed, an evaluation criterion must be adopted for comparison.  

Therefore, for both training and validation, R-squared (R2) was employed to assess the degree 

of model-accuracy.  R-squared is a statistical measure of fit which indicates how much 

variation in the response is explained in a regression model [184]. Practically, R-squared (R2) 

values range from −∞ which indicates no relationship between the predicted variables and the 

observed data, to 1 which indicates all the variance are explained in the model. R-squared can 

be mathematically expressed as: 

 

𝑅2 = 1 −  
sum squared regression 

total sum of squares 
 Equation (6.1) 

 

 

 

6.4 Model Selection 

In this work, Linear Regression and Artificial Neural Networks (ANNs) implementations are 

considered for predicting the incremental enhanced CH4 by CO2 injection. We used the 

available libraries of Python which is an open-source programming language to support the 

process of modelling and calculations. As mentioned earlier, the ratio of training/validation 

was kept the same for both models. In order to produce the same results across the runs, the 

Random State parameter was fixed and specified to 42 which corresponds to the seed of 

randomness. Technically, a fixed value of Random State is essential to allow a model to use 

the same training and validation sets for each run.   Afterwards, each set was uniformly 

normalized.  In the training and validation figures below, the observed data were represented 

by the dotted line and the predicted values were represented by the solid line. Finally, the 
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performance of these two models was evaluated by comparing R-squared (R2) values for the 

validation runs.  

 

6.4.1. Linear Regression Model  

First, the effect of applying a Linear Regression model for prediction was examined. Figure 

6.8 shows the prediction obtained for the training set while Figure 6.9 shows the validation 

results by using linear regression model. The value of R-squared (R2) obtained for the linear 

regression model was 0.68 which indicates that the variance explained by the model was about 

68%. 

 

 

Figure 6. 8 Prediction of enhanced gas recovery- training set for linear regression model 

 

 

 

Figure 6. 9 Prediction of enhanced gas recovery- validation set for linear regression model 
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6.4.2. Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) method was considered and compared to the linear 

regression model. In the theory as mentioned earlier, ANNs are typically represented by layers, 

each layer consists of many neurons or nodes where the input layers are connected to the output 

layer through more hidden layers as shown in Figure 6.10.  

 

 

 

 

Figure 6. 10 ANNS connected layers and outputs [185] 

Similarly, Figure 6.11 shows the prediction obtained for the training set while Figure 12 shows 

the validation results by using ANNs model with a hidden layer’s size of 100. The value of R-

squared (R2) obtained from ANNs model was 0.78 which indicates that the performance of 

prediction has been significantly improved compared to Linear regression model. However, 

the generalization ability of ANNs can be improved by adjusting the weights of layers 

connection. Therefore, we attempted to obtain a better performance by updating the hidden 

layer size. The first run, the hidden layer size was increased to the range of (110-130), while 

the second run, the hidden layer size was decreased to the range of (3-20). The summary of the 

size of hidden layers used and the corresponding R-squared (R2) are summarized as shown in 

Table 6.4. 
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Figure 6. 11 Prediction of Enhanced Gas Recovery- Training Set for Neural Network Regression 

Model 

 

 

Figure 6. 12 Prediction of Enhanced Gas Recovery- Validation set for Neural Network Regression 

Model 

 

 

 

Table 6. 4 Overall performance comparison of linear regression and ANNs models 

Model 
R-squared 

(R2)   
Configurations 

Linear Regression 0.68 NA  

Artificial Neural Networks 

(ANNs) 
0.78 Hidden layer sizes = 100 
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Artificial Neural Networks 

(ANNs) 
0.69 Hidden layer sizes = 3-20 

Artificial Neural Networks 

(ANNs) 
0.67 Hidden layer sizes = 110-130 

 

It can be seen in Table 6.4 that using ANNs resulted in increasing R-squared (R2) value 

compared to the linear regression model which reflects about 15% improvement in the 

prediction accuracy. As shown in the same table, adjusting the layer size has significantly 

reduced the model accuracy. Among ANNs models presented, ANNs of 100 hidden layer size 

had the best predictive performance with R-squared (R2) of 78%. Nevertheless, the highest 

possible accuracy of our model seems to be not ideal. The main explanation for that is, in 

simplistic terms, the high heterogeneity of shale gas coupled with the complexity of factors 

driving CH4-CO2 displacement, can lead to wider uncertainty and difficulties in predicting the 

enhanced CH4. Additionally, model accuracy is not only dependent on the features of 

prediction, but also on the volume of the training and validation sets. Therefore, it is generally 

believed that a larger dataset will result in a better predictive performance.  

The best model which performed more accurately and gave better generalization ability is 

ANNs model with the hyper-parameters shown in Table 6.5.   

 

 

Table 6. 5 Hyper-parameters for the selected ANNs regression model 

Parameter  Value   

Alpha_1 0.0001 

Alpha_2 0.999 

Hidden layer sizes 100 

Momentum 0.9 

Initial learning rate 0.001 

Random state 42 

Validation fraction 0.1 
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Epsilon 1e-08 

Power t 0.5 

Tol  0.0001 

 

 

 

 

6.5 Conclusion 

ML applications have been broadly applied to various domains due to their high-speed 

performance in handling complex data and efficiently solving practical problems.  CO2-EGR 

is a complex geophysical process that is controlled by several parameters of shale properties 

and engineering design of injection which raises difficulties and challenges in modelling and 

predicting CO2-EGR in shale reservoirs. Thus, this work presents a ML based regression model 

to preliminary evaluate CO2-EGR efficiency. Our features selection concludes that our ML 

model based on natural fractures permeability, TOC, matrix porosity, and the CO2 preferential 

adsorption ratio can effectively predict the enhanced CH4 recovery in shale reservoirs due to 

CO2 injection.  

In this work, Linear Regression and Artificial Neural Networks (ANNs) implementations were 

considered for predicting the incremental enhanced CH4. For both models, R-squared (R2) was 

employed to assess the degree of model-accuracy. Based on the model performance in training 

and validation, our accuracy comparison showed that (ANNs) algorithms gave 15% higher 

accuracy in predicting the enhanced CH4 compared to the linear regression model.   To ensure 

the model is more generalizable, the size of hidden layers of ANNs was adjusted to improve 

the generalization ability of ANNs model. Among ANNs models presented, ANNs of 100 

hidden layer size gave the best predictive performance with the coefficient of determination 

(R2) of 0.78 compared to the linear regression model with R2 of 0.68.  

 Our results demonstrated that the high heterogeneity of shale gas coupled with the complexity 

of factors driving the process CH4-CO2 displacement, can lead to wider uncertainty and 

difficulties in predicting the enhanced CH4. Additionally, model accuracy is not only dependent 

on the features of prediction, but also on the volume of the training and validation sets. 

Therefore, it is generally believed that a larger data set will result in better predictive 

performance. Our developed ML-based model presents a practical and reliable and cost-
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effective tool which can accurately predict the incremental enhanced CH4 by CO2 injection in 

shale gas reservoirs. 
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Chapter 7. Conclusions and Recommendations 

 

7.1 Conclusions 

The technique of Enhanced Gas Recovery by CO2 injection (CO2-EGR) has drawn great 

attention to shale reservoirs as potential targets for enhancing gas production and CO2 long-

term geological sequestration. The adsorbed gas is an important component in shale primary 

production as it contributes significantly to maintaining the long-term production plateau and 

plays the key role in CO2-EGR which is mainly driven by the desorption process. However, 

the factors governing the desorption behavior have not been elucidated, presenting a substantial 

impediment in managing and predicting the performance of shale gas reservoirs. On the other 

hand, upon injection, a complex geophysical process takes place which is controlled by several 

parameters of shale properties and engineering design. Due to this complexity and the 

heterogeneity of shale reservoirs, there are still uncertainties in determining the main factors 

that control CO2-EGR process. Moreover, more challenges arise when simulating and 

predicting CO2/CH4 displacement within the complex pore systems of shales. Therefore, this 

thesis aims to clarify several aspects of adsorbed gas contribution to total shale primary 

production and presents tools to evaluate, manage and predict the efficiency of enhanced gas 

recovery and CO2 sequestrations in shale reservoirs. In addition, this thesis provides a 

comprehensive investigation on the correlation between shale properties as well as engineering 

parameters and the efficiency of CO2-EGR which helps the industry to conceptual 

understanding when designing and implementing CO2-EGR in shale reservoirs. Furthermore, 

this thesis develops for the first time a ML model which can predict the incremental enhanced 

CH4 by CO2 injection in shale gas reservoirs. 

The methodological approach taken in this study is a combination of numerical reservoir 

simulation, statistical analysis, and ML modelling. For numerical simulation study, a predictive 

model of Barnett shale reservoir was generated using data in the public domain. The key input 

parameters were defined in the model within the range which consists with that presented in 

literature for the realistic shale data. The model then employed multi-porosity and multi 

permeability model incorporating Langmuir isotherms and instant sorption option. 

Furthermore, the model was calibrated using core data analysis from literature for Barnett 

shales. Then, sensitivity analysis was performed on a range of reservoir depth and TOC to 
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quantify and investigate the contribution of adsorbed gas to total gas production with respect 

to reservoir depth and TOC. A statistical analysis was performed to identify the strength of the 

relationship between shale properties and engineering design parameters and the efficiency of 

CO2-EGR.  For most of the generalizable results, we gathered data across the available studies 

in literature on a wide subset of numerical modelling studies and experimental investigations. 

The approach taken in this analysis study is Spearman correlation coefficient to identify the 

direction and the strength of correlation in the dataset. Finally, the obtained results from the 

statistical analysis were employed to adapt the best predictors (features) to develop a ML 

model. The developed model is a supervised ML based regression model which can predict the 

incremental enhanced CH4 by CO2 injection in shale gas reservoirs.  

The main findings to emerge from this thesis are summarized below: 

7.2 Effect of Reservoir Pressure and Total Organic Content on Adsorbed Gas 

Production in Shale Reservoirs: A Numerical Modelling Study 

From a shale gas primary production perspective, our results show that reservoir depth has a 

significant effect on the contribution of adsorbed gas to shale gas production. The sensitivity 

outcomes prove that regardless of TOC, adsorbed gas production decreases with increasing 

reservoir depth. Furthermore, the results suggest that adsorbed gas may contribute up to 26% 

of the total gas production in shallow (below 4,000 feet) shale plays. 

On the other hand, as expected, TOC is found to have a substantial positive impact on the 

contribution of adsorbed gas to total shale production. For example, increasing TOC from 4 to 

8% at a given reservoir depth results in increasing the cumulative adsorbed gas production by 

about 70%. However, the impact of TOC on the contribution of adsorbed gas production 

becomes minor with increasing reservoir depth.  

This study highlights the importance of Langmuir isothermal behavior in shallow shale plays 

where the adsorbed gas plays a key role in total shale production. These findings also have 

important implications for characterisation, development, and prediction of shale gas reservoirs 

with respect to reservoir depth and TOC. Since our simulation results revealed that shallow 

shale reservoirs are found to produce more adsorbed gas compared to deep shales, injecting 

CO2 into shallow shale reservoirs (rich in TOC) would give an improved outcome to unlock 

the adsorbed gas and sequestrate CO2. This significant finding has been studied and tested and 

proved using the statistical analysis approach in Chapter. 5. Moreover, the results present a 
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significant contribution to the energy transition to the net-zero target of CO2 emissions by 

demonstrating important insights into the application of enhanced shale gas recovery and CO2 

sequestration.  

 

7.3 The Controlling Factors on Enhanced Gas Recovery by CO2 Injection in 

Shale Gas Reservoirs  

Since the efficiency of CO2-EGR is mainly dominated by several parameters of shale properties 

and engineering design, this study applies a statistical analysis approach to quantify the strength 

and the direction of each factor on both enhanced CH4 and sequestrated CO2. In this study, 

shale reservoirs are found to be potential targets for enhancing gas production and CO2 long-

term geological sequestration. Compared to primary production (no injection scenario), CO2 

injection can lead up to 59% additional recovery from original gas in place (OGIP) whereas up 

to 100% of the injected CO2 could be sequestrated.  

In terms of shale properties, our results show that natural fractures permeability is the most 

significant shale parameter that has a positive effect on CO2-EGR efficiency. Additionally, 

TOC followed by the capacity of shale to preferentially adsorb CO2 over CH4 have a 

pronounced positive impact on CO2-CH4 displacement, while shale porosities are found to have 

a negative impact. As previously hypothesized, our statistical analysis proves that deep shale 

reservoirs are not favorable targets for both enhanced shale recovery and CO2 sequestration 

because desorption of CH4 becomes insignificant with the increase in reservoir depth. 

In terms of engineering parameters, this study reveals that CO2 flooding might be the best 

applicable option for CO2 injection in shale reservoirs, whereas huff and buff scenario does not 

seem be a viable option because the injected CO2 cannot efficiently migrate into shale matrix 

and consequently the injected CO2 is then more likely to be re-produced very quickly. On the 

other hand, the hydraulic-fractures network plays an important role as a successful hydraulic-

fractures network with effective values of permeability and conductivity is essential for CO2-

EGR efficiency in shale reservoirs. Moreover, the results indicate that higher injection pressure 

is favorable to increase the total enhanced CH4 production. However, to some extent, injecting 

CO2 at high pressure increases mechanical mixing of CO2-CH4 which may result in early CO2 

break-through. Well spacing and fracture half-length are also crucial optimal features in CO2-

EGR process design. As the distance between injectors and producers becomes far, and the 
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length of fracture increases, the storage capacity of CO2 increases while the cumulative CH4 

production decreases. 

Our results offer some important insights into the selection criteria on the physical properties 

of the shale reservoirs and engineering parameters to yield maximum efficiency of CO2-EGR 

process. These findings help to lay a foundation for efficient CO2-EGR design and 

implementation. Furthermore, the results obtained from our correlation analysis provide more 

demonstration necessary to manage and predict the efficiency of CO2-EGR as the correlation 

between the examined will be the criteria for features selection to adapt the best predictors for 

ML modelling.  

 

7.4 Application of Supervised Machine Learning to Predict the Enhanced 

Gas Recovery by CO2 Injection in Shale Gas Reservoirs 

Given that CO2-EGR is a complex geophysical process that presents difficulties and challenges 

in modelling and predicting, this work applies ML based regression model to preliminary 

predict and evaluate CO2-EGR efficiency.   One of the key findings on this work is that the 

enhanced CH4 recovery in shale reservoirs due to CO2 injection can be effectively predicted 

using the features of natural fractures permeability, TOC, matrix porosity, and the CO2 

preferential adsorption ratio.  

In this work, Linear Regression and Artificial Neural Networks (ANNs) implementations were 

considered for predicting the incremental enhanced CH4. As a result of comparison, Artificial 

Neural Networks (ANNs) algorithms gave a higher accuracy in predicting the enhanced 

methane. Based on the model performance in training and validation, our accuracy comparison 

showed that (ANNs) algorithms gave 15% higher accuracy in predicting the enhanced CH4 

compared to the linear regression model. Furthermore, to ensure the model is more 

generalizable, the size of hidden layers of ANNs was adjusted to improve the generalization 

ability of ANNs model. Among ANNs models presented, ANNs of 100 hidden layer size gave 

the best predictive performance with the coefficient of determination (R2) of 0.78 compared to 

the linear regression model with R2 of 0.68.  

This work extends for the first time the application of to EGR-CO2 and provides some 

conceptual contribution for field-scale applications. In addition, our developed model presents 
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a practical, reliable and cost-effective tool which predicts the incremental enhanced CH4 by 

CO2 injection in shale gas reservoirs.  

 

7.5 Recommendations for Future Work 

While our work clarifies several aspects of the desorption phenomenon in both shale primary 

production and CO2-CH4 displacement process, further research should be done for better 

understanding and more accurate prediction of CO2-EGR efficiency. Obviously, field-scale 

tests, new approaches of modelling, and further experimental investigation will provide deeper 

insights into CO2-EGR to yield maximum efficiency of both enhanced production and CO2 

sequestration.  

It is generally believed that the lack of field-scale data for CO2 injection into shale gas 

reservoirs has been one of the current major sources of uncertainty about the process. 

Therefore, having such actual data will help not only for numerical modelling history matching 

validation purposes, but also for evaluation of CO2 injection at field scale. In future 

investigations, it might be also possible to couple the history matched numerical models with 

new approaches-based experimental investigations for further sensitivity and statistical 

analysis.  

As previously discussed, the high heterogeneity of shale gas coupled with the complexity of 

factors driving CH4-CO2 displacement, can lead to wider uncertainties and difficulties in 

predicting the enhanced CH4. In ML based modelling, model accuracy is not only dependent 

on the strength of correlation between features and target(s), but also on the volume of the 

training and validation sets. Therefore, future work on ESGR prediction needs to take into 

account a larger dataset which will result in a better predictive performance. Additionally, 

future ML modelling which takes the volume dataset into account will also need to consider 

the balance in both training and validation sets.  
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