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Abstract: A common criterion in multi-stage stochastic programming is the expected total cost, which is
risk-neutral and requires full knowledge on the joint distribution of random variables. These restrictions
seriously affect the applicability of the multi-stage stochastic programs. By using a three-stage stochastic
linear program as an example, we show how a distributionally robust approach could be used as an alter-
native, which is computationally more tractable. In particular, we show that if the problem is stagewise
independent, then a multi-stage linear programming can be equivalent to a conic optimization problem under
an affine decision rule. Moreover, this new problem does not require full information on the distribution of
random variables; instead, it only requires partial statistical information such as the supporting sets and
certain moments of these variables, specified by an ambiguity set. This set of distributions is specified by a
very general form that can accommodate a wide class of applications. Our analysis is generally extendable to
multi (> 3) stage problems. A numerical example is provided to show the advantages of the distributionally
robust approach.
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1 Introduction
Multi-stage stochastic linear programming is a classical model in operations research with important appli-
cations in areas such as production planning [7], finance [17], and others. As a special case, the solution
methodology for the two-stage case has been studied. However, the solution methodology for three or
more stages are relatively open. In this paper, we develop a distributionally robust approach to three-stage
stochastic linear programming (TSSLP) as an example to show how the general multi-stage problems could
be solved.

The format of three-stage model is as follows. Let xk ∈ Rdk , k = 1, 2, 3, be the decision vectors to be
chosen at the kth stage and let z̃k ∈ Rrk stand for the random vector representing the uncertainty at stage k,
which is only revealed after xk is chosen. Then a next decision xk+1 ∈ Rdk+1 is made, representing a recourse
action in stage k+ 1. Starting from k = 1, this pattern is repeated twice until a final recourse decision x3 is
made. In the linear case, the recourse decision xk+1 is obtained by solving a linear program parameterized
by all previous xk and z̃k. Conceptually, a solution to TSSLP consists of a “decision-realization” chain in
the order of

x1, z̃1, x2(z̃1), z̃2, x3(z̃1, z̃2)

for all possible realizations of (z̃1, z̃2). The fact that the decision x2 and x3 are affected by all previous deci-
sions and realizations, but not affected by any later decision and realization, is called the nonanticipativity
constraints.

To simplify our analysis, we assume that z̃2 is independent of z̃1. Then by using expectation as the
criterion of the decisions, the TSSLP can be formulated as

min
x1∈X1

{
c>1 x1 + EP1 min

x2∈X2

[
c>2 x2 + EP2

(
min
x3∈X3

c>3 x3

)]}
(1.1)
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where “>” stands for the transpose, E stands for the expectation, and P1 and P2 are the distribution of z̃1
and z̃2, respectively. Let Xk be the feasible region of xk, k = 1, 2, 3. We assume that

X1 =
{
x1 ∈ Rd1 : A1x1 = b1, x1 ≥ 0

}
, where A1 ∈ Rp1 × Rd1 , b1 ∈ Rp1 ,

X2 =
{
x2 ∈ Rd2 : A2(z̃1)x1 +B2x2 = b2(z̃1), x2 ≥ 0

}
,

where A2(z̃1) ∈ Rp2×d1 , B2 ∈ Rp2 × Rd2 , b2(z̃1) ∈ Rp2 , and

X3 =
{
x3 ∈ Rd3 : A3(z̃1, z̃2)x1 +B3x2 + C3x3 = b3(z̃1, z̃2), x3 ≥ 0

}
,

where A3(z̃1, z̃2) ∈ Rp3 × Rd1 , B3 ∈ Rp3 × Rd2 , C3 ∈ Rp3 × Rd3 , b3(z̃1, z̃2) ∈ Rp3 .
We assume that problem (1.1) has a solution and is of relatively complete recourse, namely X1 6= ∅,X2 6=

∅ for any x1 ∈ X1 and z̃1, and X3 6= ∅ for any (x1, x2) ∈ X1 ×X2 and z̃1, z̃2. A major difficulty in applying
(1.1) in practice is that the model requires full information on the distribution of the random variables,
which is often unavailable in practice. In order to circumvent this difficulty, a focal point of recent research
is to utilize the tools developed in robust optimization to convert TSSLP to a conic optimization problem,
which is computationally tractable (more exactly, solvable in polynomial time of the problem size). The key
idea is as follows. Consider the distributionally robust TSSLP (DR-TSSLP) model

min
x1∈X1

{
c>1 x1 + sup

P1∈P1

EP1 min
x2∈X2

[
c>2 x2 + sup

P2∈P2

EP2

(
min
x3∈X3

c>3 x3

)]}
, (1.2)

and P1 and P2 are certain sets of probability distributions of z̃1 and z̃2, respectively. In essence, model (1.2)
assumes that we do not know the exact distribution z̃k, but we know that the distribution of z̃k belongs
to an “ambiguity set” Pk. We then use the worst-case expectation over the ambiguity sets as the decision
criteria. These worst-case expectations are indeed corresponding to the so-called coherent risk measures in
risk theory [3] and have many desirable properties. The interested reader may refer to [11] for details of the
fundamental theory and [1] for most recent development on this representation of risk measures.

The model (1.2), although looking more complicated due to the worst-case functions, turns out to be
much easier for computation. The key point is that we replace the computation of expectation by the solution
of an optimization problem, which happens to be “more tractable” in terms of numerical computation.
In fact, the major purpose of this paper is to show that the problem (1.2) can be converted to a conic
optimization problem of size polynomial in terms of the input data under suitable conditions. Therefore,
(1.2) can be solved efficiently.

It should be noted that the format of the set Pk that we will choose is highly expressive as demonstrated in
Wiesemann et al [22], therefore the theoretical result derived in this paper is widely applicable. In particular,
a spectrum of statistics could be utilized in “designing” the set Pk and thus to create different risk measures.
These characteristics reinforce our confidence in viability of using risk measures in the modeling of stochastic
optimization problems.

The contribution of this paper is to provide a tractable reformulation to DR-TSSLP. Comparing with the
traditional TSSLP, DR-TSSLP does not require the full knowledge of the distribution information. Hence,
it is more general and easier for real world applications.

The rest of the paper is organized as follows. The structure of the ambiguity set is defined in Section 2.
Then, the three-stage stochastic linear program is refomulated as a conic optimization problem in Section 3.
Numreical expriments are carried out in Section 4 to show the effectiveness of th proposed method. Finally,
we conclude this paper by making some remarks in Section 5.

2 Structural Assumptions on Set Pk and Problem Data

2.1 Notations
We denote a random quantity, say z̃, with the tilde sign. Sets, matrices and vectors are usually represented
as script, upper case, and lower case letters, respectively. We use subscript k, say xk, to indicate a vector
or a matrix arising in stage k, whose components are denoted by xk1, xk2, ... respectively. If M is an m× n
real matrix, we write M ∈ Rm×n. Given a regular (i.e. pointed, closed, convex, and with nonempty interior)
cone K in a finite-dimensional Euclidean space, such as the second-order cone or the semidefinite cone, for
any two vectors x, y, the notation x �K y or y �K x means y − x ∈ K. The dual cone of K is denoted by

K∗ := {y : 〈y, x〉 ≥ 0, ∀x ∈ K}.

For simplicity of notations, unless otherwise specified, we will always use x>y, rather than 〈x, y〉, to represent
inner products although it may need more subtle interpretations in some specific cases such as x, y ∈ Sn,
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where 〈x, y〉 = vec x> vec y and vec x and vec y are the vectors made from stacking all elements of x and
y respectively.

Let z̃ and ũ be two random vectors in RM and RT , respectively. The set P0(RM ) represents the space
of probability distributions on RM and P0(RM × RT ) represents the space of probability distributions on
RM × RT , respectively.

2.2 Structure of Pk
We adopt approach of Wiesemann, Kuhn and Sim [22] (WKS format for short) to define the ambiguity
sets Pk. It is always convenient from the application point of view that we introduce an auxiliary random
vector ũk ∈ Rtk at stage k and think of the set Pk is defined by an expectation constraint and by a support
constraint, both in conic form. This scheme does not complicates our analysis in this paper; however, it opens
a fertile field of imposing constraints involving high order moments and absolute deviations of z̃ through a
lifting procedure with ũ, see [22] for details.

We start from the support sets of (z̃1, ũ1) and (z̃2, ũ2). We specify them as

Ω1 =
{

(z1, u1) ∈ Rr1 × Rt1 : G1z1 +H1u1 �K1
h1

}
, (2.1)

and
Ω2 =

{
(z2, u2) ∈ Rr2 × Rt2 : G2z2 +H2u2 �K2

h2

}
, (2.2)

where Gk ∈ RLk×rk , Hk ∈ RLk×tk , and Kk is a regular cone for k = 1, 2. Note that the specification of Ω2

means that the support of (z̃2, ũ2) does not depend on (z̃1, ũ1). It is easy to see that the usual box support
is a special case of Ωk. For ease of analysis, we moreover assume that both Ω1 and Ω2 are compact although
the boundedness assumption on them can be removed in more subtle analysis. For the applications we are
concerned, this assumption is natural.

We next define two ambiguity sets, P1 and P2, respectively for distribution of (z̃1, ũ1) and distribution
of (z̃2, ũ2). We assume P1 is represented as

P1 =

{
P ∈ P0(Rr1 × Rt1 ) :

EP [E1z̃1 + F1ũ1] = g1,
P [(z̃1, ũ1) ∈ Ω1] = 1

}
. (2.3)

where E1, F1 and g1 are matrices defined with the proper dimension. Similarly, we define P2 as

P2 =

{
P ∈ P0(Rr2 × Rt2 ) :

EP [E2z̃2 + F2ũ2] = g2,
P [(z̃2, ũ2) ∈ Ω2] = 1

}
. (2.4)

where E2, F2 and g2 are matrices defined with the proper dimension. The two ambiguity sets are closely
connected with the notion of “risk envelope” in the theory of risk measure [1, 11, 19].

If ũk does not arise in a specific application, then we simply set the corresponding Fk, Hk (k = 1, 2) and
F3 to be zero matrices. The use of the auxiliary variable ũk helps to cover many important applications.
For instance, it is shown in [22] that the ambiguity set with a second-order moment constraint

P ′ =
{
P′ : EP′ [z̃] = µ, EP′

[
(z̃ − µ̃)(z̃ − µ̃)>

]
� Σ

∣∣∣ µ ∈ Rm, Σ ∈ Sm+
}
.

is the projection onto z̃-space of the following ambiguity set in the format of (2.3), if an auxiliary random
matrix Ũ is introduced.

P =

P ∈ P0

(
Rm × Rm×m

)
:

EP
(
z̃, Ũ

)
= (µ,Σ),

P
([

1 (z̃ − µ)>

(z̃ − µ) Ũ

]
� 0

)
= 1

 .

Therefore, with the help of the auxiliary variables, the first-order moment constraint E(Gz̃ + Gũ) = g can
indeed include second-order moment constraint for z̃ as a special case. See [8, 22] for more details.

2.3 Related duality theorems
Since we are going to use duality extensively in our analysis, either in finite-dimensional Hilbert spaces or
in infinite-dimensional spaces, it would be convenient to list the related duality theorems below.

We first consider the infinite-dimensional duality developed by Rockafellar in [18]. Let X , Y and U be
three linear spaces. Let F : X ×U → [−∞,+∞] be a convex function such that f(x) = F (x, 0) and consider
the convexly parameterized family of optimization problems:

minF (x, u) s.t. x ∈ X , (2.5)
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and let
φ(u) := inf

x∈X
F (x, u).

Define the Lagrangian function K : X × Y → [−∞,+∞] as

K(x, y) = inf
u∈U

[F (x, u) + 〈u, y〉] . (2.6)

then one has
f(x) = sup

y∈Y
K(x, y), (2.7)

and
g(y) = inf

x∈X
K(x, y). (2.8)

Define the primal problem as
min f(x) s.t. x ∈ X , (2.9)

and the dual problem as
max g(y) s.t. y ∈ Y. (2.10)

Lemma 2.1. (Strong duality in infinite-dimensional spaces [18, Theorem 15]) Assume F (x, u) is closed
convex in u, the following conditions are equivalent.

(a) inf (2.9) = sup (2.10);

(b) φ(0) = cl conv φ(0);

(c) The saddle-value of the Lagrangian exists.

In particular, for semi-infinite optimization [18, Example 4]

min
x∈C

f(x) s.t. h(x, z) ≤ 0 ∀z ∈ Z, (2.11)

where

F (x, u) =

{
f(x), if x ∈ C and h(x, z) ≤ u(z) ∀z ∈ Z,
+∞, otherwise,

with u : Z → R, we have

Lemma 2.2. (Strong duality theorem for semi-infinite optimization [18, Theorem 15(a) and Example 4]) A
sufficient condition for Lemma 2.1(a) to hold for problem (2.11) is the general Slater condition, i.e., there
exists x̄ ∈ riC such that h(x̄, z) < u(z) ∀z ∈ Z.

In addition, it is shown [18, Theorem 15(a) and Example 4] that the sup (2.10) is attained in this case.

We next consider the finite-dimensional conic case. Let E be a finite-dimensional Euclidean space with
inner product 〈·, ·〉 and let K ⊂ E be a regular cone. Consider a conic problem

min
x
〈c, x〉 s.t. Ax �K b, (2.12)

along with its conic dual
max
y
〈b, y〉 s.t. A∗y = c, y �K∗ 0, (2.13)

where A∗ is the adjoint operator of A.

Lemma 2.3. (Strong conic duality in finite-dimensional spaces [4, Theorem 1.4.2]) For Problem (2.12) and
its dual (2.13) there hold

(1) The duality is symmetric: the dual problem is conic, and the problem dual to dual is the primal.

(2) The duality gap 〈c, x〉 − 〈b, y〉 is nonnegative at every primal-dual feasible pair (x, y).

(3a) If the primal (2.12) is bounded below and strictly feasible (i.e. Ax �K b for some x), then the dual
probelm (2.13) is solvable and the optimal values in the problems are equal to each other.

(3b) If the dual (2.13) is bounded above and strictly feasible (i.e., exists y �K∗ 0 such that A∗y = c), then
the primal problem (2.12) is solvable and min (2.12) = max (2.13).
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2.4 Assumptions on A2(z̃1), A3(z̃1, z̃2), b2(z̃1), b3(z̃1, z̃2), x2(z̃1) and
x3(z̃1, z̃2)

We assume that A2(z̃1), A3(z̃1, z̃2), b2(z̃1), b3(z̃1, z̃2) are affinely dependent on z̃k, namely there exist Aij ,
bij (i = 2, 3), such that

A2(z̃1) =

r1∑
j=1

A2j z̃1j +A20, b2(z̃1) =

r1∑
j=1

b2j z̃1j + b20, (2.14)

and

A3(z̃1, z̃2) =
r1∑
j=1

A3j z̃1j +
r2∑
j=1

Ā3j z̃2j +A30,

b3(z̃1, z̃2) =
r1∑
j=1

b3j z̃1j +
r2∑
j=1

b̄3j z̃2j + b20.

(2.15)

The dependence of x2 on z̃1 and x3 on (z̃1, z̃2) is more subtle and implicit. As a first-order approximation,
we assume that both x2 and x3 are affinely dependent on the respective random vectors, i.e.,

x2 =

r1∑
j=1

x2j z̃1j + x20, x3 =

r1∑
j=1

x3j z̃1j +

r2∑
j=1

x̄3j z̃2j + x30. (2.16)

Thus, the problem turns to finding optimal x1, x2j , x3j and x̄3j for all j.
The affine dependence assumption above has been used first by Ben-Tal and Nemirovski [5] and subse-

quently used in many literatures, e.g., [2, 6, 9, 10, 22] as a standard assumption. An extensive study on this
assumption has appeared in the literature such as [8, 13, 16], which indicates that this assumption generally
performs well in practice and can be made less restrictive by introducing an auxiliary random vector ũ and
assuming affine dependence on both z̃ and ũ. Since the analysis with (z̃, ũ) is similar to that of z̃, to simplify
our notations, we keep using (2.14), (2.15), and (2.16) in the sequel.

Under affine dependence and the assumption int (Ωk) 6= ∅, k = 1, 2, the linear constraints defining X2

and X3 can be decomposed as follows.{
A2(z̃1)x1 +B2x2 = b2(z̃1),

∀(z̃1, ũ1) ∈ Ω1,
⇐⇒

{
A2jx1j +B2x2j = b2j ,
j = 0, 1, ..., r1,

(2.17)

and {
A3(z̃1, z̃2)x1 +B3x2 + C3x3 = b3(z̃1, z̃2)

∀(z̃1, ũ1) ∈ Ω1, (z̃2, ũ2) ∈ Ω2
⇐⇒{

A3jx1 +B3x2j + C3x3j = b3j , j = 0, 1, . . . , r1,
Ā3jx1 + C3x̄3j = b̄3j , j = 1, . . . , r2.

(2.18)

The inequality constraints x2(z̃1) ≥ 0 is equivalent to a set of linear constraints on x2j , j = 0, 1, ..., r1.
To see this fact, let us introduce a new notation. Let X2 be the matrix defined as

X2 := [x21, x22, ..., x2r1 ] ∈ Rd2×r1 ,

and let xq2 be the qth column of X>2 . Similarly, define a block matrix

[X3, X̄3] := [x31, x32, ..., x3r1 ; x̄31, ..., x̄3r2 ] ∈ Rd3×(r1+r2)

and let

(
xq3
x̄q3

)
be the qth column of [X3, X̄3]>, in which xq3 corresponds to the X3-block and x̄q3 corresponds

to the X̄3-block, respectively, q = 1, ..., d3. Let xqk0 be the qth component of xk0, k = 1, 2. Then

x2(z̃1) ≥ 0 ⇐⇒ min{xq20 +
〈
xq2, z1

〉
} ≥ 0, ∀z1 ∈ Ω1, q = 1, . . . , d2. (2.19)

By Lemma 2.3, the dual problem of min{xq20 +
〈
xq2, z1

〉
: (z1, u1) ∈ Ω1} is

max
sq∈K∗1

xq20 + 〈h1, s
q〉 s.t. G>sq = xq2, H

>sq = 0, (2.20)

where sq is the dual vector. Strong duality holds because int (Ω1) 6= ∅. Therefore min (2.19) = max (2.20)
and (2.19) is equivalent to the feasibility of the system

xq20 + h>1 s
q ≥ 0, G>sq = xq2, H

>sq = 0, sq ∈ K∗1 , ∀ q = 1, . . . , d2. (2.21)
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In a similar manner, we can deduce that the requirement of x3(z̃1, z̃2) ≥ 0 is equivalent to the feasibility
of the following system:

xq30 + h>1 t
q
1 + h>2 t

q
2 ≥ 0,

G>1 t
q
1 = xq3, G

>
2 t
q
2 = x̄q3, H

>
1 t

q
1 = 0, H>2 t

q
2 = 0, (2.22)

tq1 ∈ K
∗
1 , t

q
2 ∈ K

∗
2 , ∀ q = 1, . . . , d3.

To simplify our notation in the subsequent analysis, we aggregate all decision variables so far into a
single vector, namely we define a vector w as

w> :=
(
x>1 , x

q
20
>
, xq2
>
, sq>(q = 1, ..., d2), xq30

>
, tq1
>
, tq2
>

(q = 1, ..., d3)
)
,

and define the feasible set specified by (2.17), (2.18), (2.21), and (2.22) as W. Hence we can write all
constraints imposed by the affine dependence as w ∈ W. Clearly, conic W is a polyhedron and we further
assume that W is nonempty for otherwise the optimal value of (DR-TSSLP) is trivially +∞. It would be
also useful to note that the constraint xk ∈ Xk, k = 1, 2, 3, is the projection of W onto the space Rdk .

3 Reformulation of DR-TSSLP as a Conic Optimization
Problem

We start from the third stage recourse function

sup
P2∈P2

EP2

[
min
x3∈X3

c>3 x3

]
. (3.1)

Given (z̃2, ũ2) = (z1, u1), we designate

ψ2(x1, x2, z1, u1, z̃2, ũ2) := min
x3∈X3

c>3 x3.

Note that (3.1) is indeed the optimal value of the following optimization problem

max
P2

EP2 [ψ2(x1, x2, z1, u1, z̃2, ũ2)]

s.t. EP2 (E2z̃2 + F2ũ2) = g2, (3.2)

P2(G2z̃2 +H2ũ2 �K2
h2) = 1.

According to the theory of semi-infinite programming [15], the dual of (3.2) is a semi-infinite program
as follows

min
ξ2,η2

g>2 ξ2 + η2 (3.3)

s.t. (E2z2 + Fu2)>ξ2 + η2 ≥ ψ(x1, x2, z1, u1, z2, u2), ∀ (z2, u2) ∈ Ω2,

where (ξ2, η2) ∈ RL2 × R are the dual variables.

Lemma 3.1. Strong duality holds between (3.2) and (3.3) in the sense that (3.2) is solvable and max (3.2) =
min (3.3).

Proof. Observe that for any fixed x1, x2, z1, u1, due to continuity of ψ2 and the compactness of Ω2,
ψ2(x1, x2, z1, u1, z2, u2) is a bounded quantity over (z2, u2) ∈ Ω2, say

|ψ2(x1, x2, z1, u1, z2, u2)| ≤ `,
where ` may depend on x1, x2, z1, u1 but not on z2 and u2. Thus, the point ξ2 = 0 and η2 = ` + 1 is a
generalized Slater’s point for the dual problem. Applying Lemma 2.2, strong duality holds in the specified
sense.

Theorem 3.1. Under the affine dependent assumption, the problem (DR-TSSLP) is equivalent to the
following stochastic program

min
x1∈X1

c>1 x1 + sup
P1∈P1

EP1 min
x2∈X2

[
g>2 ξ2 + η2 + c>2 x2

]
s.t. h>1 β1 + h>2 α2 − c>3 x30 + η2 ≥ 0,

G>1 β1 +X>3 c3 = 0, H>1 β1 = 0, β1 ∈ K∗1 , (3.4)

G>2 α2 = E>2 ξ2 − X̄>3 c3, H>2 α2 = F>2 ξ2

α2 ∈ K∗2 , w ∈ W.
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Proof. Consider the constraint in (3.3), namely

(E2z2 + F2u2)>ξ2 + η2 ≥ ψ2(x1, x2, z1, u1, z2, u2), ∀ (z2, u2) ∈ Ω2, (3.5)

which is equivalent to

∀ (z2, u2) ∈ Ω2, ∃ x3 ∈ X3 : (E2z2 + F2u2)>ξ2 + η2 − c>3 x3 ≥ 0,

or equivalently

min
(z2,u2)∈Ω2

max
x3∈X3

[
(E2z2 + F2u2)> ξ2 + η2 − c>3 x3

]
≥ 0.

The function (E2z2 + F2u2)> ξ2 + η2 − c>3 x3 is convex in (z2, u2) and concave in x3 and both sets, Ω2 and
X3, are closed and convex. By Sion’s minimax theorem [20], as Ω2 is bounded, we have

0 ≤ min
(z2,u2)∈Ω2

max
x3∈X3

[
(E2z2 + F2u2)> ξ2 + η2 − c>3 x3

]
= max

x3∈X3

min
(z2,u2)∈Ω2

[
(E2z2 + F2u2)> ξ2 + η2 − c>3 x3

]
.

The constraint (3.5) is therefore equivalent to

∃ x3 ∈ X3, ∀ (z2, u2) ∈ Ω2 : (E2z2 + F2u2)> ξ2 + η2 − c>3 x3 ≥ 0, (3.6)

which says that constraint (3.5) can be re-written as

∃ x3 ∈ X3, (E2z2 + Fu2)>ξ2 + η2 ≥ c>3 x3, ∀ (z2, u2) ∈ Ω2. (3.7)

Note that
c>3 x3 = c>3 x30 + c>3 X3z̃1 + c>3 X̄z̃2.

It turns out that constraint (3.7) means that ∃ x3 ∈ X3 such that

0 ≤ min
{

(ξ>2 E2 − c>3 X̄3)z2 + ξ>2 F2u2 + η2 − c>3 x30 − c>3 X3z1 :
G2z2 +H2u2 �K2

h2

}
.

(3.8)

By Lemma 2.3, since int (Ω2) 6= ∅, strong duality holds. Thus, (3.8) is equivalent to ∃ α2 ∈ K∗2 such that

0 ≤ max
{
h>2 α2 − c>3 x30 − c>3 X3z1 + η2 : G>2 α2 = E>2 ξ2 − X̄>3 c3,

H>2 α2 = F>2 ξ2, α2 ∈ K∗2
}
,

therefore, constraint (3.7) can be equivalently replaced by the following system{
h>2 α2 − c>3 x30 − c>3 X3z1 + η2 ≥ 0, ∀ (z1, u1) ∈ Ω1,

G>2 α2 = E>2 ξ2 − X̄>3 c3, H>2 α2 = F>2 ξ2, α2 ∈ K∗2 .
(3.9)

The first constraint in (3.9) is equivalent to

min{h>2 α2 − c>3 x30 − c>3 X3z1 + η2 : E1z1 + F1u1 �K1 h1} ≥ 0,

which, by Lemma 2.3 can be equivalently replaced by that ∃ β1 ∈ K∗1 such that{
h>1 β1 + h>2 α2 − c>3 x30 + η2 ≥ 0,

G>1 β1 +X>3 c3 = 0, H>1 β1 = 0,

which completes the proof.
Define

ψ1(x1, z1, u1) := min
x2∈X2

{g>2 ξ2 + η2 + c>2 x2},

and repeat the analysis from Lemma 3.1 to Theorem 3.1 for ψ1 and problem (3.4), we may come up with
the following main result of this paper. For brevity, we omit the proof.

Theorem 3.2. Suppose that problem (DR-TSSLP) is feasible. Then, under the affine dependence assump-
tion, the problem (DR-TSSLP) is equivalent to the following conic program, hence is solvable in polynomial
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time with respect to (dk, Lk,Mk, pk, rk, tk), k = 1, 2.

min c>1 x1 + g>1 ξ1 + η1

s.t. h>1 α1 + η1 − η2 − g>2 ξ2 − c>2 x20 ≥ 0,

h>2 α2 + g>2 ξ2 + η2 ≥ 0,

h>1 β1 + h>2 α2 − c>3 x30 + η2 ≥ 0,

G>1 α1 = E>1 ξ1 −X>2 c2, H>1 α1 = F>1 ξ1,

G>2 α2 = E>2 ξ2 − X̄>3 c3, H>2 α2 = F>2 ξ2,

G>1 β1 +X>3 c3 = 0, H>1 β1 = 0,

α1 ∈ K∗1 , α2 ∈ K∗2 , β1 ∈ K∗1 , (3.10)

x1 ≥ 0, A1x1 = b1,

A2jx1j +B2x2j = b2j , j = 0, 1, . . . , r1,

A3jx1 +B3x2j + C3x3j = b3j , j = 0, 1, . . . , r1,

Ā3j x̄1 + C3x̄3j = b̄3j , j = 1, . . . , r2,

xq20 + h>1 s
q ≥ 0, G>1 s

q = xq2, H
>
1 s

q = 0, sq ∈ K∗1 , q = 1, . . . , d1,

xq30 + h>1 t
q
1 + h>2 t

q
2 ≥ 0, G>1 t

q
1 = xq3, G

>
2 t
q
2 = x̄q3, q = 1, . . . , d2,

H>1 t
q
1 = 0, H>2 t

q
2 = 0, tq1 ∈ K

∗
1 , t

q
2 ∈ K

∗
2 , q = 1, . . . , d2.

4 Numerical Results

4.1 A classroom example
Example.3 A company manager is considering the amount of steel to purchase (at $58/lb) for producing
wrenches and pliers in next two months. The manufacturing process involves moulding the tools on a
moulding machine and then assembling the tools on an assembly machine. Here are the technical data
required for making the tools.

Wrench Plier
Steel (lbs.) 1.5 1

Moulding Machine (hours) 1 1
Contribution to Earnings ($/1000 units) 1300 1000

Table 4.1: Cost and earnings for the products

There are uncertainties that will influence his decision. 1. The total available moulding hours of next
month (z̃11) could be between 21,000 or 25,000 with mean of 23,000. 2. The total available assembly hours
(z̃12)of next month could be between 8,000 and 10,000 with mean of 9,000. 3. The total available moulding
hours of next next month (z̃21) could be between 23,000 and 27,000 with mean of 25,000, and the total
available assembly hours of next next month (z̃22) could be between 9,000 or 12,000 with mean of 10,500,
respectively. 4. z̃1 = (z̃11, z̃12) and z̃2 = (z̃21, z̃22) are mutually independent random vectors. The manager
would like to plan the production of wrenches and pliers of next two months so as to maximize the worst-case
expected net revenue of the next two months.

For easy comparison, we also construct another three-stage model where the probability of each scenario
is exactly known. In other words, the information on the distribution is fully known. For fair comparison
purpose, the mean of moulding time and the mean of assembly time in each stage are the same as that in
the above example. Particularly, the second-stage information is the same as that in [2]. The details each
scenario in the second-stage and the third-stage are listed in Table 4.2 and Table 4.3, respectively. We refer
to this model as stochastic model in this paper. This problem can be formulated as a linear optimization
problem and can be solved by CVX [14]. We omit the formulation for brevity.

3The prototype of this example is Example 7.3 in the book of Bertsimas and Freund [7] and it was used
in [2]. We use it again for comparison purpose.

8



Scenario Moulding Assembly Probability
1 25000 10000 .25
2 25000 8000 .25
3 21000 10000 .25
4 21000 8000 .25

Table 4.2: Scenarios in Stage 2

Scenario Moulding Assembly Probability
1 (1), 5 (2), 9 (3), 13 (4) 27000 12000 .1250
2 (1), 6 (2), 10 (3), 14 (4) 27000 9000 .0625
3 (1), 7 (2), 11 (3), 15 (4) 23000 12000 .0417
4 (1), 8 (2), 12 (3), 16 (4) 23000 9000 .0208

Table 4.3: Scenarios in Stage 3 (The number in the bracket shows the scenario it is
branching from in Stage 2)

4.2 DR-TSSLP formulation and its conic reformulation with first-
order moment information

In this section, we will formulate the steel purchase problem as a DR-TSSLP. The DR-TSSLP will, then,
be reformulated to a conic optimization problem by applying Theorem 3.2. In our paper, all the cone
optimization problems are numerically solved by the well-known optimization software package CVX [14].

We set up our decision variables as follows: y1 is the amount of steel to purchase in stage 1; w1 and p1

are the number of wrenches and pilers to produce in stage 2; y2 is the amount of steel to purchase in stage
2; w3 and p3 are the number of wrenches and pilers to produce in stage 3. Here, the unit for moulding and
assembly hours is 1000 hours.

In order to formulate the example into a standard DR-TSSLP as that in (1.2), in stage 2, we introduce
3 slack variables τ1i, i = 1, 2, 3 and 2 random variables z1i, i = 1, 2 for the mould constraint, the assembly
constraint and the steel constraint, which yields the following equality constraints. In fact, τ13 is the steel
left in stage 2. The steel left can be reused in the third-stage for production. However, we consider the cost
cs associated with the stock of the left steel in the second-stage

w1 + p1 + τ11 = z̃11,

.3w1 + .5p1 + τ12 = z̃12, (4.1)

−y1 + 1.5w1 + p1 + τ13 = 0.

Similarly, in stage 3, we introduce 3 slack variables τ2i, i = 1, 2, 3 and 2 random variables z2i, i = 1, 2 for
the mould constraint, the assembly constraint and the steel constraint, which yields the following equality
constraints. In fact, τ23 is the steel left in stage 3,

w2 + p2 + τ21 = z̃21,

.3w2 + .5p2 + τ22 = z̃22, (4.2)

−y2 − τ13 + 1.5w2 + p2 + τ23 = 0.

By defining

x1 = y1, x2 =
[
w1 p1 τ11 τ12 τ13 y2

]>
, x3 =

[
w2 p2 τ21 τ22 τ23

]>
,

we can formulate this example into the form of (1.2) with corresponding coefficient matrices and vectors
chosen as

A1 = 0, b1 = 0, A2 =

 0
0
−1

 , B2 =

 1 1 1 0 0 0
.3 .5 0 1 0 0
1.5 1 0 0 1 0

 ,
b2(z̃1) =

z̃11

z̃12

0

 , A3 =

0
0
0

 , B3 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 −1

 ,
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C3 =

 1 1 1 0 0
.3 .5 0 1 0
1.5 1 0 0 1

 , b3(z̃1, z̃2) =

z̃21

z̃22

0

 , c1 = 58,

c2 =
[
−130 − 100 0 0 cs 58

]>
, c3 =

[
−130 − 100 0 0 0

]>
.

With respect to the linear decision rule, we have

A20 =

 0
0
−1

 , A21 = A22 =

0
0
0

 , b20 =

0
0
0

 , b21 =

1
0
0

 , b22 =

0
1
0

 ,
A30 = A31 = A32 = Ā31 = Ā32 =

0
0
0

 , b30 = b31 = b32 =

0
0
0

 ,
b̄31 =

1
0
0

 , b̄32 =

0
1
0

 .
Then, we construct the ambiguity sets as defined in (2.3). Based on the first-order information (mean) on
the uncertainties of moulding hours and assembly hours, as mentioned in Subsection 4.1, we known that

E(z̃11) = 23, E(z̃12) = 9, E(z̃21) = 25, E(z̃22) = 10.5,

E(z̃2
11) ≤ 533, E(z̃2

12) ≤ 82, E(z̃2
21) ≤ 629, E(z̃2

22) ≤ 112.5.

21 ≤ z11 ≤ 25, 8 ≤ z12 ≤ 10, 23 ≤ z21 ≤ 27, 9 ≤ z22 ≤ 12.

To formulate the uncertainties with the second-order moment information into the WKS-type ambiguity
set, we need the following result, which is a special case of Theorem 5 in [22].

Lemma 4.1 (Lifting Theorem). Let f ∈ RT and let f : Rm → RT be a function with a conic representable
K-epigraph. Consider the ambiguity set

P ′ =
{
P′ ∈ P0 (Rm) : EP′ [g(z̃)] �K f

}
(4.3)

and the lifted ambiguity set

P =
{
P ∈ P0

(
Rm × RT

)
: EP [ũ] = f,P [g(z̃) �K ũ] = 1

}
,

which involves the auxiliary random vector ũ ∈ RT . Then it follows that (i) P ′ =
∏
z̃ P; and (ii) P is an

instance of the standardized ambiguity set (2.3) and (2.4).

The lifting theorem has a great modeling power and it provides a significant flexibility to convert various
ambiguity sets into the WKS-form as shown in [22]. In the following, we shall show how to use the Lemma
4.1 to formulate the uncertainties in our problem into the form of (2.3) and (2.4).

To begin, we use the available information to construct two ambiguity sets P ′1 and P ′
2|1 as (4.3) in

Lemma 4.1, which can be done straightforwardly.

P ′1 =
{
P′ ∈ P0 (Rm) : P′

[
Ω′1
]

= 1, EP′ (z̃11) ≤ 23, EP′ (z̃12) ≤ 9, EP′
(
z̃2
11

)
≤ 533, EP′

(
z̃2
12

)
≤ 82

}
,

where

Ω′1 =

{(
z11

z12

)
:

21 ≤ z11 ≤ 25,
8 ≤ z12 ≤ 10

}
,

P ′2 =
{
P′ ∈ P0 (Rm) : P′

[
Ω′2
]

= 1, EP′ (z̃21) ≤ 25, EP′ (z̃22) ≤ 10.5, EP′
(
z̃2
21

)
≤ 629, EP′

(
z̃2
22

)
≤ 112.5

}
,

where

Ω′2 =

{(
z21

z22

)
:

23 ≤ z21 ≤ 27,
9 ≤ z22 ≤ 12

}
.

By applying Lemma 4.1 to P ′1 and P ′2, we obtain the following two lifted ambiguity sets P1 and P2.

P1 =
{
P ∈ P0 (Rm) : EP [E1z̃1 + F1ũ1] = g1, P

[
Ω̄1

]
= 1
}
,

where

E1 =


1 0
0 1
0 0
0 0

 , F1 =


0 0
0 0
1 0
0 1

 , g1 =


23
9

533
82

 ,
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and

Ω̄1 =

{
(z1, u1) :

21 ≤ z11 ≤ 25,
8 ≤ z12 ≤ 10,

u11 ≥ z2
11

u12 ≥ z2
12

}
,

P2 =
{
P ∈ P0 (Rm) : EP [E2z̃2 + F2ũ2] = g2, P

[
Ω̄2

]
= 1
}
,

where

E2 =


1 0
0 1
0 0
0 0

 , F2 =


0 0
0 0
1 0
0 1

 , g2 =


25

10.5
629

112.5

 .
E3 = F3 are both 4× 2 zero matrices and

Ω̄2 =

{
(z2, u2) :

23 ≤ z21 ≤ 27,
9 ≤ z22 ≤ 12,

u21 ≥ z2
21

u22 ≥ z2
22

}
.

Noting that {
(z11, u11) : z2

11 ≤ u11

}
=

{
(z11, u11) :

∥∥∥∥ z11
u11−1

2

∥∥∥∥
2

≤
u11 + 1

2

}

=

(z11, u11) :

 z11
u11−1

2
u11+1

2

 ∈ L3


=

(z11, u11) :

1 0
0 0
0 0

 z +

 0 0
1/2 0
1/2 0

u �L3

 0
1/2
−1/2

 ,

where L3 is the 3-dimensional Lorenz cone. Then, by defining the above set as L3
1 and letting K1 =

R4 × L3 × L3, we obtain an equivalent set of Ω̄1 as follows

Ω1 =
{

(z1, u1) : G1z1 +H1u1 �K1
h1

}
,

where

G1 =

G11

G12

G13

 , H1 =

H11

H12

H13

 , h1 =

h11

h12

h13

 , G11 =


1 0
−1 0
0 1
0 −1

 ,

H11 =


0 0
0 0
0 0
0 0

 , h11 =


21
−25

8
−10

 , G12 =

1 0
0 0
0 0

 , H12 =

 0 0
1/2 0
1/2 0

 ,
h12 =

 0
1/2
−1/2

 , G13 =

0 1
0 0
0 0

 , H13 =

0 0
0 1/2
0 1/2

 , h13 =

 0
1/2
−1/2

 .
In a similar manner, we can obtain an equivalent set of Ω̄2 as follows.

Ω2 =
{

(z2, u2) : G2z2 +H2u2 �K2
h2

}
,

where K2 = K21 ×K22 ×K23, K21 = R4, K22 = K23 = L3,

G2 =

G21

G22

G23

 , H2 =

H11

H22

H23

 , h2 =

h21

h22

h23

 , G21 =


1 0
−1 0
0 1
0 −1

 ,

H21 =


0 0
0 0
0 0
0 0

 , h21 =


23
−27

9
−12

 , G22 =

1 0
0 0
0 0

 , H22 =

 0 0
1/2 0
1/2 0

 ,
h22 =

 0
1/2
−1/2

 , G23 =

0 1
0 0
0 0

 , H23 =

0 0
0 1/2
0 1/2

 , h23 =

 0
1/2
−1/2

 .
Now the problem is formulated in the standard form stated in Section 1 and 2 with the same notations.

Applying Theorem 3.2 to the formulated problem, we obtain the following second order cone optimization
problem.
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min c1x1 + g>1 ξ1 + η1

s.t. h>1 α1 + η1 − η2 − g>2 ξ2 − c>2 x20 ≥ 0,

h>1 β1 + h>2 α2 − c>3 x30 + η2 ≥ 0,

G>1 α1 = E>1 ξ1 −X>2 c2; H>j αj = F>j ξj , j = 1, 2,

G>2 α2 = E>2 ξ2 − X̄>3 c3; G>1 β1 +X>3 c3 = 0,

H>1 β1 = 0; A20x1 +B2x20 = 0,

B2x2j = b2j , j = 1, 2; B3x2j + C3x3j = 0, j = 0, 1, 2,

C3x̄3j = b̄3j , j = 1, 2; xq20 + h>1 s
q ≥ 0, q = 1, 2, . . . , 6,

G>1 s
q = xq2, q = 1, 2, . . . , 6; H>1 s

q = 0, q = 1, 2, . . . , 6,

xq30 + h>1 t
q
1 + h>2 t

q
2 ≥ 0, q = 1, 2, . . . , 5,

G>1 t
q
1 = xq3, q = 1, 2, . . . , 5,

G>2 t
q
2 = x̄q3, q = 1, 2, . . . , 5,

H>j t
q
j = 0, j = 1, 2, q = 1, 2, . . . , 5,

α12, α13, α22, α23, β12, β13 ∈ L3,

sq2, s
q
3, t

q
12, t

q
13, t

q
22, t

q
23 ∈ L3, q = 1, 2, . . . , 5,

α11 ≥ 0, α21 ≥ 0, β11 ≥ 0, x1 ≥ 0, s1 ≥ 0, t11 ≥ 0, t21 ≥ 0.

(4.4)

Problem (4.4) is a second order cone programming (SOCP) problem, which can be solved efficiently by using
which can be solved by using [14].

4.3 Comparisons and discussions
The major difference between the three-stage model and the second-stage model [2] is that the steel left
in the second-stage τ13 can be reused in the third-stage. Therefore, we set the stock cost cs of τ13 with
different values and then solve (4.4). Then, we compare our results with that in the stochastic model, and
we also compare it with the stochastic model and the proposed model in [2]. The details of the results are
summarized in Table 4.4 and Table 4.5.

(4.4) Stochastic Stochastic [2] [2]
Optimal x∗1 (1000 lb) 37.5 37.5 31.5 30.5
Expected Profits ($) 2021.67 2078.33 961.89 929.88

Table 4.4: Results Comparison, cs = 1

(4.4) Stochastic Stochastic [2] [2]
Optimal x∗1 (1000 lb) 31.5 31.5 31.5 30.5
Expected Profits ($) 1976.44 2054.22 961.89 929.88

Table 4.5: Results Comparison, cs = 50

From Table 4.4 and Table 4.5, we can see as the cost on stocking the left steal increases the solution
becomes more conservative and it reduces to the second-stage decision when the cost is high enough. In
addition, as expected, the expected profits for three-stage distributionally robust model is less than that of
the three-stage stochastic model.
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