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Abstract: A model of two-stage N -person non-cooperative game under uncertainty is studied, in 
which each player solves a quadratic program parameterized by other players’ decisions at the first 
stage, then at the second stage the player solves a recourse quadratic program parameterized by 
the realization of a random vector, the second-stage decisions of other players, and the first stage 
decisions of all players. The problem of finding a Nash equilibrium of this game is shown to be 
equivalent to a stochastic linear complementarity problem. A linearly convergent progressive hedg-
ing algorithm is proposed for finding a Nash equilibrium if the resulting complementarity problem 
is monotone. For the non-monotone case, it is shown that, as long as the complementarity problem 
satisfies an additional elicitability condition, the progressive hedging algorithm can be modified to 
find a local Nash equilibrium at linear rate. The elicitability condition is reminiscent of the sufficient 
second-order optimality condition in nonlinear programming. Various numerical experiments indi-
cate that the progressive hedging algorithms are efficient for mid-sized problems. In particular, the 
numerical results include a comparison with the best response method that was commonly adopted 
in the literature.
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1 Introduction

Many problems in non-cooperative game theory come with a structure where each player 
has to make a decision at a first stage and to make a recourse decision in response to a 
random event at a second stage, see Pang et al. [6] for a recent development of this topic 
and a list of references. The complication of finding a Nash equilibrium for such games is 
that the optimal strategy of each player is dependent not only on a random vector, but 
also on other players’ strategies in both stages. As indicated in Wets [18] and in Pang et 
al. [6], such “entanglement” often jeopardizes the convexity and smoothness of the Nash 
equilibrium problem even if for each player the objectives and the constraints in both stages 
are smooth and convex. Technically, due to the non-smoothness of the recourse function, 
each player’s objective function is at best directionally differentiable, which brings in serious 
difficulty in the design of efficient algorithms.

A recent development in the theory of stochastic variational inequality (SVI) due to 
Rockafellar and Wets [13] has brought in a new framework for dealing with multi-stage 
stochastic optimization and equilibrium problems. Rockafellar and Sun [11] suggested to 
use the progressive hedging algorithm (PHA) for solving these problems when the SVI is 
monotone. Their numerical experiments show that the PHA is efficient in general and is
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very efficient in particular, if the SVI reduces to a stochastic linear complementarity (SLC)
problem.

It is therefore natural to ask the following question: Could PHA shed some light on
solving the difficult game problem mentioned above? We try to answer this question affir-
matively in three steps. First, we argue that the two-stage games under uncertainty can be
converted to an SLC problem if the players’ problems are linear-quadratic in both stages;
second, we show that if the “private” quadratic term dominates the bi-linear “public” terms
of each player in both stages, then the resulting SLC problem is monotone, therefore it can
be efficiently solved by the PHA; third, even if the resulting SLC problem is not monotone,
we develop an elicited version of the PHA for solving it. We show that if the SLC satisfies
an “elicitability” condition, then an elicited version of the PHA will be locally convergent
to the equilibrium at linear rate. This elicitability condition is similar to the second-order
sufficient optimality condition in nonlinear programming. We provide numerical evidence
to support the usage of PHA for both monotone and non-monotone games.

Let ξ be a random vector defined on the probability space (Ξ,F ,P), where Ξ is a finite
sample space, F is the σ-algebra generated by subsets of Ξ, and P is a probability measure
defined on F . We assume Ξ consists of K possible realizations (scenarios) of ξ. Each
realization of ξ has a probability p(ξ) > 0 and these probabilities add up to one.

Consider a non-cooperative two-stage generalized Nash game of N players. Let xi ∈ Rni

and yi ∈ Rmi , i = 1, ..., N , be the decision vectors of the ith player at first stage and at
second stage, respectively. Let

x := (x1, ..., xN )T ∈ Rn, n = n1 + · · ·+ nN ,

be the combined strategy vector of the N players in the first stage, where “T” stands for
the transpose. As usual, we use

x−i := (x1, ..., xi−1, xi+1, ..., xN )T

to represent the combined strategies of all players other than i in the first stage and denote
n−i = n− ni. We similarly define y and y−i for the second stage, where

y := (y1, ..., yN )T ∈ Rm, m = m1 + · · ·+mN and

y−i := (y1, ..., yi−1, yi+1, ..., yN )T , m−i = m−mi.

Assume that, in this two-stage generalized Nash game, player i solves the following two-stage
stochastic optimization problem:

min
xi∈Xi(x−i)

θi(xi, x−i) + Eξ[ψi(xi, x−i, ξ)],(1)

where for each fixed x−i, Xi(x−i) is a closed convex set, and

ψi(xi, x−i, ξ) := min
yi∈Yi(x,y−i,ξ)

φi(yi, x, y−i, ξ)(2)

is the optimal value function of the recourse action yi of player i at the second stage,
and Yi(x, y−i, ξ) is a certain closed convex set for each fixed (x, y−i, ξ). Here, the name of
“generalized Nash game” is due to that the constraints of each player’s problem (1) depends
on the others’ strategies x−i. This problem has a spectrum of applications ranging from
production management to power market, see for instances Pang et al. [6] and Shanbhag
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[14] and references therein. Since ψi is an optimal value function, the objective θi(xi, x−i)+
Eξ[ψi(xi, x−i, ξ)] is generally nondifferentiable, and usually at most piece-wise smooth, hence
it is difficult to solve this generalized Nash game by the exiting methods [1, 2, 5, 6].

Let Ln+m be the Hilbert space consisting of all “response functions” from Ξ to Rn+m,
equipped with the inner product

〈z(·), w(·)〉 := Eξ[z(ξ)Tw(ξ)] :=
∑
ξ∈Ξ

p(ξ)z(ξ)Tw(ξ),

where Eξ stands for the expectation with respect to ξ. We designate z(·) := (x(·), y(·)) ∈
Ln+m, where x(·) ∈ Ln and y(·) ∈ Lm are respectively the x-part and the y-part of z(·). A
solution, or a generalized Nash equilibrium, to the two-stage game (1)-(2) is defined as such
a response function z(·) that, for fixed z−i(·), zi(·) := (xi(·), yi(·)) is optimal to problem
(1)-(2) for i = 1, . . . , N.

A notational difference ought to be emphasized. By z(·) we mean a function from Ξ to
Rn+m, but by z(ξ) we mean the image of ξ under the mapping z(·), where ξ is a certain
scenario in Ξ. Namely,

z(ξ) :=

(
x(ξ)
y(ξ)

)
, with x(ξ) =

x1(ξ)
...

xN (ξ)

 and y(ξ) =

 y1(ξ)
...

yN (ξ)

 .(3)

This paper concentrates on the quadratic case of game (1)-(2), its reformulation as a stochas-
tic linear complementarity problem in the form of Rockafellar and Sun [11], and its solution
via progressive hedging algorithms. We assume that the first stage and the second stage
problems are convex quadratic and the feasible sets Xi(x−i) and Yi(x, y−i, ξ) are convex
polyhedra. Due to the decomposability of the objective functions and constraints with re-
spect to ξ, the problem can be solved efficiently by the PHA. At each iteration, it first solves
(1)-(2) for each individual scenario, regardless of the requirement that the first-stage deci-
sion should be independent of ξ (nonanticipativity). The resulted solutions ẑ(ξ) are then
projected to the nonanticipative subspace that results in the next iterate. More details of
this PHA and its numerical behavior will be given in Sections 3 and 4.

The main contributions of this paper are as follows.

1. The model under study might be the most general one in the linear-quadratic category
of stochastic Nash equilibrium problems (SNEPs) since it allows uncertainty and z−i(·)
to show up both in objective level and constraints level of all stages.

2. This paper clearly establishes an equivalence between a basic class of SNEPs and a
stochastic complementarity problem. Therefore, it open a door for a different solution
approach based on the new notion of SVI, which gets around the nonsmoothness of
the players’ objective functions and accommodates a decomposition scheme that may
speed up the solution time.

3. The progressive hedging algorithm, originally designed for convex stochastic optimiza-
tion [12] and monotone stochastic variational inequalities [11], is extended to non-
monotone SLC problems. Theoretical results on convergence are established based on
an elicitability condition.
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4. A numerical comparison is presented between the best response approach and the
progressive hedging approach for two-stage game problems under uncertainty. These
numerical results, in particular the results on nonmonotone Nash games appears to
be new in the literature.

The paper is organized as follows. We describe the special quadratic case of model (1) –
(2) in Section 2 and formulate it as an SLC problem. We describe the PHA for problem (1)–
(2) in Section 3 for both monotone and non-monotone cases, with a convergence analysis for
the non-monotone PHA. Our numerical experiments are reported in Section 4. The paper
is concluded in Section 5.

2 Problem formulation and its reduction to an SLC problem

2.1 Problem formulation

Consider a special case of (1)-(2), where

θi(xi, x−i) :=
1

2
xTi Qixi + cTi xi + xTi R−ix−i,(4)

with Qi ∈ Rni×ni , R−i ∈ Rni×n−i and ci ∈ Rni , and

Xi(x−i) := {xi ∈ Rni
+ : Aixi +A−ix−i ≥ ai},(5)

with Ai ∈ Rri×ni , A−i ∈ Rri×n−i and ai ∈ Rni .
The objective function φi of the recourse problem is defined as

(6)

φi(yi, x, y−i, ξ) :=
1

2
yTi Ti(ξ)yi + di(ξ)

T yi + xTi Si(ξ)yi + yTi P−i(ξ)x−i + yTi O−i(ξ)y−i,

and the feasible set of the recourse problem is

Yi(x, y−i, ξ) :=
{
yi ∈ Rmi

+ : Di(ξ)xi +D−i(ξ)x−i +Bi(ξ)yi +B−i(ξ)y−i ≥ bi(ξ)
}
,(7)

with Ti : Ξ → Rmi×mi , Si : Ξ → Rni×mi , P−i : Ξ → Rmi×n−i , O−i : Ξ → Rmi×m−i , Di :
Ξ → Rsi×ni , D−i : Ξ → Rsi×n−i , Bi : Ξ → Rsi×mi and B−i : Ξ → Rsi×m−i being random
matrix functions, and di : Ξ→ Rmi being a random vector function for all i = 1, · · · , N .

2.2 Reformulation of the two-stage game into an SLC problem

It is important to note that the requirement of the x-part of z(·) being independent of ξ
induces a constraint on any feasible solution z(·) to (1)-(2), which is called the nonanticipa-
tivity constraint. Nonanticipativity comes from the physical requirement that the decision
x has to be made before ξ is realized. All z(·) ∈ Ln+m satisfying the nonanticipativity
constraint form a linear subspace N in Ln+m. The orthogonal complement of N is then
also important in theory and computation.

The nonanticipativity constraint also helps to normalize our notations, For example,
from now on we can write Yi(x, y−i, ξ) and φi(yi, x, y−i, ξ) respectively as Yi(x(ξ), y−i(ξ), ξ)
and φi(yi(ξ), x(ξ), y−i(ξ), ξ) in (7).
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In addition to nonanticipativity, a feasible z(·) to (1)-(2) must satisfy that ∀ξ ∈ Ξ, zi(ξ)
belongs to

Ci(z−i(ξ), ξ) :=

{
zi(ξ) =

(
xi(ξ)
yi(ξ)

)
: xi(ξ) ∈ Xi(x−i(ξ)), yi(ξ) ∈ Yi(x(ξ), y−i(ξ), ξ)

}
,

which we call admissibility.
By the definitions of Xi(x−i(ξ)) and Yi(x(ξ), y−i(ξ), ξ) in (5) and (7), each of such

Ci(z−i(ξ), ξ) is a convex polyhedron of zi(ξ) for fixed z−i(ξ). Define

(8) Ci(z−i(·)) := {zi(·) ∈ Lni+mi : zi(ξ) ∈ Ci(z−i(ξ), ξ) ∀ ξ}.

Then Ci(z−i(·)) is a convex polyhedron in Lni+mi and one can re-write the problem of player
i as an optimization problem in Lni+mi as follows.

The objective function of player i is

Eξ[θi(xi(ξ), x−i(ξ), ξ) + φi(yi(ξ), x(ξ), y−i(ξ), ξ)]

= Eξ
[

1

2
zi(ξ)

T Q̄i(ξ)zi(ξ) + (c̄i(ξ) + R̄−i(ξ)z−i(ξ))
T zi(ξ)

]
=: Eξ[fi(zi(ξ), z−i(ξ), ξ)] (“=:” means “denote it by”)

=: Gi(zi(·), z−i(·)),

where

Q̄i(ξ) =

(
Qi Si(ξ)

STi (ξ) Ti(ξ)

)
, c̄i(ξ) =

(
ci

di(ξ)

)
, and R̄−i(ξ) =

(
R−i 0
P−i(ξ) O−i(ξ)

)
.

The constraints for player i are zi(·) ∈ Ni ∩ Ci(z−i(·)), where Ni is the nonanticipativity
subspace of zi(·), and Ci(z−i(·)) is defined as in (8) with the following specific Ci(z−i(ξ), ξ)

Ci(z−i(ξ), ξ) =
{
zi(ξ) : Āi(ξ)zi(ξ) ≥ b̄i(ξ)− Ā−i(ξ)z−i(ξ) and zi(ξ) ≥ 0

}
,

where

Āi(ξ) =

(
Ai 0

Di(ξ) Bi(ξ)

)
, Ā−i(ξ) =

(
A−i 0

D−i(ξ) B−i(ξ)

)
, and b̄i(ξ) =

(
ai
bi(ξ)

)
.

Finally, let δNi(zi(·)) be the indicator function of Ni. Then the problem of player i can be
written as

min
zi(·)∈Ci(z−i(·))

Gi(zi(·), z−i(·)) + δNi(zi(·)).(9)

Assuming constraint qualification

(10) Ci(z−i(·)) ∩Ni 6= ∅,

then a necessary condition for optimality of (9) is that ∃λi(·) ∈ Mi := N⊥i and a dual
vector ηi(·) such that for each ξ ∈ Ξ, the following KKT condition holds
(11)

0 ≤
(
zi(ξ)
ηi(ξ)

)
⊥
(
Q̄i(ξ) −ĀTi (ξ)
Āi(ξ) 0

)(
zi(ξ)
ηi(ξ)

)
+

(
c̄i(ξ) + λi(ξ)
−b̄i(ξ)

)
+

(
R̄−i(ξ) 0
Ā−i(ξ) 0

)(
z−i(ξ)
η−i(ξ)

)
≥ 0.
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Moreover, if Q̄i(ξ) is positive semidefinite for all ξ and the optimal value of (9) is finite,
then the KKT condition (11) is also sufficient for the existence of optimal zi(·), λi(·), and
ηi(·). However, we don’t assume Q̄i to be positive semi-definite in the following analysis.

Now suppose that

R−ix−i =
∑
j 6=i

Rijxj , P−i(ξ)x−i =
∑
j 6=i

Pij(ξ)xj , O−i(ξ)y−i =
∑
j 6=i

Oij(ξ)yj ,

A−ix−i =
∑
j 6=i

Aijxj , D−i(ξ)x−i =
∑
j 6=i

Dij(ξ)xj , B−i(ξ)y−i =
∑
j 6=i

Bij(ξ)yj ,

and denote

ui(ξ) =

(
zi(ξ)
ηi(ξ)

)
, u(ξ) =

u1(ξ)
...

uN (ξ)

 , and qi(ξ) =

(
c̄i(ξ)
−b̄i(ξ)

)
, respectively,

then the condition (11) can be written as

(12) 0 ≤ ui(ξ) ⊥Mi(ξ)u(ξ) + qi(ξ) +

(
λi(ξ)

0

)
≥ 0.

where Mi(ξ) = (Ui1(ξ) · · ·UiN (ξ)) , with

Uii(ξ) =

(
Q̄i(ξ) −Āi(ξ)T
Āi(ξ) 0

)
and Uij(ξ) =

(
R̄ij(ξ) 0
Āij(ξ) 0

)
∀ j 6= i,

where

R̄ij(ξ) =

(
Rij 0
Pij(ξ) Oij(ξ)

)
, Āij(ξ) =

(
Aij 0

Dij(ξ) Bij(ξ)

)
∀ j 6= i.

The Nash equilibrium of the game requires condition (12) to hold for all players, writ-
ing all such conditions together, the necessary conditions of the Nash equilibrium of the
quadratic game under uncertainty (4)-(7) is

u(·) ∈ N̂ , λ(·) ∈ M̂ such that 0 ≤ u(ξ) ⊥M(ξ)u(ξ) + q(ξ) + λ(ξ) ≥ 0, ∀ξ ∈ Ξ,

where N̂ = {u(·) : The x-part of u(·) is independent of ξ}, M̂ = N̂⊥,

M(ξ) =

M1(ξ)
...

MN (ξ)

 , and q(ξ) =

 q1(ξ)
...

qN (ξ)

 .

To obtain a matrix with an easier-understood structure, we re-arrange the order of the
variables as follows. Put all players’ first-stage decision variables together as x-part and
second-stage variables together as y-part, meanwhile put all dual variables corresponding to
the first-stage constraints, followed by the dual variables corresponding to the second-stage
constraints and denote the entire dual vector as ζ(·). Besides, let

ω(ξ) = (λ1(ξ), · · · , λN (ξ), 0, · · · , 0)T .

Then (12) becomes

(13)

∃ z(·) ∈ N and ω(·) ∈M such that

0 ≤
(
z(ξ)
ζ(ξ)

)
⊥
(
H11(ξ) H12(ξ)
H21(ξ) 0

)(
z(ξ)
ζ(ξ)

)
+

(
c̄(ξ)
−b̄(ξ)

)
+

(
ω(ξ)

0

)
≥ 0, ∀ξ ∈ Ξ,
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where

(14) H11(ξ) =



Q1 R12 · · · R1N S1(ξ)
R21 Q2 · · · R2N S2(ξ)

...
...

...
...

. . .

RN1 RN2 · · · QN SN (ξ)
S1(ξ)T P12(ξ) · · · P1N (ξ) T1(ξ) O12(ξ) · · · O1N (ξ)
P21(ξ) S2(ξ)T · · · P2N (ξ) O21(ξ) T2(ξ) · · · O2N (ξ)

...
...

...
...

...
...

...
...

PN1(ξ) PN2(ξ) · · · SN (ξ)T ON1(ξ) ON2(ξ) · · · TN (ξ)


,

H12(ξ) =



−AT1 −D1(ξ)T

−AT2 −D2(ξ)T

. . .
. . .

−ATN −DN (ξ)T

−B1(ξ)T

−B2(ξ)T

. . .

−BN (ξ)T


,

and

H21(ξ) =



A1 A12 · · · A1N

A21 A2 · · · A2N
...

...
...

...
AN1 AN2 · · · AN
D1(ξ) D12(ξ) · · · D1N (ξ) B1(ξ) B12(ξ) · · · B1N (ξ)
D21(ξ) D2(ξ) · · · D2N (ξ) B21(ξ) B2(ξ) · · · B2N (ξ)

...
...

...
...

...
...

...
...

DN1(ξ) DN2(ξ) · · · DN (ξ) BN1(ξ) BN2(ξ) · · · BN (ξ)


.

The blank parts of the matrices are all zeros.
In summary, we have shown the following result. Let C = {z(·) ∈ Ln+m : zi(·) ∈

Ci(z−i), ∀i} and N = N1 × · · · × NN .

Theorem 2.1 Under the constraint qualification that C ∩ N 6= ∅, the problem of finding a
Nash equilibrium of (4)-(7) can be converted to a stochastic linear complementarity problem.
More specifically, suppose in addition the optimal value of (9) is finite for every i, then a
necessary condition for z∗(·) being a Nash equilibrium of the two-stage stochastic game (4)-
(7) is that z∗(·) ∈ N and there exist ω∗(·) ∈ M and ζ∗(·) such that the stochastic linear
complementarity problem (13) holds at z∗(·), ω∗(·), and ζ∗(·).

Conversely, if Q̄i(ξ) is positive semidefinite for all ξ and all i, then the solution to (13)
is a global Nash equilibrium of (4)-(7).

Remark 2.1 Consider two special cases:

• Player i’s constraints are independent of other players’ strategies (only the objective
involves other players’ strategies), which we call the autonomously constrained case .
In our two-stage stochastic game (4)-(7), this means for all j 6= i (i = 1, · · · , N)

Aij = 0, Bij(ξ) = 0, Dij(ξ) = 0 ∀ ξ,
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thus H21(ξ) = −H12(ξ)T .

• Let us call the case of Q̄i(ξ) being positive semidefinite for all ξ and all i the privately
convex case for the game. Various sufficient conditions can be deduced for the solv-
ability of (11) via the theory of linear complementarity [3] and we do not go further in
that direction. We just point out that the condition of private convexity alone cannot
guarantee the monotonicity of problem (13). That is, even every player’s problem is
convex, the Nash equilibrium problem may still be non-monotone.

A possible approach to solving Problem (13) is the progressive hedging algorithm, which
will be discussed in the next section.

3 Finding an equilibrium via progressive hedging

3.1 The Monotone Case

The progressive hedging algorithm (PHA) was originally designed for multi-stage stochastic
minimization problems by Rockafellar and Wets [12] and it has been recently extended in
[11] to the monotone SVI problems of the form

(15) z(·) ∈ N , ω(·) ∈M, 0 ∈ [F +NC ](z(·)) + ω(·)

where F is a continuous mapping. As a special case, monotone stochastic complementarity
problems can be solved via PHA, and numerical results in [11] showed its efficiency.

According to Spingarn [16, 17], the PHA is a special version of the proximal point
algorithm (PPA) developed by Rockafellar [9] applied to a set-valued mapping ATNA, where
A is a certain symmetric nonsingular matrix and TN is the partial inverse of mapping F+NC
with respect to subspace N . When applied to convex linear-quadratic stochastic multistage
optimization, the convergence of PHA is guaranteed at a q-linear rate if an optimal solution
exists.

The PHA for monotone stochastic complementarity problem (13) developed in [11] could
be stated as follows.

Algorithm 1. PHA for two-stage quadratic games under uncertainty

Initiation. Set z0(ξ) = 0, ζ0(ξ) = 0, ω0(ξ) = 0 for all ξ, and k = 0.

Iterations.

Step 1. For each ξ ∈ Ξ, obtain ẑk(ξ) and ζ̂k(ξ) via the following LCP

0 ≤
(
z(ξ)
ζ(ξ)

)
⊥

(
H11(ξ) H12(ξ)
H21(ξ) 0

)(
z(ξ)
ζ(ξ)

)
+

(
c̄

−b̄(ξ)

)
+

(
ωk(ξ)

0

)
(16)

+r

(
z(ξ)− zk(ξ)

0

)
≥ 0.

Step 2. (Primal Update)

xk+1 = Eξ(x̂k(ξ)), zk+1(ξ) =

(
xk+1

ŷk(ξ)

)
, ζk+1(ξ) = ζ̂k(ξ).

Step 3. (Dual Update) ωk+1(ξ) = ωk(ξ) + r(ẑk(ξ)− zk+1(ξ)).
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Set k := k + 1, repeat until a stopping criterion is met.

Observe that Step 1 of Algorithm 1 is to find a solution to a linear complementarity
problem for every scenario. Putting all scenario solutions together, we obtain ẑk(·). Since
the solution ẑk(·) may not satisfy the nonanticipativity constraint, the primal update makes
a projection on N and the dual update makes a move in M because zk+1(·) = PN (ẑk(·))
which yields ẑk(·)− zk+1(·) ∈M.

Algorithm 1 is a gradient-based method, so it is not surprising that the convergence rate
is at best linear, However, since it is also a proximal point based method, the rate θk in the
estimate

‖(zk+1(·), ωk+1(·))− (z∗(·), ω∗(·))‖r ≤ θk‖(zk(·), ωk(·))− (z∗(·), ω∗(·))‖r

can be made arbitrarily close to zero if a certain strong regularity assumption is satisfied
(Rockafellar [9, p.886]. Thus, by taking a carefully chosen large r, the algorithm could
converge reasonably fast.

The spirit of Algorithm 1 is to find a collective solution z(·) for all players by an inter-
active procedure, which is different from the idea of the best response method (BRM) in
the literature. Stochastic versions of the BRM can be found, for examples, as the Sampled
Best-Response Algorithms (BRM) for GprMD in Pang et al. [6] and the inexact best response
methods for SNEPs in Shanbhag et al. [15]. In principle, the best response methods are
based on a special reformulation of the game (4)-(7), which requires convexity and differen-
tiability. Thus, the model in [6] has no xTi Si(ξ)yi(ξ) in the objective of ψi, the recourse ψi is
not involved the other players’ second-stage strategies y−i, and the matrix before yi in the
objective and constraint are independent of ξ, which is actually the so-called fixed recourse.
As long as the best-response mapping is continuous and contractive, the Nash equilibrium
may be achieved successfully. Notice that the optimization involved in the best-response
mapping turns to be a two-stage stochastic programming problem. In other words, when
applying BRM to solve a two-stage stochastic game, at every iteration, each player needs
to solve a two-stage stochastic optimization problem based on the information of others’
strategies of previous iteration.

The convergence of Algorithm 1 requires that the game (4)-(7) has a solution and the
corresponding SLC problem is monotone [11], which requires positive semidefiniteness of
the following matrix for all ξ ∈ Ξ,

(17) H(ξ) =

(
H11(ξ) H12(ξ)
H21(ξ) 0

)
.

Note that to check the positive semidefiniteness of H(ξ) is a challenging job. We there-
fore turn to the autonomously constrained case, in which H12(ξ) = −H21(ξ)T , so we only
have to determine the positive semidefiniteness of smaller-sized matrix H11(ξ). In practice
it is quite common for the players to have interaction with other players in their objective
functions. To simplify the analysis, we denote H11(ξ) as four blocks, i.e.,

(18) H11(ξ) =

(
H̄11 H̄12(ξ)
H̄21(ξ) H̄22(ξ)

)
,

which is correspondingly defined in (14). It should be pointed out that H11(ξ) is gener-
ally non-symmetric due to the existence of Rij , Pij(ξ) and Oij(ξ). However, the positive
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semidefiniteness of matrix H11(ξ) can be guaranteed by the diagonal dominance of H11(ξ),
namely, for i = 1, ..., N , if one has

|qii| ≥
∑
j 6=i
|qij |+

∑
j 6=i

∑
k

|(Rij)ik|+
∑
j

|sij(ξ)|, ∀ ξ,

and

|tii(ξ)| ≥
∑
j 6=i
|tji(ξ)|+

∑
j

|sji(ξ)|+
∑
j 6=i

∑
k

(|(Pij(ξ))ik|+ |(Oij(ξ))ik|), ∀ ξ.

These diagonal dominance conditions are strong, but they guarantee Algorithm 1 to
converge to a global Nash equilibrium if such a point exists.

3.2 The Non-monotone Case

Next we investigate the possibility of a “non-monotone version” of PHA in this subsection
and apply it to two-stage quadratic game with uncertainty. The non-monotone version of
PHA was inspired by Rockafellar [10]. The word “elicited monotonicity” is also due to him.

Definition 3.1 Monotonicity of F +NC is said to be elicitable (or elicited) at level s > 0:

• globally if F +NC + sPM is maximal monotone globally, and

• locally around (z, y) ∈ graph [F+NC ] with z ∈ N , y ∈M, if F+NC+sPM is maximal
monotone locally around (z, y), where PM is the projection operator on subspace M.

Definition 3.2 Let T be set-valued mapping. The partial inverse of T with respect to N
is the set-valued mapping TN : Ln+m → Ln+m defined by

v(·) ∈ TN (u(·)) ⇐⇒ PM(u(·)) + PN (v(·)) ∈ T (PN (u(·)) + PM(v(·))).

Spingarn [16] showed that

• TN is (maximal) monotone iff T is (maximal) monotone.

• The following two problems are equivalent

(19) Find u(·) ∈ N and v(·) ∈M such that v(·) ∈ T (u(·)),

(20) Find u(·) ∈ N and v(·) ∈M such that 0 ∈ TN (u(·) + v(·)).

The elicited PHA is based on the fact that, although F +NC is not monotone, the mapping
F + NC + sPM may be maximal monotone for large s > 0. Moreover, it is easy to show
that

(F +NC)
−1
N (0) = (F +NC + sPM)−1

N (0) for any s > 0.

Then one can apply the proximal point algorithm to (F+NC+sPM)N , instead of (F+NC)N ,
to obtain a solution to the SVI, which results in the following algorithm.

10



Algorithm 2. Elicited PHA for elicitable SVI

Initiation. Let parameter r > s ≥ 0. Set z0(ξ) = 0, ω0(ξ) = 0 for all ξ, and k = 0.

Iterations.

Step 1. For each ξ ∈ Ξ, ẑk(ξ) := the unique z(ξ) such that

−F(z(ξ))− ωk(ξ)− r[z(ξ)− zk(ξ)] ∈ NC(ξ)(z(ξ)).

Step 2. (Primal Update) zk+1(·) = PN (ẑk).

Step 3. (Dual Update) ωk+1(ξ) = ωk(ξ) + (r − s)(ẑk(ξ)− zk+1(ξ)).

Set k := k + 1, repeat until a stopping criterion is met.

It is interesting to note that the only difference between Algorithm 2 and Algorithm 1
is that r in the dual update step of Algorithm 1 is replaced by r− s, although the idea and
convergence proof are not that simple. In the following theorem, we show that Algorithm
2 is in fact an application of PPA to the partial inverse of T = F + NC + sPM for some
s ∈ [0, r). Hence, the convergence rate is q-linear in the special case of elicitable SLC.

Theorem 3.1 Suppose that F + NN is globally elicitable at level s. Then Algorithm 2 is
equivalent to PPA for ATNA, where TN is the partial inverse of F +NC + sPM, and A is
a non-singular linear operator defined as A : u(·) 7→ PN (u(·)) +

√
r(r − s)PM(u(·)).

Moreover, in the special case that F is linear and C is polyhedral, if N ∩ C 6= ∅ and the
SVI problem has a solution, then the sequence {zk(·), ωk(·)} generated by Algorithm 2 will
globally converge to some pair {z∗(·), ω∗(·)} with z∗(·) being a solution to (15) at linear rate
with respect to the norm

‖(z(·), ω(·))‖2r,s = ‖z(·)‖2 +
1

r(r − s)
‖ω(·)‖2.

Proof. It is known that the iterates of PHA is

uk+1(·) = (I + r−1ATNA)−1(uk(·)),

which is equivalent to

rA−2(Auk(·)−Auk+1(·)) ∈ TN (Auk+1(·)).

Let v(·) := Au(·). Since rA−2 : u(·) 7→ rPN (u(·)) + 1
r−sPM(u(·)), we have

rPN (vk(·)− vk+1(·)) +
1

r − s
PM(vk(·)− vk+1(·)) ∈ TN (vk+1(·)).

From the definition of TN , one can obtain that

rPN (vk(·)− vk+1(·)) + PM(vk+1(·))− s
r−sPM(vk(·)− vk+1(·))

∈ (F +NC)[PN (vk+1(·)) + 1
r−sPM(vk(·)− vk+1(·))].(21)

Set zk(·) := PN (vk(·)), ωk(·) := −PM(vk(·)) and

ẑk(·) := PN (vk+1(·)) +
1

r − s
PM(vk(·)− vk+1(·)) = zk+1(·) +

1

r − s
(ωk+1(·)− ωk(·)),
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Then, zk+1(·) = PN (ẑk(·)) and ωk+1(·) = ωk(·) + (r − s)(ẑk(·) − zk+1(·)), which coincide
with Step 2 and Step 3 of Algorithm 2, based on the definition of N and M, and we have
that (21) is equivalent to

r(zk(·)− ẑk(·)) + ωk(·) + r(ẑk(·)− zk+1(·) +
1

r − s
(ωk+1(·)− λk(·))) ∈ (F +NC)(ẑ

k(·)),

which is just the Step 1 of Algorithm 2:

−F(ẑk(·))− ωk(·)− r(ẑk(·)− zk(·)) ∈ NC(ẑk(·)).

Therefore, the equivalence of Algorithm 2 and PPA for ATNA is established.
The second part comes directly by the convergence results of PPA (Theorem 2 in Rock-

afellar [9]).
Theorem 3.1 was first shown by Rockafellar in [10] and our proof above is different and

simplified compared to the one in [10].
Back to the elicitability of the SLC problem (16), we next present a result of Rockafellar

and use it to derive a sufficient condition for elicitability of the SLC problem.

Lemma 3.1 (Theorem 5 of [10]) Let S be a symmetric matrix in Rp×p. Suppose L is a
linear subspace in Rp and M = L⊥. Let PL and PM be the projection matrices from Rp to
L and M , respectively. Suppose that

∃α > 0 : 〈x,Ax〉 > α ‖x‖2 ∀0 6= x ∈ L.

Let
β = ‖PLSPL‖ and γ = ‖PMSPM‖ .

Then G = S + sPM � 0 for all s > α−1β2 + γ.

Theorem 3.2 Let diag (H(ξ)) be the block-diagonal matrix, consisting of blocks H(ξ) for
all ξ and let diag (H(ξ)) be its symmetric part, i.e.,

diag (H(ξ)) := [ diag (H(ξ)) + diag (H(ξ))T ]/2.

If diag (H(ξ)) is positive definite on N , then F+sPM+NC is maximal monotone for some
large s > 0, where F : Ln+m → Ln+m is the mapping defined by F(z(ξ)) = H(ξ)z(ξ)+q(ξ).

Proof. Let the cardinality of Ξ be K and let z be the vector made by stacking up the vectors
z(ξ) for all ξ. So z ∈ RK(n+m). Let v ∈ RK(n+m) be the scaled z such that v(ξ) =

√
p(ξ)z(ξ),

where p(ξ) is the probability of scenario ξ. Then we have

(22) vT v =
∑
ξ∈Ξ

v(ξ)T v(ξ) =
∑
ξ∈Ξ

p(ξ)z(ξ)T z(ξ) = 〈z(·), z(·)〉.

There exists an idempotent matrix PM ∈ RK(n+m)×K(n+m) such that

vTPMv = 〈PM(z(·)), z(·)〉.

Therefore PM can be regarded as the projection matrix onto subspace M in RK(n+m) where
M is identified with the linear subspace M in Ln+m under the isomorphic relationship
z ↔ z(·).

12



We next show that F + sPM is monotone, that is

〈[F + sPM](z(·)− z′(·)), z(·)− z′(·)〉 ≥ 0,

which, according to (22), is equivalent to

(23) (v − v′)T ( diag (H(ξ)) + sPM )(v − v′) ≥ 0, ∀v, v′.

Since diag (H(ξ)) is positive definite on N , it follows from Theorem 3.1 that (23) is true.
Thus F + sPM is monotone.

Given that F + sPM is monotone, it follows from Rockafellar [8, Theorem 3] that
F + sPM +NC is maximal monotone, which complete the proof.

Combining Theorem 3.1 and Theorem 3.2, we have the following result.

Corollary 3.1 If diag (H(ξ)) is positive semidefinite on N , then the two-stage quadratic
game under uncertainty is globally elicitable and Algorithm 2 will produce series {zk(·), ωk(·)}
that converges q-linearly to (z∗(·), ω∗(·)) with respect to the (r−s)-norm defined in Theorem
3.1, if the game has a solution and satisfies the constraint qualification.

Remark 3.1 The requirement for H(ξ) is similar to the requirement of the second-order
optimality condition in nonlinear programming that requires the Hessian of the objective
function to be positive semidefinite on a certain subspace. Overall, Corollary 3.1 indicates
that the three steps of analysis planned in Section 1 are accomplished at least for the class
of games that satisfies the condition of Theorem 3.2.

4 Numerical Experiments

In this section, we conduct some numerical experiments to test the efficiency of Algorithm 1
and Algorithm 2. The linear complementarity problem in Step 1 is solved by the semismooth
Newton method of Qi and Sun [7]. The semismooth Newton method is especially fast in
solving a linear complementarity problem because it reduces to finding a root of a simple
semismooth equation and it uses the solution with respect to last scenario as the initial
point to find the solution corresponding to the current scenario. More details are discussed
in [11].

All numerical experiments are coded in Matlab R2015b and run on a PC with an Intel(R)
Core(TM) i7-7500U 2.90 GHz CPU and 16 GB of RAM under WINDOWS 10 operating
system.

4.1 Test on a production problem

To clarify in which applications the two-stage games can be applied, let us consider two
factories, competing to sell similar products, say products 1 and 2, in an open market. Each
factory arranges the production of the two products in two stages. At stage 1, they purchase
a raw material, say steel, at $5 per unit without knowing the demands and prices of the
products. At stage 2, the demands and prices are disclosed and each of the factory has
to decide the amount of each product they produce to maximize their respective revenue
subject to the amount of steel they bought at stage 1 and a market saturation bound of the
products. Below is the consumption of steel for the factories to producing 1 piece of each
product.
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Product 1 Product 2

Factory 1 1.4 1.1
Factory 2 1.3 1.2

There are two scenarios of the uncertainties at the second stage with probability .4 and .6,
respectively, as follows.

Scenario 1 Scenario 2

Price of product 1 17 18
Price of product 2 15 16
Market limit of product 1 1000 1900
Market limit of product 2 2000 2000

Let the amount of steel to purchase be x1 and x2, respectively for factories 1 and 2. Let
the amount of products to produce be (y1, y2) and (y3, y4), respectively for factories 1 and
2. The two scenarios are

ξ1 =

ξ1
1

ξ1
2

ξ1
3

 =

−17
−15
1000

 , ξ2 =

ξ2
1

ξ2
2

ξ2
3

 =

−18
−16
1900

 and Ξ = {ξ1, ξ2}.

Note that the market limit of product 2 is deterministic, so it is not included in the
definition of ξ1 and ξ2. Following the notations in Section 2, we denote for ξ ∈ Ξ

x(ξ) =

(
x1

x2

)
, y(ξ) =


y1(ξ)
y2(ξ)
y3(ξ)
y4(ξ)

 , z(ξ) =

(
x(ξ)
y(ξ)

)
.

Then Player 1’s problem is

min 5x1 + Eξ[ξ1y1 + ξ2y2](24)

s.t. x1 − 1.4y1(ξ)− 1.1y2(ξ) ≥ 0,

−y1(ξ)− y3(ξ) ≥ −ξ3,

−y2(ξ)− y4(ξ) ≥ −2000,

All variables are ≥ 0.

By using the fact that the linear program

min cT z s.t. Az ≥ b, z ≥ 0

is equivalent to the linear complementarity problem

0 ≤
(

0 −AT
A 0

)(
z
u

)
+

(
c
−b

)
⊥
(
z
u

)
≥ 0,

where u is the dual variable, problem (24) can be equivalently written as a stochastic linear
complementarity problem as follows

(25) 0 ≤
(

0 −AT
A 0

)(
z
u

)
+


c1

0
ξ3

2000

 ⊥ (zu
)
≥ 0
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where

A =

1 0 −1.4 −1.1 0 0
0 0 −1 0 −1 0
0 0 0 −1 0 −1

 , c1 = (5, 0, ξ1, ξ2, 0, 0)T .

Similarly, Player 2’s problem is equivalent to

(26) 0 ≤
(

0 −BT

B 0

)(
z
v

)
+


c2

0
ξ3

2000

 ⊥ (zv
)
≥ 0

where

B =

0 1 0 0 −1.3 −1.2
0 0 −1 0 −1 0
0 0 0 −1 0 −1

 , c2 = (0, 5, 0, 0, ξ1, ξ2)T .

At each iteration of PHA, we solve for fixed ξ the system (25)-(26) at Step 1. Since the
objectives are linear and the constraints are polyhedral and bounded, the game has a so-
lution and PHA ends up with x1 = 2660, y1(ξ1) = 1000, y1(ξ2) = 1900, x2 = 2200, y4(ξ1) =
2000, y4(ξ2) = 2000 and all other variables are zero.

4.2 Test on randomly generated non-monotone problems

In this subsection, we test Algorithm 1 and Algorithm 2 on randomly generated prob-
lems. Considering that Problem (13) and Problem (4)-(7) in the privately convex case with
Xi(x−i(ξ), ξ) = Rni

+ and Yi(x(ξ), y−i(ξ), ξ) = Rmi
+ have the same structure (they differ only

by adding ζ in the primal vector), we only test problems of the latter type. Note that even
in the privately convex case, the equivalent SLC problem (13) may not be monotone.

We generate the symmetric positive semi-definite Q̄i(ξ) ∈ R(ni+mi)×(ni+mi) for player i
in scenario ξ as

Q̄i(ξ) = λI − A+AT

2
,

where A is a matrix composed of entries being uniformly distributed in the interval (−1, 1),

and λ ≥ λmax(A+AT

2 ). Matrices Rij , Pij(ξ) and Oij(ξ) are composed of random numbers
uniformly distributed in the interval (−1, 1). ci = Qi(ξ

1)u and di(ξ) = Ti(ξ
1)v, where

u ∈ Rni×ni v ∈ Rmi×mi are random vectors with entries being uniformly distributed in
(−1, 1). Then, set H̄11 in (18) as Eξ[H̄11(ξ)]. The probability of each scenario is randomly
generated as well.

Note that, with x(ξ) being constant as x for all ξ, a sufficient condition that z(·) is the
solution to problem (13) is{

0 ≤ x ⊥ H̄11x+ Eξ[H̄12(ξ)y(ξ)] + c ≥ 0,

0 ≤ y(ξ) ⊥ H̄21(ξ)x+ H̄22(ξ)y(ξ) + d(ξ) ≥ 0, ∀ ξ ∈ Ξ.

Therefore, we adopt the following measurement to construct a stopping criteria:

rel.err = max{rel.err1, rel.err2},

where

rel.err1 =
‖x−

∏
≥0(x− (H̄11x+ Eξ[H̄12(ξ)y(ξ)] + c))‖

1 + ‖x‖
,
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rel.err2 = max
ξ

{
‖y(ξ)−

∏
≥0(y(ξ)− (H̄21(ξ)x+ H̄22(ξ)y(ξ) + d(ξ)))‖

1 + ‖y(ξ)‖

}
,

with (
∏
≥0(a))j = max{aj , 0}. Set the tolerance to be 10−5, and the maximal iterations to

be 1000, i.e., if rel.err ≤ 10−5 or iteration number ≥ 1000, the algorithm stops.
As stated in [11], the choice of parameter r has great impacts for the performance of

PHA, and choosing r as the square root of the dimension of m + n has shown to be an
efficient heuristic in solving stochastic linear complementary problems. Besides, since PHA
is an application of Spingarn’s partial inverse algorithm, which is a specialized form of
Douglas-Rachford splitting in [4], we adopt a step length ρ in the dual update step, namely

ωk+1(ξ) = ωk(ξ) + ρr(ẑk(ξ)− zk+1(ξ)).(27)

It can be seen that when ρ = 1 it is exactly the original PHA. In our numerical experiments,
we set ρ = 1.618, which is successfully used in Douglas-Rachford splitting methods.

4.2.1 Numerical results

We design three experiments to show the performance of Algorithm 1 and Algorithm 2
with dual update being (27) for solving the two-stage game in their linear complementarity
formulation. Besides, we also adopt BRM for comparison, with subproblems of BRM being
treated as a large-scaled LCP and solved by the same solver for subproblems of PHA, and
use ‖xν+1 − xν‖ ≤ 10−5 or the max.iter≥ 1000 as the stopping criteria for BRM. First
two experiments focus on the stochastic game with two players, while the third one is an
N -player game.

For two-player game, we conduct two groups of test samples:

• One group is to fix the dimension of the first and second player’s decision variable
as [15, 20] and [25, 10], respectively, and increase the number of scenario from 5 to
500. For each setting, there are 10 examples being randomly generated by the rules
stated above. For every problem we run PHAorg (s = 0), PHAelc (s = r/2) and
BRM to test, and record the convergence iteration number and time. Besides, for
PHA we set the parameter r =

√
n+m and the step length ρ = 1.618, while for BRM

µ =
√
n+m. The numerical results are listed in Table 1 and Figure 1.

• The other group is to fix the number of scenario as sn=50 and increase the dimension of
each player’s decision variable from [50,50] to [300,300]. For each setting, 10 examples
are randomly generated and tested by PHAorg (s = 0), PHAelc (s = r/2) and BRM.
Table 2 and Figure 2 show the numerical results.

First, it should be pointed that privately convexity can not guarantee the monotonicity
of matrix H11(ξ) for each ξ, which means the equivalent SLC (13) handled by PHA may
be non-monotone. However, the original PHA without being elicited still works for the
problem, and the convergence is faster than the elicited PHA. From Table 1, one can find
that the iteration number for converging of BRM, PHAorg and PHAelc is stable around
30, 30, 40, respectively, when the number of scenarios rising. Since we directly solve the
subproblems of BRM by LCPsolver, the LCP of each subproblem is getting larger rapidly
when the number of scenario grows, which yields more time consuming for converging. But
for PHAorg and PHAelc, the convergence time increases slowly when the scenario number
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Figure 1: Convergence results when scenario number increases

Table 1: Numerical results while scenario number increases

(dim=[15,20], [25,10])

K
PHAorg (s=0) PHAelc (s=r/2) BRM
iter time(s) iter time(s) iter time(s)

5 30 0.1 30 0.1 32 0.05

10 28 0.2 30 0.2 30 0.1

20 28 0.3 35 0.3 29 0.2

50 31 0.6 39 0.7 29 0.9

100 26 0.9 38 1.4 29 3.0

200 32 2.1 49 3.3 30 12.1

500 30 4.2 46 6.8 30 98.9

rises. Besides, in this case it shows that BRM is faster than PHA for small-size problem, e.g.
scenario number less than 50, but behaves worse for problems with large scenario number.

From Table 2 and Figure 2, we can see that the number of iterations for convergence
of PHAorg and PHAelc grows steadily when the problem dimension is increasing, while
the number of iterations for convergence of BRM is still stable around 30. However, the
convergence time of these three algorithms appear to grow much fast in this group, with
BRM being much slower than the PHAs when the dimension gets larger.
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Figure 2: Convergence results when dimension of each player increases

17



Table 2: Numerical results while dimension increases (K=50)

dim
PHAorg (s=0) PHAelc (s=r/2) BRM
iter time(s) iter time(s) iter time(s)

[50,50] 32 1.9 59 4.0 29 7.1

[100,100] 48 10.9 100 23.2 30 33.8

[200,200] 59 56.2 140 130.3 30 184.2

[300,300] 61 118.4 152 327.4 31 2263.4

In the third experiment, we fix the scenario number as 100 and the dimension of each
player’s strategy as [15,20], and generate 10 independent monotone problems and 10 inde-
pendent non-monotone problems for each N (the number of players), which increases from
3 to 15, specifically setting N = 3, 6, 10 and 15. The dimension of matrix H11(ξ) is rising
rapidly when N increases. PHAorg (s = 0), PHAelc (s = r/2) and BRM are conducted to
solve every problem, and the convergence iteration number and time are recorded.
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Figure 3: Convergence results when player number increases

From Figure 3 and Table 3, we can find that both the iteration number and time for
converging of the three algorithms increase when the number of players grows. Notice that
the rise rate of converging time of BRM is lower than that of PHA. More specifically, when
the number of players is smaller than 10, PHA costs less time to converge than BRM, but
when the game involves more players BRM will perform better than PHA.

Table 3: Numerical results while player number increases

(K=100, dim of each player=[15,20]))

N
PHAorg (s=0) PHAelc (s=r/2) BRM
iter time(s) iter time(s) iter time(s)

3 77 3.9 166 8.6 38 8.0

6 96 13.4 203 29.2 73 32.4

10 156 54.3 324 117.9 93 73.4

15 218 167.6 438 297.3 102 138.3

To sum up, we compared the BRM and PHA and listed the advantages and drawbacks
in the following:

• The BRM requires the convexity and twice differentiability of θi + Eξ[ψi] on xi and
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the contractiveness of the best-response mapping. The PHA treats the two-stage
optimization problem for each player in a functional framework, thus the model in
this paper is more general as long as the problem is decomposable in terms of scenarios.

• In general, the monotonicity of SLC (13) is not satisfied and to check if it is elicitable
is not easy. This is similar to what happens in solving nonlinear programs — the user
knows that the point generated by his algorithm would be a solution, if that point
satisfies certain second-order sufficient condition, but there is no way to check if that
condition would be satisfied when the algorithm begins. From the numerical results,
it is notable that as long as the game is privately convex, the PHA without being
elicited works at least as well as the BRM and moreover, it is applicable to a larger
class of problems due to the restriction on the applicability of the BRM approach.

• When the number of players grows, the size of PHA’s subproblem increases while
there’s no difference for the subproblems of BRM, in which case BRM will lead a
better performance than PHA. However, for 2-player game with large-scale decision
variables and big scenario number, PHA is a better choice.

5 Conclusions

This paper studies the quadratic case of two-stage game models under uncertainty. The
model allows entanglement at all levels — the first stage decision is parameterized by the
rivals’ decisions both at the objective function level and at the constraint level. The second
stage decision is parameterized not only by a random vector, but also by the rivals’ decisions
in two stages and the player’s own decision at the first stage, also in both levels — objective
function and constraints. It is shown that the problem of finding a Nash equilibrium of
this model can be converted to a stochastic linear complementarity problem. This model
appears to be a new model in the literature that associates a stochastic variational inequality
problems with a stochastic equilibrium problem.

Although under certain strong conditions the resulted stochastic linear complementarity
formulation of this game may be of monotone type, it is shown that it can be generally
expected that the resulted formulation is of non-monotone type. The progressive hedging
algorithm is demonstrated to be able to solve mediate-sized games with efficiency. The
tested problems are up to the size of several hundreds of variables and scenarios.

In particular, our study includes theory and computational results on an elicited progres-
sive hedging algorithm for solving class of non-monotone games — the elicitable two-stage
quadratic games. Same as the monotone case, it is shown that the elicited progressive hedg-
ing algorithms is globally convergent at a linear rate if the problem satisfies an elicitability
condition, which requires monotonicity of a certain mapping on the nonanticipativity sub-
space.
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