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ABSTRACT
The Coronavirus pandemic caused by the novel SARS-CoV-2 has significantly
impacted human health and the economy, especially in countries struggling with
financial resources for medical testing and treatment, such as Brazil’s case, the third
most affected country by the pandemic. In this scenario, machine learning techniques
have been heavily employed to analyze different types of medical data, and aid
decision making, offering a low-cost alternative. Due to the urgency to fight the
pandemic, a massive amount of works are applying machine learning approaches to
clinical data, including complete blood count (CBC) tests, which are among the most
widely available medical tests. In this work, we review the most employed machine
learning classifiers for CBC data, together with popular sampling methods to deal
with the class imbalance. Additionally, we describe and critically analyze three
publicly available Brazilian COVID-19 CBC datasets and evaluate the performance of
eight classifiers and five sampling techniques on the selected datasets. Our work
provides a panorama of which classifier and sampling methods provide the best
results for different relevant metrics and discuss their impact on future analyses. The
metrics and algorithms are introduced in a way to aid newcomers to the field. Finally,
the panorama discussed here can significantly benefit the comparison of the results of
new ML algorithms.

Subjects Bioinformatics, Data Mining and Machine Learning, Data Science
Keywords Machine learning, Data mining, Imbalanced datasets, Covid, Hemogram

INTRODUCTION
The Coronavirus disease (COVID-19) caused by the novel SARS-CoV-2 has spread from
China and quickly transmitted to other countries. Since the beginning of 2020, the
COVID-19 pandemic has significantly impacted human health and severely affected the
global economy and financial markets (Nicola et al., 2020; Pak et al., 2020), especially
in countries that cannot test their population and develop strategies to manage the crisis.
In a scenario of large numbers of asymptomatic patients and shortages of tests, targeted
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testing is essential within the population (Peeling et al., 2020). The objective is to identify
people whose immunity can be demonstrated and allow their safe return to their routine.

The diagnosis of COVID-19 is based on the clinical and epidemiological history of
the patient (Ge et al., 2020) and the findings of complementary tests, such as chest
tomography (CT-scan) (Bernheim et al., 2020; Ding et al., 2020) or nucleic acid testing
(Kumar et al., 2020; Caruana et al., 2020). Nevertheless, the symptoms expressed by
COVID-19 patients are nonspecific and cannot be used for an accurate diagnosis. CT-scan
findings are seen with numerous pathogens and do not necessarily add diagnostic value
(Gietema et al., 2020; Hope et al., 2020). Currently, Real-Time Polymerase Chain Reaction
(RT-PCR) tests of viral RNA in fluid, typically obtained from the nasopharynx or
oropharynx, are the gold-standard test for COVID-19 detection (Hadaya, Schumm &
Livingston, 2020; Carter et al., 2020), together with proper clinical observations. TheWorld
Health Organization released several RT-PCR protocols to provide a proper diagnosis,
help testing populations, and monitor the disease spread. However, using RT-PCR to
diagnose COVID-19 has some limitations: reported sensitivities vary (Xu et al., 2020;
Vogels et al., 2020); long turn-around times; and tests are not universally available
(shortage of PCR primers, reagents or equipment) (Giri & Rana, 2020; Dhabaan, Al-
Soneidar & Al-Hebshi, 2020).

The high demand for RT-PCR tests is highlighting the limitations of this type of
diagnosis. Testing the entire population for COVID-19 is not feasible due to the cost,
unavailability of PCR primers, lack of human and material resources, or even the delay
from sample collection to test results. Instead, we need more targeted testing to manage the
pandemic (Pulia et al., 2020; Eberhardt, Breuckmann & Eberhardt, 2020), and various
efforts are being made worldwide to build strategies for such approach (Fang, 2020;
Sheridan, 2020; Treibel et al., 2020; Zame et al., 2020). The optimal approach would be to
collect and combine different data sources and use them to identify and prioritize the
patients to be tested by RT-PCR. In this sense, complete blood count (CBC) is the world’s
most widely available hematological laboratory test, where and (Ferrari et al., 2020) suggest
routine blood tests as a potential diagnostic tool for COVID-19.

Moreover, hematological changes in patients affected by COVID-19 were reported
in many works (Terpos et al., 2020; Lippi & Plebani, 2020; Han et al., 2020; Henry et al.,
2020). Laboratory findings include leukopenia (Fan et al., 2020; Guan et al., 2020),
lymphopenia (Guan et al., 2020; Bhatraju et al., 2020; Huang, Kovalic & Graber, 2020),
and thrombocytopenia (Chen et al., 2020; Lippi, Plebani & Henry, 2020). Some authors
have also suggested changes in the neutrophil/lymphocyte ratio in the severe disease
progression of COVID-19 patients (Qu et al., 2020). However, defining the specific
hematological alteration profile of COVID-19 differentiating it from other inflammatory
or infectious processes is not simple.

Recently, artificial intelligence techniques, especially Machine Learning (ML), have
been employed to analyze CBC data and assist in screening of patients with suspected
COVID-19 infection (Yan et al., 2020; Yao et al., 2020; Gong et al., 2020; Alimadadi et al.,
2020; Avila et al., 2020; Brinati et al., 2020a; Imran et al., 2020; Wu et al., 2020). ML is a
huge field of study in Computer Science and Statistics that executes computational
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tasks through algorithms that rely on learning patterns from data samples to automate
inferences. Class imbalance is common in many real-world applications and affects the
quality and reliability of ML approaches (Leevy et al., 2018; Johnson & Khoshgoftaar, 2019;
López et al., 2013). Most importantly, class imbalance is the reality of almost all biological
datasets, as we demonstrated in previous works after the manual curation of more than
30.000 cancer datasets (Feltes et al., 2019; Feltes, Poloni & Dorn, 2021; Feltes et al., 2020).
Imbalanced data refers to classification problems where we have an unequal number of
instances for different classes. A well-known class imbalance scenario is the medical
diagnosis task of detecting disease, where the majority of the patients are healthy, and
the prediction of rare conditions is crucial (Katsanis et al., 2018). Additionally, it is
common for biological datasets to be imbalanced since there are numerous limitations in
generating, managing, and acquiring new samples, especially clinical data that heavily
depends on patients willing to release their data or participating in clinical trials. Learning
from these imbalanced data sets can be difficult, and non-standard ML methods are
often required to achieve desirable results, especially in situations of low-prevalence
diseases or clinical conditions.

In ML, a major issue is the release of multiple approaches, all valid in their way, but that
needs to be discussed to provide a proper panorama of their applications on different
types of data. Additionally, due to its low-cost nature, applying ML approaches to aid
medical decision making is invaluable for countries struggling with financial resources to
make strategic medical decisions.

This paper aims to: (i) review predictive ML techniques to predict the positivity or
negativity for COVID-19 from CBC data; (ii) evaluate the impact of eight different
classifiers and five distinct sampling methods already used for CBC data on three Brazilian
CBC datasets; and (iii) evaluate which is the best overall classifier, as well as for each
particular case.

In this sense, the eight classifiers were Support Vector Machines (SVM), Decision Trees
(DT), K-Nearest Neighbors (KNN), Random Forest (RF), Multi-Layer Perceptron (MLP),
Logistic Regression (LR), Naïve Bayes (NB), and eXtreme Gradient Boosting (XGBoost).
Moreover, the five tested sampling methods for the imbalanced class problem were
Random Under Sampling (RUS), Random Over Sampling (ROS), Adaptive Synthetic
Sampling (ADASYN), Synthetic Minority Over Sampling TEchnique (SMOTE), and
Synthetic Minority Over Sampling TEchnique Tomek links (SMOTETomek). Considering
the importance of the application, the number of different algorithms available, and the
rapid increase in publications reporting different ML approaches to handle COVID-19
CBC data, a survey summarising the main advantages, drawbacks, and challenges of the
field can significantly aid future works. A workflow summarizing the steps taken in this
work can be found in Fig. 1.

The survey will first explain the employed methodology, the tested datasets’
characteristics, and the chosen evaluation metrics. Afterward, a brief review of the major
ML predictors used on CBC COVID-19 datasets is conducted, followed by a review of
techniques to handle imbalanced data. This exposition is succeeded by describing the main
findings, listing the lessons learned from the survey, and conclusions.
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PRELIMINARIES
Datasets
At the time of this work, Brazil was the third country most affected by the COVID-19
pandemic, reaching more than 18 million confirmed cases. Thus, discussing data gathered
from Brazil can become invaluable to understand SARS-CoV-2 data. Complete datasets
used in the present study were obtained from an open repository of COVID-19-related
cases in Brazil. The database is part of the COVID-19 Data Sharing/BR initiative (Mello
et al., 2020), and it is comprised of information about approximately 177,000 clinical cases.
Patient data were collected from three distinct private health services providers in the
São Paulo State, namely the Fleury Group (https://www.fleury.com.br), the Albert Einstein
Hospital (https://www.einstein.br) and the Sírio-Libanês Hospital (https://www.
hospitalsiriolibanes.org.br), and a database for patients from each institution was built.
The data from COVID-19 patients was collected from February 26th, 2020 to June 30th,
2020, and the control data (individuals without COVID-19) was collected from November
1st, 2019 to June 30th, 2020.

Patient data is provided in an anonymized form. Three distinct types of patients
information are provided in this repository: (i) patients demographic data (including sex,
year of birth, and residence zip code); (ii) clinical and/or laboratory exams results
(including different combinations of the following data: hemogram and blood cell count
results, blood tests for a biochemical profile, pulmonary function tests, and blood gas
analysis, diverse urinalysis parameters, detection of a panel of different infectious diseases,
pulmonary imaging results (X-ray or CT scans), among others. COVID-19 detection by
RT-PCR tests is described for all patients, and serology diagnosis (in the form of specific
IgG and IgM antibody detection) is provided for some samples; and (iii) when available,
information on each patient clinical progression and transfers, hospitalization history, as

Figure 1 Methodological steps used in this work. Full-size DOI: 10.7717/peerj-cs.670/fig-1
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well as the disease outcome (primary endpoints, as death or recuperation). Available
information is not complete for all patients, with a distinct combination of results provided
individually.

Overall baseline characteristics can be found on the complete database, available at
the FAPESP COVID-19 Data Sharing/BR (https://repositoriodatasharingfapesp.uspdigital.
usp.br/). The most common clinical test results available for all patients is the hemogram
data. As such, it was selected for the testing of the current sample set. Twenty distinct
hemogram test parameters were obtained from the database, including hematocrit (%),
hemoglobin (g/dl), platelets (×103 μl), mean platelet volume (fl), red blood cells (×106 μl),
lymphocytes (×103 μl), leukocytes (×103 μl), basophils (×103 μl), eosinophils (×103 μl),
monocytes (×103 μl), neutrophils (×103 μl), mean corpuscular volume (MCV) (fl), mean
corpuscular hemoglobin (MCH) (pg), mean corpuscular hemoglobin concentration
(MCHC) (g/dl), red blood cell distribution width (RDW) (%), % Basophils, % Eosinophils,
% Lymphocytes % Monocytes, and % Neutrophils (Figs. 1 and 2).

Patients with incomplete (missing data) or no data available for the above parameters
were not included in the present analysis. For patients with more than a single test
result available, a unique hemogram test was used, with the selection based on the blood
test date. In this sense, same-day results to the PCR-test collection date was adopted as a
reference, or the day closest to the test.

More information regarding the three distinct datasets’ distributions can be found in
Figs. 2 and 3. The most relevant information assessed in the present study is database size,
the number of available clinical test results, gender distribution (male or female), and
COVID-19 RT-PCR test result (classified as positive or negative) ratio. The parameters
for each data subset are described for the original dataset and for the subset of selected
samples used in this study (after removal of patients containing missing values), as seen
in Table 1.

The column “class ratio” in Table 1 shows the level of class imbalance for each dataset.
It was computed by dividing the number of positive samples by the number of negative
samples. The number of negative samples from the Albert Einstein Hospital and the Fleury
Group exceeds the positive samples. This is expected from disease data since the
number of infections will be small compared to the entire population. However, in the
Sírio-Libanês Hospital data, there is over forty times the amount of positive samples
compared to negative samples. This represents another source of bias in the data
acquisition: the dataset consists of patients tested because they had already shown
COVID-19-like symptoms, skewing the data to positive samples. This is crucial because
the decision to test a patient for COVID-19 in institutions that struggle with funds is a
common judgment call. Datasets with an apparent biased disease prevalence, as is the case
with the Sírio-Libanês Hospital data (in reality the positive class for COVID-19 is not
expected to be 40 times more prevalent), should be discarded from biological analysis.
These datasets are being critically evaluated and used only as examples for this research.
The last columns of Table 1 also show that, in general, the variables do not belong to the
same distribution for the three centers, regardless of the classes.

Dorn et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.670 5/34

https://repositoriodatasharingfapesp.uspdigital.usp.br/
https://repositoriodatasharingfapesp.uspdigital.usp.br/
http://dx.doi.org/10.7717/peerj-cs.670
https://peerj.com/computer-science/


Figure 2 Distributions of white blood cells related variables for positive (purple) and negative (green) classes of the three datasets: Albert
Einstein Hospital (HAE), Fleury Group (FLE), and Sírio-Libanês Hospital (HSL). The central white dot is the median.

Full-size DOI: 10.7717/peerj-cs.670/fig-2
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Figure 3 Distributions of red blood cells related variables for positive (purple) and negative (green) classes of the three datasets: Albert
Einstein Hospital (HAE), Fleury Group (FLE), and Sírio-Libanês Hospital (HSL). The central white dot is the median.

Full-size DOI: 10.7717/peerj-cs.670/fig-3

Table 1 Data Summary of the initial full dataset and selected subsets of samples. Albert Einstein
Hospital (HAE); Fleury Group (FLE) and Sírio-Libanês Hospital (HSL). Class ratio is represented as the
ratio of the total of selected positive/negative samples.

Dataset Samples PCR Positive PCR Negative Class ratio

Original Selected Male Female Total Male Female Total

HAE 44,879 4,567 758 642 1,400 1,461 1,706 3,167 0.442

FLE 129,597 803 111 145 256 225 322 547 0.468

HSL 2,732 515 301 202 503 9 3 12 41.916

Total samples 177,208 5,885 1,170 989 2,159 1,695 2,031 3,726 0.579
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Data characterization
For data characterization, we use two metrics: the Bhattacharyya Distance (BD); and the
Kolmogorov–Smirnov statistics (KS). We will now present both metrics, followed by a
discussion of its results in the studied datasets. The goal is to determine the separability
between the negative and positive classes among the three datasets. BD calculates the
separability between two Gaussian distributions (Anzanello et al., 2015). However, it
depends on the covariance inverse matrix for multivariate cases, which can be nonviable
for datasets with high dimensionality, such as the ones employed in this paper. Therefore,
we will use its univariate form as in Eq. (1) (Coleman & Andrews, 1979).

Bjðb; sÞ ¼ 1
4
þ ln

1
4

s2
bj

s2
sj
þ s2

sj

s2
bj

þ 2

 ! !
þ 1
4

ðtbj � tsjÞ2
s2
bj þ s2

sj

 !
(1)

where σ2 and y are the variance and mean of the statistical distributions of the j − th
variable for groups b and s, respectively. The first part of Eq. (1) distinguishes classes by the
differences between variances, while the second part distinguishes classes by the
differences between its weighted means. For classification purposes, we would expect low
variance within classes and a high difference between means. Therefore, we will
complement the BD value by analyzing the probability density functions to verify which
part of Eq. (1) influences the highest BD values.

The other employed characterization metric is the D statistic from the two samples
Kolmogorov–Smirnov test (KS test). The KS test is a non-parametric approach that
quantifies the maximum difference between samples’ univariate empirical cumulative
distribution values (i.e., the maximum separability between two distributions) (Kahmann
et al., 2018) (Eq. 2).

Dw ¼ max
x

jF1ðxÞ � F2ðxÞjð Þ (2)

where D is the D statistic, such that w denotes which hemogram result is being analyzed, F1
and F2 are the cumulative empirical distributions of classes 1 and 2, and x are the obtained
hemogram result. Dw values belongs to the 0; 1½ � interval, where values closer to one
suggest higher separability between classes (Xiao, 2017). Table 2 shows the D statistics and
BD for all variables for the three datasets. Firstly, we will discuss the BD and D statistic
results for each dataset, followed by comparing such results among all datasets.

Regarding the dataset separability in the HSL dataset, the D statistic yields Basophils,
Basophils#, Monocytes, and Eosinophils as the variables with higher distance between the
Cumulative Probability Function from positive and negative diagnosed patients.
Complementing this analysis by the BD and the Probability Density Function (PDF)
represented in Fig. 2, the distribution of Basophils, Basophils#, and Eosinophils from the
negative patients has a higher mean. Besides the higher D statistics, the BD is lower than
other variables, indicating that the distributions are similar; however, one group (in this
case, the negative group) has systematically higher values. On the other hand, the other
variable with high D statistic (Monocytes) has a flattened distribution for the negative
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patients, increasing its variance and consequentially its BD once the positive cases variance
is small. The small sample size may jeopardize such distribution for negative patients.
Complementarily, it is notable that this variable does not have a linear separation between
classes.

As for the HAE dataset, the variables Basophils, Lymphocytes, Eosinophils and
Leukocytes yields the higher D statistic. All of them have the same characteristic: similar
distribution but with negative distribution with higher values. It is noteworthy that the
higher BD (Basophils and Eosinophils) can be attributed to outliers. From Figs. 2 and 3 it
can be noticed that such distributions present different means (as corroborated by the
D statistic) combined with spurious values with high distance from the modal distribution
point, resulting in a larger variance.

The variables yielding the higher D statistic on the FLEURY dataset are Basophils and
Eosinophils. Regarding the Basophils distributions, the curve from negative cases is flatterer
than the positive case curve. Even so, it is notable that the negative distribution has
higher values, and both variances are small, resulting in a high BD. For the comparison of

Table 2 Separability between the negative and positive classes among the three datasets: Albert Einstein Hospital (HAE), Fleury Group (FLE),
and Sírio-Libanês Hospital (HSL). The measurements use the D statistic from the two samples Kolmogorov–Smirnov test and the Bhattacharyya
Distance (BD). Results discussed in the main text are in bold. The last two columns show the Kruskal–Wallis H test (KW) together with its p-value,
to compare the variables distributions for the three centers, regardless of the outcome. In this case, results rejecting the Null Hypothesis that data
belongs to the same distribution are in bold.

Dataset HAE Fleury HSL

Metric D BD D BD D BD KW p-value

Basophils 0.443474 0.1093475 0.398323 0.1239094 0.55301 0.1287230 117.02 0.0

Basophils# 0.261855 0.0444302 0.266960 0.0726225 0.51341 0.0608966 110.27 0.0

Eosinophils 0.364556 0.1221014 0.375792 0.0251153 0.40357 0.0643121 81.37 0.0

Eosinophils# 0.277567 0.0796526 0.291354 0.0214845 0.25447 0.0534425 64.08 0.0

Hematocrit 0.046150 0.0013166 0.066184 0.0009195 0.21868 0.1026450 69.75 0.0

Hemoglobin 0.044774 0.0013781 0.046446 0.0008058 0.22465 0.0750943 29.04 0.0

Leukocytes 0.333118 0.0479674 0.264275 0.0523979 0.38386 0.0390140 197.68 0.0

Lymphocytes 0.369636 0.0627853 0.255698 0.0615829 0.37673 0.4035528 141.34 0.0

Lymphocytes# 0.120357 0.0053703 0.079417 0.0048503 0.21189 0.0285911 187.50 0.0

MCH 0.040136 0.0014844 0.129213 0.0033433 0.13320 0.0467845 7.46 0.024

MCHC 0.061690 0.0023295 0.087915 0.0007333 0.24138 0.0265250 511.26 0.0

MCV 0.025520 0.0011544 0.112824 0.0033957 0.12624 0.0055598 118.32 0.0

MPV 0.085494 0.0044252 0.103647 0.0019528 0.39413 0.0611329 77.42 0.0

Monocytes 0.137388 0.0097614 0.084245 0.0007295 0.50712 0.2983040 68.42 0.0

Monocytes# 0.212097 0.0395842 0.253870 0.0659478 0.28661 0.0475931 26.77 0.0

Neutrophils 0.208235 0.0170758 0.207523 0.0287769 0.21471 0.0171623 208.71 0.0

Neutrophils# 0.102965 0.0041523 0.115902 0.0060480 0.24121 0.0357412 175.81 0.0

Platelets 0.198826 0.0170292 0.254356 0.0257660 0.13800 0.0069387 39.01 0.0

RDW 0.054032 0.0009597 0.050259 0.0017099 0.23707 0.0539648 4.28 0.1171

RedbloodCells 0.037971 0.0010371 0.075089 0.0030830 0.16186 0.0401366 30.13 0.0
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the Eosinophils in positive and negative cases, the existence of spurious values increases the
variance for both distributions. However, the D statistic indicates that this variable
provides good separability between classes.

Moreover, besides having variables with more potential separability (D statistics),
the imbalance between classes is much more significant on the HSL dataset, which may
bias such analysis. Both HAE and Fleury datasets have similar characteristics regarding
classes’ sample size proportions. However, the HAE has more variables with high D
statistics, and its values are higher as well.

On a final note, CBC data is highly prone to fluctuations. Some variables, such as age
and sex, are among the most discussed sources of immunological difference, but others
are sometimes unaccounted. For example, a systematic review in 2015 by Paynter et al.
(2015) demonstrated that the immune system is significantly modulated by distinct
seasonal changes in different countries, which, by its turn, impact respiratory and
infectious diseases. Similarly, circadian rhythm can also impact the circulation levels of
different leukocytes (Pritchett & Reddy, 2015). Distinct countries have specific seasonal
fluctuations and, sometimes, extreme circadian regulations - thus, immune responses’
inherent sensibility should always be considered a potential bias. This also impacts the
comparison between different computational approaches that use datasets from other
researchers for testing or training. While this work focuses on the application of ML and
sampling algorithms to this data, a more in-depth biological analysis regarding the
interaction between sex, age, and systemic inflammation from these Brazilian datasets can
be found in the work of Ten-Caten et al. (2021).

Evaluation metrics
The metrics to evaluate how well a classifier performs in discriminating between the
target condition (positive for COVID-19) and health can be derived from a “confusion
matrix” (Table 3) that contrasts the “true” labels obtained from the “gold standard” to the
predicted labels. From it, we have four possible outcomes: either the classifier correctly
assigns a sample as positive (with the target condition) or as negative (without the target
condition), and in this case, we have true positives, and true negatives or the prediction is
wrong, leading to false positives or false negatives.

Some metrics can assess the discriminative property of the test, while others can
determine its predictive ability (Šimundić, 2009), and not all are well suited for diagnostic
tasks because of imbalanced data (Tharwat, 2020). For instance, accuracy, sometimes
also referred to as diagnostic effectiveness, is one of the most used classification
performance (Tharwat, 2020). Still, it is greatly affected by the disease prevalence, and
increases as the disease prevalence decrease (Šimundić, 2009). Overall, prediction metrics
alone won’t reflect the biological meaning of the results. Consequentially, especially in
diagnostic tasks, ML approaches should always be accompanied by expert decisions on the
final results.

This review focuses on seven distinct metrics commonly used in classification and
diagnostic tasks that are well suited for imbalanced data (Šimundić, 2009; Tharwat,
2020). This also allows for a more straightforward comparison of results in the literature.
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Each of these metrics evaluates a different aspect of the predictions and is listed in
Table 4 together with a formula on how they can be computed from the results of the
confusion matrix.

Sensitivity (also known as “recall”) is the proportion of correctly positive classified
samples among all positive samples. It can be understood as the probability of getting a
positive prediction in subjects with the disease or a model’s ability to recognize samples
from patients (or subjects) with the disease. Analogously, specificity is the proportion
of correctly classified negative samples among all negative samples, describing how well the
model identifies subjects without the disease. Sensitivity and specificity are not dependants
on the disease prevalence in examined groups (Šimundić, 2009).

The likelihood ratio (LR) is a combination of sensitivity and specificity used in
diagnostic tests. The ratio of the expected test results in samples from patients (or subjects)
with the disease to the samples without the disease. LR+ measures how much more likely
it is to get a positive test result in samples with the disease than samples without the
disease, and thus, it is a good indicator for ruling-in diagnosis. Good diagnostic tests
usually have an LR+ larger than 10 (Šimundić, 2009). Similarly, LR- measures how much
less likely it is to get a negative test result in samples with the disease when compared to
samples without the disease, being used as an indicator for ruling-out the diagnosis.
A good diagnostic test should have an LR- smaller than 0.1 (Šimundić, 2009).

Another global metric for the comparison of diagnostic tests is the diagnostic odds ratio
(DOR). It represents the ratio between LR+ and LR-(97), or the ratio of the probability of a
positive test result if the sample has the disease to the likelihood of a positive result if
the sample does not have the disease. DOR can range from zero to infinity, and a test is

Table 3 Confusion matrix of binary classification.

“Gold standard”

Subjects with the disease Subjects without the disease

Classifier Predicted as positive TP FP (Type I Error)

Predicted as negative FN (Type II Error) TN

Note:
TP, True positives; TN, True negatives; FP, False positives; FN, False negatives.

Table 4 Metrics used to compare the algorithms.

Metric Formula Range Target value

Sensitivity TP/(TP + FN) [0, 1] ∼1
Specificity TN/(FP + TN) [0, 1] ∼1
LR+ Sensitivity/(1-specificity) [0, +∞) >10

LR− (1-sensitivity)/specificity [0, +∞) <0.1

DOR (TP/FN)/(FP/TN) [0, +∞) >1

F1-score TP/(TP + 1/2 (FP + FN)) [0, 1] ∼1
AUROC Area under the ROC curve [0, 1] ∼1

Note:
TP, True positives; TN, True negatives; FP, False positives; FN, False negatives.
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only useful with values larger than 1.0 (Glas et al., 2003). The last metrics used in this work
are commonly used to evaluate machine learning classification results. The F1-score,
also known as F-measure, ranges from zero to one and is the harmonic mean of the
precision and recall (Tharwat, 2020). The area under the receiver operating characteristic
(AUROC) describes the model’s ability to discriminate between positive and negative
examples measuring the trade-off between the true positive rate and the false positive rate
across different thresholds.

Machine learning approaches
Among several ML applications in real-world situations, classification tasks stand up as
one of the most relevant applications, ranging from classification of types of plants and
animals to the identification of different diseases prognoses, such as cancer (Feltes et al.,
2019; Feltes, Poloni & Dorn, 2021; Feltes et al., 2020; Grisci, Feltes & Dorn, 2019), H1N1 Flu
(Chaurasia & Dixit, 2021), Dengue (Zhao et al., 2020), and COVID-19 (Table 5). The use
of these algorithms in the context of hemogram data from COVID-19 patients is
summarized in Table 5.

The number of features and characteristics of different datasets might be a barrier for
distinctive classification learning techniques. Furthermore, it is of extreme importance a
better understanding and characterization of the strengths and drawbacks of each
classification technique used (Kotsiantis, Zaharakis & Pintelas, 2006). The following

Table 5 Studies that use ML algorithms on COVID-19 hemogram data (in alphabetical order by the surname of the first author).

Source Data Algorithms

AlJame et al. (2020) CBC, Albert Einstein Hospital, Brazil XGBoost

Alves et al. (2021) CBC, Albert Einstein Hospital, Brazil Random Forest, Decision Tree, Criteria Graphs

Assaf et al. (2020) Clinical and CBC profile, Sheba Medical Center, Israel MLP, Random Forest, Decision Tree

Avila et al. (2020) CBC, Albert Einstein Hospital, Brazil Nave-Bayes

Banerjee et al. (2020) CBC, Albert Einstein Hospital, Brazil MLP, Random Forest, Logistic Regression

Bao et al. (2020) CBC, Wuhan Union Hosp; Kunshan People’s Hosp,
China

Random Forest, SVM

Bhandari et al. (2020) Clinical and CBC profile of (non) survivors, India Logistic Regression

Brinati et al. (2020b) CBC, San Raffaele Hospital, Italy Random Forest, Nave-Bayes, Logistic Regression, SVM,
kNN

Cabitza et al. (2020) CBC, San Raffaele Hospital, Italy Random Forest, Nave-Bayes, Logistic Regression, SVM,
kNN

Delafiori et al. (2021) Mass spectrometry, COVID-19, plasma samples, Brazil Tree Boosting, Random Forest

de Freitas Barbosa et al.
(2020)

CBC, Albert Einstein Hospital, Brazil MLP, SVM, Random Forest, Nave-Bayes

Joshi et al. (2020) CBC of patients from USA and South Korea Logistic Regression

Silveira (2020) CBC, Albert Einstein Hospital, Brazil XGBoost

Shaban et al. (2020) CBC, San Raffaele Hospital, Italy Fuzzy inference engine, Deep Neural Network

Soares et al. (2020) CBC, Albert Einstein Hospital, Brazil SVM, SMOTEBoost, kNN

Yan et al. (2020) Laboratory test results and mortality outcome, Wuhan XGBoost

Zhou, Chen & Lei (2020) CBC, Tongji Hospital, China Logistic Regression
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classifiers’ choice was based on their use as listed in Table 5, as they are the most likely to be
used in experiments with COVID-19 data.

Naïve Bayes
One of the first ML classification techniques is based on the Bayes theorem (Eq. (3)). The
Naïve Bayes classification technique is a probabilistic classifier that calculates a set of
probabilities by counting the frequency and combinations of values in the dataset. The
Naïve Bayes classifier has the assumption that all attributes are conditionally independent,
given the target value (Huang & Li, 2011).

PðAjBÞ ¼ PðAÞPðBjAÞ
PðBÞ (3)

where P(A) is the probability of the occurrence of event A, P(B) is the probability of
occurrence of event B, and P(A|B) is the probability of occurrence of event A when B also
occurs. Likewise, P(B|A) is the probability of event B when A also occurs.

In imbalanced datasets, the Naïve Bayes classification algorithm biases the major
class results in the dataset, as it happens with most of the classification algorithms. To
handle the imbalanced data set in biomedical applications, the work of Min et al. (2009)
evaluated different sampling techniques with the NB classification. The used sampling
techniques did not show a significant difference in comparison with the imbalanced
data set.

Support vector machines
Support Vector Machine (SVM) (Cortes & Vapnik, 1995) is a classical supervised learning
method for classification that works by finding the hyperplane (being just a line in 2D
or a plane in 3D) capable of splitting data points into different classes. The “learning”
consists of finding a separating hyperplane that maximizes the distance between itself and
the closest data points from each class, called the support vectors. In the cases where the
data is not linearly separable, kernels are used to transform the data by mapping it to
higher dimensions where a separating hyperplane can be found (Harrington, 2012). SVM
usually performs well on new datasets without the need for modifications. It is also not
computationally expensive, has low generalization errors, and is interpretative in the case
of the data’s low dimensionality. However, it is sensitive to kernel choice and parameter
tuning and can only perform binary classification without algorithmic extensions
(Harrington, 2012).

Although SVM achieves impressive results in balanced datasets, when an imbalanced
dataset is used, the rating performance degrades as with other methods. In Batuwita &
Palade (2013), it was identified that when SVM is used with imbalanced datasets, the
hyperplane is tilted to the majority class. This bias can cause the formation of more
false-negative predictions, a significant problem for medical data. To minimize this
problem and reduce the total number of misclassifications in SVM learning, the separating
hyperplane can be shifted (or tilted) to the minority class (Batuwita & Palade, 2013).
However, in our previous study, we noticed that for curated microarray gene expression
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analyzes, even in imbalanced datasets, SVM generally outperformed the other classifiers
(Feltes et al., 2019). Similar results were highlighted in other reviews (Ang et al., 2016).

K-nearest neighbors

The nearest neighbor algorithm is based on the principle that instances from a dataset are
close to each other regarding similar properties (Kotsiantis, Zaharakis & Pintelas, 2006). In
this way, when unclassified data appears, it will receive the label accordingly to its nearest
neighbors. The extension of the algorithm, known as k-Nearest Neighbors (kNN),
considers a parameter k, defining the number of neighbors to be considered. The class’s
determination is straightforward, where the unclassified data receives the most frequent
label of its neighbors. To determine the k nearest neighbors, the algorithm considers a
distance metric. In our case, the Euclidean Distance (Eq. (4)) is used:

Dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

jxi � yij2
s

(4)

where x and y are two instances with n comparable characteristics. Although the kNN
algorithm is a versatile technique for classification tasks, it has some drawbacks, such as
determining a secure way of choosing the k parameter, being sensitive to the similarity
(distance) function used (Kotsiantis, Zaharakis & Pintelas, 2006), and a large amount
of storage for large datasets (Harrington, 2012). As the kNN considers the most frequent
class of its nearest neighbors, it is intuitive to conclude that for imbalanced datasets, the
method will bias the results towards the majority class in the training dataset (Kadir et al.,
2020).

For biological datasets, kNN is particularly useful for data from non-characterized
organisms, where there is little-to-non previous information to identify molecules and
their respective bioprocesses correctly. Thus, this “guilty by association” approach
becomes necessary. This logic can be extrapolated to all types of biological datasets that
possess such characteristics.

Decision trees
Decision trees are one of the most used techniques for classification tasks (Harrington,
2012), although they can also be used for regression. Decision trees classifies data
accordingly to their features, where each node represents a feature, and each branch
represents the value that the node can assume (Kotsiantis, Zaharakis & Pintelas, 2006).
A binary tree needs to be built based on the feature that better divides the data as a root
node to classify data. New subsets are created in an incremental process until all data
can be categorized (Harrington, 2012). The first limitation of this technique is the
complexity of constructing a binary tree (considered an NP-Complete problem). Different
heuristics were already proposed to handle this, such as the CART algorithm (Breiman
et al., 1984). Another important fact is that decision trees are more susceptible to
overfitting (Harrington, 2012), requiring the usage of a pruning strategy.

Since defining features for splitting the decision tree is directly related to the training
model performance, knowing how to treat the challenges imposed by imbalanced
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datasets is essential to improve the model performance, avoiding bias towards the
majority class. The effect of imbalanced datasets in decision trees could be observed in
Cieslak & Chawla (2008). The results attested that decision tree learning models could
reach better performance when a sampling method for imbalanced data is applied.

Random forest

Random Forests are an ensemble learning approach that uses multiple non-pruned decision
trees for classification and regression tasks. To generate a random forest classifier, each
decision tree is created from a subset of the data’s features. After many trees are generated,
each tree votes for the class of the new instance (Breiman, 2001). As random forest creates
each tree based on a bootstrap sample of the data, the minority class might not be
represented in these samples, resulting in trees with poor performance and biased towards
the majority class (Chen, Liaw & Breiamn, 2004). Methods to handle the high-imbalanced
data were compared by Chen, Liaw & Breiamn (2004), including incorporating class level
weights, making the learning models cost-sensitive, and reducing the amount of the majority
class data for a more balanced data set. In all cases, the overall performance increased.

XGBoost
The XGBoost framework was created by Chen & Guestrin (2016), and is used on decision
tree ensemble methods, following the concept of learning from previous errors. More
specifically, the XGBoost uses the gradient of the loss function in the existing model for
pseudo-residual calculation between the predicted and real label. Moreover, it extends the
gradient boosting algorithm into a parallel approach, achieving faster training models than
other learning techniques to maintain accuracy.

The gradient boosting performance in imbalanced data sets can be found in Brown &
Mues (2012), where it outperforms other classifiers such as SVM, decision trees, and kNN
in credit scoring analysis. The eXtreme Gradient Boost was also applied to credit risk
assignment with imbalanced datasets in Chang, Chang & Wu (2018), achieving better
results than its competitors.

Logistic regression
Logistic regression is a supervised classification algorithm that builds a regression model to
predict the class of a given data based on a Sigmoid function (Eq. (5)). As occurs in linear
models, in logistic regression, learning models compute a weighted sum of the input
features with a bias (Géron, 2017). Once the logistic model estimated the probability of p of
a given data label, the label with p ≥ 50% will be assigned to the binary classification data.

gðzÞ ¼ 1
1þ e�z

(5)

Multilayer perceptron
A multilayer perceptron is a fully connected neural network with at least three layers of
neurons: one input layer, one hidden layer, and an output layer. The basic unit of a neural
network is a neuron that is represented as nodes in the neural network, and have an
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activation function, generally, a Sigmoid function (Eq. (5)), which is activated accordingly
to the sum of the arriving weighted signals from previous layers.

For classification tasks, each output neuron represents a class, and the value reported by
the i-th output neuron is the amount of evidence in supported i-th class (Kubat, 2017), i.e.,
if an MLP has two output neurons—meaning that there are two classes—the output
evidence could be (0.2, 0.8), resulting to the classification of the class supported by the
highest value, in this case, 0.8. Based on the learning model prediction’s mean square error,
each connection assigned weights are adjusted based on the backpropagation learning
algorithm (Kubat, 2017). Although the MLPs have shown impressive results in many real-
world applications, some drawbacks must be highlighted. The first one is the
determination of the number of hidden layers. An underestimation of the neurons number
can cause a poor classification capability, while the excess of them can lead to an overfitting
scenario, compromising the model generalization. Another concern is related to the
computational cost of the backpropagation, where the process of minimizing the MSE
takes long runs of simulations and training. Furthermore, one of the major characteristics
is that MLPs are black-box methods, making it hard to understand the reason for their
output (Kotsiantis, Zaharakis & Pintelas, 2006).

Regarding the capabilities of MLPs in biased data, an empirical study is provided by
Khoshgoftaar, Van Hulse & Napolitano (2010), showing that MLP can achieve satisfactory
results in noisy and imbalanced datasets even without sampling techniques for balancing
the datasets. The analysis provided by the authors showed that the difference between
the MLP with and without sampling was minimal.

Techniques to handle imbalanced data
As introduced before, the COVID-19 CBC data is highly imbalanced. In a binary
classification problem, class imbalance occurs when one class, the minority group, contains
significantly fewer samples than the other class, the majority group. In such a situation,
most classifiers are biased towards the larger classes and have meager classification rates in
the smaller classes. It is also possible that the classifier considers everything as the
largest class and ignores the smaller class. This problem is faced not only in the binary class
data but also in the multi-class data (Tomašev & Mladenić, 2013).

A significant number of techniques have been proposed in the last decade to handle
the imbalanced data problem. In general, we can classify these different approaches as
sampling methods (pre-processing) and cost-sensitive learning (Haixiang et al., 2017).
In cost-sensitive learning models, the minority class misclassification has a higher
relevance (cost) than the majority class instance misclassification. Although this can be a
practical approach for imbalanced datasets, it can be challenging to set values for the
needed matrix cost (Haixiang et al., 2017).

The use of sampling techniques is more accessible than cost-sensitive learning,
requiring no specific information about the classification problem. For these approaches, a
new dataset is created to balance the classes, giving the classifiers a better opportunity to
distinguish the decision boundary between them (He & Ma, 2013). In this work, the
following sampling techniques are used, chosen due to their prominence in the literature:
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Random Over-Sampling (ROS), Random Under-Sampling (RUS), Synthetic Minority
Over-sampling TEchnique (SMOTE), Synthetic Minority Over-sampling Technique with
Tomek Link (SMOTETomek), and Adaptive Synthetic Sampling (A-DASYN). All of them
are briefly described in this section. A t-SNE visualization of each sampling technique’s
effect for the three datasets used can be seen in Fig. 4.

Random sampling
In classification tasks that use imbalanced datasets, sampling techniques became standard
approaches for reducing the difference between the majority and minority classes.
Among different methods, the most simpler ones are the RUS and ROS. In both cases,
the training dataset is adjusted to create a new dataset with a more equanimous class
distribution (He & Ma, 2013).

For the under-sampling approach, most class instances are discarded until a more
balanced data distribution is reached. This data dumping process is done randomly.
Considering a dataset with 100 minority class instances and 1,000 majority class instances,
a total of 900 majority class instances would be randomly removed in the RUS technique.
At the end of the process, the dataset will be balanced with 200 instances. The majority
class will be represented with 100 instances, while the minority will also have 100.

Figure 4 Visualization of the negative (purple) and positive (green) samples from the Albert Einstein Hospital (AE), Fleury Laboratory
(FLEURY) and Hospital Sirio Libanês (HSL) using t-SNE for all the different sampling schemes. Full-size DOI: 10.7717/peerj-cs.670/fig-4
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In contrast, the random over-sampling technique duplicates minority class data to
achieve better data distribution. Using the same example given before, with 100 instances
of the minority class and 1,000 majority class instances, each data instance from the
minority class would be replicated ten times until both classes have 1,000 instances.
This approach increases the number of instances in the dataset, leading us to 2,000
instances in the modified dataset.

However, some drawbacks must be explained. In RUS, the data dumping process
can discard a considerable number of data, making the learning process harder and
resulting in poor classification performance. On the other hand, for ROS, the instances are
duplicated, which might cause the learning model overfitting, inducing the model to a
lousy generalization capacity and, again, leading to lower classification performance (He &
Ma, 2013).

Synthetic minority over-sampling technique (SMOTE)
To overcome the problem of generalization resulting from the random over-sampling
technique (Chawla et al., 2002) created a method to generate synthetic data in the dataset.
This technique is known as SMOTE. To balance the minority class in the dataset, SMOTE
first selects a minority class data instance Ma randomly. Then, the k nearest neighbors
of Ma, regarding the minority class, are identified. A second data instance Mb is then
selected from the k nearest neighbors set. In this way,Ma andMb are connected, forming a
line segment in the feature space. The new synthetic data is then generated as a convex
combination between Ma and Mb. This procedure occurs until the dataset is balanced
between the minority and majority classes. Because of the effectiveness of SMOTE,
different extensions of this over-sampling technique were created.

As SMOTE uses the interpolation of two instances to create the synthetic data, if the
minority class is sparse, the newly generated data can result in a class mixture, which
makes the learning task harder (Branco, Torgo & Ribeiro, 2016). Because SMOTE became
an effective over-sampling technique and still has some drawbacks, different variations
of the method were proposed by different authors. A full review of these different types can
be found in Branco, Torgo & Ribeiro (2016) and He & Ma (2013).

Synthetic minority over-sampling technique with Tomek link
Although the SMOTE technique achieved better results than random sampling methods,
data sparseness can be a problem, particularly in datasets containing a significant outlier
occurrence. In many datasets, it is possible to identify that different data classes might
invade each class space. When considering a decision tree as a classifier with this mixed
dataset, the classifier might create several specialized branches to distinguish the data class
(Batista, Bazzan & Monard, 2003). This behavior might create an over-fitted model
with poor generalization.

In light of this fact, the SMOTE technique was extended considering Tomek links
(Tomek, 1976) by Batista, Bazzan & Monard (2003) for balancing data and creating more
well-separated class instances. In this approach, every data instance that forms a Tomek
link is discarded, both from minority and majority classes. A Tomek link can be
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defined as follows: given two samples with different classes SA and SB, and a distance
d(SA, SB), this pair (SA, SB) is a Tomek link if there is not a case SC that d(SA, SC) < d(SA, SB)
and d(SB, SC) < d(SB, SA). In this way, noisy data is removed from the dataset, improving
the capability of class identification.

In the SMOTE technique, the new synthetic samples are equally created for each
minority class data point. However, this might not be an optimized way to produce
synthetic data since it can concentrate most of the data points in a small portion of the
feature space.

Adaptive synthetic sampling
Using the adaptive synthetic sampling algorithm, ADASYN (He et al., 2008), a density
estimation metric is used as a criterion to decide the number of synthetic samples for each
minority class example. With this, it is possible to balance the minority and majority
classes and create synthetic data where the samples are difficult to learn. The synthetic data
generation occurs as follows: the first step is to calculate the number of new samples
needed to create a balanced dataset. After that, the density estimation is obtained by the
k-nearest neighbors for each minority class sample (Eq. (6)) and normalization (Eq. (7)).
Then the number of needed samples for each data point is calculated (Eq. (8)), and
new synthetic data is created.

ri ¼ Di

K
; i ¼ 1;…;ms (6)

r̂i ¼ riPms

i¼1
ri

(7)

gi ¼ r̂i � G (8)

where ms is the set of instances representing the minority classes, Δi the number of
examples in the K nearest neighbors belonging to the majority class, gi defines the number
of synthetic samples for each data point, and G is the number of synthetic data samples
that need to be generated to achieve the balance between the classes.

EXPERIMENTS AND RESULTS
To evaluate the impact of the data imbalance on the Brazilian CBC datasets, we have
applied the sampling techniques described in “Techniques to Handle Imbalanced Data”.
They are discussed in three different aspects. The first one is the comparison between
classification methods without resampling. In this way, we can compare how each classifier
deals with the imbalance. The second aspect is related to the sampling methods of
efficiency compared to the original datasets.

Each classification model was trained with the same training set (70% of samples)
and was tested to the same test set (30% of samples). The features were normalized using
the z-score. Evaluation metrics were generated by 31 runs considering random data
distribution in each partition. The proposed approach was implemented in Python 3 using
Scikit-Learn (Pedregosa et al., 2011) as a backend. The COVID-19 classes were defined
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using RT-PCR results from the datasets. Sampling techniques were applied only on the
training set. Hyperparameters were optimized using the Randomized Parameter
Optimization approach available in scikit-learn and the values in Table 6. The aim of
optimizing the hyperparameters is to find a model that returns the best and most accurate
performance obtained on a validation set. Figure 1 schematizes the methodological steps
used in this work.

Different results were obtained for each classification method with an imbalanced
dataset, as can be seen in Figs. 4–61. In terms of F1 Score all classification models achieved
values ranging around 0.5 to 0.65 for the Albert Einstein and Fleury datasets. Although
the F1 Score is widely used to evaluate classification tasks, it must be carefully analyzed in
our case since the misclassification has more impact, especially in false-negative cases,
making it necessary to observe other indexes. When the sensitivity index is considered, it
draws attention to the disparity between the NB classification model and the others.

The NB model achieved a sensitivity of around 0.77 for the Albert Einstein dataset
(Fig. 4A) and around 0.72 for the Fleury dataset (Fig. 6A). Hence, it is possible to consider

Table 6 Hyperparameter ranges used in our analyses.

Classifier Parameters

Naive Bayes – –

Support Vector Machines kernel: rbf; linear

gama: 0.0001–0.001

c: 1–1,000

Random Forest n-estimators: 50; 100; 200

criterion: gini; entropy

max_depth: 3–10

min_samples_split: 0.1–0.9

XgBoost n-estimators: 50; 100; 200

max_depth: 3–10

learning_rate: 0.0001–0.01

Decision Tree criterion: gini; entropy

max_depth: 3–10

min_samples_split: 0.1–1.0

K-Nearest Neighbors n_neighbors: 3; 5; 7; 10; 15; 50

weights: uniform; distance

Logistic Regression – –

Multi Layer Perceptron activation: logistic; tanh; relu

solver: sgd; adam

alpha: 0.0001; 0.001; 0.01

learning_rate_init: 0.0001; 0.001; 0.01

early_stopping: True; False

batch_size: 16; 64; 128

hidden_layer_sizes: (10, 10, 2); (5, 10, 5); (10); (10, 20, 5); (10, 10); (100); (30, 10)

1 The statistical comparison between the
algorithms (Dunn’s Multiple Compar-
ison Test with Bonferroni correction) is
available in the GitHub repository:
https://github.com/sbcblab/sampling-
covid.
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the NB as the classification model to better detect the true positive cases (minority class)
in these data sets. However, when considering the specificity (Figs. 5B and 6B), it is
notable that NB achieved the worst performance overall. A possible explanation for this

Figure 5 Average test results from 31 independent runs for several classifiers and sampling schemes
trained on the Albert Einstein Hospital data. Black lines represent the standard deviation, while the
white circle represents the median. (A) Sensitivity; (B) Specificity; (C) LR+; (D) LR-; (E) DOR;
(F) F1 Score; (G) ROC-AUC Score. Full-size DOI: 10.7717/peerj-cs.670/fig-5
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disparity is that NB classifies most of the data as positive for possible SARS-CoV-2
infection. This hypothesis is then confirmed when we analyze the other two indexes
(DOR and LR+), showing NB bias to the minority class. When considering other

Figure 6 Average test from 31 independent runs for several classifiers and sampling schemes trained
on the Fleury Group data. Black lines represent the standard deviation, while the white circle
represents the median. (A) Sensitivity; (B) Specificity; (C) LR+; (D) LR-; (E) DOR; (F) F1 Score;
(G) ROC-AUC Score. Full-size DOI: 10.7717/peerj-cs.670/fig-6
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classification models regarding sensitivity and specificity, the LR, RF, and SVM achieved
better results, ranging from 0.55 to 0.59 for sensitivity and 0.89 to 0.93 for specificity.
This better balance between sensitivity and sensibility is mirrored in the F1 Score, where
RF, SVM, and LR achieved better performance than other methods (and comparable to
NB) while achieving better DOR and LR+.

When considering four key indexes (F1 Score, ROC-AUC Score, Sensitivity, and
Specificity), we can observe that the sampling techniques improved the learning models
regarding the classification of positive cases of SARS-CoV-2 from the Albert Einstein
dataset in comparison with the original data, except for NB. Thus, reducing the bias to the
majority class observed in the original data set, especially when considering the specificity
(the proportion of correctly classified negative samples among all negative samples).
For Albert Einstein and Fleury datasets, sampling techniques improve the sensitivity and
lower all classifiers’ specificity. For the HSL dataset, we see the opposite; resampling
decreases the sensitivity and improves the specificity. This happens because while for
Albert Einstein and Fleury, the majority class is negative, the majority class is positive
for HSL.

Furthermore, with sampling techniques, the DOR was improved in the Albert Einstein
dataset. With Fleury data, the learning models with sampling did not achieve tangible
DOR results. A possible explanation of this outcome can be related to the data sparseness,
an ordinary circumstance observed in medical or clinical data. This is further corroborated
by the data visualization using t-SNE in Fig. 4. Moreover, the number of samples used
with the Fleury dataset could be determinant for the poor performance. Nevertheless,
overall, no sampling technique appears to be a clear winner, especially considering the
standard deviation. The performance of each sampling technique is conditioned by the
data, metric, and classifier at hand.

Regarding the decrease in LR+ when the Albert Einstein or Fleury data is balanced,
LR+ represents the probability of samples classified as positive being truly positive. The
difference of LR+ values in the original datasets compared to the resampled data is due to
the classifier trained on the original data labeling most samples as negative, even when
facing a positive sample. Thus, it is important to note that when the data is balanced, the
bias towards the negative class diminishes, and the model has more instances being
classified as (true or false) positives.

None of the combinations of classifiers and sampling methods achieved satisfactory
results for the Sírio-Libanês Hospital dataset (Fig. 7). The sensitivity of all options was
close to one, and the specificity was close to zero, indicating that almost all samples are
being predicted as the majority class (in this case, the positive). This was expected due to
the large imbalance of this dataset, and even the sampling methods, although able to
narrow the gap, were not enough to achieve satisfactory results. Due to these poor results,
the other metrics are non-satisfactory, and their results can be misleading. For instance,
if one were only to check the F1 Score, the classification results would seem satisfactory.
As listed in Table 1 and illustrated in Fig. 7, this dataset had the largest imbalance, with
over forty times more positive than negative samples. Moreover, the total number of
available samples was the smallest among the three datasets. The results suggest that using
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standard ML classifiers is not useful for such drastic cases even when sampling techniques
are applied, and researchers should be cautious when dealing with similar datasets (low
sample quantity and high imbalanced data).

Figure 7 Average test results from 31 independent runs for several classifiers and sampling schemes
trained on the Sírio-Libanês Hospital. Black lines represent the standard deviation, while the white
circle represents the median. (A) Sensitivity; (B) Specificity; (C) LR+; (D) LR-; (E) DOR; (F) F1 Score;
(G) ROC-AUC Score. Full-size DOI: 10.7717/peerj-cs.670/fig-7
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The results obtained in our simulations showed that ML classification techniques could
be applied as an assistance tool for COVID-19 diagnosis in datasets with a large enough
number of samples and moderate levels of imbalance (less than 50%), even though some of
them achieved poor performance or biased results. It is essential to notice that the NB
algorithm reached better classification when targeting the positive cases for SARS-CoV-2.
However, it skews the classification in favor of the minority class. Hence, we believe that
SVM, LR, and RF approaches are more suitable to the problem.

Future research can be conducted with these limitations in mind, building ensemble
learning models with RF, SVM, and LR, and different approaches to handle the
imbalanced data sets, such as the use of cost-sensitive methods. It is also important to note
that some of these classifiers, such as MLP, cannot be considered easily interpretable.
This presents a challenge for their use of medical data, in which one should be able to
explain their decisions. Both issues could be tackled in the future using feature selection
(Ang et al., 2016; Grisci, Feltes & Dorn, 2019) or algorithms for explainable artificial
intelligence (Yang et al., 2018;Montavon, Samek & Müller, 2018; Arga, 2020). The method
of relevance aggregation, for instance, can be used to extract which features from tabular
data were more relevant for the decision making of neural networks and was shown to
work on biological data (Grisci, Krause & Dorn, 2021). Feature selection algorithms can
also be used to spare computational resources by training smaller models and to improve
the performance of models by removing useless features.

CONCLUSIONS
The COVID-19 pandemic has significantly impacted countries that cannot test their
population and develop strategies to manage the crisis and those with substantial financial
limitations. Artificial intelligence and ML play a crucial role in better understanding and
addressing the COVID-19 emergency and devising low-cost alternatives to aid decision
making in the medical field. In this sense, ML techniques are being applied to analyze
different data sources seeking to identify and prioritize patients tested by RT-PCR.

Some features that appear to be the most representative of the three analyzed datasets
are basophils and eosinophils, which are among the expected results. The work of Banerjee
et al. (2020) showed that patients displayed a significant decrease in basophils, as well as
eosinophils, something also discussed in other works (Bayat et al., 2020).

Having imbalanced data is common, but it is especially prevalent when working with
biological datasets, and especially with disease data, where we usually have more healthy
control samples than disease cases, and an inherent issue in acquiring clinical data. This
work reviews the leading ML methods used to analyze CBC data from Brazilian patients
with or without COVID-19 by different sampling and classification methods.

Our results show the feasibility of using these techniques and CBC data as a low-cost
and widely accessible way to screen patients suspected of being infected by COVID-19.
Overall, RF, LR, and SVM achieved the best general results, but each classifier’s efficacy will
depend on the evaluated data and metrics. Regarding sampling techniques, they can
alleviate the bias towards the majority class and improve the general classification, but no
single method was a clear winner. This shows that the data should be evaluated on a
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case-by-case scenario. More importantly, our data point out that researchers should never
rely on the results of a single metric when analyzing clinical data since they show
fluctuations, depending on the classifier and sampling method.

However, the application of ML classifiers, with or without sampling methods, is not
enough in the presence of datasets with few samples available and large class imbalance.
For such cases, that more often than not are faced in the clinical practice, ML is not
yet advised. If the data is clearly biased, like the HSL data, the dataset should be discarded.
Even for adequate datasets and algorithms, the selection of proper metrics is fundamental.
Sometimes, the values can camouflage biases in the results and poor performance, like
the NB classifier’s case. Our recommendation is to inspect several and distinct metrics
together to see the greater picture.
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