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Spatial Wave Manipulation 2 
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Abstract 4 

This study proposes an analytically unprecedented model of a meta-lattice truss with local 5 

resonators to generate a broader low-frequency bandgap. By leveraging the mass-spring model, 6 

a new equivalent meta-unit cell considering the elastic shear springs is developed to accurately 7 

predict the performance of the meta-lattice truss in suppressing stress wave propagations. 8 

Theoretical analyses and numerical simulations are conducted to examine the effectiveness of 9 

the proposed model. Sensitivity analyses are also performed to investigate the influences of 10 

masses and spring parameters on the bandgap characteristics of the meta-lattice truss. Based on 11 

the theoretical prediction, the system transmission coefficient is utilized to examine the 12 

transmissibility effect among the resonators. A three-dimensional finite element model of meta-13 

lattice truss is also built and its accuracy in predicting the stress wave propagations is verified 14 

against the analytical predictions. The structural responses in the time domain and time-15 

frequency domain demonstrate the superiority of meta-lattice truss in suppression of wave 16 

transmission as compared to that predicted by the conventional counterparts. 17 
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1. Introduction 20 

In the last decade, the field of wave propagation has been revolutionized by the discovery of 21 

man-made materials that have the potential of wave manipulation functionalities beyond the 22 

limits of naturally available materials [1], [2]. These new concepts of artificial materials are 23 

labeled as metamaterials due to their rather exciting and exotic properties [3]. It is often taken 24 

into consideration that metamaterial is a material that contains artificial microstructures with 25 

unique characteristics that are not found in nature. This terminology originated from the field 26 

of electrodynamics, now has been extended to other branches of engineering disciplines such 27 

as the fields of acoustic and elastic materials [4], [5], [6]. Metamaterials demonstrate some 28 

superior dynamic characteristics owing to not only the constituent compositions of materials 29 

but also the engineered microstructure of configurations. At its early stage, researchers 30 

concentrated on the achievement of unconventional values of effective index [7], [8], [9]. 31 

However, it rapidly evolved towards the demonstration of exotic wave manipulation 32 

functionalities [10]. Previous studies of metamaterials exert various beneficial applications 33 

from its extraordinary characteristics, for example, seismic protection [11], [12], sound 34 

isolation [13], [14], vibration suppression [15], [16], and blast/impact mitigation [17], [18], 35 

[19]. Nonetheless, not until recently, the concept of metamaterials was extended to the context 36 

of manipulation of elastic waves in structural elements. Its application, however, still remains 37 

limited with even fewer examples of experimental verifications.  38 

Based on their operating mechanisms [20], metamaterials are often classified into two 39 

categories, including non-resonant and locally-resonant types. The locally resonant 40 

metamaterials are generally made of inclusions in the form of hardcores coated with soft 41 

material layers, which are periodically (but not necessarily) distributed in a host matrix of 42 

dissimilar material [21], [22]. On the other hand, the non-resonant metamaterials are often made 43 

of hardcores only that are buried in a host matrix [23]. There are two mechanisms that can be 44 
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utilized for metamaterials including Bragg scattering and localized resonance [24]. The 45 

bandgap behavior of non-resonant structures relies on the phenomena of wave diffraction and 46 

destructive interference with each other [25], i.e. depends on the Bragg scattering effect to form 47 

the bandgap. On the other hand, the bandgap in localized resonances is essentially independent 48 

of periodicity and symmetry, but governed by the natural frequency of the resonators. 49 

The bandgap, which is the specific range of frequencies where propagation of an applied wave 50 

is stopped, is the most crucial features of metamaterials [26]. Therefore, much research effort 51 

primarily contributed to metamaterials’ fundamental mechanism with an attempt to seek 52 

approaches to broaden the bandgap of metamaterials or make it tunable [27], [28], [29].To 53 

investigate the relation between the effective dynamic mass density and the oscillation 54 

frequency, Milton and Willis [30] proposed a rigorous model of metamaterials utilizing the 55 

typical motion equations for a rigid bar and Newton’s second law to simulate the dynamic 56 

effective mass density as a function of the resonant frequency. The single mass-in-mass model 57 

was originally introduced by Huang and Sun [10] offering the negativity of mass property over 58 

a specific frequency range and this model was applied to lattice systems to broaden the bandgap 59 

by Liu et al. [31]. Motivated by the abovementioned studies, an analytical dual-resonator lattice 60 

model which was utilized to investigate the transient response of the meta-lattice truss structure 61 

was proposed by Liu et al. [32], hereafter referred as the conventional model, to further broaden 62 

the bandgap and improve the suppression of incident waves. Subsequently, the strategy of 63 

diatomic mimicking lattice systems [28] was also utilized to broaden the bandwidths of the 64 

meta-lattice truss. Besides, to investigate the effect of damping on asymmetric elastic-wave 65 

transmission, Alamri et al. [33] proposed and designed the dissipative diatomic acoustic lattice 66 

system possessing the bandwidth broadening effect. This study investigated the damping effect 67 

on the bandgaps of the lattice system while the influences of other parameters such as mass and 68 

stiffness, especially shear stiffness have not been investigated. The conventional analytical 69 
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model with dual-resonator did not fully consider the importance of the shear stiffness between 70 

multilayers within the meta-lattice truss, i.e. the shear stiffness between the inner core and the 71 

coating. As will be demonstrated in the present study, this shear stiffness affects the bandgap 72 

in the low-frequency range. The accuracy of the model in predicting the transient response is 73 

therefore compromised if the shear stiffness is neglected in the analytical model. In particular, 74 

as will be proven later in this study through numerical simulations, stress wave caused by an 75 

excitation with a low range frequency, i.e. 300 Hz, is successfully mitigated in the numerical 76 

model, while the corresponding stress wave attenuation is not captured by the conventional 77 

analytical model. In other words, the conventional analytical model cannot accurately predict 78 

the response of the dual-resonator meta-lattice truss, particularly in the low-frequency range 79 

because of neglecting the shear stiffness between the inner core and the coating. Therefore, it 80 

is necessary to develop an analytical model that is able to more accurately predict the response 81 

of meta-lattice truss with dual-resonators. In the present study, an additional shear spring is 82 

introduced into the conventional analytical model, and the analytical results show the stress 83 

wave caused by the excitation with a frequency of 300 Hz is well attenuated as also observed 84 

in the numerical investigation, which demonstrates the accuracy of the proposed analytical 85 

model. 86 

In brief, this research proposes an analytical model for the dual-resonator meta-lattice truss by 87 

adopting a locally resonant mechanism and taking the shear stiffness of all multilayers into 88 

consideration. The widely utilized mass-in-mass spring lattice model, with added shear spring 89 

to connect the inner resonator and the soft coating, is utilized to derive the analytical solutions. 90 

In this article, firstly, the analytical predictions of an infinite lattice truss member calculated by 91 

two models including the proposed model and the conventional one are derived and compared 92 

to demonstrate differences regarding the predicted bandgaps from these two models. Analytical 93 

results show that the proposed model predicts a wider bandgap in the low-frequency range, the 94 
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same as the numerical model, which could not be accurately predicted by the conventional 95 

model. The comparisons with the numerical predictions based on a finite element analysis 96 

demonstrate the accuracy of the developed numerical model in this study. Specifically, if the 97 

shear stiffness is neglected, the analytical model may not accurately predict the actual response 98 

of the meta-lattice truss. The numerical model has shown an incident wave that is mitigated but 99 

the existing analytical model (without considering the shear stiffness) does not prohibit this 100 

incident wave from propagating through the truss. Therefore, this study incorporates the shear 101 

stiffness in the analytical derivation and the derived model yields good predictions as compared 102 

with the numerical results, demonstrating the need to consider the shear stiffness of the inner 103 

resonator in the analytical model. To investigate the influence of various parameters of the 104 

meta-lattice truss on wave propagation, a comprehensive parametric study is carried out and 105 

the influences of masses and spring stiffness on the behavior of the bandgap are examined. 106 

Finally, the superb stress wave attenuation ability of the meta-lattice truss with dual resonators 107 

is demonstrated. 108 

2. Design of the dual-resonator lattice model 109 

Without loss of generality, the example 3D meta-lattice truss model utilized in this investigation 110 

consists of 7 unit cells in which each cell comprises of five parts: the outer tube, 2 soft coats, 111 

and 2 resonators as shown in Fig. 1(a). The compositions and dimensions of each unit cell are 112 

presented in Figs. 1(b) and 1(c), respectively. Aluminium and lead are respectively selected for 113 

the outer tube and the resonators, and the two soft coatings are made from rubber. In the 114 

analytical model, the matrix is represented by material 1, i.e., the outer aluminium tube. 115 

Meanwhile, material 2 is modelled by two springs including the outside shear spring k2 116 

connecting the resonator with the outer shell and the axial spring k1 connecting the adjacent 117 

resonators (refer to Fig. 3(b) for more details). Similarly, material 4 is modelled by the axial 118 
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and shear springs connecting the internal hardcore mass and external hardcore mass, namely k3 119 

and k4, respectively. The numerical analysis in the following sections indicates that the 120 

analytical model without considering k4 does not reflect the actual response of the meta-lattice 121 

truss as observed in the numerical simulation presented in this study. Acting as resonators, 122 

material 3 and material 5 are represented by the external mass m1 and internal mass m2, 123 

respectively. It should be noted that this study is dedicated to investigate the dynamic 124 

performance of the elastic meta-lattice truss under the elastic stress wave. The properties of all 125 

the materials are summarized in Tables 1, 2 and 4. These material properties are also used in 126 

the numerical model in this study. 127 

The inner mass and outer mass can be estimated by Eq. (1) where ρj and Vj  are the material 128 

density and volume of the jth material, and the length and radius of jth unit are denoted by lj and 129 

rj, respectively. 130 

2
j j j j j jm V r lρ ρ π= =                                1, 2j =  (1) 

Similarly, the spring of each stiffness can be estimated as follows 131 

3 1
1

2

E Ak
l

= ,           3 2
2

1

G Ak
l

= ,          
( )

3
3

32 1
EG
ν

=
+

 

3 3
3

3

E Ak
l

= ,           3 4
4

4

G Ak
l

=  

(2) 

in which E and G are the Young’s modulus and shear modulus of the soft material, respectively. 132 

The values of Ai (i=1,2,3,4) which are the nominal cross-sections of the distinct segments of the 133 

soft layer presented in the appendix are obtained by FEA due to the shape complexity. The 134 

detailed calculation of the spring stiffness is also presented in the appendix. Based on the 135 

material properties and dimensions, the relevant estimations of equivalent mass and stiffness 136 

are computed as m1 = 14.2x10-3 kg, m2 = 17.7x10-3 kg, k1 = 424,655 N/m, k2 = 102,531 N/m, k3 137 

= 280,526 N/m, and k4=61,425 N/m. 138 
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Fig. 1. (a) Schematic view of 3D lattice truss (b) Single unit cell and (c) Dimension of the 

single unit cell.  

Table 1. Elastic material properties used in the numerical simulation [34] 139 

Properties 
Materials 1 and 3 Materials 2 and 4 Material 5 

Aluminium Rubber Lead 

Density ρ (kg/m3) 2770 1200 11340 

Young’s modulus E (Pa) 70x109 780x103 16x109 

Poisson’s ratio ν 0.33 0.47 0.45 
 

(a) 

(b) (c) 
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3. Analytical models 140 

Firstly, the conventional 1D mass-spring chain model with locally resonant microstructures is 141 

briefly revisited (Section 3.1). Then, a shear spring is introduced into the unit cell, and an 142 

unprecedented model is proposed in Section 3.2. The comparisons with the conventional model 143 

in terms of transmissibility are also made in this section. Comprehensive parametric studies are 144 

further carried out in Section 5 to analytically examine the influences of mass and spring 145 

stiffness on the bandgaps. 146 

3.1 Conventional mass-in-mass spring model of meta-lattice truss 147 

The meta-lattice truss can be represented in the mass-in-mass formation comprising of masses 148 

and springs [32]. An infinite 1D spring-mass lattice system including the resonators is depicted 149 

in Figs. 2(a) and 2(b), in which the inner mass m2 and outer mass m1 are connected to each other 150 

by an axial spring k3. The shear spring with the stiffness k2 constrains the displacement of the 151 

mass m1 which is periodically linked with each other by the axial spring k1.  152 
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Fig. 2. (a) Schematic microstructure of the infinite conventional model of meta-lattice truss 

and (b) Equivalent effective spring-mass model. 

In this one-dimensional meta-lattice truss, the internal and external mass displacements are 153 

denoted by u1 and u2, respectively, and the motion equations of the jth unit cell can be derived 154 

as follows: 155 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1 1
1 1 1 1 1 1 3 1 2 2 12 0j j j j j j jm u k u u u k u u k u+ −+ − − + − + =  (3) 

( ) ( ) ( )( )2 2 3 2 1 0j j jm u k u u+ − =  (4) 

Based on the Floquet-Bloch theorem [35], the solution of harmonic wave of the (j+n)th and jth 156 

unit cells can be expressed in the form of 157 

( ) ( )j n i jqL nqL tu Ue ω+ + −=  (5) 

( ) ( )j i jqL tu Ue ω−=  (6) 

where U is the displacement amplitude, q is the wavenumber, ω is the angular frequency, L is 158 

the length of the unit cell. 159 

By substituting Eqs. (5) and (6) into Eqs. (3) and (4), the dispersion relation of the lattice system 160 

can be derived as follows: 161 

( )
2

2 3
1 2 3 2

3 2

1

cos 1
2

km k k
k mqL

k

ω
ω

− + +
−

= −  

(7) 

Herein, the lattice system is monatomic, therefore, the following effective mass equation of the 162 

microstructure must be satisfied 163 
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( )2 12 1 cos
eff

k qL
m

ω = −  (8) 

Based on Eqs. (7) and (8), the effective mass (meff) of the lattice system can be obtained as: 164 

2
2 3 3

1 2 2 4
3 2

eff
k k km m

k mω ω ω
+

= − +
−

 (9) 

When the unit cell is regarded as homogeneous with the effective mass meff and effective 165 

stiffness keff (Fig. 2(b)), the effective stiffness  can be calculated as follows [32]: 166 

( )
2

2 2 3
1 1 2 3 1 2

3 2

1 1 1
4 4 4eff eff

kk k m k k k m
k m

ω ω
ω

 
= − = + + − + − 

 (10) 

To define the width of the bandgap, the dispersion in Eq. (7) can be solved and the expression 167 

of the angular frequency can be obtained as follows: 168 

( ) ( )2 2 1 2 3 1 22

1 2

2 1 cos
2

m k m m k k m qL
m m

β
ω

+ + + − ±
=  (11) 

where ( ) ( )( ) ( )2
2 2 1 2 3 1 2 1 2 1 3 2 32 1 cos 4 2 1 cosm k m m k k m qL m m k k qL k kβ = + + + − − − +    169 

Substituting qL=0, the angular frequency at the starting points of two passbands can be obtained 170 

as: 171 

( ) ( ) ( )22 2 2 2
2 2 1 2 3 2 2 1 2 3 2 3 2 1 22

1 2

2

2

m k m m k m k m m k k k m m m

m m
ω

+ + ± + + + −
=  

(12)  

and substituting qL=π, the angular frequency at the two ending points of the passband can be 172 

expressed as: 173 

( ) ( ) ( )( ) [ ]2
1 2 3 2 1 2 2 2 1 2 3 1 2 1 2 1 3 2 32

1 2

4 4 4 4
2

m m k m k k m k m m k k m m m k k k k
m m

ω
+ + + ± + + + − +

=                                                   (13) 
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3.2 Proposed mass-in-mass spring model of meta-lattice truss 174 

As shown in Fig. 2 and also discussed in the introduction, the conventional meta-lattice model 175 

proposed by Liu, Shen, Su and Sun [32] only considered the shear spring connected the external 176 

mass m1 and the soft layer (material 2 in Fig. 1), and it is represented by k2. The shear spring 177 

linking the internal mass m2 and the corresponding soft layer (material 4 in Fig. 1) was, 178 

however, neglected. It is obvious that the inner mass and the outer mass of a unit cell bear 179 

similar characteristics, and the negligence of this stiffness may result in inaccurate bandgap 180 

predictions. It is therefore worth considering the shear stiffness of the inner mass to enhance 181 

the accuracy of the model. This study proposes an improved mass-in-mass spring meta-lattice 182 

model, in which besides the spring with the stiffness k2 constrains the displacement of the mass 183 

m1 to the matrix, the inner mass m2 is also restrained by the shear spring stiffness k4. Figs. 3(a) 184 

and 3(b) show the corresponding analytical model. 185 
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Fig. 3. (a) Schematic microstructure of the proposed model of meta-lattice truss and (b) 

Equivalent effective mass-spring model. 

Similar to the conventional mass-in-mass spring model as shown in Fig. 2, the equations of 186 

motion of the jth unit cell in Fig. 3 can be expressed as follows: 187 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1 1
1 1 1 1 1 1 3 1 2 2 12 0j j j j j j jm u k u u u k u u k u+ −+ − − + − + =

 (14) 

( ) ( ) ( )( ) ( )
2 2 3 2 1 4 2 0j j j jm u k u u k u+ − + =  (15) 

To derive the dispersion curves, a similar strategy is adopted and the solution of harmonic wave 188 

of the (j+n)th and jth unit cells can be represented by Eq. (5) again, and the derivative function 189 

of the solution can be obtained as follows 190 

( ) ( ) ( )2 2j i jqL t ju Ue uωω ω−= − = −  (16) 

Substituting Eq. (16) into Eq. (15), the relation between the inner mass and outer mass can be 191 

obtained as follows: 192 

( ) ( )3
2 12

3 4 2

j jku u
k k m ω

=
+ −

 (17) 

It is worth noting that the Bloch-Floquet theory consequence is adopted in the present study, in 193 

which the motion must satisfy the Bloch periodicity condition. Hence, by substituting Eqs. (16) 194 

and (17) into Eq. (14), one obtains 195 

( ) ( ) ( ) ( )( ) ( ) ( )2 3
1 1 1 1 1 1 3 1 2 12

3 4 2

2 1 0j j j j j jiqL iqL km u k u u e u e k u k u
k k m

ω
ω

−  
− + − − + − + = + − 

 (18) 

By applying the identity ( )2cosiqL iqLe e qL− + = , Eq. (18) can be rewritten to form the dispersion 196 

relation as follows: 197 
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( ) ( )
2

2 3
1 2 3 2

3 4 2

1

cos 1
2

km k k
k k m

qL
k

ω
ω

− + +
+ −

= −  

(19) 

Eq. (19) can also be rearranged into the following form 198 

( )2 12 1 cos
eff

k qL
m

ω = −  (20) 

where 199 

( )
2

2 3 3
1 2 2 4

3 4 2
eff

k k km m
k k mω ω ω

+
= − +

+ −
 (21) 

and the effective stiffness can also be conveniently formulated due to the homogeneity of the 200 

unit cell 201 

( ) ( )
2

2 3
1 2 3 1 2

3 4 2

1 1
4 4eff

kk k k k m
k k m

ω
ω

 
= + + − +  + − 

 (22) 

With an attempt to find the dispersion relation for this system, the angular frequency can be 202 

calculated by solving Eq. (19) as follows: 203 

( ) ( )2 1 2 2 1 2 3 1 42

1 2

2 1 cos
2

m qL k m k m m k m k
m m

γ η
ω

− + + + + ± −
=  (23) 

where ( ) ( )( )2
2 1 2 2 1 2 3 1 42 1 cosm qL k m k m m k m kγ = − + + + + and204 

( )( ) ( )1 2 1 3 4 2 3 4 3 44 2 1 cosm m k k k qL k k k k kη = + − + + +   . 205 

The above derivations are based on the assumption of infinite unit cell. In practice, the number 206 

of unit cells is always finite. In this case, the wave transmission coefficient of the spring-mass 207 

chain, which depicts the displacement amplitude ratio of the last unit cell to the input excitation 208 

is normally defined, and it can be calculated as follows Yao et al. [36]: 209 
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( )

1

N
j

j

T T
=

= ∏  (24) 

where ( ) ( ) ( )1/j j jT u u −=  210 

From Eq. (20), by applying the identities ( )2cosiqL iqLe e qL− + = and rearranging the equation 211 

the following form can be obtained: 212 

( ) ( ) ( ) ( )( )1 12
1 12 j j j

effk m u k u uω + −− = + ,    1, 2,..., 1j N= −  (25) 

( ) ( ) ( )12
1 1

j j
effk m u k uω −− = ,                      j N=  (26) 

Substituting ( ) ( ) ( )1/j j jT u u −=  into Eqs. (25) and (26) gives: 213 

( )
( )

12
1 1

12 j
eff jk m k T

T
ω + − = + 

 
 (27) 

Therefore, the wave transmission coefficient can be formulated as follows: 214 

( )
( )( )

1
1 2

1 2
j

j
eff

kT
k T mω+

=
− −

,                1, 2,..., 1j N= −  (28) 

( ) 1
2

1

N

eff

kT
k mω

=
−

,                                 j N=  (29) 

4. Numerical simulation 215 

To verify the accuracy of the proposed and conventional analytical models, a 3-D finite element 216 

model of the meta-lattice truss is built and validated in this section.  217 

4.1 Numerical model development 218 

The 3-D numerical model is built to investigate the wave transmission characteristics of the 219 

meta-lattice truss and verify its accuracy against the analytical predictions by utilizing 220 
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commercial software LS-DYNA (Fig. (1)). Contact definitions, the prevention of reflected 221 

waves, material models, and simulation of prescribed displacement are presented in this section. 222 

In this study, all elements are modelled by solid elements and the minimum meshing size is 223 

0.2mm after a convergence test. To define the property of aluminium considering the plastic 224 

deformation, *MAT_JOHNSON_COOK is utilized while *MAT_ELASTIC material model is 225 

applied to simulate the dynamic behaviour of rubber elements due to their distinguished 226 

properties [34]. Johnson-cook material model requires an equation of state in order to initialize 227 

the thermodynamic state of the material [37]. The elastic and plastic material properties are 228 

summarized in Tables 1 and 2, respectively. In this study, the equation of state of Johnson-cook 229 

model is defined by the card *EOS_LINEAR_POLYNOMINAL in which the pressure and 230 

initial relative volume are denoted by coefficients C0-C6 and V0, respectively. The parameters 231 

for the equation of state are presented in Table 3. Furthermore, for simulation of the lead core, 232 

the material properties as implemented in *MAT_PLASTIC_KINEMATIC, are given in Table 233 

4 [38]. The contact between the metals and rubber is modelled by the keyword 234 

*TIED_SURFACE_TO_SURFACE and the keyword *CONTACT_INTERIOR is utilized for 235 

the rubber to eliminate the negative volume issue which often occurs due to large deformation 236 

of soft materials. Additionally, to eliminate the stress wave reflection at the end surface, the 237 

keyword *NON_REFLECTING_BOUNDARY is applied at one end. In the numerical model, 238 

the far-end of the outer tube is fixed in all directions while the excitation is defined by the 239 

*PRESCRIBED_MOTION_SET card, which is applied to the entire near-end surface. 240 

Table 2. Johnson-cook material parameters for aluminium [34] 

Density 

(kg/m3) 

Poisson’s 
ratio 

Young’s 

Modulus 
(GPa) 

A 

(Pa) 

B 

(Pa) 

C m n Tm 0ε  

(1/s) 

2770 0.33 70 0.369 0.675 0.007 1.5 0.7 800 1.0 
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Table 3. Equation of state for aluminium used in the numerical simulation [37] 241 

C0 

(Pa) 

C1 

(Pa) 

C2 

(Pa) 

C3 

(Pa) 

C4 

 

C5 C6 E0 

(Pa) 

V0 

(m3/m3) 

0 74.2x109 60.5x109 36.5x109 1.96 0 0 0 1 

Table 4. Plastic kinematic material parameters for lead [38] 242 

Density 

(kg/m3) 

Poisson’s 
ratio 

Young’s 

Modulus 
(GPa) 

SIGY 

(MPa) 

ETAN 

(MPa) 

BETA SRC SRP FS VP 
(1/s) 

11340 0.45 16 20 50 109 109 1 0 1 

4.2 Numerical model verification 243 

Based on the Bloch-Floquet theory and the derivation from Eq. (28), a visible manifestation of 244 

the theoretical transmittance of the proposed model is shown in Fig. 4. To verify the model, the 245 

meta-lattice truss comprising of 7 unit cells described above is built in LS-DYNA. The model 246 

is used to simulate wave transmissions of the meta-lattice truss. The transmittance is defined 247 

by a ratio between the output and the input signals of the structure. Fig. 4 shows the results from 248 

the conventional model, the proposed model, and the numerical simulation. It can be seen that 249 

both conventional and the proposed models capture three bandgaps, and the corresponding 250 

ranges are: [0-289.5], [645-995] and [1945-5000] Hz from the conventional model, and [0-375] 251 

Hz, [700-1100] Hz and [1945-5000] Hz from the proposed model. The numerical simulation 252 

also gives three bandgaps in the range of [0-375] Hz, [895-1400] Hz and [1965-5000] Hz. These 253 

results indicate that, generally speaking, both the conventional and the proposed model can 254 

predict the frequency bandgaps, but compared with the results from the numerical simulations, 255 

the proposed model yields more accurate results than the conventional model, especially for the 256 

1st bandgap in the low-frequency range. For example, the proposed model predicts the same 1st 257 

bandgap as compared to the numerical model, whereas the conventional model substantially 258 
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under predicts the upper frequency of the first bandgap, i.e., 289.5 Hz and 375 Hz, i.e., a 259 

substantially narrower first bandgap by the conventional model. These results demonstrate that 260 

neglecting the stiffness k4 into the conventional analytical model leads to inaccurate predictions 261 

of the bandgap width at the low-frequency range. The comparison also shows that certain 262 

discrepancy exists between the analytical and numerical predictions, especially for the second 263 

bandgap. This is because the theoretical results are based on the infinite number of unit cells, 264 

while the numerical results are obtained from the finite number of cells (7 in the present study). 265 

Moreover, the estimations of the spring stiffness and lumped masses in the analytical 266 

derivations may also contribute to this variation. 267 

 

Fig. 4. Transmittance profiles of meta-lattice truss obtained by the proposed model, 

conventional model, and numerical simulation model. 
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4.3 Accuracy of the proposed analytical model 268 

The above results show that the inclusion of k4 in the proposed model has almost no influence 269 

on the third bandgap because the third bandgaps is mainly controlled by the external mass and 270 

axial stiffness which will be discussed in the following section. For the second bandgap, the 271 

lower bound of the proposed model results in a slightly higher value, while its influence on the 272 

upper bound is negligible. The most evident effect of the proposed model is on the first bandgap, 273 

and the inclusion of k4 obviously widens the bandgap in the low-frequency range. As shown, 274 

the first bandgap expends from [0-289.5] Hz to [0-375.0] Hz. This result is expected, since the 275 

first bandgap is related to the local resonance frequency of the inner mass m2 which is defined 276 

by ( )3 4 2/k k mϖ = + , and the inclusion of k4 results in an increase in the stiffness in the 277 

conventional model. Moreover, the bandwidth of the first bandgap in the low-frequency range 278 

is determined by two points including the constant value at zero and a certain value which is 279 

linearly dependent on the local resonance frequency. Therefore, introducing the shear stiffness 280 

of the internal mass k4 increases the stiffness of the internal coating layer and resonant frequncy 281 

ω accordingly, which leads to the increase of the first bandgap range by the reciprocal 282 

relationship between the first bandgap and the resonant frequency. This manifestation indicates 283 

that the proposed analytical model with considering the shear stiffness of the soft coating leads 284 

to a wider bandgap estimation in the low-frequency range than the conventional model, which 285 

implies the proposed analytical model would have wider practical applications for stopping the 286 

low-frequency wave propagations. It is worth mentioning that, besides varying the stiffness, the 287 

low-frequency bandgap can also be changed by altering the resonator’s geometry since it is 288 

related to the local resonance as discussed above, and will be further discussed in the following 289 

investigations.  290 

To further demonstrate the higher accuracy of the proposed analytical model in predicting the 291 

bandgap in the low-frequency range compared to the conventional model, the analytically 292 
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predicted bandgap are compared with the result from the numerical analyses. As discussed 293 

above, the inclusion of k4 most evidently changes the bandgap in the low-frequency range, 294 

therefore only the first bandgap is investigated in this section. For the other two bandgaps, more 295 

detailed discussions will be given in Section 5. However, it is worth noting that the soft material 296 

layer (material 4 in Fig. 1) is modelled by the solid elements in the numerical simulation, which 297 

means the contribution from the shear stiffness of this layer (i.e. k4) is considered in the 298 

numerical model.  299 

In the numerical simulation, the meta-lattice truss presented in Section 2 is subjected to a 300 

displacement time history with two frequency components u(t)=10-4[sin(2πf1t) + sin(2πf2t)], 301 

where f1=300 Hz and f2=500 Hz. Fig. 5(a) shows the displacement time history of the excitation 302 

at the left end of the truss. It can be seen that f1 is deliberately desinged to fall within the first 303 

bandgap of the proposed model but beyond that of the conventional model, while f2 is within 304 

the passband range of both the models. Fig. 5(b) shows the displacement time history at the 305 

right end of the meta-lattice truss (i.e. the output) obtained from the numerical simulation, and 306 

Fig. 6 shows the Fourier spectrum of the output data. The numerical results have shown that 307 

only one input signal with the frequency of 500 Hz passes through the meta-lattice truss while 308 

the conventional model predicts both input signals pass through the structure. This observation 309 

shows that the predictions of the conventional model and numerical model are different. 310 

Meanwhile, the proposed model predicts only the signal with the frequency of 500 Hz can pass 311 

the meta-lattice truss while the other one with the frequency of 300 Hz is filtered out, which 312 

matches well with the numerical results. This results demonstrates again that neglecting the 313 

shear stiffness k4 in the conventional model leads to inaccurate estimation of the bandgap width 314 

in the low-frequency range. 315 
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(a) 

(b) 

 

 

Fig. 5. Displacement time history of meta-lattice truss in numerical simulation (a) Input, (b) 

Output. 
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Fig. 6. The Fourier spectrum of the output data at the right end of the truss of the numerical 

model. 

5. Sensitivity of the bandgap characteristics to mass and stiffness based on the proposed 317 

analytical model 318 

The accuracy of the proposed analytical model has been verified against the numerical 319 

simulation and thus it is utilized to investigate the mitigation effects of the meta-lattice truss. It 320 

is worth mentioning that the sensitivity analysis of those parameters has not been presented in 321 

the literature yet. 322 

5.1 Effect of mass on bandwidth and bandgap position 323 

Herein, the attenuation effect of mass including the inner and outer masses on the overall 324 

bandwidth of the meta-lattice model is investigated utilizing the proposed analytical model. 325 

Based on the Bloch-Floquet theorem, the analytical dispersion curves for the lattice model are 326 

obtained and featured in Fig. 7 through the theoretical calculation of Eq. (19). It should be noted 327 
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that to calculate the theoretical starting and ending frequencies of the passbands the conditions 328 

qL= 0 and qL=π are applied to Eq. (23). It can be seen that there is an unequivocal manifestation 329 

from the figure showing that there are two passbands including the first passband at the 330 

frequency range of approximately 375–700 Hz and the second passband at a relatively higher 331 

frequency range of 1000–1945 Hz. 332 

 

Fig. 7. Non-dimensionalized dispersion curves obtained by the proposed analytical model. 

The bandgap behavior of meta-lattice truss is affected remarkably by the peculiar nature 333 

of local resonators consisting of the internal mass and external mass. Therefore, it is 334 

pivotal to examine the influence of the resonator on the meta-lattice truss bandgap with 335 

respect to critical masses by utilizing the proposed model. Figs. 8(a) and 8(b) show the two 336 

integral features of the locally resonant meta-lattice truss, i.e. the effective mass and the 337 

effective stiffness, by varying the internal mass m2 (0.5α, α and 2α, where α= m2). It is obvious 338 

that the bandwidth and the position of the first two bandgaps (Fig. 8(a)) associated with lower 339 
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frequency are affected by the mass m2 while the third bandgap (Fig. 8(b)) with higher frequency 340 

resulting from the stiffness remains unchanged. The analytical results also indicate that the 341 

inextricable relationship between the position of the bandgap and the local resonance frequency 342 

is a function of m2. Fig. 8(a) clearly exhibits that the location of the first two bandgaps 343 

drastically shifts to the left with an increase of the internal mass. On the contrary, it is clear that 344 

the negativity of effective stiffness which forms the third bandwidth shown in Fig. 8(b) remains 345 

unchanged, irrespective of the changing value of m2.  346 

 
(a) Effective mass 
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Fig. 8. Effect of the internal mass m2 on the bandgap characteristics.  

Figs. 9(a) and 9(b) show the influence of the outer mass m1 on the effective mass and stiffness, 347 

respectively. The other parameters are exactly the same as those in Table 5. Primarily, the 348 

bandgap position which is determined by the local resonance frequency has not exerted any 349 

effects by varying the value of m1. An increase of m1 results in a reduction in the first and second 350 

bandwidths in which the effective mass becomes negative as shown in Fig. 9(a) but increase 351 

significantly the third bandwidth which results from the negativity of the effective stiffness 352 

(Fig. 9(b)). In general, the negativity of the effective mass and effective stiffness relates to the 353 

bandgap region of the system in terms of wave propagation.  354 

The above analytical results clearly indicate that the bandgaps could be controlled by varying 355 

the values of the internal mass m2 and external mass m1 to achieve the desired optimal wave 356 

manipulation. Moreover, the outer mass m1 is more sensitive to the third bandgap associated 357 

with higher frequency while the inner mass m2 shows a more significant influence on the first 358 

(b) Effective stiffness 
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and second bandgaps which are located in a lower-frequency region. It is noted that the 359 

sensitivity can be qualitatively predicted by analyzing the relationship between m1 and m2 with 360 

meff and keff in Eqs. (21) and (22), considering that meff is related to the first and second bandgaps 361 

while keff governs the third bandgap. As shown in Figs. 8 and 9, in which the value of m1 is 362 

varied 10 times while that of m2 is only varied 2 times to show the variation in the bandgap 363 

characteristic. This observation indicates that the internal mass which significantly influences 364 

the local resonance frequency of the meta-lattice truss is more sensitive, compared to the 365 

external mass, in terms of the bandgap characteristics in wave propagation. 366 

 
(a) Effective mass 
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Fig. 9. Effect of the internal mass m1 on the bandgap characteristics.  

5.2 Effect of spring stiffness on the bandwidth and bandgap position 367 

The proposed model includes the additional parameter k4 which represents the shear stiffness 368 

of the inner core while the other factors that affect the bandgap k1, k2, and k3 remain the same. 369 

The effect of the stiffness k4 on the bandwidth and the bandgap position is investigated in this 370 

section. Fig. 10 illustrates the typical wave dispersion relations of the lattice system with respect 371 

to different values of k4. From Fig. 10, the following three primary findings can be summarized: 372 

(1) the internal resonance frequency is affected considerably due to the contribution of the 373 

stiffness k4; (2) dissimilar to the conventional model, the characteristic of the bandgap generated 374 

by the proposed model has a wider frequency bandgap at low-frequency range, for instance, the 375 

upper bound of the first bandgap increases from 375 Hz to 655 Hz by varying k4 from α to 10α; 376 

(b) Effective stiffness 
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and (3) the bandgap in the high frequency range mostly formed by the negativity of the effective 377 

stiffness remains unchanged regardless of the varying k4.  378 

               

Fig. 10. Dispersion relations of meta-lattice truss embedded with the resonator with varied 

values of k4. 

Analogously, the effects of the parameters k1, k2, and k3 on the bandgap behavior are examined 379 

and the results are shown in Table 5. It is clear that increasing the shear spring stiffness k2 380 

narrows the frequency region of the third bandgap, but results in a surge of the other two 381 

bandgaps. On the other hand, for the axial stiffness k1 and k3, while increasing the stiffness 382 

exerts no effect on the first bandgap, they narrows the third bandgap, and result an increase and 383 

stability on the second bandgap by increasing k3 and k1, respectively. In summary, the third 384 

bandgap associated with high frequencies is more sensitive to the stiffness k1, k2 and k3, while 385 

the axial stiffness exhibits no influence on the first bandgaps. It is also noted that the sensitivity 386 
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of the spring stiffness to the bandgaps can be qualitatively predicted using Eqs. (21) and (22), 387 

as mentioned previously. 388 

Table 5. Meta-lattice truss characteristics with varied stiffness k1, k2, and k3. 389 

Stiffness Value 1st Bandgap 2nd Bandgap 3rd Bandgap 

k2 α 0-375 Hz 700-1100 Hz 1945-5000 Hz 

 5α 0-550 Hz 700-1250 Hz 2100-5000 Hz 

 10α 0-620 Hz 700-1610 Hz 2305-5000 Hz 

k1 α 0-375 Hz 700-1100 Hz 1945-5000 Hz 

 5α 0-375 Hz 700-1100 Hz 3500-5000 Hz 

 10α 0-375 Hz 700-1100 Hz 3945-5000 Hz 

k3 α 0-375 Hz 700-1100 Hz 1945-5000 Hz 

 5α 0-375 Hz 1400-2100 Hz 2700-5000 Hz 

 10α 0-375 Hz 2000-2900 Hz 3305-5000 Hz 

6. Transient response of meta-lattice truss based on numerical simulation 390 

The above analytical derivation and solution are valid for the meta-lattice truss with some 391 

assumptions, i.e., infinite unit cells and harmonic wave solution. In practice, a meta-lattice truss 392 

is applied with a finite number of unit cells and may be subjected to dynamic loading such as 393 

impact and blast which possess a wide range of frequencies. Deriving an analytical solution for 394 

the structural response of such meta-lattice truss is not straightforward. To surmount this 395 

limitation of the analytical solution, a finite element model of the meta-lattice truss is built in 396 

LS-DYNA to investigate the stress wave propagation in the structure. 397 

In this section, the transient response of the meta-lattice truss under harmonic excitation is 398 

further examined with two cases including a sweep excitation [1-5000] Hz in Section 6.1 and a 399 

dominant frequency at 500 Hz in Section 6.2. The excitation is in the form of 400 

( ) ( )410 sin 2u t ftπ−= . The finite element model developed above is adopted again to carry out 401 

the analyses. The stress waves in the time domain at the far end are captured to demonstrate the 402 

extraordinary characteristics of the meta-lattice truss.  403 
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6.1 Transient response to sweep excitation 404 

              

 

Fig. 11. Sweep excitation input profiles in time-domain. 

Fig. 11 shows the sweep excitation at one end of the meta-lattice truss and Fig. 12 depicts the 405 

movement vector of each part of the entire structure at a typical instant. Fig. 12 (a) shows the 406 

displacement contour of each component of the 3D meta-lattice truss in which local resonators 407 

m1 and m2 do not have synchronized motions due to the local resonant mechanism that the 408 

hardcore acts as an oscillator. Specifically, the interaction of these two resonators (resonator 1 409 

in white color and resonator 2 in yellow color) includes the in-phase motions (Fig. 12(b)) and 410 

the out-of-phase motions (Fig. 12(b)) working as energy absorbers can significantly mitigate 411 

the stress wave propagating through the structure. 412 
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Fig. 12. Snapshots of the interaction displacement of the resonators (a) 3D Meta-lattice truss, 

(b) Cross section of unit 1 at t = 4.299 ms, and (c) Cross section of unit 1 at t = 6.449 ms. 

(a) 

(b) (c) 
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To more explicitly show the wave attenuation effect, the Z-stress waves at different section of 413 

the outer mass aluminium (3rd layer in Fig. 1) and outer coating element (2nd layer in Fig. 1) are 414 

compared in Figs. 13(a) and 13(b), respectively. It can be seen that the amplitudes of the element 415 

close to the input excitation (input section in the figure) are largest while the smallest 416 

amplitudes belong to the element at the far-end position (the output section). The absolute 417 

maximum amplitudes of the stress waves at the three sections of the aluminum outer mass are 418 

-1.4x106, -0.5x106, -0.3x106 N/m2, respectively, and the corresponding results in the external 419 

layer of rubber are -1.7x106, -0.8x106, -0.4x106 N/m2. It is evident that both figures exhibit the 420 

stress wave attenuation from the beginning to the end of the meta-lattice truss subjected to the 421 

sweep frequency excitation.  422 

 423 

 

(a) Outer mass aluminium 
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(b) Outer coating 

Fig. 13. Stress waves time histories at different sections of the lattice truss subjected to 

excitation with sweep frequency ranging from 1-5000 Hz. 

To further validate the proposed model, the continuous wavelet transform (CWT) is applied to 424 

analyze the output displacements in the time-frequency domain. In this study, a Gabor wavelet 425 

transform is chosen as the mother wavelet function owing to its multiresolution analysis 426 

capability. Figs. 14 depicts the multi-frequency CWT profiles of the far-end surface data in the 427 

case of sweep excitation. As shown, no energy exists in the output signal within three frequency 428 

ranges which are shaded in the figure, which mean the three bandgaps are formed. These 429 

bandgaps are well agreed with the analytical results as discussed above. 430 
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Fig. 14. Transient response profiles of the output displacement obtained by the CWT method 

in the time-frequency domain under the sweep excitation. 

6.2 Transient response to a single frequency inside the passband 431 

The dynamic response of the meta-lattice truss is further studied by applying a prescribed 432 

displacement with a frequency that falls outside the bandgap range. In the numerical simulation, 433 

a frequency of 500 Hz is chosen. By applying a similar procedure, the stress waves of an 434 

element in the lead core (5th layer in Fig. 1) and the inner coating (4th layer in Fig. 1) at the input 435 

end, middle part and output end of the model are compared in Figs. 15(a) and 15(b), 436 

respectively. It can be seen that no wave attenuation occurs because the wave frequency is 437 

outside the bandgap of the meta-lattice truss. In other words, the stress wave can propagate 438 

through the meta-lattice truss without any internal obstructions, there is no prominent change 439 

in the stress amplitude. 440 
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(a) Lead core 

 

(b) Inner coating 

Fig. 15. Stress waves time histories at different sections of the meta-lattice truss subjected to 

harmonic excitation with frequency out of the bandgap range. 
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Figs. 16 depicts the multi-frequency CWT profiles of the far-end surface subjected to a single 441 

frequency excitation (i.e. with the frequency of 500 Hz).  As shown in Fig. 16, the dominant 442 

frequency of the transmitted signal remains unchanged at 500 Hz, which means no wave 443 

attenuation phenomena occurs in this area. This is because 500 Hz is within the passband of the 444 

meta-lattice truss as discussed above.  445 

 

Fig. 16. Transient response profiles of the output displacement obtained by the CWT method 

in the time-frequency domain under the excitation with single frequency of 500 Hz.  

7. Conclusions 446 

In this study, an analytical mass-in-mass spring model is developed to improve the accuracy of 447 

the commonly used analytical model for the dynamic behaviors of the meta-lattice truss system. 448 

In the proposed model, one more spring representing the shear stiffness between the most inner 449 

core and the corresponding coating is taken into consideration. From the analytical and 450 

numerical investigations, the following conclusions can be drawn: 451 
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1. The proposed model results in a broader low-frequency bandgap for the meta-lattice truss, 452 

while this low-frequency bandgap width is under predicted by the conventional model owing 453 

to neglecting the shear stiffness of the second-layer coating connecting the inner and outer mass. 454 

2. Parametric studies reveal that the first two bandgaps can be broadened by either increasing 455 

the internal mass m1 or decreasing m2 while the third bandgap remains unchanged irrespective 456 

of the value of m2 but increases with m1.  457 

3. Increasing the axial stiffness k1, and k3 has no effect on the first bandgap but narrows the 458 

third bandgap. Increasing shear spring stiffness k2 narrows the third bandgap, but widens the 459 

other two bandgaps. Increasing the shear stiffness k4, which is neglected in the previous study, 460 

has no effect on the bandgap in the high-frequency range but widens the bandgap in the low-461 

frequency range. 462 

In general, the investigated meta-lattice truss with dual resonators exhibits excellent 463 

performance on stress wave mitigation so that it possesses a great potential to be deployed in 464 

protective structures or energy absorbers. The proposed analytical model can predict the 465 

performance of the meta-lattice truss with a high level of accuracy in the low-frequency range. 466 
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Appendix 471 

With an attempt to estimate the accurate values of the spring stiffness ki (i=1,2,3,4), the 472 

commercial software COMSOL MULTIPHYSICS was leveraged to conduct a numerical 473 

simulation. A constant force F which is depicted in Fig. 17(a) is applied to the model to calculate 474 

the value of shear spring stiffness k4 of the internal core and while two constant force F was put 475 

in two directions of the model to estimate the values of k3 shown in Fig. 18(a). Similarly, the 476 
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calculation of value k2 and k1 is carried out with the same procedure but different dimensions. 477 

As seen in Fig. 17(a) and 18(a), the average displacements monitored at the yellow surface are 478 

denoted as ui (i=1,2,3,4) and captured by commercial software which is observed in Fig. 17(b) 479 

and 18(b). The boundary condition for all edges of the outer shell is clamped.  The equilibrium 480 

equations of the unit model are as follows [34]: 481 

( )1 1 2 2 1k u u k u F+ + =  

2 3k u F=  

( )3 4 5 4 4k u u k u F+ + =  

4 6k u F=  

(30) 

                       

                                 (a)                                                              (b) 

Fig.17. Simulated model utilized for the calculation of k2 and k4 (a) Undeformed model (b) 

Deformed model. 

F 

u3,6 
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                        (a)                                                                              (b) 

Fig.18. Simulated model utilized for the calculation of k1 and k3 (a) Undeformed model (b) 

Deformed model. 

The approximate value of the stiffness ki (i=1,2,3,4) can be estimated by Young’s modulus E 482 

and shear modulus G based on the relevant cross-sections of different parts of rubber Ai 483 

(i=1,2,3,4) which is presented in Figs. 19(a) and 19(b). 484 

             

                   (a)                                                                 (b) 

Fig.19. Schematic diagram for the calculation of the cross-section value (a) A2 and A4 and (b) 

A1 and A3. 

F 
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