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for point patterns on a linear network2

Suman Rakshit1,3∗, Greg McSwiggan2, Gopalan Nair2 and Adrian Baddeley33

Curtin University and The University of Western Australia4

Summary

Motivated by the analysis of a comprehensive database of road traffic accidents, we
investigate methods of variable selection for spatial point process models on a linear
network. The original data may include explanatory spatial covariates, such as road
curvature, and ‘mark’ variables attributed to individual accidents, such as accident severity.
The treatment of mark variables is new. Variable selection is applied to the canonical
covariates, which may include spatial covariate effects, mark effects, and mark-covariate
interactions. We approximate the likelihood of the point process model by that of a
generalised linear model, in such a way that spatial covariates and marks are both associated
with canonical covariates. We impose a convex penalty on the log likelihood, principally the
elastic-net penalty, and maximise the penalised loglikelihood by cyclic coordinate ascent.
A simulation study compares the performances of the lasso, ridge regression and elastic-net
methods of variable selection on their ability to select variables correctly, and on their bias
and standard error. Standard techniques for selecting the regularisation parameter γ often
yielded unsatisfactory results. We propose two new rules for selecting γ which are designed
to have better performance. The methods are tested on a small dataset on crimes in a Chicago
neighbourhood, and applied to a large dataset of road traffic accidents in Western Australia.
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1. Introduction7

The analysis of patterns of points on a network of lines is becoming widespread in8

applications. The lines could represent roads, rivers, railways, wires, cracks or nerve fibres,9

and the points give the locations of events or objects observed along these lines. For recent10
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2 VARIABLE SELECTION ON A LINEAR NETWORK

surveys, see Okabe & Sugihara (2012), Baddeley et al. (2020), and Baddeley, Rubak & Turner11

(2015, Chap. 17).12

Figure 1 shows the locations of 14,562 traffic accidents recorded in Western Australia13

in 2011. The data, curated by the state government agency Main Roads WA, include spatial14

coordinates of each road segment; the spatial location of each accident; properties of the road,15

such as speed limit and curvature; and attributes of each accident, such as severity and time16

of day.17
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Figure 1. Traffic accidents (dots), recorded in 2011, on state roads (lines) in Western Australia. Left:
entire state of Western Australia; Inset right: Perth metropolitan area.

For agencies that build and manage road networks, the main question of interest is18

the relationship between accident risk and explanatory covariates such as road geometry19

(curvature, width, number of lanes, distance to nearest intersection) and traffic management20

(speed limit, traffic lights, type of intersection). On the other hand, agencies that provide21

road safety advice tend to focus on attributes of the individual accident, such as the time of22

day, vehicle type, number of vehicles involved, and attributes of the driver such as fatigue23

and alcohol use. There is a methodological distinction between explanatory covariates and24

accident attributes; the techniques described here apply to both kinds of data.25

A point pattern on a linear network can be modelled as a realisation of a spatial point26

process on the network (McSwiggan 2019, Baddeley, Rubak & Turner 2015, Chap. 17,27

Baddeley et al. 2020). The fundamental definition of a point process on a network is a28

simple special case of the general theory of point processes (Daley & Vere-Jones 2003).29

Some statistical methodology for point patterns on a network has been developed (Okabe &30

c© 0000 Australian Statistical Publishing Association Inc.
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Sugihara 2012; Baddeley, Rubak & Turner 2015, Chap. 17). However, the inhomogeneous31

geometry of the network defeats many of the standard modelling techniques of spatial32

statistics (Baddeley et al. 2017) and causes substantial computational challenges (Okabe &33

Satoh 2009; Rakshit, Baddeley & Nair 2019).34

As a first step in this paper, we consider an inhomogeneous Poisson point process model35

for the spatial locations of the accidents. The inhomogeneous Poisson process is specified36

by its spatially-varying intensity or rate λ(u), as a function of location u on the network.37

When the intensity is constant, the process is called a homogeneous Poisson point process38

and λ denotes the expected number of events per unit length. Explicit models will express39

λ(u) as a function of explanatory spatial covariates Z(u), typically in the loglinear form40

λ(u) = exp(β>Z(u)), after transformation of covariates. Even when the Poisson process is41

not an appropriate model, experience with two-dimensional point pattern data suggests that42

the Poisson likelihood is still an appropriate tool for estimating the intensity (Guan, Jalilian43

& Waagepetersen 2015; Waagepetersen & Guan 2009).44

Variable selection becomes important when the number of explanatory variables is45

large, and especially when the models of interest include polynomial terms, factors with46

many levels, and interactions between variables, which all increase the number of canonical47

variables in the model. This applies to the WA road accident data, which include numerous48

variables listed in Tables 4 and 5. Some methods of variable selection are available for point49

process models in two dimensional space, including sufficient dimension reduction (Guan50

& Wang 2010) and penalised maximum likelihood (Yue & Loh 2015) as well as classical51

hypothesis tests and Akaike information criteria (Baddeley, Rubak & Turner 2015, pp. 335–52

338, 371–378, 512–513). In this paper we adapt penalised maximum likelihood methods,53

including the lasso, ridge regression and elastic net, to point process models on a linear54

network, and also extend them to the selection of mark variables.55

The likelihood of the Poisson point process involves an integral over the network.56

Adapting an approach often used for one-dimensional and two-dimensional point processes,57

we shall approximate the integral in such a way that the approximate point process likelihood58

is formally equivalent to the likelihood of a generalised linear model (GLM), which may then59

be fitted using standard software (Brillinger & Preisler 1986; Berman & Turner 1992; Lindsey60

1992, 1995; Baddeley & Turner 2000; Baddeley et al. 2010; Aarts, Fieberg & Matthiopoulos61

2012; Fithian & Hastie 2013; Renner & Warton 2013).62

A simple case of this approach arises when the accident locations are aggregated into63

accident counts for each road segment, and a count regression model is applied to the accident64

counts. This is an instance of the ‘crash-frequency’ approach to accident risk analysis (Lord65

& Mannering 2010) and is equivalent to assuming the accident rate is constant along each66

road segment. Such analysis is common because the road variables in most road accident67

c© 0000 Australian Statistical Publishing Association Inc.
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4 VARIABLE SELECTION ON A LINEAR NETWORK

databases are stored as constant values per road segment. However, as McSwiggan (2019,68

Chap. 2) pointed out, there are covariates, possibly influencing road accidents, that vary69

along a road segment, such as, sighting distance, curvature change rate, and distance to the70

nearest intersection. Aggregating these covariates at the level of road segments can cause71

substantial bias and loss of information (Koorey 2009; Baddeley et al. 2010; McSwiggan72

2019). Our general approach avoids these inefficiencies by allowing fine spatial discretisation73

and accurate approximation of the likelihood.74

Regularisation can improve the performance of techniques for fitting spatial point75

process models. For two-dimensional point processes, Baddeley & Turner (2000, pp. 296,76

301, 307) used generalised additive models to estimate covariate effects as smooth functions.77

Renner (2013), Renner et al. (2015) and Yue & Loh (2015) used regularisation methods for78

variable selection, adapting the lasso (Tibshirani 1996) and elastic net (Zou & Hastie 2005) to79

two-dimensional point process models. The lasso produces sparse solutions (i.e. estimates of80

the parameter vector in which relatively few entries are non-zero) and thus supports parameter81

estimation and variable selection simultaneously. In the case of correlated predictors, the82

lasso tends to select one predictor from each set of highly-correlated predictors. The elastic83

net, which provides a compromise between the lasso and the ridge regression penalty (Hastie,84

Tibshirani & Friedman 2009, Sec. 3.4, pp. 61–79), tends to average the effects of the highly-85

correlated predictors and selects an averaged predictor for the model (Friedman, Hastie &86

Tibshirani 2010). Ridge regression typically shrinks the estimated coefficient values of the87

correlated predictors close to each other.88

Algorithms for maximising these penalised likelihoods are well-developed in the case89

of the general linear model (Hastie, Tibshirani & Friedman 2009, Sec. 3.4.4, pp. 71–90

79). Recently, Friedman, Hastie & Tibshirani (2010) extended these methods for fitting91

generalised linear models using an efficient cyclic coordinate descent algorithm, which was92

shown to be faster than the least angle regression algorithm (Efron, Hastie & Tibshirani 2004).93

The cyclic coordinate descent algorithm is used in this paper.94

Road traffic accident data may also include attributes of each individual accident, such95

as accident severity, type of collision, and number of vehicles involved. The accident records96

then constitute a ‘marked point pattern’ which can be modelled by a ‘marked point process’97

(Stoyan, Kendall & Mecke 1995, Sec. 4.2, pp. 105-109, Baddeley 2010b). The analysis98

of marked point patterns confers valuable advantages (Baddeley, Rubak & Turner 2015,99

Chap. 14, Illian et al. 2008), including the ability to estimate the spatially-varying relative100

risk of different types of events, and to avoid confounding due to the effect of latent variables.101

In this paper we also develop variable selection for mark variables, which appears to be new.102

The paper is organised as follows. Section 2 gives basic definitions including the Poisson103

point process on a linear network and its likelihood. Section 3 explains how Poisson point104
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process models can be approximated by generalised linear models. The penalised likelihood105

and cyclical coordinate descent algorithm are described in Section 4. A simulation study106

comparing the performance of the variable selection methods is presented in Section 5.107

analysis of the Western Australia traffic accident data is described in Section 6. Variable108

selection for a marked point process model is explained in Section 7. The paper ends with a109

discussion in Section 8.110

2. Point process models on a linear network111

2.1. Data structure112

The data consist of a linear network L, a spatial pattern of points x on L, and spatial113

covariate functions V on L, defined below.114

A linear network is defined (Ang, Baddeley & Nair 2012) as the union L =
⋃m
i=1 si115

of a finite number m of line segments s1, . . . , sm in the plane, where si = [ui, vi] = {w :116

w = tui + (1− t)vi, 0 ≤ t ≤ 1} is the line segment with endpoints ui, vi, belonging to the117

two-dimensional space.118

A (finite, simple) point pattern x on L is a finite set x = {x1, . . . , xn} of distinct points119

xi ∈ L, where n ≥ 0. For any set B ⊂ L, let Nx(B) = N(x ∩B) be the number of points120

of x lying in B.121

A spatial covariate V on L is a real- or vector-valued function V (u), u ∈ L. It is122

assumed that the values V (u) are fixed and known (in principle) for all locations u ∈ L.123

In practice, the values may only be given at a set of sample locations. In any case, V (u) must124

be known for some locations u other than the points of the point pattern.125

2.2. Point processes126

Following the general theory of point processes (Daley & Vere-Jones 2003) we can127

formally define a finite point process X onL as a mapping from a probability space (Ω,F , P )128

to (Nf ,Nf ), where Nf denotes the class of all point patterns in L, and Nf is the smallest129

σ-field on Nf with respect to which NX(B) is measurable, for all compact subsets B ⊆ L.130

All point processes under consideration here are assumed to be finite and simple (that131

is, almost surely there are finitely many points and the point locations are distinct) and to132

possess an intensity function λ(u), u ∈ L, defined to satisfy133

E[NX(B)] = Λ(B) =

∫
B

λ(u) d1u, (1)

c© 0000 Australian Statistical Publishing Association Inc.
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6 VARIABLE SELECTION ON A LINEAR NETWORK

for all measurable B in L, where d1u denotes integration with respect to arc length (Ang,134

Baddeley & Nair 2012; Jammalamadaka et al. 2013; Rakshit, Nair & Baddeley 2017;135

Baddeley et al. 2017). Heuristically, for an infinitesimal interval of length d1u centred at136

u ∈ L, the probability that the interval will contain a random point of X is equal to λ(u) d1u.137

2.3. Poisson process models138

The Poisson point process on L is determined by its intensity function λ(u), u ∈ L, and139

is well-defined whenever λ is non-negative and integrable over L. It is characterised by the140

properties that:141

(PP1) the random variable N(X ∩B) has a Poisson distribution with mean µB =142 ∫
B
λ(u) d1u, for all measurable B ⊂ L;143

(PP2) for disjoint subsets B1, B2, . . . Bm of L, the random variables N(X ∩B1), N(X ∩144

B2), . . . , N(X ∩Bm) are independent;145

(PP3) for any measurable B ⊆ L, conditional on N(X ∩B) = n, the points x1, . . . , xn in146

x ∩B are independent and identically distributed with probability density f(u) =147

λ(u)/Λ(B), for u ∈ B, and zero otherwise,148

where (PP3) is a consequence of (PP1) and (PP2).149

Explicit models for the intensity function λ(u) could take any functional form. We shall150

consider loglinear intensity models151

λβ(u) = exp(β>Z(u)), u ∈ L, (2)

where β = (β1, . . . , βp)
> is the p-dimensional parameter vector and Z(u) =152

(Z1(u), . . . , Zp(u))> is the p-dimensional vector of canonical covariate functions. We153

assume
∫
L
λβ(u) d1u <∞, for all β. Note that the canonical covariates Zj(u) could be154

transformations of the originally observed covariate functions V (u), including dummy155

variables associated with different levels of a factor-valued covariate, and interaction terms156

involving several of the original covariates.157

2.4. Maximum likelihood for Poisson point process model158

Likelihood theory for the Poisson process on a network can be derived from the case159

of a Poisson process on the real line (Cox & Lewis 1966; Kutoyants 1998; Rathbun &160

Cressie 1994). Let x = {x1, . . . , xn} denote the observed point pattern on the network L.161
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The loglikelihood of the Poisson process with intensity function λ(u) is162

` = logL =

n∑
i=1

log λ(xi)−
∫
L

λ(u) d1u. (3)

In particular, for the loglinear intensity function (2), the loglikelihood takes the form163

`(β) = β>
n∑
i=1

Z(xi)−
∫
L

exp{β>Z(u)} d1u. (4)

The score function is164

U(β) =

n∑
i=1

Z(xi)−
∫
L

Z(u) exp{β>Z(u)} d1u. (5)

The Fisher information is165

I(β) =

∫
L

Z(u)Z(u)> exp{β>Z(u)} d1u. (6)

The loglikelihood (4) is concave as a function of β, and achieves its maximum at a166

zero of the score function, except in degenerate cases. The maximum likelihood estimate167

is asymptotically multivariate normal with mean β and variance I(β)−1, under several168

asymptotic regimes, including ‘infill asymptotics’, in which λ(u) = Nλ1(u) at stage N =169

1, 2, . . ..170

3. Reduction to generalised linear models171

The loglikelihood (3) of the Poisson point process involves an integral over the linear172

network L. For two-dimensional point processes, the counterpart of the integral in (3) is taken173

over a two-dimensional spatial domain and is approximated by a finite sum, in such a way174

that the approximate loglikelihood is equivalent to the loglikelihood of a GLM, which can be175

fitted using standard statistical software. In the most common implementation, the spatial176

domain is partitioned into subsets, the point process and covariate values are aggregated177

over these subsets, and the aggregated data follow a Poisson count regression or logistic178

regression (Lewis 1972; Brillinger 1978; Lindsey 1992, 1995; Baddeley et al. 2010; Renner179

& Warton 2013). A slightly different approach developed by Berman & Turner (1992) uses180

numerical quadrature, and the approximating model is a Poisson loglinear regression (Berman181

& Turner 1992; Baddeley & Turner 2000; Baddeley, Rubak & Turner 2015, Section 9.8).182

These techniques can be adapted to linear networks as we describe below.183
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8 VARIABLE SELECTION ON A LINEAR NETWORK

3.1. Spatially discretised models184

In this subsection we assume the linear network is partitioned into disjoint subsets185

l1, . . . , lJ with lengths a1, . . . , aJ , respectively. The spatial covariate functions are assumed186

to be constant (or are approximated by a constant) on each subset,187

Z(u) = zj , for u ∈ lj , (7)

where zj = (zj1, . . . , zjp)
>. The point process is aggregated over these subsets, so that the188

observable random variables are either the counts Nj = N(X ∩ lj) of points falling in each189

subset, or the indicators Yj = 1(Nj > 0) of the event, that at least one point of the process190

falls inside the subset, for j = 1, . . . , J . Correspondingly, let µj = E[Nj ] denote the expected191

number count in lj , and pj = E[Yj ] = Pr(Nj > 0), the probability that at least one point falls192

inside lj .193

These assumptions are useful in two situations. In Scenario A, common in road accident194

research, the subsets lj are the same as the original segments s1, . . . , sm, which defined the195

network, and the available covariates are constant along each segment si. In Scenario B,196

the subsets l1, . . . , lJ constitute a much finer subdivision of the network into short segments197

called ‘lixels’ (line picture elements), and the covariates are treated as approximately constant198

on each lixel.199

Under the assumption (7) that covariates are constant on each subset, the inhomogeneous200

Poisson process with loglinear intensity (2) has constant intensity on each subset, and201

properties (PP1)–(PP2) imply that the counts Nj satisfy a Poisson loglinear regression,202

that is, Nj ∼ Pois(µj) are independent random variables with means µj =
∫
lj
λ(u) d1u =203

aj exp(β>zj). The loglikelihood (3) collapses to the loglikelihood of Poisson count204

regression205

`Pois(β) =

J∑
j=1

[Nj logµj − µj ], (8)

with linear predictor206

logµj = log aj + β>zj , (9)

the counts Nj are sufficient for β, and the loglikelihood can be maximised using standard207

software, treating the term log aj in (9) as an ‘offset’. If the covariates are only approximately208

constant on each subset, there is a loss of efficiency in approximating the Poisson process by a209

Poisson loglinear regression, and this has been explored for two-dimensional point processes210

by Baddeley et al. (2010).211

Again, under the assumption (7) of constant intensity on each subset, the presence-212

absence indicators Yj satisfy a complementary log-log regression, that is, Y1, . . . , YJ are213
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independent Bernoulli random variables with success probabilities214

pj = pj(β) = 1− exp(−µj) = 1− exp
{
−aj exp(z>j β)

}
, (10)

so that215

log(− log(1− pj)) = log aj + z>j β. (11)

The loglikelihood based on the indicator variables Yj is216

`cloglog(β) =

J∑
j=1

[
Yj log

pj
1− pj

+ log(1− pj)
]
, (12)

which again can be fitted using standard software, treating log aj as an offset. Efficiency217

is lost when the counts Nj are replaced by the indicators Yj ; the Fisher information for218

both models (8) and (12) is derived in Baddeley et al. (2010), which shows that the relative219

efficiency is approximately µ̄/(exp(µ̄)− 1) in the case of a single covariate, where µ̄ =220

J−1
∑J
j=1 µj is the average expected number of points per subset.221

The complementary log-log regression (11) can in turn be approximated by the logistic222

regression in which223

log
pj

1− pj
= log aj + z>j β. (13)

This approximation is tolerably accurate provided µj < 0.4, for all j, as shown in Baddeley224

et al. (2010). Logistic regression is the most popular approximation for model-fitting for two-225

dimensional spatial point process models (Renner & Warton 2013). It has some advantages226

in numerical performance over the other discretised likelihoods, because the logistic link is227

canonical (Baddeley et al. 2010, p. 1172).228

In Scenario B, these generalised linear models are approximations of the original229

Poisson point process model, obtained by partitioning the spatial domain and aggregating230

the data. An important caveat about spatial aggregation is that models fitted using different231

discretisations or partitions of space are not equivalent in general. This is an instance of232

the ‘ecological fallacy’, ‘modifiable unit area problem’, or ‘change-of-support problem’233

(Robinson 1950; Openshaw 1984; Cressie 1996; Banerjee & Gelfand 2002; Gotway & Young234

2002). For spatial Poisson processes, Baddeley et al. (2010) showed that models obtained235

using different discretisations can even be logically incompatible. They also calculated the236

bias due to spatial discretisation, and showed that it depends crucially on the spatial regularity237

of the covariate function Z(u). These findings also apply to point processes on a linear238

network.239
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10 VARIABLE SELECTION ON A LINEAR NETWORK

3.2. Berman–Turner device on a network240

The device of Berman & Turner (1992) was adapted to point process models on241

linear networks by McSwiggan (2019). Integrals
∫
L
f(u) d1u are approximated by finite242

quadrature sums
∑J
j=1 wjf(uj), where u1, . . . , uJ are sample points on L and w1, . . . , wJ243

are nonnegative weights summing to |L|, the length of the network. Methods for choosing the244

sample point locations uj and the quadrature weights wj are discussed by Berman & Turner245

(1992) and Baddeley & Turner (2000) for two dimensional domains, and by McSwiggan246

(2019) for linear networks. The sample points must include all the data points; we assume247

without loss of generality that uj = xj , for j = 1, . . . , n. Thus J > n, and we describe the248

sample points uj , for j > n, as ‘dummy’ points. The Poisson process loglikelihood (4) is249

approximated by (Berman & Turner 1992; Baddeley & Turner 2000)250

`(β) ≈
J∑
j=1

[yj log λβ(uj)− λβ(uj)]wj , (14)

where yj is the pseudo-response251

yj =

1/wj , if j ≤ n,

0, if j > n.

Following Berman & Turner (1992), we recognise that the approximate loglikelihood (14)252

is formally equivalent to the weighted loglikelihood of Poisson regression with responses yj253

and weights wj so that it can be maximized using standard software for fitting generalised254

linear models (Aitkin et al. 1989; Becker, Chambers & Wilks 1988; Chambers & Hastie255

1992; Venables & Ripley 2002; Hastie & Tibshirani 1990; Faraway 2005). This can also be256

treated as the unweighted loglikelihood of Poisson loglinear regression with offset logwj ,257

i.e., log(λ(uj)) = z>j β + logwj , as shown in McSwiggan (2019).258

4. Variable selection using regularisation methods259

In this section, we describe the regularisation method of variable selection using260

penalised loglikelihoods (Tibshirani 1996). We demonstrate how to apply the method to the261

GLM approximations, given in Section 3, of the point process model. In Section 4.1, we262

define the general form of the penalised loglikelihood for GLMs, and in Section 4.2, we263

introduce the coordinate descent algorithm for solving the optimisation problem associated264

with penalised loglikelihoods.265
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4.1. Penalised loglikelihood266

Let `(β) denote any of the GLM loglikelihoods in (8), (12), and (14) with regression267

coefficient vector β = (β1, . . . , βp). We consider the penalised loglikelihood268

`Pen(β) = `(β)− γPα(β), (15)

where γ(> 0) is the regularisation parameter and Pα(β) is the elastic-net penalty defined by269

Pα(β) =

p∑
l=1

{
(1− α)

2
β2
l + α|βl|

}
, (16)

for 0 ≤ α ≤ 1. Note that Pα(β) is a convex function of β for 0 ≤ α ≤ 1, and includes the270

lasso (α = 1) and the ridge penalty (α = 0) as special cases, while for any 0 < α < 1, it271

provides a compromise between the two penalties. In the rest of this section, we shall assume272

that α is known. Thus, the penalty (16), as a function of β, is fully specified in the objective273

function in (15).274

For a fixed γ (> 0), the aim is to maximise `Pen(β) with respect to β. The choice275

of γ determines the amount of regularisation imposed on the regression coefficients – the276

larger the value of γ, the greater the amount of regularisation. When γ is close to zero, most277

variables under study are included in the regression model. In contrast, for large values of γ,278

we obtain a highly regularised model, in which the regression coefficients are greatly shrunk279

toward zero (see Hastie, Tibshirani & Friedman 2009, Chap. 3).280

Since the penalties in (16) depend on the measurement scale of the covariates, it281

is typical to standardize the covariates before applying the penalised likelihood approach282

(Hastie, Tibshirani & Wainwright 2015, Chap. 2). Exceptions include covariates which are283

already measured in the same units or are transformed to an equivalent scale (e.g., between284

zero and unity).285

To maximise the penalised loglikelihood in (15), some ideas of iteratively reweighted286

least-squares (IRLS) are adapted, particularly developed for the maximisation of the287

loglikelihood `(β) (Nelder & Wedderburn 1972; Hillis & Davis 1994). At every iteration,288

a quadratic approximation of `(β) is formed about the current estimates of the coefficients.289

These estimates are updated after every iteration, as explained below.290

Let Rj , for j = 1, . . . , J , denote the responses (either the binary responses Yj or the291

count outcomes Nj) under consideration. Let µj = E[Rj ] be the mean responses, g be the292

link function that connects the linear predictor z>j β to µj by the relation g(µj) = z>j β, and293

g′ be the derivative of g. For a given estimate β̃ of β, we now define the ‘working response’294
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12 VARIABLE SELECTION ON A LINEAR NETWORK

(Friedman, Hastie & Tibshirani 2010) as295

Uj(β̃) = g(µ̃j) + g′(µ̃j)(Rj − µ̃j), j = 1, . . . , J, (17)

where µ̃j = g−1(z>j β̃).296

For a fixed γ, we now describe the iterative procedure used in maximising the penalised

loglikelihood. Let β̂(k) denote the estimate of the parameter vector available at the kth step

of the iterative process. Define

ω
(k)
j = [{g′(µj)}2var(Rj)]

−1|β=β̂(k) , j = 1, . . . , J.

Then the quadratic approximation to the loglikelihood `(β) about the current estimate β̂(k)297

is the second-order Taylor approximation298

˜̀(β, β̂(k)) = − 1

2J

J∑
j=1

ω
(k)
j (Uj(β̂

(k))− z>j β)2 + C(β̂(k)), (18)

where C(β̂(k)), defined so that ˜̀(β̂(k), β̂(k)) = `(β̂(k)), is the constant term that does not299

depend on β.300

We substitute ˜̀(β, β̂(k)) for `(β) in the penalised loglikelihood (15) at the kth iteration.301

The updated β̂(k+1) is then obtained by computing302

β̂(k+1) = argmin
β
{−˜̀(β, β̂(k)) + γPα(β)}. (19)

The objective function in (19) is a quadratic approximation of the negative penalised303

loglikelihood. Instead of maximising the penalised loglikelihood, a standard practice is to304

solve the equivalent minimisation problem in (19) (Friedman, Hastie & Tibshirani 2010).305

Because the objective function in (19) is a convex function of β, there exist algorithms306

that converge to a global optimum by iterative application of (19) (Hastie, Tibshirani &307

Wainwright 2015, Chap. 5). One such algorithm is given below.308

4.2. Cyclical coordinate descent algorithm309

The cyclical coordinate descent algorithm minimises each coefficient βj one-at-a-time310

and converges to a global minimiser for the convex objective function in (19) under mild311

conditions (Hastie, Tibshirani & Wainwright 2015, Chap. 2). Friedman et al. (2007) first312

explored this algorithm in the linear regression setting with multiple predictors. It was313

subsequently extended by Friedman, Hastie & Tibshirani (2010) for maximising penalised314

loglikelihoods of GLMs, and implemented in open source software (Friedman et al. 2019).315
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A coordinate descent step to partially optimise (19) with respect to βl involves holding316

the coefficients other than βl fixed at their current estimates, and then solving the resulting317

optimisation problem using the results in Friedman et al. (2007), developed for the univariate318

case. This step is repeated for each βl, l = 1 . . . , p, one after another, to complete a single319

cycle.320

The lth step, for any l ∈ {1, . . . , p}, in a cycle can be described as follows. Suppose we321

have finished the kth iteration for some k ≥ 1. Then, after substituting (18) in (19), the lth322

step of the (k + 1)th iteration amounts to solving323

argmin
βl

1

2J

J∑
j=1

ω
(k)
j

Uj(β̂(k))−
p∑

i=0,i6=l

β̂
(k)
i zji − βlzjl

2

+ γ

[
(1− α)

2
β2
l + α|βl|

]
.

(20)

A solution to the above minimisation problem is the coordinate-wise update, as described in324

Donoho & Johnstone (1995), for coordinate l, which is given by325

β̂
(k+1)
l =

S

(
J∑
j=1

ω
(k)
j zjl

[
Uj(β̂

(k))− Ũ (l)
j (β̂(k))

]
, γα

)
J∑
j=1

ω
(k)
j z2jl + γ(1− α)

, (21)

where Ũ (l)
j (β̂(k)) =

∑p
i=0,i6=l β̂

(k)
i zji and S(u, v) is the soft-thresholding function326

S(u, v) = sign(u)(|u| − v)+ =


u− v, if u > 0 and v < |u|,

u+ v, if u < 0 and v < |u|,

0, if v ≥ |u|.

(22)

After each cycle, the coordinate-wise updates (21) are used to update the quadratic term327

˜̀(β, β̂(k)) in the objective function in (19). Then the next cycle of the algorithm reestimates328

the model parameters using (21). These two steps of updating ˜̀(β, β̂(k)) and computing the329

parameter estimates continue until convergence. See Tseng (2001) for an overview of the330

convergence properties of coordinate descent in convex problems.331

It follows from (21) that the estimated coefficients are non-zero when the ridge penalty332

is imposed using α = 0 in (16). For any non-zero α, it follows from (22) that the shrinkage333

in estimated coefficients depends on the value of γ. Therefore, a crucial question is how to334

obtain an appropriate value of γ for the regularised model in (15). A simple approach is to335

use some form of cross-validation, for example 10-fold cross-validation, for determining an336

optimum value of γ (Friedman, Hastie & Tibshirani 2010). As described in Hastie, Tibshirani337
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14 VARIABLE SELECTION ON A LINEAR NETWORK

& Friedman (2009, Chap. 7), two values commonly used in practice are γmin and γ1se, where338

γmin is the value of γ that minimises the cross-validation error and γ1se is the value that339

provides the most regularised model with an error no more than one standard error above the340

minimum cross-validation error. There may be practical limitations with these two particular341

choices. In some applications, the selection rule γmin could produce a model with almost the342

full set of variables, while the rule γ1se produces a highly regularised model with hardly any343

variables selected (see Sections 6 and 7 for examples). We propose two additional rules for344

selecting γ, given by345

γavg = (γmin + γ1se)/2 and γgmean =
√
γmin · γ1se , (23)

the arithmetic mean and geometric mean of γmin and γ1se, respectively. These additional346

choices provide some means of compromise between the two extreme models chosen using347

γmin and γ1se. The performance of γavg for variable selection is assessed in a simulation348

study alongside γmin and γ1se in Section 5. We have used γgmean to select variables under the349

Berman–Turner approximation for the WA accident data, analysed in Sections 6 and 7.350

5. Simulation study351

We performed a simulation study to evaluate the performance of the lasso, ridge352

regression and elastic net methods in selecting spatial covariates for a point process model on353

a linear network. R code for performing the simulations is provided in an online supplement.354

For practical reasons, the simulations were performed on a relatively simple network355

L, shown in Figure 2, which represents the street network surrounding the University of356

Chicago, and has featured in many recent research papers (Ang, Baddeley & Nair 2012;357

Jammalamadaka et al. 2013; Rakshit, Nair & Baddeley 2017; Baddeley et al. 2017).358

Ten spatial covariate functions Z1(u), . . . , Z10(u) were generated (once only) as359

independent realisations of a stationary Gaussian random field in two dimensions, with mean360

1 and exponential variogram with sill 2.4 and range 100 feet, restricted to the network. This is361

similar to the simulation studies in Thurman & Zhu (2014) and Yue & Loh (2015), where the362

covariates are generated using independent realizations of the same Gaussian random field.363

The true point process model was a Poisson process with intensity depending only on364

the first five covariates365

λ(u) = 0.00015 exp {10Z1(u) + 9Z2(u) + 8Z3(u) + 7Z4(u) + 6Z5(u)} , u ∈ L. (24)

Figure 3 shows the synthetically generated covariates Z1, . . . , Z5 and one realization of the366

Poisson process with intensity (24).367
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Figure 2. Street network around the University of Chicago. Scale bar (top right) is 500 feet.
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Figure 3. The covariates Z1, . . . , Z5 used in the simulation study. Covariate value at each location on
the network is represented by line thickness, with scale shown at the right. Bottom right panel shows one
of the simulated point patterns, a realisation of the inhomogeneous Poisson process whose log-intensity
is a linear combination (24) of these covariates.

The experiment generated 1000 simulated realizations of the Poisson process with368

intensity (24) using a version of the thinning algorithm of Lewis & Shedler (1979). To each369

c© 0000 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls



16 VARIABLE SELECTION ON A LINEAR NETWORK

realization we fitted the Poisson point process model with intensity370

λ(u) = 0.00015 exp

{
10∑
l=1

βjZj(u)

}
, u ∈ L, (25)

approximating the likelihood using the loglinear Poisson regression model for discretised371

counts (8), logistic regression for discretised presence-absence indicators (12) with (13), and372

the Berman–Turner approximation (14).373

Results of the experiment are reported in Tables 1, 2 and 3. Table 1 reports estimated374

bias and standard error of the estimates of the regression coefficients β1, . . . , β5, which are375

actually present in the model (24). Table 2 reports estimated bias and standard error for the376

remaining coefficients β6, . . . , β10, which are zero in the true model. Table 3 reports, for each377

covariate Zl, the observed fraction of outcomes in which the coefficient βl is nonzero, so that378

the covariate is included in the fitted model. This helps to assess how well a variable selection379

method can perform in selecting the variables that are originally present in the model and380

rejecting the ones that are absent from the model.381

Tables 1 and 2 report the empirical bias and standard error in estimating the regression382

coefficients using the lasso, ridge regression, and elastic net (with α = 0.5), based on the383

regularisation parameter selection rule γmin. In these tables, the first three columns show,384

respectively, the method of variable selection, the number of lixels or dummy points used385

in fitting, and the type of approximating generalised linear model. The labels logistic and386

Poisson in the third column correspond to the approximations using logistic regression and387

Poisson count regression, respectively, fitted by minimising (15) for the likelihoods (12) and388

(8), respectively. The label B–T represents the Berman–Turner approximation (14).389

Table 1 concerns the first five coefficients, which were nonzero in the true model. The390

biases are all negative, reflecting the well-known fact that regularised methods result in391

estimates biased towards zero. For the largest two coefficients β1 and β2, the lasso produced392

smaller biases than ridge regression, for all choices of approximate likelihood. On the other393

hand, for the smallest two coefficients β4 and β5, ridge regression produced smaller estimated394

biases than the lasso, for all approximate likelihoods. The elastic net biases lay typically395

between the lasso and ridge biases. The estimated biases for β3 are very close to each other for396

all three variable selection methods. For the approximate likelihoods based on discretisation,397

logistic regression produced smaller estimated bias than loglinear Poisson regression, for all398

scales of discretisation and all variable selection methods. Amongst the logistic regression399

approximations, the discretisation using 3370 lixels produced the minimum biases. Thus,400

increasing the fineness of the discretisation does not always increase the estimation accuracy401

– a phenomenon of numerical integration which is well recognised in this context (Baddeley402
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et al. 2010). For the Berman–Turner approximation, the estimated biases are close to each403

other for all three choices of the number of dummy points on the network. For all likelihood404

approximations and variable selection methods, the coefficients representing larger effect405

sizes were estimated with less bias than the ones representing relatively smaller effect sizes.406

Table 2 concerns the coefficients which were zero in the true model. Coefficients407

β6 and β8 were estimated with large bias. This reflects the inability of the regularisation408

parameter selection rule γmin to exclude some of the variables that are absent in the model; we409

address this issue below. Of the three penalties, ridge regression produced the greatest bias,410

while the lasso and elastic-net results are close to each other. Overall, the Berman–Turner411

approximation produced smaller biases than the discretised GLM approximations, for all the412

coefficients. The Berman–Turner fits with relatively large numbers of dummy points (3063413

and 5516) produced smaller biases than the fits using smaller numbers (1684) of dummy414

points.415

The large estimated biases in Table 2, especially for the coefficients β6 and β8, indicate416

that the corresponding variables Z6 and Z8 will be selected in the final model for a high417

percentage of the total simulations. This is undesirable because one of the main objectives418

is to exclude variables that are absent in the true model. Although the selection rule γmin419

provides accurate estimates of the non-zero coefficients, it often fails to discard unrelated420

variables. To overcome this problem, Friedman, Hastie & Tibshirani (2010) proposed the421

selection rule γ1se, described in Section 4.422

Table 3 reports the proportion of simulated outcomes in which each coefficient was423

estimated to be non-zero, and was therefore included in the fitted model. We considered the424

selectors γmin and γ1se, and also a proposed compromise, γavg, defined in (23). The results425

in Table 3 clearly show that the use of γmin provides the highest proportion of non-zero426

estimates for the coefficients β6,. . . ,β10. In contrast, the use of γ1se provided the most strongly427

regularised models, and even failed to select the variables with large effects for some models.428

For example, the Berman–Turner fit with 5516 dummy points for the selector γ1se produced429

coefficient estimates equal to zero (in almost all the simulations) for all the 10 variables. This430

behaviour of γ1se indicates that it may fail to select any variables, even the variables with431

large effect sizes.432

The selector γavg tends to balance the two extreme behaviours of γmin and γ1se. The433

results in Table 3 show that the proportion of the non-zero coefficients are similar for the434

selectors γavg and γmin. On the other hand, the selectors γavg and γ1se produced similar435

proportions for the coefficients β6, . . . , β10. This shows that the selector γavg performs436

reasonably well in both selecting the variables with non-zero effect sizes and excluding the437

ones with zero effect sizes.438
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18 VARIABLE SELECTION ON A LINEAR NETWORK

6. Western Australia traffic accident data439

6.1. Data description440

The Western Australian road network and accident data, plotted in Figure 1, were441

provided by the state government agency Main Roads WA. These data have now been442

made publicly available on the agency’s website as part of the Western Australian Whole443

of Government Open Data Policy. There are 5386 accidents recorded. For practical purposes444

we have reduced the data complexity by simplifying the road geometry, so that the original445

dataset of over 600000 individual road segments has been reduced to 281740 segments with446

a total length of approximately 19263 km.447

Table 4 describes the covariates for the WA state road network used in the analysis. For448

each of these, the covariate value is constant along each road segment. Figure 4 illustrates449

the three covariates SPD LIM, KERB L, and SHLDR. Because our analysis is motivated by450

the road characteristics that are of primary interest to Main Roads, we chose not to include451

covariates based on network distance, i.e., distance between two points on a network as the452

shortest distance between the points along the network (see Ang, Baddeley & Nair (2012) for453

a formal definition).454

40 50 60 70 80 90 100 110 No Yes No Yes

Figure 4. WA road characteristics (left to right): (i) SPD LIM, (ii) KERB L and (iii) SHLDR

6.2. Variable selection455

In this section, we select variables for modelling accidents on the Western Australian456

road network (shown in Figure 1) using the lasso, ridge regression, and elastic net (with457

α = 0.5) methods described in Section 4. From Main Roads WA, we obtained data on 11 road458

characteristics, listed in Table 4. All the numeric variables were linearly rescaled to the range459
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[0, 1] by first subtracting the minimum value and then dividing by the range of that variable.460

We further created additional 33 canonical variables from these initial 11 variables. Thus, the461

total number of variables entered into the selection process is 44. The additional variables462

consisted of the scaled quadratic terms of the numeric variables, computed by first taking463

squares and scaling afterwards, and two-way interaction terms associated with the factors464

SHLDR, KERB L and KERB R. For each of these three factors, the interaction terms were465

created between the given factor and the remaining factors and scaled numeric variables. The466

coefficient estimates for regularised models are computed using the three approximations,467

described in Section 2, and are reported below in Table 7.468

We fitted the WA accident data using the Berman–Turner approximation with 563764469

dummy points. We also fitted two discretised models: Poisson count regression and logistic470

regression, using the 281740 road segments as the aggregation units. The logarithm of road471

segment lengths appear in the offset terms in (9) and (13), respectively.472

Figure 5 shows how the cross-validation mse (left panel) and fraction of deviance473

explained (right panel) vary with the number of variables in the lasso method when analysing474

the WA accident pattern based on the Berman–Turner (top panel), logistic regression (middle475

panel) and Poisson count regression (bottom panel) approximations. The cross-validation476

curve shows the out-of-sample performance of the model, while the fraction of deviance477

explained is computed solely based on the training data. The two vertical dotted lines in the478

cross-validation error plots correspond to the selectors γmin and γ1se. For brevity, we did not479

include the plots analogous to Figure 5 corresponding to the ridge regression and elastic-net,480

but these can be produced using the R-scripts and datasets provided in the online supplement481

document, along with other details.482

Nonetheless, the estimated coefficients corresponding to all the three variable selection483

methods are presented in Table 7. Furthermore, for each of these variable selection methods,484

the main results needed to select an appropriate regularised model are reported in Table 6. It485

presents the four selectors γmin, γ1se, γavg, and γgmean, along with the percentage deviation486

explained and the number of variables selected by each of them. In the case of the lasso,487

when γmin is used, a large number of variables is selected for all three approximations. In488

contrast, a parsimonious model is obtained using either of the selectors γ1se and γavg. For489

the two discretised models, the selectors γ1se and γavg picked models of similar sizes, but the490

cross-validation error for γavg was lower than that for γ1se. Consequently, we used γavg for491

the discretised models. Using γavg for the logistic and Poisson approximations, models with492

22 and 27 variables, respectively, were obtained. Also, the percentage deviance explained493

adopting γavg is very close to the percentage deviance explained by the full model.494

For the Berman–Turner approximation, the use of γ1se and γavg produced very495

parsimonious models with two and three variables, respectively. In this case, we chose γgmean,496
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Figure 5. Cross-validation diagnostics for selecting the regularisation parameter γ for the Western
Australian road accident data. Lasso method applied to the Berman–Turner (Top row), logistic
regression (Middle row) and Poisson count regression (Bottom row) approximations. Left column: cross-
validation error curve (horizontal dotted line) and corresponding upper and lower standard deviation
curves (error bars) are plotted against log(γ). Number of variables in the lasso is shown along the top
margin. The two vertical dotted lines correspond to γmin and γ1se. Right column: coefficient estimates
against fraction of deviance explained.

the logarithm of which corresponds to the middle value between the two vertical dotted lines497
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in Figure 5. This choice yielded a model with 17 variables, and explained 27.67% deviance498

out of 30.09% deviance, explained by the full model.499

In the case of ridge regression and elastic net, we again selected γavg for the two500

discretised models, and the justification is similar to the one given for the lasso method.501

For the Berman–Turner approximation with the elastic-net penalty, we used the selection rule502

γgmean, similar to the lasso case. However, when γgmean was used for the ridge regression, very503

low percentage deviance was explained, and consequently, the selector γmin was used for the504

ridge regression. Important information about the selected models is presented in Table 6505

with bold font.506

Table 7 shows that the main effects of TOT S, N LANE, KERB R, and KERB L507

are selected by the lasso and elastic-net with relatively large positive estimates, whereas508

the main effects of SPD LIM2 and FLDWY with relatively large negative estimates. The509

interaction effects TOT S×KERB R, TOT S×SHLDR, and TOT S×KERB L are selected510

with relatively large absolute values as their estimates. The ridge regression, as expected,511

selects all these variables but shrinks their coefficients towards zero.512

6.3. Interpretation of fitted models513

Since the selected models in Table 7 are all log-linear models of accident intensity514

(2), the interpretation of estimated coefficients is similar for each of them. To illustrate515

how to interpret these model coefficients, we consider the lasso solution, given in the first516

numeric column of Table 7, obtained by applying the Berman–Turner approximation. The517

interpretation is straightforward when only main effects are present (Baddeley, Rubak &518

Turner 2015, Section 9.3). However, in the presence of interaction terms, the effect of a519

covariate on log-intensity depends on the values (for quantitative variables) or levels (for520

categorical factors) of other covariates. For example, the effect of TOT Smay vary across the521

levels of three factors KERB L, SHLDR, and KERB R. We divide all the effects associated522

with TOT S by the scale value of 31.6, which can be computed using the maximum and523

minimum values provided in Table 4, to obtain the effect sizes in the original measurement524

unit (meter) of TOT S.525

After adjusting for the scaling, the coefficient of TOT S main effect is 0.14, and the526

coefficients of the interaction effects TOT S × KERB L, TOT S × SHLDR, and TOT S527

× KERB R are −0.0008, 0.038, and −0.067, respectively. Holding covariates, other than528

TOT S, KERB L, SHLDR, and KERB R, constant, the intensity of road accident would529

increase by a factor of exp(0.14) = 1.15 if the seal-width (TOT S) increased by one530

meter in a road with no kerbs and no shoulder-padding. If right-kerb (KERB R) is present531

in a road with no left-kerb and no shoulder-padding, the increase in the intensity would532
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22 VARIABLE SELECTION ON A LINEAR NETWORK

be by a factor of exp(0.14− 0.067) = 1.08, for a one meter increase in the seal-width.533

When all the three road characteristics are present, the increase would be by a factor of534

exp(0.14− 0.0008 + 0.038− 0.067) = 1.12 .535

The fitted models appear to imply that an increase in road seal-width would lead to an536

increase in accident rate. We caution strongly against inferring such causal connections from537

a perfunctory inspection of the fitted models.538

Firstly, the road properties should not be treated as fixed covariates. The road network is539

continually being modified in response to events on the network, including traffic accidents,540

traffic congestion and changes in usage. It would be more appropriate to regard both the541

accidents and the road properties as observational data. Our analysis is then a form of542

conditional regression of the accident pattern on the road properties, and the fitted effects543

represent correlations between accidents and road properties. For example, it would be544

appropriate to say that the fitted model indicates that accident rate is positively correlated with545

road seal-width (and vice versa); and a possible explanation is that, in those road segments546

with a history of accidents, the authorities will try to improve safety by widening the road.547

Secondly, the accident ‘rate’ λ(u) defined in our point process model (2) is the rate548

of accidents per unit length during a specified period. This may be the appropriate measure549

of accident rate for emergency planning purposes, but for road accident research, it would be550

more appropriate to estimate the accident risk relative to traffic volume, that is, the probability551

of an accident per vehicle per unit length during a specified period. If the traffic volume552

(number of cars per hour) along each road segment is known, then our modelling approach553

can be modified to estimate accident risk simply by including the logarithm of traffic volume554

as an offset in the linear predictor. Unfortunately, the available traffic volume data tend to555

be inadequate, because they are aggregated, or available only for the roads with very high556

volumes. This is one reason why estimation of relative risk is important.557

Thus, the paradoxical positive correlation between accidents and road seal-width could558

simply be attributable to the fact that roads with more traffic tend to be widened to handle the559

traffic.560

7. Variable selection for marked point processes561

In a ‘marked’ point pattern, the spatial locations xi are augmented by values mi, called562

marks, containing information about the event at xi.563

For example, if each mi is a categorical value, then each point is effectively assigned to564

one of several discrete categories, and the point pattern is effectively divided into several565

different types of points. Figure 6 shows an example in which a spatial point pattern of566

crime locations is augmented by classifying the crimes into different types. In the original567
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Figure 6. Crime events on the Chicago street network (lines) with the information on the type of crime
(open circle: damage and open triangle: theft).

dataset, these crime events were categorised into seven categories, namely assault, burglary,568

theft, damage, robbery, trespass and car-theft. For simplicity, we have grouped these crime569

categories into two broad categories, namely theft and damage. The new theft category is570

created by grouping the initial theft and car-theft events together; the new damage category571

consists of the remaining five crime categories.572

In many applications, the mark mi is a multivariate observation consisting of several573

‘mark variables’. For the Western Australian road accident dataset, Table 5 shows some of574

the mark variables available.575

There is an important methodological distinction between marks and spatial covariates.576

Covariates can be observed at any spatial location, and are usually treated as explanatory577

variables. Marks are attributes of the point events and are typically treated as part of the578

‘response’ in a statistical model (Baddeley 2010a, Baddeley, Rubak & Turner 2015, p. 147,579

Baddeley 2010b). Despite this distinction, we shall show that our variable selection methods580

can also be applied to marked point patterns on a linear network. This appears to be new.581

7.1. Theory582

Theoretical foundations of marked point processes were established by Matthes (1963)583

and are sketched in Matthes, Kerstan & Mecke (1978, p 7), Stoyan, Kendall & Mecke (1995,584

Sec. 4.2, pp. 105-109) and Baddeley (2010b).585
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24 VARIABLE SELECTION ON A LINEAR NETWORK

A point x on the network L, with an associated mark m belonging to some general586

set of possible marksM, is regarded as an ordered pair (x,m) ∈ L×M. Impose the very587

general assumption thatM is a separable metric space. Then a marked point process X on588

the network L, with marks belonging to M, is defined as a point process on L×M with589

the condition that N(L×M) <∞, almost surely. This condition ensures that the process of590

points without marks is well-defined (Matthes, Kerstan & Mecke 1978, p. 7; Stoyan, Kendall591

& Mecke 1995, pp. 105-109). A realisation of X is a (finite) marked point pattern, that is, an592

unordered set {(x1,m1), . . . , (xn,mn)}, where x1, . . . , xn are the point locations in L and593

m1, . . . ,mn are the corresponding mark values.594

A ‘multitype’ point process on L is a marked point process in which the marks are595

categorical values, say M = {1, . . . , c}, which effectively label the points into c different596

types.597

A Poisson marked point process onLwith marks inM is defined as a Poisson process on598

L×Mwith the condition that E[N(B ×M)] <∞, for all boundedB ⊂ L, or equivalently,599

that the expected total number of marked points is finite.600

In order to define the intensity function and likelihood of a marked point process, we601

must designate a measure µ on M which serves as the reference measure for integration602

over M. Then a marked point process X on L with marks in M has intensity function603

λ(u,m), u ∈ L, m ∈M, if604

E[N(B ×M)] =

∫
B

∫
M
λ(u,m) dµ(m) d1u, (26)

and the log-likelihood of the Poisson marked point process with intensity function λ(u,m)605

is, from Baddeley (2010a) extended to linear networks,606

` =

n∑
i=1

log λ(xi,mi)−
∫
L

∫
M
λ(u,m) dµ(m) d1u. (27)

The only case considered here is the multitype point process with mark space M =607

{1, 2, . . . , c}. Taking the reference measure µ to be the counting measure onM, equations608

(26) and (27) become609

E[N(B ×M)] =

∫
B

c∑
m=1

λ(u,m) d1u (28)

and610

` =

n∑
i=1

log λ(xi,mi)−
∫
L

c∑
m=1

λ(u,m) d1u. (29)

The Berman–Turner device was extended to multitype point patterns by Baddeley &611

Turner (2000) and we now adapt this to linear networks. Given a quadrature scheme U =612
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{u1, . . . , un+n0} for the spatial locations on the network, take the product613

V = U ×M = {(uj ,m) : j = 1, . . . , n+ n0;m = 1, . . . , c}.

Define the pseudo-response yjm corresponding to (uj ,m) so that yjm = 1, if uj is a data614

point (i.e. if j ≤ n) andm = mj is the corresponding observed mark, and yjm = 0 otherwise.615

The approximate likelihood is then616

`(β) =

n+n0∑
j=1

c∑
m=1

(yjm log λ(uj ,m)− λ(uj ,m))wj . (30)

7.2. Chicago data617

For expository purposes, and in order to test the performance of the technique, we first618

consider the Chicago crime data in Fig. 6. The data do not include spatial covariates, but619

since there is clear evidence of spatial inhomogeneity, we use the Cartesian coordinates as620

surrogate covariates. We fitted a model in which the intensity at spatial location (x, y), for621

crimes of type m, is a log-quadratic function of the coordinates,622

log λ(x, y,m) = β0 + β1x+ β2y + β3x
2 + β4xy + β5y

2

+ 1(m = 1)
(
β6 + β7x+ β8y + β9x

2 + β10xy + β11y
2
)
, (31)

where the mark values theft and damage are encoded as m = 0, 1, respectively.623

We fitted the model (31) using the lasso applied to the Berman–Turner approximation,624

with 1800 dummy points on the Chicago network, for both theft and damage categories. The625

Cartesian coordinates x and y were rescaled to have mean zero and sample variance 1 over626

the quadrature points.627

Table 8 reports the coefficient estimates, with a dot indicating that the coefficient628

estimate was zero, so that the associated covariate was not selected. The left side of the table629

gives the coefficients β0, . . . , β5 in (31), while the right side of the table gives β6, . . . , β11.630

The right side of the table is associated with the effect of the mark variable (crime type) and631

its interaction with spatial location. For this model the relative risk of damage to theft is632

r(x, y) =
λ(x, y, 1)

λ(x, y, 0)
= exp(β6 + β7x+ β8y + β9x

2 + β10xy + β11y
2) (32)

and the conditional probability that a crime at location (x, y) is a damage is p(x, y) =633

r(x, y)/(1 + r(x, y)). Consequently, r(x, y) and p(x, y) depend only on coefficients in the634

right half of Table 8.635
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26 VARIABLE SELECTION ON A LINEAR NETWORK

Note that the variable-selection algorithm (Friedman, Hastie & Tibshirani 2010) does636

not obey the usual rules of nested models, which require that, if an interaction term is selected,637

then the corresponding main effects must also be selected. For example, the last row of Table 8638

indicates that β̂11 6= 0 but β̂5 = 0, violating the nesting rule. It would be more appropriate to639

constrain the algorithm to respect the nesting rules.640

For comparison, backward stepwise model selection using AIC, started from a641

maximum likelihood fit of the full model (31), selected the covariates corresponding to642

coefficients β0, β2, β5 and β6, β7. The weaknesses of stepwise model selection are well643

known, and we expect that the penalised maximum likelihood methods will have better644

performance in the presence of correlated covariates.645

7.3. Western Australian road accident data646

Here we analyse the Western Australian accident data classified into two types according647

to the accident severity (high or low). Figure 7 shows the spatial patterns of the two accident648

types, and Figure 8 shows a closer view.649
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Figure 7. Traffic accidents on the state road network of Western Australia, separated into high severity
(Left) and low severity (Right) accidents.

For the Western Australian road accident data with marks indicating accident severity,650

Figure 9 shows the cross-validation mse plotted against regularisation parameter γ (in the651

left column) and the coefficient estimates plotted against fraction deviance explained (right652

column), for the lasso (top row), ridge regression (middle row) and elastic-net (bottom row)653

methods applied to the Berman–Turner approximation (30).654
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Figure 8. Closeup of previous figure in an area of northern metropolitan Perth.

For the lasso and elastic-net penalties, the rule γmin selected 50 and 74 variables,655

respectively, yielding models with a large number of variables, while the rule γ1se selected656

zero variables. Consequently, for these two penalties, we considered the respective γgmean657

values for fitting regularised models to the marked WA accident pattern based on the Berman–658

Turner approximation. The logarithms of γgmean values for the lasso and elastic-net penalties659

are−13.27 and−13.46, respectively. For both lasso and elastic-net, the corresponding γgmean660

values selected reasonably sparse models with 16 and 31 variables, respectively.661

In the case of ridge regression, the selection rules γ1se, γavg, and γgmean produced662

models with less than 3% deviance explained. In contrast, using γmin, we obtained a663

model that explained 22.24% of deviance, which is very close to the maximum of 24.32%664

deviance explained by the model without any regularisation. Consequently, we selected665

γmin = exp(−10.83) in the case of ridge regression.666

Table 9 shows the coefficient estimates obtained using lasso, ridge regression and elastic-667

net penalties applied to the Berman–Turner approximation. The results for lasso and elastic-668

net methods are broadly in agreement, which is not unexpected given the similarity of these669

methods. It is interesting that the speed limit SPD_LIM is not selected. The right-hand half670

of the table is associated with the effect of the mark variable (accident severity), in a similar671

way to that explained for the Chicago data. In the right-hand half of the table, two and six672

variables are selected by the lasso and elastic-net, respectively; all the selected coefficients673

are negative, so that the relative risk of a severe accident is predicted to decrease as the values674

of these covariates increase.675

For brevity, we have only included the results based on the Berman–Turner method in676

the table. However, the two discretised methods described in Section 3 can also be easily677

extended for the variable selection in marked point patterns.678
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Figure 9. Cross-validation diagnostics for selecting the regularisation parameter γ for the Western
Australian road accident data with Mark indicating accident severity. Lasso (Top row), ridge (Middle
row), and elastic-net (Bottom row) penalties are applied to the Berman–Turner approximation. Left
column: cross-validation error (horizontal dotted line) and corresponding upper and lower standard error
bars are plotted against log(γ); two vertical dotted lines correspond to γmin and γ1se. Right column:
coefficient estimates against fraction of deviance explained. Number of variables is shown along the top
margin.

8. Discussion679

We have considered only Poisson point process models. Variable selection for non-680

Poisson point processes, specifically for log-Gaussian Cox processes, is feasible for two-681

dimensional point patterns (Thurman & Zhu 2014; Yue & Loh 2015; Thurman et al. 2015).682 c© 0000 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls



S RAKSHIT, G MCSWIGGAN , G NAIR, AND A BADDELEY 29

We expect that the same techniques could be applied on a linear network. We have not683

attempted this because there are some unresolved difficulties in constructing Cox models684

on a linear network (Baddeley et al. 2017; Anderes et al. 2020). Gibbs point process models685

on a network are in the early stages of development (van Lieshout 2018).686

A mature methodology for model selection on a linear network should also deal with687

directed networks such as rivers and streams (Cressie et al. 2006; Ver Hoef & Peterson 2010;688

Ver Hoef, Peterson & Theobald 2006) and point events which occur exactly at a vertex of689

the network (such as traffic accidents at a road intersection). Alternative techniques include690

the Osborne descent algorithm (Osborne, Presnell & Turlach 2000b,a) and the adaptive lasso691

(Zou 2006).692

All computations were performed in R (R Core Team 2019) using the packages spatstat693

(Baddeley & Turner 2005; Baddeley, Rubak & Turner 2015), glmnet (Friedman et al.694

2019) and gstat (Grler, Pebesma & Heuvelink 2016). The gstat package was used only to695

generate the spatial covariates Z1, . . . , Z10 in Section 5. The lppm function in spatstat fits696

inhomogeneous Poisson process models to point patterns on a linear network (Baddeley &697

Turner 2005; Baddeley, Rubak & Turner 2015, Chap. 17). Instead of using lppm directly, we698

used the underlying internal functions to extract the data for the approximating generalised699

linear models, and then used glmnet to perform the penalised model-fitting and variable700

selection. Future versions of spatstat will allow this procedure to be performed using lppm701

alone, with appropriate command arguments. All figures were produced using spatstat,702

except that Figures 5 and 9 were produced using glmnet.703

The glmnet package does not respect the usual rules for variable selection which require704

that, if an interaction term is selected, then the corresponding main effect terms must also be705

selected. This issue is not specific to spatial point process models. See Lim & Hastie (2019)706

for a newer package that does do this correctly.707

Supplementary materials708

The supplementary materials provide the data (as RDS files) and R scripts required709

for reproducing the results and plots in the paper. Two R scripts Main.R and710

Utils.R have been provided. The Main.R script contains the codes for reproducing711

the figures and contents of the tables provided in the paper; Utils.R contains the712

utility functions used in the computation. Due to the large size of the datasets, we have713

put them in the author’s Github repository, and it can be accessed using the link:714

https://github.com/rakstats/VarSelectOnLinnet.715
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Table 1. Bias (standard error) in estimating the non-zero regression coefficients for the spatial
covariates, shown in Fig. 3, on the Chicago network, using the lasso, ridge regression and elastic-net.
The selection rule γmin was used to choose the regularisation parameter.

Method lixel/ Approx β1 = 10.0 β2 = 9.0 β3 = 8.0 β4 = 7.0 β5 = 6.0
dummy model

Lasso 1810 logistic -0.521 (1.64) -0.782 (1.67) -0.725 (1.79) -1.39 (2.21) -1.62 (2.22)
1810 Poisson -1.39 (1.91) -1.52 (1.97) -1.44 (2.01) -1.92 (2.39) -2.04 (2.42)
3370 logistic -0.252 (1.49) -0.601 (1.48) -0.773 (1.71) -1.25 (2.05) -1.47 (2.06)
3370 Poisson -0.86 (1.59) -1.12 (1.65) -1.23 (1.87) -1.65 (2.2) -1.82 (2.25)
6481 logistic -0.516 (1.5) -0.659 (1.45) -0.932 (1.75) -1.25 (1.98) -1.46 (2.01)
6481 Poisson -0.869 (1.58) -0.95 (1.55) -1.19 (1.86) -1.46 (2.06) -1.67 (2.14)
1684 B–T -0.69 (1.47) -0.682 (1.4) -1.03 (1.72) -1.48 (2.03) -1.6 (2.04)
3063 B–T -0.642 (1.47) -0.731 (1.42) -1.11 (1.8) -1.31 (1.93) -1.42 (1.95)
5516 B–T -0.595 (1.45) -0.854 (1.48) -1.09 (1.8) -1.43 (2.03) -1.55 (2.03)

Ridge 1810 logistic -0.703 (1.634) -0.937 (1.674) -0.737 (1.674) -1.157 (1.945) -1.388 (1.967)
1810 Poisson -1.652 (2.077) -1.759 (2.120) -1.500 (1.970) -1.735 (2.165) -1.866 (2.205)
3370 logistic -0.434 (1.454) -0.762 (1.469) -0.769 (1.591) -1.030 (1.805) -1.254 (1.814)
3370 Poisson -1.131 (1.714) -1.369 (1.786) -1.280 (1.813) -1.457 (1.961) -1.632 (2.008)
6481 logistic -0.729 (1.515) -0.854 (1.494) -0.941 (1.647) -1.042 (1.752) -1.268 (1.790)
6481 Poisson -1.134 (1.690) -1.196 (1.670) -1.227 (1.783) -1.272 (1.829) -1.491 (1.905)
1684 B–T -0.925 (1.543) -0.875 (1.439) -1.049 (1.638) -1.279 (1.803) -1.401 (1.818)
3063 B–T -0.902 (1.542) -0.979 (1.513) -1.147 (1.720) -1.142 (1.730) -1.271 (1.739)
5516 B–T -0.858 (1.537) -1.105 (1.599) -1.132 (1.719) -1.238 (1.793) -1.368 (1.809)

E-net 1810 logistic -0.599 (1.661) -0.844 (1.709) -0.747 (1.765) -1.345 (2.154) -1.574 (2.173)
1810 Poisson -1.450 (1.958) -1.578 (2.007) -1.450 (2.002) -1.871 (2.337) -1.998 (2.376)
3370 logistic -0.310 (1.505) -0.653 (1.483) -0.776 (1.693) -1.197 (1.993) -1.416 (2.001)
3370 Poisson -0.938 (1.634) -1.193 (1.692) -1.252 (1.870) -1.611 (2.151) -1.784 (2.201)
6481 logistic -0.575 (1.517) -0.713 (1.478) -0.936 (1.730) -1.194 (1.932) -1.415 (1.955)
6481 Poisson -0.940 (1.617) -1.015 (1.588) -1.200 (1.848) -1.415 (2.005) -1.632 (2.082)
1684 B–T -0.748 (1.501) -0.729 (1.420) -1.031 (1.707) -1.424 (1.967) -1.543 (1.988)
3063 B–T -0.704 (1.502) -0.789 (1.447) -1.114 (1.779) -1.263 (1.891) -1.382 (1.895)
5516 B–T -0.653 (1.485) -0.910 (1.513) -1.096 (1.779) -1.376 (1.967) -1.499 (1.981)
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Table 2. Bias (standard error) in estimating the misspecified regression coefficients. The selection rule
γmin was used to choose regularisation parameters.

Method lixel/ Approx β6 = 0 β7 = 0 β8 = 0 β9 = 0 β10 = 0

dummy model
Lasso 1810 logistic -0.491 (1.235) 0.019 (1.267) -0.265 (1.237) -0.155 (1.407) 0.165 (1.164)

1810 Poisson -0.408 (1.006) 0.034 (1.061) -0.249 (1.020) -0.101 (1.194) 0.157 (0.937)
3370 logistic -0.198 (1.050) 0.005 (1.158) -0.183 (1.127) -0.187 (1.303) 0.053 (1.050)
3370 Poisson -0.181 (0.914) -0.003 (1.008) -0.167 (0.983) -0.168 (1.126) 0.040 (0.900)
6481 logistic -0.132 (0.961) -0.009 (1.068) -0.085 (1.030) -0.125 (1.227) 0.091 (0.961)
6481 Poisson -0.119 (0.900) -0.013 (1.003) -0.071 (0.956) -0.112 (1.140) 0.089 (0.902)
1684 B–T -0.291 (0.938) 0.071 (0.977) -0.038 (0.932) 0.177 (1.124) 0.001 (0.906)
3063 B–T -0.112 (0.909) 0.005 (1.046) -0.067 (0.963) -0.176 (1.153) 0.012 (0.928)
5516 B–T -0.118 (0.894) 0.004 (1.006) -0.137 (0.965) -0.198 (1.148) 0.034 (0.900)

Ridge 1810 logistic -0.596 (1.448) -0.015 (1.520) -0.411 (1.487) -0.190 (1.676) 0.160 (1.365)
1810 Poisson -0.507 (1.202) -0.005 (1.278) -0.428 (1.259) -0.164 (1.413) 0.192 (1.128)
3370 logistic -0.235 (1.267) -0.032 (1.403) -0.306 (1.381) -0.232 (1.568) 0.062 (1.265)
3370 Poisson -0.226 (1.129) -0.044 (1.255) -0.334 (1.243) -0.238 (1.385) 0.071 (1.110)
6481 logistic -0.174 (1.189) -0.042 (1.324) -0.190 (1.293) -0.174 (1.492) 0.128 (1.179)
6481 Poisson -0.162 (1.115) -0.053 (1.255) -0.208 (1.215) -0.177 (1.392) 0.137 (1.110)
1684 B–T -0.365 (1.161) 0.068 (1.235) -0.142 (1.183) 0.202 (1.366) 0.003 (1.112)
3063 B–T -0.151 (1.114) -0.041 (1.281) -0.190 (1.200) -0.237 (1.400) 0.057 (1.125)
5516 B–T -0.170 (1.116) -0.033 (1.264) -0.284 (1.234) -0.291 (1.415) 0.058 (1.112)

E-net 1810 logistic -0.512 (1.278) 0.013 (1.323) -0.295 (1.289) -0.160 (1.462) 0.171 (1.201)
1810 Poisson -0.426 (1.045) 0.013 (1.098) -0.284 (1.062) -0.111 (1.228) 0.164 (0.975)
3370 logistic -0.207 (1.095) -0.001 (1.206) -0.209 (1.182) -0.208 (1.358) 0.060 (1.098)
3370 Poisson -0.184 (0.950) -0.016 (1.044) -0.191 (1.027) -0.183 (1.169) 0.052 (0.934)
6481 logistic -0.144 (1.011) -0.017 (1.118) -0.099 (1.090) -0.140 (1.279) 0.099 (1.005)
6481 Poisson -0.124 (0.937) -0.019 (1.055) -0.092 (1.008) -0.126 (1.184) 0.100 (0.939)
1684 B–T -0.307 (0.987) 0.072 (1.035) -0.061 (0.982) 0.180 (1.159) 0.003 (0.945)
3063 B–T -0.114 (0.953) -0.002 (1.092) -0.090 (1.008) -0.188 (1.201) 0.023 (0.963)
5516 B–T -0.129 (0.945) 0.000 (1.060) -0.158 (1.018) -0.220 (1.200) 0.031 (0.941)
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Table 3. Proportion of simulated outcomes in which each coefficient is included in the model, when the
regularisation parameter γ is selected by mse cross-validation (min), one standard error stronger than
MSE (1se) or the average of these two rules (avg).

Method lixel/ Model γ β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
dummy rule (10) (9) (8) (7) (6) (0) (0) (0) (0) (0)

Lasso 1810 logistic min 1.00 1.00 1.00 1.00 1.00 0.68 0.68 0.67 0.63 0.64
avg 1.00 1.00 1.00 0.90 0.81 0.14 0.06 0.09 0.05 0.09
1se 0.89 0.91 0.88 0.51 0.29 0.01 0.00 0.00 0.00 0.01

1810 Poisson min 1.00 1.00 1.00 1.00 1.00 0.67 0.66 0.65 0.60 0.64
avg 1.00 1.00 1.00 0.86 0.73 0.11 0.03 0.04 0.03 0.06
1se 0.73 0.73 0.70 0.35 0.21 0.00 0.00 0.00 0.00 0.00

3370 logistic min 1.00 1.00 1.00 1.00 1.00 0.66 0.67 0.66 0.62 0.66
avg 1.00 1.00 0.99 0.78 0.65 0.02 0.01 0.02 0.01 0.02
1se 0.48 0.48 0.43 0.14 0.07 0.00 0.00 0.00 0.00 0.00

3370 Poisson min 1.00 1.00 1.00 1.00 1.00 0.64 0.65 0.63 0.60 0.64
avg 1.00 1.00 0.99 0.75 0.59 0.02 0.00 0.01 0.01 0.01
1se 0.33 0.34 0.30 0.10 0.06 0.00 0.00 0.00 0.00 0.00

6481 logistic min 1.00 1.00 1.00 1.00 1.00 0.64 0.66 0.65 0.59 0.64
avg 1.00 1.00 0.98 0.72 0.50 0.00 0.00 0.00 0.00 0.00
1se 0.04 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00

6481 Poisson min 1.00 1.00 1.00 1.00 1.00 0.63 0.64 0.63 0.59 0.64
avg 1.00 1.00 0.99 0.72 0.51 0.00 0.00 0.00 0.00 0.00
1se 0.04 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00

1684 B–T min 1.00 1.00 1.00 1.00 1.00 0.64 0.66 0.64 0.59 0.63
avg 1.00 1.00 0.99 0.79 0.62 0.01 0.00 0.00 0.00 0.01
1se 0.29 0.30 0.26 0.10 0.06 0.00 0.00 0.00 0.00 0.00

3063 B–T min 1.00 1.00 1.00 1.00 1.00 0.66 0.66 0.64 0.60 0.65
avg 1.00 1.00 0.98 0.73 0.54 0.00 0.00 0.00 0.00 0.00
1se 0.05 0.05 0.04 0.01 0.01 0.00 0.00 0.00 0.00 0.00

5516 B–T min 1.00 1.00 1.00 1.00 1.00 0.64 0.64 0.62 0.58 0.63
avg 1.00 1.00 0.98 0.71 0.51 0.00 0.00 0.00 0.00 0.00
1se 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-net 1810 logistic min 1.00 1.00 1.00 1.00 1.00 0.74 0.75 0.74 0.70 0.73
avg 1.00 1.00 1.00 0.94 0.85 0.18 0.10 0.13 0.07 0.12
1se 0.91 0.91 0.89 0.58 0.35 0.02 0.01 0.01 0.00 0.01

1810 Poisson min 1.00 1.00 1.00 1.00 1.00 0.74 0.74 0.73 0.68 0.69
avg 1.00 1.00 1.00 0.89 0.77 0.16 0.06 0.08 0.05 0.08
1se 0.75 0.74 0.71 0.43 0.28 0.02 0.00 0.01 0.00 0.00

3370 logistic min 1.00 1.00 1.00 1.00 1.00 0.74 0.76 0.75 0.71 0.75
avg 1.00 1.00 0.99 0.82 0.66 0.04 0.02 0.03 0.02 0.04
1se 0.49 0.52 0.48 0.21 0.12 0.00 0.00 0.00 0.00 0.00

3370 Poisson min 1.00 1.00 1.00 1.00 1.00 0.70 0.72 0.70 0.68 0.70
avg 1.00 1.00 0.99 0.77 0.61 0.02 0.00 0.02 0.01 0.02
1se 0.32 0.34 0.30 0.12 0.08 0.00 0.00 0.00 0.00 0.00

6481 logistic min 1.00 1.00 1.00 1.00 1.00 0.72 0.76 0.72 0.69 0.73
avg 1.00 1.00 0.99 0.74 0.52 0.01 0.00 0.00 0.00 0.00
1se 0.04 0.04 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00

6481 Poisson min 1.00 1.00 1.00 1.00 1.00 0.70 0.71 0.69 0.66 0.70
avg 1.00 1.00 0.99 0.74 0.52 0.00 0.00 0.00 0.00 0.00
1se 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

1684 B–T min 1.00 1.00 1.00 1.00 1.00 0.73 0.74 0.72 0.70 0.72
avg 1.00 1.00 0.99 0.82 0.64 0.02 0.01 0.01 0.01 0.02
1se 0.31 0.32 0.28 0.14 0.08 0.00 0.00 0.00 0.00 0.00

3063 B–T min 1.00 1.00 1.00 1.00 1.00 0.72 0.73 0.73 0.69 0.73
avg 1.00 1.00 0.99 0.77 0.55 0.01 0.00 0.00 0.00 0.00
1se 0.05 0.05 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00

5516 B–T min 1.00 1.00 1.00 1.00 1.00 0.70 0.73 0.70 0.68 0.71
avg 1.00 1.00 0.99 0.74 0.53 0.00 0.00 0.00 0.00 0.00
1se 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4. Spatial covariates associated with the WA state road network, alongside the maximum (Max)
and minimum (Min) values used to produce scaled measurements.

Covariate name Type Description Max Min
SPD LIM numeric Legal speed limit 40 110
H CURVE numeric Radius of horizontal curve in metres 0 99999
TOT P numeric Width of pavement in meters 0 33.9
TOT S numeric Width of road-side seal in metres 0 31.6
TRFABL numeric Width of trafficable road surface in metres 0 96.8
N LANE integer Number of lanes 1 7
SHLDR binary Presence of shoulder-padding 0 1
KERB L binary Presence of kerb on left side of road 0 1
KERB R binary Presence of kerb on right side of road 0 1
FLDWY binary Presence of floodway 0 1
BRDG binary Presence of bridge over road 0 1

Table 5. Some mark variables attributed to accidents in the WA data.

Mark variable Type Description
Severity binary Severity of accident (Low/High)
Day No factor Day number in the week
Time factor Time of the accident
Spd Fact binary True if speeding was a cause
Police binary True if police case was filed
Inattention binary True if driver inattention was a cause
Fatigue binary True if fatigue was a cause
Cond factor Weather-dependent road condition
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Table 6. Percentage deviance explained (Deviance), as compared to the deviance explained by a full
model (Max-deviance), and the number of variables (N) selected in regularised models corresponding
to the parameters γmin, γ1se, γavg, and γgmean for the WA accident pattern analysis; rows written in
bold font correspond to the selected models.

Method Approximation γ log γ Deviance (%) Max-deviance (%) N
lasso B-T γmin -16.58 29.95 30.09 36
lasso B-T γ1se -9.51 15.46 30.09 2
lasso B-T γavg -10.20 18.26 30.09 3
lasso B-T γgmean -13.04 27.67 30.09 17
lasso Logistic γmin -14.06 29.53 29.53 43
lasso Logistic γ1se -9.23 27.10 29.53 15
lasso Logistic γavg -9.91 28.04 29.53 22
lasso Logistic γgmean -11.64 29.20 29.53 28
lasso Poisson γmin -11.80 38.27 38.54 33
lasso Poisson γ1se -10.31 37.42 38.54 24
lasso Poisson γavg -10.80 37.92 38.54 27
lasso Poisson γgmean -11.05 38.03 38.54 27
ridge B-T γmin -10.14 22.69 24.93 44
ridge B-T γ1se -1.95 0.00 24.93 44
ridge B-T γavg -2.64 0.09 24.93 44
ridge B-T γgmean -6.04 2.59 24.93 44
ridge Logistic γmin -7.16 24.49 24.57 44
ridge Logistic γ1se -6.13 22.30 24.57 44
ridge Logistic γavg -6.52 23.38 24.57 44
ridge Logistic γgmean -6.64 23.58 24.57 44
ridge Poisson γmin -6.38 30.42 31.93 44
ridge Poisson γ1se -5.17 26.30 31.93 44
ridge Poisson γavg -5.60 28.13 31.93 44
ridge Poisson γgmean -5.77 28.76 31.93 44
e-net B-T γmin -17.37 29.92 29.93 43
e-net B-T γ1se -8.44 3.49 29.93 3
e-net B-T γavg -9.14 14.04 29.93 4
e-net B-T γgmean -12.91 27.40 29.93 25
e-net Logistic γmin -13.37 29.34 29.35 44
e-net Logistic γ1se -9.84 27.48 29.35 29
e-net Logistic γavg -10.50 28.05 29.35 33
e-net Logistic γgmean -11.60 28.69 29.35 36
e-net Poisson γmin -13.15 38.33 38.34 43
e-net Poisson γ1se -10.64 36.93 38.34 33
e-net Poisson γavg -11.25 37.46 38.34 35
e-net Poisson γgmean -11.89 37.88 38.34 41
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Table 7. Estimates of the regression coefficients corresponding to the scaled WA road variables.

Variable B-T Logistic Poisson B-T Logistic Poisson B-T Logistic Poisson
(lasso) (lasso) (lasso) (ridge) (ridge) (ridge) (e-net) (e-net) (e-net)

(Intercept) -9.408 -10.182 -11.184 -8.320 -8.446 -8.273 -9.090 -9.997 -10.699
SPD LIM · 2.807 9.975 -0.398 -0.446 -0.362 · 2.025 4.887
H CURVE · · · 0.007 0.012 0.005 · 0.005 0.678
TOT P · · 0.385 0.243 0.291 0.205 0.559 1.267 2.490
TOT S 4.422 6.349 9.317 0.401 0.499 0.334 2.217 4.328 6.272
TRFABL · · · 0.102 0.123 0.087 · · ·
N LANE 1.884 1.422 · 0.368 0.420 0.306 1.706 1.311 0.871
SPD LIM2 -1.593 -4.242 -10.992 -0.543 -0.641 -0.481 -1.604 -3.606 -6.338
H CURVE2 · · · -0.000 -0.000 -0.000 · · ·
TOT P2 · · · 0.190 0.232 0.164 · · -1.148
TOT S2 · · -2.792 0.278 0.343 0.235 0.234 0.371 -1.189
TRFABL2 · · · 0.022 0.027 0.019 · · ·
N LANE2 · · · 0.257 0.295 0.216 0.282 0.257 -0.125
SHLDR · -0.030 -0.944 0.028 0.053 0.016 · -0.285 -0.658
KERB L 1.445 1.909 1.929 0.700 0.764 0.649 1.536 2.032 2.013
KERB R 1.901 2.145 2.323 0.614 0.706 0.575 1.601 2.285 2.389
FLDWY -1.065 -0.834 -0.675 -0.381 -0.468 -0.326 -0.952 -0.873 -0.824
BRDG 0.137 0.123 0.275 0.248 0.251 0.214 0.377 0.308 0.362
SPD LIM×KERB L 0.300 0.267 · 0.278 0.292 0.259 0.474 0.465 0.355
H CURVE×KERB L · · · -0.000 -0.000 0.000 · · ·
TOT P×KERB L · · · 0.260 0.271 0.253 -0.044 -0.773 -0.666
TOT S×KERB L -0.025 -2.070 -3.441 0.280 0.298 0.270 -0.117 -1.503 -2.519
TRFABL×KERB L · · · 0.093 0.101 0.088 · · ·
N LANE×KERB L · 1.159 2.254 0.319 0.352 0.288 · 1.117 1.740
SHLDR×KERB L -0.763 -0.701 -0.324 -0.075 -0.173 -0.018 -0.785 -0.791 -0.561
KERB R×KERB L -0.418 -0.597 -0.557 0.365 0.341 0.393 -0.444 -0.708 -0.622
FLDWY×KERB L · · · -0.004 -0.006 -0.003 · · ·
BRDG×KERB L · · -0.035 0.066 0.044 0.076 · -0.092 -0.076
SPD LIM×SHLDR 0.068 0.119 0.939 -0.035 -0.019 -0.051 0.077 0.235 0.595
H CURVE×SHLDR · · · 0.007 0.012 0.006 · 0.003 0.598
TOT P×SHLDR · · · 0.188 0.238 0.153 0.417 0.315 ·
TOT S×SHLDR 1.187 1.054 2.022 0.246 0.309 0.200 1.324 1.955 2.809
TRFABL×SHLDR · · -1.728 0.045 0.054 0.038 · -0.334 -1.901
N LANE×SHLDR · · -0.000 0.188 0.217 0.156 · -0.475 -0.671
KERB R×SHLDR -0.246 -0.315 -0.146 -0.122 -0.173 -0.059 -0.441 -0.335 -0.194
FLDWY×SHLDR · -0.362 -0.543 -0.161 -0.199 -0.136 -0.262 -0.479 -0.548
BRDG×SHLDR 0.820 0.839 0.723 0.272 0.282 0.225 0.686 0.769 0.704
SPD LIM×KERB R · · -0.140 0.184 0.207 0.183 0.062 · -0.001
H CURVE×KERB R · · · -0.001 -0.002 -0.000 · · ·
TOT P×KERB R · -0.150 -0.713 0.204 0.225 0.209 -0.431 -1.253 -1.516
TOT S×KERB R -2.128 -2.244 -3.250 0.221 0.250 0.224 -0.481 -1.572 -2.393
TRFABL×KERB R · · · 0.079 0.090 0.077 · · ·
N LANE×KERB R · · 1.019 0.270 0.308 0.250 · 0.569 0.886
FLDWY×KERB R · · · -0.004 -0.006 -0.003 · · -0.019
BRDG×KERB R -0.118 -0.110 -0.350 -0.006 -0.003 0.021 -0.346 -0.249 -0.389

Table 8. Variable selection results for the log-quadratic model of the Chicago data including crime type
(Fig. 6) using the lasso penalty applied to the Berman–Turner approximation.

Variable Coefficient Estimate Variable Coefficient Estimate
Intercept β0 -6.61 Damage β6 0.34
x β1 · Damage ×x β7 -0.27
y β2 0.38 Damage ×y β8 0.24
x2 β3 · Damage ×x2 β9 ·
xy β4 0.16 Damage ×xy β10 ·
y2 β5 · Damage ×y2 β11 -0.09
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Table 9. Estimates of regression coefficients for scaled road variables, computed using the lasso,
ridge and elastic-net penalties applied to the Berman–Turner approximation, for the Western Australia
accident data with mark indicating high (Severity = 1) and low (Severity = 0) severity.

Variable B-T B-T B-T Variable B-T B-T B-T
(lasso) (ridge) (e-net) (lasso) (ridge) (e-net)

(Intercept) -9.351 -8.751 -9.346 Severity -0.945 -0.375 -0.913
SPD LIM · -0.369 · Severity×SPD LIM · -0.219 ·
H CURVE · 0.007 · Severity×H CURVE · 0.001 ·
TOT P · 0.241 0.466 Severity×TOT P · -0.062 ·
TOT S 2.956 0.402 2.039 Severity×TOT S · -0.020 ·
TRFABL · 0.102 · Severity×TRFABL · -0.012 ·
N LANE 1.523 0.365 1.604 Severity×N LANE · -0.003 ·
SPD LIM2 -1.410 -0.512 -1.559 Severity×SPD LIM2 · -0.219 ·
H CURVE2 · -0.000 · Severity×H CURVE2 · -0.000 ·
TOT P2 · 0.188 · Severity×TOT P2 · 0.003 ·
TOT S2 · 0.276 0.221 Severity×TOT S2 · 0.022 ·
TRFABL2 · 0.022 · Severity×TRFABL2 · -0.000 ·
N LANE2 · 0.254 0.271 Severity×N LANE2 · 0.015 ·
SHLDR · 0.042 · Severity×SHLDR · -0.076 ·
KERB L 1.550 0.715 1.502 Severity×KERB L · -0.091 -0.086
KERB R 1.158 0.632 1.527 Severity×KERB R · -0.099 ·
FLDWY -1.007 -0.374 -0.947 Severity×FLDWY · -0.103 ·
BRDG 0.081 0.250 0.374 Severity×BRDG · 0.013 ·
SPD LIM×KERB L 0.105 0.290 0.460 Severity×SPD LIM×KERB L · -0.026 ·
H CURVE×KERB L · -0.000 · Severity×H CURVE×KERB L · -0.000 ·
TOT P×KERB L · 0.262 -0.004 Severity×TOT P×KERB L · -0.029 ·
TOT S×KERB L · 0.282 -0.023 Severity×TOT S×KERB L · -0.031 ·
TRFABL×KERB L · 0.093 · Severity×TRFABL×KERB L · -0.009 ·
N LANE×KERB L · 0.318 · Severity×N LANE×KERB L · -0.002 ·
SHLDR×KERB L -0.614 -0.062 -0.732 Severity×SHLDR×KERB L · -0.075 -0.099
KERB R×KERB L -0.200 0.383 -0.330 Severity×KERB R×KERB L -0.430 -0.147 -0.395
FLDWY×KERB L · -0.004 · Severity×FLDWY×KERB L · -0.001 ·
BRDG×KERB L · 0.071 · Severity×BRDG×KERB L · -0.018 ·
SPD LIM×SHLDR · -0.017 0.069 Severity×SPD LIM×SHLDR · -0.028 ·
H CURVE×SHLDR · 0.008 · Severity×H CURVE×SHLDR · 0.001 ·
TOT P×SHLDR · 0.191 0.448 Severity×TOT P×SHLDR · 0.016 ·
TOT S×SHLDR 1.375 0.249 1.277 Severity×TOT S×SHLDR · 0.026 ·
TRFABL×SHLDR · 0.045 · Severity×TRFABL×SHLDR · 0.003 ·
N LANE×SHLDR · 0.189 · Severity×N LANE×SHLDR · 0.022 ·
KERB R×SHLDR -0.417 -0.107 -0.442 Severity×KERB R×SHLDR · -0.078 -0.016
FLDWY×SHLDR · -0.156 -0.235 Severity×FLDWY×SHLDR · -0.038 ·
BRDG×SHLDR 0.796 0.270 0.672 Severity×BRDG×SHLDR · 0.042 ·
SPD LIM×KERB R · 0.198 0.041 Severity×SPD LIM×KERB R · -0.042 ·
H CURVE×KERB R · -0.001 · Severity×H CURVE×KERB R · -0.000 ·
TOT P×KERB R · 0.208 -0.327 Severity×TOT P×KERB R · -0.039 ·
TOT S×KERB R -0.090 0.225 -0.360 Severity×TOT S×KERB R · -0.041 -0.003
TRFABL×KERB R · 0.080 · Severity×TRFABL×KERB R · -0.012 ·
N LANE×KERB R · 0.271 · Severity×N LANE×KERB R · -0.011 ·
FLDWY×KERB R · -0.004 · Severity×FLDWY×KERB R · -0.001 ·
BRDG×KERB R · -0.000 -0.306 Severity×BRDG×KERB R · -0.040 ·
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