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Abstract. In this paper we propose a novel similarity measure for spectral clustering that in-
corporates a hierarchical component. The main advantage of this measure is that it produces an
algorithm that does not depend on any scaling parameter, making it very easy to apply. Our ex-
periments showed that our algorithm performs better than other spectral clustering methods on
synthetic data sets with complex shape and multiple scales.
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1 Introduction

Nowadays we have a huge amount of information available and it is a hard task to interpret it.
Classifying this information into a small number of classes can help us gain valuable insight about
our data, and this is widely applied in many fields. This is the aim of clustering algorithms, which
seek to split data points into a given number of clusters in a way that data points with similar
properties lie the same cluster and dissimilar data points lie in different clusters [9].

Traditional clustering methods, such as single linkage [7] and k-means [4] are easy to describe
and to implement, but they often cannot deal with more complex structures. For instance, the
performance of single linkage is sensitive to outliers [1] and k-means has been designed to obtain
tight clusters in metric spaces, and therefore returns only convex clusters. Spectral clustering
refers to a family of clustering algorithms that are based on linear algebra. They rely on similarity
measures that are typically used to map the original data points into a new Euclidean space,
allowing the algorithms to capture structural similarities beyond the distances between two points.
A class of spectral algorithms based on the similarity measure will be presented in Section 2.
Compared with traditional methods, they have many fundamental advantages. For example, they
are able to find non-convex structures.

As we shall see, the definition of the similarity measure plays a fundamental role in spectral
clustering [3]. Assuming that the original data points lie in a Euclidean space, the Gaussian kernel
function e−||xi−xj ||2/2σ2

has been widely used to measure the similarity between two different data
points xi and xj . It started with the seminal work of Shi and Malik [6] and of Ng et al. [5], and
has led to good results in different situations.

According to this definition, the Gaussian kernel function depends on a scaling parameter σ,
which has to be set by the user, and it is well known that the outcome of spectral clustering is
quite sensitive to this parameter [1]. In many applications, the ‘good’ values of σ form a bounded
interval, and a bottleneck of the method is to find such a good σ, especially for more complex
structures [9]. To illustrate the problem, we applied the spectral clustering algorithm of Ng et
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al. [5] for two values of σ that produce very different classifications, see Figure 1. Some natural
definitions of σ, such as the standard deviation and the variance are known to perform poorly in
several applications. Ng et al. [5] suggest choosing the value of σ that gives the tightest clusters.
This criterion may be applied to select a clustering between two competing options, but it does
not determine the interval where good values of σ may be found.
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Figure 1: Results of the spectral clustering algorithm by Ng et al. [5] for two different scaling parameters
in a data set with three circles. On the left σ = 0.075 and on the right σ = 0.1. The first is what we call
a good value of σ. Source: The authors (2022).

A lot of effort has been made towards finding criteria that leads to good values of σ, but this
seems to be a hard problem. Several authors have proposed alternative similarity measures to
address this problem [2], as will be discussed in Section 3. To the best of our knowledge, there
is no similarity measure in the literature that fully avoids a scaling parameter and, at the same
time, defines a clustering algorithm whose performance is as good as the performance of traditional
spectral clustering for an appropriate choice of the scaling parameter. The algorithm of this paper
closes this gap.

We propose a novel similarity measure derived from the Gaussian kernel that incorporates a
hierarchical component. Hierarchical approaches have been applied in the early days of clustering.
One such approach is the agglomerative hierarchical clustering algorithm known as single link-
age [7]: initially, each data point lies in its own cluster, and, at each step, the algorithm merges
the clusters that are closest to each other, until all points lie in the same cluster. This produces
a tree, or dendrogram, that gives a hierarchy of clusters. According to this method, if we wish to
split our original data set into k clusters, it suffices to ignore the k last merging operations. Being
a greedy procedure, this strategy does not provide good quality clusterings for many data sets.

Our method is based on the assumption that data points that lie in the same cluster in early
steps of the procedure must have high similarity. This is used to replace the fixed scaling parameter
σ in the definition of the Gaussian kernel by a factor that depends on the dendrogram for each pair
of data points. This gives a similarity measure that has several benefits, for instance, no scaling
parameter is required in the similarity measure, it is invariant under translations and expansions,
it may be computed easily and, according to our experiments, the spectral clustering framework
using this measure performs well in comparison to other traditional methods.

2 A Spectral Clustering Algorithm

In this section, we present a class of spectral algorithms that are based on similarity measures.
This is a general framework derived from the work of Ng et al. [5]. Given a set of n data points
X = {x1, x2, . . . , xn}, a similarity measure on this data points may be viewed as a matrix S = (sij)
such that sij is the similarity between xi and xj . This framework also uses a positive integer k,
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the number of clusters, as an input. It proceeds as follows:

(A) Let D be the diagonal matrix with Dii =
∑n

l=1 sil, and consider its normalized Laplacian
matrix L = D−1/2LD−1/2, where L = D − S.

(B) Compute orthogonal unit eigenvectors x1,x2, . . . ,xk ∈ Rn, where Lxi = λixi and λ1 ≤
. . . ≤ λk are the k smallest eigenvalues of L (counting multiplicities). Consider the matrix
X = [x1x2 . . .xk] ∈ Rn×k with columns x1, . . . ,xk.

(C) Define the matrix Y = (yij) from X = (xij) so that rows have unit length, i.e., yij =

xij/
√∑n

j=1 x
2
ij .

(D) Split the set {y1, . . . ,yn} of rows of Y into k clusters C1, . . . , Ck via k-means. Return C the
partition such that data point i is assigned to cluster ℓ if and only if yi lies in Cℓ.

3 Similarity Measures in the Literature

Experiments showed that the performance of the framework in Section 2 varies a lot according
to the choice of the similarity measure [1]. As mentioned in the introduction, a similarity measure
based on the Gaussian kernel has been introduced in the early papers about spectral clustering [5,
6]. Given a data set X = {x1, . . . , xn} in a Euclidean space, the similarity between the points xi

and xj is defined as

s1(xi, xj) = exp

(
−||xi − xj ||2

2σ2

)
if i ̸= j, (1)

where ||xi − xj || is the Euclidean distance between xi and xj and σ > 0 is a scaling parameter.
This similarity and the ones that will be presented below are defined equal to 0, if i = j.

The algorithm based on the framework of Section 2 using s1 as the similarity measure will be
called Standard Spectral Clustering and denoted by SC-GK. It often has a good performance in
many situations when the parameter σ is well chosen, but there is no fixed σ that works for every
data set. Therefore, the value of σ must depend on the data set. Usually, this parameter is set
manually [9], in the sense that the algorithm is run for many values of σ and the best solution is
chosen by the user. A clear disadvantage is that running the algorithm for many values of σ slows
it down. A more methodological drawback is that it is not always clear how to compare solutions
obtained for different values of σ. For synthetic data sets, they may be compared to a known
optimal solution, but this is not the case for real data sets. Other authors, such as [2], have also
pointed out that, because the same scaling parameter is used for all pairs of points, it may not
reflect the data distribution accurately, particularly if it contains data points in different scales.

In this section, we describe two additional similarity measures that have been proposed in the
literature. Zelnik-Manor and Perona [8] replace σ in (1) by a product σiσj that depends on the
particular pair of data points under consideration. The parameter σi is defined as σi = ||xi − xiℓ ||
where xiℓ denotes the ℓ-th closest data point to xi. The value ℓ ∈ N is a parameter chosen by
the user, and again plays an important role controlling the size of the neighborhood. In short, the
authors defined a similarity measure s2(xi, xj) = exp (−||xi − xj ||2/σiσj), i ̸= j. The algorithm
that uses this similarity measure in the framework of Section 2 is known as Self-Tuning Spectral
Clustering (SC-ST). One of the advantages of this method is that, in typical applications, even
reasonably small values of ℓ give good results, reducing the number of possibilities.

Zhang et al. [9] proposed another variation of the Gaussian kernel similarity measure, which
they called the density adaptive similarity measure. In addition to the parameter σ, it uses a
parameter ϵ > 0 that defines whether two data points are close to each other or not. For
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each pair of data points, the number of common-near-neighbors is defined as CNN(xi, xj) =
|{x ∈ X : ||xi − x|| < ϵ and ||xj − x|| < ϵ}|. The similarity measure is defined as s3(xi, xj) =
exp

(
−||xi − xj ||2/(2σ2(CNN(xi, xj) + 1))

)
, i ̸= j. The algorithm that uses this similarity measure

in the framework of Section 2 is known as Density Adaptive Spectral Clustering (SC-DA). The
experiments in [9] showed that their method was able to amplify the intra-cluster similarity in
many situations. However, in addition to σ, this approach also requires the user to fix a parameter
ϵ that defines this notion of closeness.

4 Hierarchical Similarity Measure

The two similarity measures described in the previous section have been designed to increase
the range of good values of the scaling parameter σ in SC-GK, or to replace σ by another scaling
parameter that is easier to set. In this section, we propose a similarity measure that modifies the
Gaussian kernel in a way that requires no scaling parameter. Instead, it incorporates information
from a hierarchical tree with weights on the vertices, as we now explain.

We start with some terminology. Consider a graph H with weights on its vertices, that is, a
triple H = (V, ωV , E) with vertex set V , edge set E and a weight function ωV : V → R≥0 that
assigns a nonnegative weight ωi to each vertex vi in V .

Agglomerative clustering is based on a simple idea. Given a data set X , each data point
initially lies in its own cluster. Step by step, the algorithm merges two clusters until all points
lie in the same cluster. There are many criteria for deciding which clusters to merge [7]. Here, if
C = {C1, . . . , Ck} is the set of clusters produced up to a certain step, the distance between two
clusters A and B is simply d(A,B) = min{||x− y|| : x ∈ A, y ∈ B}. We then merge two clusters
Ci and Cj for which d(Ci, Cj) is minimum. This produces the following tree, or dendrogram, that
encodes the hierarchy of clusters. Initially, a vertex of weight zero is created for each of the n
data points in the data set. In other words, there is a vertex for each cluster at the start of the
agglomerative procedure. When two clusters Ci and Cj are merged, a new vertex corresponding
to Ci ∪Cj is created, with weight d(Ci, Cj). Two edges are added so that it becomes the parent of
the vertices corresponding to Ci and Cj .

Algorithm 1: Hierarchical Tree
Input: X = {x1, . . . , xn} ⊂ Rm

Output: Hierarchical Tree H = (V, ωV , E)
1 Initialize a set C = {C1, . . . , Cn} with clusters Ci = {xi}, ∀i ∈ {1, . . . , n} and define a

weighted graph H with n isolated vertices, one for each cluster in C, with weight
ω{xi} = 0.

2 for ℓ ∈ (1, . . . , n − 1) do
3 (U,W ) = argmin{d(A,B) : A,B ∈ C}
4 d∗ = d(U,W ).
5 Redefine C = (C \ {U,W}) ∪ {U ∪W}.
6 Add a vertex corresponding to U ∪W to H, connect it to U and W , and assign the

weight ωU∪W = d∗.
7 end

Each pair of points xi and xj in the data set is connected by a path pij in the hierarchical tree
constructed by Algorithm 1. Let Vij be the set of vertices on the path pij . We use it to define a
Gaussian kernel correction parameter γij = (|pij | − 2)/(

∑
x∈Vij

ωx + ||xi − xj ||). The hierarchical
similarity measure between a pair of points is defined as:
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sh(xi, xj) = exp

(
−||xi − xj ||2

2
γ2
ij

)
, if i ̸= j. (2)

This similarity measure may be viewed as replacing 1/σ2 by γ2
ij in (1). Spectral Clustering with

Hierarchical Similarity (SC-HA) refers to the framework of Section 2 with this similarity measure.
This new similarity measure has the following main features:

(1) No scaling parameter needs to be set manually, since γij is computed directly from the data
set. This makes it more user-friendly.

(2) The spectral clustering algorithm based on this similarity is faster than algorithms that run
for several values of the scaling parameter, as the eigenvectors need only be computed once.

(3) The hierarchical similarity is clearly invariant under translations and expansions of the data
set. Moreover, given data sets X = {x1, . . . , xn} and X ′ = {x′

1, . . . , x
′
n}, where x′

i = c1xi+c2,
for some fixed c1 ̸= 0, it is easy to see that sh(xi, xj) = sh(x

′
i, x

′
j) for every i, j.

We note that computing the hierarchical tree based on the data set and computing the param-
eters γij is relatively inexpensive for the spectral clustering method. Indeed, it is computationally
cheaper than computing the eigenvectors associated with the smallest eigenvalues of the normalized
Laplacian matrix (see step (B) of the framework described in Section 2).

5 Experiments on synthetic data sets
We have applied the algorithms described in Sections 3 and 4 to five synthetic data sets that

are often used to evaluate the performance of spectral methods. The algorithms were written and
run using Python in a personal computer.

When choosing the value of the parameter σ in a spectral clustering algorithm, several authors
have suggested to look for σ in a range between 10% and 20% of the total range of the Euclidean
distances, see [9]. More precisely, given a data set X = {x1, . . . , xn}, we define the vector d =
(d1, . . . , dN ) containing the distances between each pair of points in X , in ascending order. The
values of σ used in our applications of algorithms SC-GK and SC-DA are σ = du for u = 1, . . . , ⌈N

5 ⌉.
Regarding to other parameters, when running the algorithm SC-ST, the parameter ℓ is tested for
all integers between 2 and 20. For SC-DA, the parameter ϵ is set as ϵ = max

i
min
j

||xi − xj ||.
The results for SC-GK, SC-ST, SC-DA and SC-HA are depicted in Figures 2 to 5, respectively,

where each figure contains the results of one the methods for all five data sets. For simplicity, we
refer to F

(k)
j to mean the data set at column j in Figure k. From left to right, the data sets are a

circle with two clouds, two circles with noise, two moons, three circles and two clouds with different
scales. As usual, the individual objects that form each of the data sets are generated separately
and the algorithms are given the task to identify each individual object. They receive the number
of objects as an input.

The data sets F
(k)
3 and F

(k)
4 are data sets where SC-GK is known to work perfectly. The

data set F
(k)
5 contains data in two different scales, which tends to be very challenging for spectral

algorithms. The data set F (k)
1 becomes harder as the data points in the clouds are chosen closer to

the points on the circle. The data set F
(k)
2 contains noise, which is challenging for any clustering

algorithm.
The algorithm SC-GK found the expected clustering in 3 out of 5 situations (see Figure 2).

For the data sets F
(2)
1 and F

(2)
5 , no σ in our domain has led to the correct result. Regarding the

former, choosing a single value for σ makes it hard to distinguish between clusters that are close
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to each other. Regarding the latter, it is well known that data sets whose clusters have multiple
sizes and local densities are difficult for SC-GK [9].

5 0 5 10 15 3 2 1 0 1 2 3 1.0 0.5 0.0 0.5 1.0 1.5 2.0 1.0 0.5 0.0 0.5 1.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0

Figure 2: Results for each data set using SC-GK [5]. From left to right, the best results were achieved for
σ = 0.9, σ = 0.1, σ = 0.05, σ = 0.075 and σ = 0.5, respectively. Source: The authors (2022).

The algorithm SC-DA obtained the correct clustering in four of the data sets, as depicted in
Figure 3. We would like to point out that, except for F (3)

5 , the range of good values of σ increased,
as expected.

5 0 5 10 15 3 2 1 0 1 2 3 1.0 0.5 0.0 0.5 1.0 1.5 2.0 1.0 0.5 0.0 0.5 1.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0

Figure 3: Results for each data set using SC-DA [9]. From left to right, we used σ = 0.45, σ = 0.1,
σ = 0.1, σ = 0.075 and σ = 1.5, respectively. Source: The authors (2022).

The algorithm SC-ST found the correct clustering in three of the data sets, as presented in
Figure 4. It seems to be more sensitive to noise, as it failed for F

(4)
2 and F

(4)
3 .

5 0 5 10 15 3 2 1 0 1 2 3 1.0 0.5 0.0 0.5 1.0 1.5 2.0 1.0 0.5 0.0 0.5 1.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0

Figure 4: Results in each data set using SC-ST [8]. On the top, from left to right, we used ℓ = 7, ℓ = 7,
ℓ = 7, ℓ = 7 and ℓ = 3, respectively. Source: The authors (2022).

The algorithm proposed in this paper, SC-HA, had a good performance for all five data sets,
as depicted in Figure 5. It successfully dealt with noise (F (5)

2 ), multiple scales (F (5)
5 ) and more

complex shapes (F (5)
1 ). In F

(5)
1 exactly two points in the data set (out of 300) have been added to

the wrong cluster and in F
(5)
3 a single point (out of 500) has been classified incorrectly.
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Figure 5: Results in each data set using SC-HA. Source: The authors (2022).

6 Conclusion
Spectral clustering algorithms are widely used for their practical performance [2]. In this paper,

we propose a similarity measure for spectral clustering that incorporates a hierarchical component
to the Gaussian kernel similarity measure. The spectral algorithms in the literature typically use
a scaling parameter that has to be set by the user. Finding a good value of this parameter is often
challenging, and may be a daunting task for users that do not have a lot of experience with the
inner workings of clustering algorithms. Our method does not require such a scaling parameter. In
comparison with other traditional spectral algorithms, our approach performed well on synthetic
data sets, being able to find the correct clustering for data sets with complex shape and multiple
scales. Even though we have not addressed this in this paper, it turns out that this approach has
shown competitive results on real data sets extracted from machine learning repositories. Thus,
we consider this a promising approach that warrants further investigation.
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