
Received November 20, 2020, accepted December 1, 2020, date of publication December 4, 2020,
date of current version December 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3042739

Boosting Big Data Streaming Applications
in Clouds With BurstFlow
PAULO RICARDO RODRIGUES DE SOUZA, JR., 1, (Graduate Student Member, IEEE),
KASSIANO J. MATTEUSSI 1, (Member, IEEE), ALEXANDRE DA SILVA VEITH2,
BRENO F. ZANCHETTA1, VALDERI R. Q. LEITHARDT3,4,5, (Member, IEEE),
ÁLVARO L. MURCIEGO 6, EDISON PIGNATON DE FREITAS 1, (Member, IEEE),
JULIO C. S. DOS ANJOS 1, AND CLAUDIO F. R. GEYER 1
1Institute of Informatics, Federal University of Rio Grande do Sul, UFRGS/PPGC, Porto Alegre 91501-970, Brazil
2Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
3COPELABS, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal
4Departamento de Informática, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
5VALORIZA Research Center, Instituto Politécnico de Portalegre, 7300-555 Portalegre, Portugal
6Faculty of Science, Expert Systems and Applications Laboratory, University of Salamanca, 37008 Salamanca, Spain

Corresponding author: Paulo Ricardo Rodrigues De Souza, Jr. (paulosouzjunior@gmail.com)

This work was supported by the ‘‘SmartSent’’ under Grant 17/2551-0001 195-3, CAPES (Finance Code 001), PNPD program, CNPq,
PROPESQ-UFRGS-Brasil and FAPERGS Project ‘‘GREEN-CLOUD—Computação em Cloud com Computação Sustentável’’ under
Grant 16/2551-0000 488-9, partially supported by Project Smart following systems, Edge Computing and IoT Consortium, CONSORCIO
TC_TCUE18-20_004, CONVOCATORIA CONSORCIOTC. PLAN TCUE 2018−2020. Project managed by Fundación General de la
Universidad de Salamanca and co-financed with Junta de Castilla y León and FEDER funds, in part by the postdoctoral fellowship from
the University of Salamanca and Banco Santander, and in part by the ‘‘Fundação para a Ciência e a Tecnologia’’ under projects
UIDB/04111/2020 and FORESTER PCIF/SSI/0102/2017.

ABSTRACT The rapid growth of stream applications in financial markets, health care, education, social
media, and sensor networks represents a remarkable milestone for data processing and analytic in recent
years, leading to new challenges to handle Big Data in real-time. Traditionally, a single cloud infrastructure
often holds the deployment of Stream Processing applications because it has extensive and adaptative virtual
computing resources. Hence, data sources send data from distant and different locations of the cloud infras-
tructure, increasing the application latency. The cloud infrastructure may be geographically distributed and it
requires to run a set of frameworks to handle communication. These frameworks often comprise a Message
Queue System and a Stream Processing Framework. The frameworks explore Multi-Cloud deploying each
service in a different cloud and communication via high latency network links. This creates challenges to
meet real-time application requirements because the data streams have different and unpredictable latencies
forcing cloud providers’ communication systems to adjust to the environment changes continually. Previous
works explore static micro-batch demonstrating its potential to overcome communication issues. This paper
introduces BurstFlow, a tool for enhancing communication across data sources located at the edges of the
Internet and Big Data Stream Processing applications located in cloud infrastructures. BurstFlow introduces
a strategy for adjusting the micro-batch sizes dynamically according to the time required for communication
and computation. BurstFlow also presents an adaptive data partition policy for distributing incoming streams
across available machines by considering memory and CPU capacities. The experiments use a real-world
multi-cloud deployment showing that BurstFlow can reduce the execution time up to 77% when compared
to the state-of-the-art solutions, improving CPU efficiency by up to 49%.

INDEX TERMS Big data, stream processing applications, multi cloud, micro-batches, data partition.

I. INTRODUCTION
The advent of the Internet of Things (IoT) has led to new
challenges in the Big Data era due to the limitations of

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Grosu .

storage, computation, and communication of existing devices
since IoT devices generate massive amounts of data that
require processing to support the decision-making process.
The data processing happens in two ways: Batch Processing
(BP), which explicitly manipulates large datasets of historical
data with high latency, and Stream Processing (SP), which

219124 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6216-5367
https://orcid.org/0000-0002-9131-6849
https://orcid.org/0000-0002-0493-4471
https://orcid.org/0000-0003-4655-8889
https://orcid.org/0000-0003-3623-2762
https://orcid.org/0000-0002-8602-2336
https://orcid.org/0000-0003-2340-5433


P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

performs (near) real-time analysis over continuous data flows
using in-memory processing.

In a traditional approach, IoT devices located at the edge
of the Internet produce data at overwhelming rates. This
data traverses high distance links to be consumed on far-
away cloud providers by applications of the financial mar-
ket, call services, automation in Industry 4.0, etc [1]–[4].
In SP time-sensitive applications, this approach can produce
high overheads making it hard to achieve (near) real-time
analytics. It happens because SP applications often han-
dle data (i.e., event) one at a time, leading to adding the
network latency to each of the events with regular proto-
cols. The generated latency is the major problem for critical
decision-making applications, for instance, in the intrusion
detection system where a hacker intrusion can mean financial
damage [5]. Furthermore, SP applications can have unpre-
dictable data bursts leading to bandwidth contentions [6], [7].

SP frameworks such as Apache Flink [8] and Apache
Spark [9] cannot orchestrate communication across multi-
ple data centers leading to high application latency and low
throughput. However, some solutions overcome this limita-
tion by supporting applications in Multi-Cloud (MC) infras-
tructure and exploring the locality of micro data centers.
These micro data centers also allow creating batches of data
to add the network latency in data transfers to a set of events
rather than to each event [10]. Micro-batch is an attractive
method in SP because it permits to achieve better through-
put and application latency [11]. Previous works attempt
to employ micro-batch strategies using an absolute number
of events [12], [13] or time [14] for creating the batches.
These solutions neglect how to partition the micro-batches
across the heterogeneous computing resources where the
SP framework is deployed [15] – leading to higher execution
time, demonstrating the lack of solutions that couple the
micro-batch policy and the SP framework setup.

This work describes BurstFlow, a tool for dynamically
handling data bursts in a geographical infrastructure and
distributing the input data across multiple SP operation parti-
tions. BurstFlow improves the communication between data
centers at the network edge and cloud computing by transmit-
ting data into micro-batches. The micro-batch size is defined
by considering the message life time in the whole system.
Furthermore, BurstFlow introduces an adaptive method to
distribute incoming streams in the SP framework. Real-world
experiments show an improvement of over 9% in the exe-
cution time, over 49% better CPU and memory utilization
compared to methods applied to data partitioning in Apache
Flink and state of the art.

The contributions of this work are:
• BurstFlow, a tool for orchestrating Big Data SP appli-
cations in MC infrastructure using monitored informa-
tion from the application data flow and the resources
(Section IV-B);

• BurstFlow’s Execution Time-Aware Micro-Batch Strat-
egy (ETAMBS) extends the standard negotiationmethod
of buffer sizes in the Big Data engine communication,

embedding a dynamic adjustment to determine the
micro-batch sizes dynamically to overcome the over-
head of the network latency (Section IV-C);

• BurstFlow’s Resource-Aware Partition Policy (RAPP)
distributes the incoming micro-batches across the run-
ning operator replicas assigning micro-batches by con-
sidering memory and CPU (Section IV-D); and

• A prototype and a performance evaluation compar-
ing BurstFlow against the state-of-the-art solutions
(Section V).

This work is structured as follows: Section II presents
a review of the related work, followed by Section III that
defines the evaluated problem in this work; Section IV details
the BurstFlow and strategies to create micro-batches and the
adopted partition policy; Section V presents the experiment
setup, the prototype, the adopted methodology and then dis-
cusses the achieved results and threats to validity. Finally,
Section VI concludes the paper by providing directions for
future work.

II. STATE-OF-THE-ART IN ADAPTIVE STREAM
PROCESSING
Cloud computing is a robust environment to perform
large-scale and complex computations as it provides security,
efficiency, flexibility, pay-as-you-go billing structure, and a
scalable data storage [16], [17]. As a result, many organiza-
tions have explored it to support data-intensive applications
and services in the most diverse domains.

One of the explored contexts is (near) real-time SP applica-
tions that require low-latency processing over unpredictable
and continuous flows of data [18]. Data arrives from data
sources spread in geographically distributed areas. In this
process, each generated data requires delivery guarantees
to prevent data loss. To achieve these requirements, many
SP systems are created on top of a stack of components.
For instance, the data source produces data to a queue in
a Message Queue System (MQS), and the SP framework
consumes from the queue. As a result, each component of
the system is often located in a different data center.

The baseline approach implemented in cloud-based frame-
works such as Apache Spark, Apache Flink, and Apache
Heron [19] consider a single cloud data center to run the
MQS and the SP framework. Furthermore, the SP appli-
cations consume one message at-at-time from the MQS
because they assume the data source is co-located in the
data center, neglecting the existing network latency. Another
issue is that cloud-based frameworks count on homogeneous
workloads when distributing data in the SP framework and
neglect performance metrics such as data ingestion, memory,
or network utilization. Consequently, applications suffer from
resource-related interference problems (e.g., memory and
network contention) due to the lack of control and manage-
ment, incurring low throughput and failures. In the following,
there is an analysis of works representing state of the art in
adaptive SP for heterogeneous and distributed systems.

VOLUME 8, 2020 219125



P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

In JetStream [12], the approach uses available communica-
tion channels allowing multiple stream routes among cloud
sites for supporting the largest batch size transfer possible.
To achieve this goal an algorithm computes both data trans-
fers and the batch sizes to find one convergence point between
the transference of batches seeking the lowest execution
time. The data transmission strategy use multicast algorithm
(i.e. transmits a single message that is replicated to all nodes
in a group). The orchestrator uses a oracle that decide when
to send a message to the transfer module. The evaluations
consider the aggregation of up 1000 events and measure the
latency response of data transfer between different cloud data
centers. Therefore, JetStream selects the best route – lowest
latency – to transfer batches. However, it takes into account
only the communication and batch size and lacks on data
distribution to optimize processing throughput.

Das et al. [14] offer an adaptive batch sizing algorithm
for SP systems based on a fixed-point iteration strategy. It is
a well-known numerical optimization technique that allows
the system to adapt to the window size when data ingestion
varies too much. The approach defines a minimum batch
size to achieve execution stability. Thus, it is possible to
minimize end-to-end latency while keeping the system stable
based on batch statistics. This strategy allows better use of
system resources because it avoids processing delays and
low performance, which occurs due to load spikes that lead
the processing to built-up queue conditions. The deployment
defines a job controller to manage the batch size and a job
processor that provides feedback about job execution status.
This approach is implemented in the Apache Spark and does
not offer neither indirect communication or load balance.

Zhang et al. [20] study batch and block interval as the
most important factors affecting the performance of Spark
Streaming, such as the application latency problem. The work
discusses how long waiting time affects the correctness of the
latest completed batch interval statistics, letting it out of date
because they usually cannot reflect the workload conditions.
A heuristic algorithm is built using the waiting time and
an isotonic regression to dynamically adapt the batch and
block interval to workloads and operating conditions. The
algorithm quickly converges to the desired batch and block
interval and continuously adjust both based on previous data
rates, processing time, and block interval. Unfortunately, this
work is restricted for Reduce and Join workloads and presents
a small testbed with few processing nodes and low workload
throughput (≈4MB/s). This approach does not address the
real-time processing conditions.

Anjos et al. [21] identify the relation between stream rate of
income and time processing variation of Apache Flink. The
experiments simulate an orchestrator that provides the data
dispatches to virtual machines in accordance with its com-
putational capacity. The machines are grouped by computa-
tional capacity similarity. These experiments confirm that the
data generation has low communication impacts in compar-
ison with high network latency. The study demonstrates the
best performance is achieved with greater data blocks, but in

comparison with BurstFlow it does not provide a dynamic
solution to the stream processing adjusts.

Fernandez et al. [22] proposed the Liquid a data integration
system to provide low latency for data access to batch appli-
cations. The implementation provides the incremental pro-
cessing and keeps producers and consumers decoupled with
higher availability. The message layer use the RAM cache of
the operational system to achieve high-throughput writes. The
orchestrator is the Apache Zookeeper [23] that uses Apache
Kafka to message management and the Apache Samza [24]
to manage stream processing. The system provides a message
approach of at-least-once delivery semantics for idempotent
updates. The low latency increments the processing using
annotations with metadata. Nowadays the implementation
uses Microsoft Azure.

Gulisano et al. [25] investigate the resource contention
problem associated with the auto-parallelization of running
queries in distributed SP frameworks. The authors present the
execution of query tasks on worker nodes that may lead to
shared resource contention. The proposed solution contains
an adaptive feedback controller based on Model Predictive
Control (MPC). It ensures the elastic allocation, as observed
by the improvement of 15% in total servers resource utiliza-
tion with an average reduction of 14% in tuple latencies. The
proposed solution also reduces the Quality of Service (QoS)
violation incidents by 123% (maximum 207%) compared to
the round-robin heuristic, which uses all available resources
in the cluster farm.

Another aspect of key importance to improve performance
in SP applications is memory management. Zhao et al. [26]
propose a resource-aware cache management solution for
in-memory processing. The design of this solution aims to
enhance the cache utilization of executors by using a heuristic
method based on sub-modular optimization theory and data
dependency information to evict and prefetch data blocks
from memory appropriately. It improves memory access;
however, it does not assume data distribution, which in a
distributed environment will not oversee latency constraints
in applications.

Xiu et al. [27] aim to improve memory allocation for
storage and execution areas. The main idea is to optimize
and reduce cache loss and memory overflow to improve task
execution efficiency. Similarly, Tang et al. [28] introduce a
Dynamic Spark Memory-Aware Task Scheduler (DMATS)
algorithm to treat memory and network I/O through feedback
information to utilize these resources optimally. However,
both solutions do not improve data consumption and do not
acknowledge latency and data partition inside the SP.

Table 1 summarizes the main techniques for adaptive
SP found in the Related Work. SP has been applied in
cloud environments to perform processing independently on
multiple sites. Moreover, MC have important characteris-
tics to consider, as heterogeneity and resource variation,
such as network bandwidth, memory, and CPU pools. For
instance, network latency can significantly vary depending
on the geographic location and the processing flow of the

219126 VOLUME 8, 2020



P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

TABLE 1. Techniques for Adaptative Stream Processing.

application [12]. Still, the number of CPUs or memory can
considerably differ, requiring well-defined scheduling tech-
niques to support workload variations.

BurstFlow diverges in a key point from strategies presented
in Table 1: the data aggregation due to flow partition control
based on the memory and the application throughput man-
agement. Unlike the works found in the literature, BurstFlow
uses an adaptive and dynamic model to estimate the number
of events per message based on feedback loops that monitor
the batch size in the memory of workers to further forward
data. This approach leads to overcoming contention scenarios
while maintaining network stability.

Typically, computational resources are shared simultane-
ously among multiple users, applications, and mixed work-
loads. BurstFlow addresses an actual concern in Big Data
processing in MC, and it manages resources appropriately.
Regardless, SP applications tend to process in memory to
increase events throughput. Unfortunately, the amount of
memory is limited, and as it is used for both in-memory
processing and storage, it can be a further bottleneck in
the system. BurstFlow explores more efficiently the memory
avoiding swaps from memory to disk and vice-versa.

This section investigated current concerns about maintain-
ing system stability and high event throughput. Nevertheless,
the analysed state-of-the-art solutions reveals a research gap
between adaptive solutions to improve network issues and
memorymanagement for SP in heterogeneous and distributed
systems. Thus, BurstFlow explores this gap to propose a flow
partition approach.

III. PROBLEM STATEMENT
Sensors located at the edge of the Internet produce data at
burst rates to be consumed by SP applications placed on cloud
servers. These servers are often faraway from the data sources
requiring to traverse the Internet via high latency links
subject to package loss [29]. To manage communication,
SP applications need to use a set of tools to provide

a stable data transmission infrastructure such as MQSs [30]
and MC. For instance, a MQS is used to manage the transfer
and guarantee message delivery from different sensors to a
micro data center or the cloud service provider. MQS provide
delivery semantics such as at-most-once, at-least-once, or
exactly-once.

SP application retrieves messages from the MQS utilizing
consumer clients. Consumer clients often connect to theMQS
via TCP. Hence, the MQS offers multiple settings to the users
in order to achieve better performance. This happens because
the user can work either on Local Area Network (LAN),
Wide Area Network (WAN) or both. The consumer buffer
size is essential because permits to configure how much
data the sockets use when reading/writing data – the buffer
size depends on latency and the available bandwidth. The
consumer often uses cache buffers to maintain the storage
messages inmemory, speeding up the process of reading done
by the SP framework.

Furthermore, SP frameworks often handle messages one-
at-a-time, which can turn infeasible to work with MC as
the network link latency is appended to each data transfer.
An attractive solution is to usemicro-batches wheremessages
are accumulated in batches before being transferred, adding
the network latency overhead a single time. Nonetheless,
most SP applications are time-sensitive, thus the processing
time for each message matters for the system. For instance,
an incorrect configuration to the batch size of the micro-batch
can drive to high processing times and comprising real-time
constraints.

Figure 1 shows a bar plot to represent the impact of each
micro-batch size where the micro-batch size is shown in
the x-axis and the execution time in seconds in the y-axis.
The used infrastructure and application configuration are
provided in Section V. The results present a high execution
time for the one-at-a-time data transfer (micro-batch size
equals one). This happens because message executions are
subject to network latency and processing time. In contrast,

VOLUME 8, 2020 219127



P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

FIGURE 1. Analysis of different micro-batch sizes. The red color shows
the better micro-batch size.

a large micro-batch size demands a long wait time to collect
the target number of messages due to the production rate of
messages in the sensors and higher execution time to process
the whole batch in the SP framework. According to the bar,
themicro-batch size with 100 is the best execution time. Since
the network latency and the processing requirements can vary,
then a dynamic policy to establish the batch size is required.

The policy to determine the batch sizes must consider the
information of the network as well as application metrics and
configurations of the SP framework. A good policy for the
batch sizes results in better throughput and mitigate latency
in the SP application. This is a challenge due to a lack of
solutions that orchestrate SP applications in MC. This work
addresses both problems by introducing an orchestration tool
to determine a batch size policy that considers the stack of
tools required to run SP applications in the MC environment.

This work also addresses the problem of high processing
times due to the unbalance of data consumption by multiple
consumer clients of SP applications. An SP application is
often structured as a directed graph whose vertices are opera-
tors that perform transformations over the incoming data and
edges representing the data streams between operators. When
the SP application is submitted to the framework, the user
can inform the parallelism degree to the application oper-
ators. Each operator replica connected to the MQS creates
a consumer client, which will consume messages one-at-a-
time in a round-robin fashion (i.e., Baseline) from a given
queue. The Baseline was conceived for clusters of homoge-
neous computing resources in LANs. However, this method
applied to heterogeneous infrastructure leads to performance
depreciation as computing and communication have different
speeds and can change along time.

IV. BurstFlow: A MECHANISM TO BOOST THE
THROUGHPUT OF SP APPLICATIONS IN MULTI CLOUD
This section details BurstFlow and its strategies proposed
for placing creating micro-batches onto MC infrastructure

while improving the application throughput and the aggregate
message latency.

A. SYSTEM OVERVIEW
This work considers a scenario where data sources (e.g., sen-
sors) located at the edge of the Internet send their produced
messages in micro-batches to an MQS placed on a micro data
center closer to the data sources. An SP framework located on
a different cloud service provider than the MQS consumes
the micro-batches from the MQS. BurstFlow orchestrates the
communication between each data source and the SP frame-
work by deploying a set of services (Section IV-B) to deter-
mine the size of micro-batches and distribute the workload
across the operator replicas dynamically. Each data source
runs a BurstFlow service called Data Orchestrator, which has
a holistic view of the execution time of a micro-batch – i.e.,
the execution time is the difference between the timestamp
when the last message of the micro-batch is processed by the
SP framework and the timestamp when the first message of
the micro-batch was created by the data source.

Furthermore, BurstFlow computes the size of the
micro-batches using the ETAMBS (Section IV-C) to achieve
better throughput and per-message latency, either considering
the communication and computation times. BurstFlow also
runs the RAPP (Section IV-D) along with the SP framework,
which receives the micro-batches and distributes them across
the operator replicas by taking into account the resource uti-
lization of each machine of the SP cluster. When the operator
replica receives the micro-batch, it parses the micro-batches
and then ingests the messages into the application dataflow.

B. BurstFlow ARCHITECTURE
BurstFlow was designed to be a multi-resource dispatcher for
geographically distributed and heterogeneous MC environ-
ments. Its main goal is to observe the micro-batch lifespan
and make scheduling decisions to reduce its execution time.
The scheduling decisions use algorithms to establish the size
of the micro-batches and balance the workload across opera-
tor replicas that consume data from the MQS.

The design also considers a stack of frameworks and
services for processing a micro-batch – i.e., data sources,
MQS, and SP framework. Hence, BurstFlow has components
strategically deployed in infrastructure in order to capture
individual latencies from the time where a data source gen-
erates a message up to the time in which the SP framework
completely processes it. This structure permits the BurstFlow
to adjust the micro-batches in each data source to reduce their
overall processing time.

Figure 2 introduces BurstFlow architecture. The messages
generated by a data source arrive at the Data Orchestrator
co-located with the data source. The Data Orchestrator runs
the ETAMBS (Section IV-C), which determines the number
of messages to be accumulated in the micro-batch. ETAMBS
interacts with the Resource Watch to be able to compute
the micro-batch size by analyzing how previous micro-batch
sizes behaved. Hence, messages are retained in a micro-batch

219128 VOLUME 8, 2020



P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

FIGURE 2. BurstFlow architecture.

before achieving its target size. Then, the micro-batch is sent
to a queue in the MQS.

The MQS consumers in the SP Framework drain the mes-
sages from the MQS queue. When the message arrives at
the SP Framework, the Master decides how to distribute
the messages across the operator replicas (i.e, Slaves) using
the RAPP (Section IV-D) from the Partition Balancer. The
strategy gets available and used memory and CPU of each
operator replica’s resource to decide where to send a micro-
batch. After the decision, theManager sends the micro-batch
message and then SP application consumes the individual
messages of the micro-batch.

C. Execution Time-Aware Micro-Batch Strategy
(ETAMBS)
BurstFlow adjusts dynamically the size of a micro-batch in
the data source side taking into account the whole flow of
communication and computation. Each data source accumu-
lates messages in a micro-batch before sending it to theMQS.

Aggregation Algorithm 1 presents how BurstFlow handles
each message’s arrival when forwarding a micro-batch to
the MQS. The algorithm maintains a global buffer where it
accumulates the messages for the micro-batch. This buffer
has properties such as ID and Timestamp, which allows the
system to keep track of its execution time.When including the
first message, the system attributes a unique ID and sets the
timestampwhen the receivedmessagewas created (lines 2-4).
In the next step, the algorithm appends the message to the
buffer (line 5). Then, the number of messages in the buffer is
compared to the GetMaxBufferSize function (line 6). If the
number of messages is higher or equal to the output of
the function then the micro-batch is sent to the MQS and
the buffer is reinitialized (lines 7-8).

The GetMaxBufferSize function starts returning an aggre-
gation of 2 messages for the micro-batch. This function inter-
acts with the Resource Watcher by checking the execution
time required to process the micro-batch. The execution time
of a micro-batch is retrieved using a unique ID. The execution
time permits to create of a rate by dividing the micro-batch
size and the execution time. The rate is stored in vector as
a tuple (x, r) where x denotes the evaluated micro-batch
size, and r expresses the average message time. During the
convergence phase, each function call increments one to the

Algorithm 1 Aggregation Algorithm
1: procedure send(msg)
2: if buffer .size = 0 then
3: buffer .setID()
4: buffer .setTimestamp(msg.GetTimestamp())
5: buffer .append(msg)
6: if buffer .size() >= GetMaxBufferSize() then
7: send_micro_batch(buffer)
8: buffer .clear()

micro-batch size, and the rate is stored in the rate vector. If the
current rate is higher or equal to the previous micro-batch
size, then the algorithm picks the micro-batch size from
the previous position of the vector leading to conclude the
convergence phase. For example, if the current micro-batch
size is 6 with rate 3, and the previous micro-batch size is 5
with rate 2 then theGetMaxBufferSize function returns 5, and
in the next call of the function, it will return the same value.

ETAMBS implements a service, which controls the time
required to build a micro-batch. This happens because the
ingestion rate in the data sources can change. If the time to
achieve the micro-batch size is higher than its rate, then the
micro-batch is sent to the MQS and the convergence phase
is reinitialized. If the variance between the current and the
last saved rate is higher than 30% then the convergence phase
is also reinitialized. This trigger permits to the detection of
anomalies in the execution of the micro-batches, such as
higher or lower network latency or computing capacity for
the MQS and SP framework.

D. Resource-Aware Partition Policy (RAPP)
The RAPP distributes the incoming micro-batches across
the running operator replicas assigning micro-batches by
employing a ratio betweenmemory and CPU of eachmachine
where each operator replica is running. The Resource
Watcher provides the CPU and memory. RAPP creates an
affinity list identifying the most idle machine by paring the
ratio and the operator replica ID. In order to simplify the
micro-batch assignment, RAPP orders the affinity list by
the ratio in a decent manner. If there exist operator replicas
with the same ratio, then RAPP puts the operator replica
with the most powerful machine in a higher position. Thus,
the partition algorithm does not unpack the micro-batch when
it arrives. First, it picks the operator replica at the top of the
list to assign the micro-batch. At last, the micro-batch arrives
at the operator replica, where it is unpacked using a parsing
function, and the operator consumes each message.

RAPP computes the affinity list every five seconds to
get the system changes and distribute the workload fairly
across the operator replicas. Updating the affinity list starts
by interacting with the Resource Watcher to get the total and
available memory, and the average CPU consumption per-
centage of each operator replica’s machine. RAPP transforms
the incoming metrics in the percentage of available memory

VOLUME 8, 2020 219129



P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

and CPU. Then, the ratio is computed by the average of the
percentage of available memory and CPU.

V. PROTOTYPE, EXPERIMENTAL SETUP AND
PERFORMANCE EVALUATION
This section presents the setup andmethodology of the exper-
iments, the implementation of a prototype, and discusses the
obtained results with BurstFlow.

A. BurstFlow PROTOTYPE
The software stack of the BurstFlow prototype is shown
in Figure 3. The Data Orchestrator was developed using
Python with open source libraries to open connections with
the MQS. The MQS is the Apache Kafka 1.0.0 since it
provides high-level API, scalability, system log, replication,
and repartition. The Kafka API allows managing partitions of
each topic and setting up the consumption using the partition
manager. The used SP framework is Apache Flink 1.1.5 with
Hadoop 2.4, which has proven to be an efficient and the
state-of-the-art solution to process SP applications, providing
further enhancements in data distribution and management.
Moreover, the prototype utilizes the Hadoop Distributed File
System (HDFS) as a Distributed File System (DFS) compo-
nent and it runs along with the Apache Flink’s Master.

FIGURE 3. BurstFlow prototype.

The system provides the JavaTM Platform, Standard Edi-
tion Development Kit (JDKTM) 8.181, which is used by the
core of Apache Flink and Kafka framework. It also comprises
the JMX (Java Management Extensions) framework for the
serialization schema and logging. The Partition Balancer
was implemented by implementing a Partitioner1 function
in Apache Flink and calling it using the partitionCustom
function in the data stream. It is partially written in Python
and Java. It is required to be in Java since Flink API does
not offer the physical management of partitions in any other
language than Java. The Partition Balancer is configurable

1https://ci.apache.org/projects/flink/flink-docs-release-
1.1/api/java/org/apache/flink/api/common/functions/class-
use/Partitioner.html

in the dispatcher deployment and applies the partitioning
algorithms. It is statically defined and requires to redeploy to
change the algorithm. Although inApache Flink, it is possible
to use multiple algorithms to partition data streams inside the
cluster in each operator.

The Resource Watcher consumes the logs files from the
Apache Flink monitor, using the JMX monitor, like a service
that provides insight into the cluster’s states and conditions
(i.e., network throughput, memory and CPU consumption,
etc.). It is written in Python and performs as a client that
consumes information from the JMX monitor. It collects
information regarding the resources and makes it available
to make decisions accordingly.

B. EXPERIMENTAL SETUP
The experiments were performed over distributed data centers
of the Microsoft Azure Cloud. The setup was designed to
analyze the viability of the solution in an MC geographically
distributed infrastructure as depicted in Figure 4, where:
• Data Sources: The messages are produced by
10 A3 instances in Brazil’s South and each one pro-
duces data using 100 threads to mimic 100 sensors.
Each thread runs a Data Orchestrator to create the
micro-bathes and to forward them to the MQS.

• MQS: TheMQS runs Apache Kafka in a A3 instance in
the East US data center for temporarily storing messages
in queues that are later consumed by the SP framework.

• SP Framework: The SP framework is composed
by 5 Virtual Machiness (VMs) instances located in the
West US data center with different resource capabilities:
1 A8 instance for the Master, 1 D11 instance for the
Slave1, 1 A4 instance for the Slave2, 1 A2 instance for
the Slave3 and 1 A3 instance for the Resource Watcher.

The details of each VM instance are shown in the Table 2.
The Mirosoft Azure’s VM sizes were designed and opti-
mized for compute-intensive and network-intensive appli-
cations by Azure as well as, we follow and reproduce
well-defined scenarios observed in the related work section.
Each VM instance has the Intel Xeon E52670 2.6GHz pro-
cessor, DDR3 1600MHz RAM and the Operational system is
Ubuntu Server 16.04. The clock of all VMs are synchronised
using Network Time Protocol (NTP). Finally, we provided
a real world scenario by setting up a heterogeneous envi-
ronment with varied configurations in terms of hardware
specification (VM sizes) and network round-trip latency,2

see Table 3.

1) EVALUATED APPLICATION
The evaluation considers the sentiment analysis application,
shown in Figure 5, which implements a typical SP application
of sentiment analysis. The application classifies incoming
tweets into two classes, positive and negative. The first opera-
tor receives the incoming data and parses it to an understand-

2A full table can be found here: https://docs.microsoft.com/en-
us/azure/networking/azure-network-latency

219130 VOLUME 8, 2020



P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

FIGURE 4. Experimental MC infrastructure.

TABLE 2. VM instance characteristics.

TABLE 3. Round-trip latency between Microsoft Azure regions.

FIGURE 5. Sentiment Analysis application.

able format. Later, the next operator can perform a FlatMap
to split all the words from every tweet into sets for each tweet.
The next operator is responsible for grouping the data by key-
word, and then the reduce operator sums up each word’s total
frequency in its individual tweet. The classification performs
a standard naïve Bayes algorithm that analyzes the tweet
word’s frequency in a tweet against a positive and negative
database. Therefore, the higher frequency defines the class as
positive or negative, sending the result to the sink operator,
which pushes the message to a message queue.

The used dataset3 comprises tweets collected on-line using
Twitter API between July 13, 2016, and November 10, 2016,
related to the 2016 US election. Each tweet size is equivalent

3A similar dataset can be found in < https://dataverse.harvard.
edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PDI7IN >

to 224 bytes at maximum (because the tweet size can vary),
the input data size can achieve a 2.5 KB maximum by one
micro-batch size [12]. The dataset is divided into slices of 2
GB, and each slice is assigned in a round-robin fashion across
the 100 threads of the Data Source. This data distribution
leads to having 200 GB in each experiment.

2) COMPARISON
BurstFlow is compared against the Baseline approach to
demonstrate the benefits of ETAMBS regarding employ-
ing micro-batch methods. The Baseline is the state-of-the-
art solution, and it is widely employed by SP applications
because it handles messages one-at-a-time fashion allow-
ing the system to achieve real-time analytics. This approach
includes the network latency to each message, which can
cause problems in MC. The BurstFlow’s RAPP is compared
against the state-of-the-art algorithms implemented in the
standard version of Apache Flink. The data partition algo-
rithms are described as follows:
• Baseline: This solution only considers one-at-a-time
messages and distributes them in a round-robin fashion
to the operator replicas;

• Flink’s Broadcast: This solution sends each message
to all operator replicas and picks the one that finishes
first;

• Flink’s Random (Shuffle): Distributes incoming
micro-batches randomly across the operator replicas
according to a uniform distribution for the next opera-
tion; and

• Flink’sRebalance: Distributes incomingmicro-batches
in a round-robin fashion, creating equal load per opera-
tor partition.

The performance metrics comprise:
• Execution Time: the time required to process the whole
dataset.

• Throughput: each machine of the Apache Flink cluster
has its outputs measured in messages and MB. The
throughput is measured after the sink, which is usually
the final step of an SP application.

• Event Time: the time per-message to traverse the whole
infrastructure. This time is computed by dividing the
micro-batch size and the Execution Time.

• Used Memory and CPU: the CPU and memory con-
sumption of each machine of the Apache Flink’s cluster.

Themetrics were selected from themost commonly chosen
for measuring SP systems and load balance algorithms. The
throughput is measured using the JMX monitor. The JMX
is a Java framework for monitoring Java applications, and
it provides easy integration with multiple systems and Big
Data frameworks from the Apache family. While the CPU
and memory consumption are measured using dstat,4 which
is a tool for generating system resource statistics.

4Available in https://linux.die.net/man/1/dstat

VOLUME 8, 2020 219131



P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

C. PERFORMANCE EVALUATION
The experiments were defined based on the evaluation of the
design patterns proposed on Jain Methodology [31] where
each set of experiment is carried out 30 times. The perfor-
mance evaluation consists of a direct comparison between
BurstFlow and the most common approach in state of the
art, and an evaluation considering BurstFlow’s RAPP and the
state-of-the-art solutions for data partitioning.

1) BurstFlow VS. BASELINE
This experiment compares the performance of BurstFlow’s
ETAMBS and the Baseline. BurstFlow’s ETAMBS uses the
same policy the the Baseline (i.e., round-robin) to distribute
data across the operator replicas. The main objective is to
demonstrate the achieved throughput in the application inside
the cluster in comparison with baseline.

Figure 6 introduces the overall view of the throughput.
The y-axis measures throughput in MB and the x-axis mea-
sures the execution time in seconds. At a first observation,
the BurstFlow’s ETAMBS begins with lower throughput than
the Baseline because messages must be accumulated in the
micro-batch. In contrast, the Baseline sends messages to the
MQS as they are generated. However, when the micro-batch
arrives at the SP framework, BurstFlow increases its through-
put. BurstFlow’s ETAMBS determines the micro-batch sizes
dynamically, making the throughput more stable – low vari-
ance in the throughput (an average of 1.5GB/s) between the
500 seconds up to the end of the experiment. This happens
because BurstFlow’s ETAMBS includes a single network
latency to a set of messages, while the Baseline includes every
message.

FIGURE 6. Throughput comparison between Baseline and BurstFlow.

2) THROUGHPUT, EXECUTION TIME AND RESOURCE
CONSUMPTION EVALUATIONS
This set of experiments evaluates the impacts on throughput
and CPU and memory consumption for consuming mes-
sages from the MQS and distributing them across operator
replicas. The experiments adopt the default configuration

on Apache Flink, where each core corresponds to one slot.
Therefore, there are 24 available slots – master machine pro-
vides 8 slots, Slave1 2 slots, Slave2 8 slots, and Slave3 2 slots.
The parallelism degree in Apache Flink is static as dynamic
adjustments can not be made on-the-fly without stopping
and restarting the whole system. The default configuration in
Apache Flink deploys one pipeline per slot – i.e., the whole
sequence of operators of the Sentiment Analysis application.
The experiments consider the state-of-the-art policies imple-
mented in Apache Flink, BurstFlow’s RAPP, and Baseline.

a: EXECUTION TIME AND THROUGHPUT
The first evaluation comprises an analysis of the execu-
tion time with and without BurstFlow’s ETAMBS, as pre-
sented in Table 4. The results demonstrate the improvements
when utilizing the proposed solution for determining the
micro-batch sizes dynamically. BurstFlow’s ETAMBS allows
the system to reduce the execution time by over 8%. The
benefits vary between the different data partition policies
as each one distributes differently the incoming workloads.
BurstFlow’s ETAMBS permits operator replicas to receive
micro-batches with several tweets. In contrast, no Burst-
Flow’s ETAMBS requires each operator replica to consume
one tweet at-a-time from the MQS. This data transfer adds
an average of 65 ms to each tweet retrieval because of the
network latency between the East US data center and the East
US data center.

TABLE 4. Execution time in seconds with and without ETAMBS.

Table 5 presents a comparison between BurstFlow’s RAPP
and state-of-the-art solutions by considering ETAMBS,
except Baseline which considers one at-a-time. The table
contains the execution time in seconds and the percentage of
improvement that BurstFlow’s RAPP achieved compared to
the other solutions (% of Gain). The improvement is evident
with any algorithm. In particular, the Flink’s Broadcast sends
a copy of each micro-batch to each operator replica, and it
picks the outcomes from the operator replica who finishes
first. This allows the Flink’s Broadcast to achieve only %
higher execution time than BurstFlow’s RAPP. However, this
performance improvement requires a higher effort in the
network and computing resources because of wasting time
processing spare copies of the micro-batches. Nevertheless,
BurstFlow’s RAPP is 37%, 70%, and 77% faster than Base-
line, Flink’s Random, and Flink’s Rebalance respectively
because it implements an algorithm to deal with heteroge-
neous workloads.

219132 VOLUME 8, 2020



P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

TABLE 5. Average execution time duration.

SP clusters often comprise homogeneous computing
resources, and current solutions cannot manage the distribu-
tion of incoming workloads in heterogeneous clusters. This
happens because existing data partition solutions, even for
stateless operators, neglect the required time for processing
an incoming workload into resource with low throughput.
The workload in each operator replica varies mainly because
each micro-batch has a different number of messages requir-
ing different times for parsing the micro-batches in the Senti-
ment Analysis application. The Classify operator also leads to
a different workload as it requires access to a database in the
HDFS in order to check the frequency of positive and negative
words in each tweet.

Figure 7 summarizes the throughput per node when apply-
ing BurstFlow’s RAPP and the state-of-the-art solutions,
where the y-axis is the number of processed messages while
the x-axis is the execution time in seconds. Flink’s Rebalance
distributes the workload in a round-robin fashion, neglecting
the required time to process each micro-batch. Likewise,

FIGURE 7. Throughput per node.

Flink’s Random divides the workload using a uniform distri-
bution. In contrast, BurstFlow’s RAPP creates a ratio between
memory and CPU per operator replica, which is updated
periodically. This ratio leads to 2.5 times less execution
time because it assigns a micro-batch to the most available
machines, avoidingwaiting times resulted from queuedwork-
loads.

The BurstFlow’s RAPP algorithm provides an almost fair
distribution, with a more homogeneous throughput in com-
parison with the Flink’s Broadcast in most of the execution
time as seen in Figure 7. Master and Slave 2 have more free
resources to task execution than Slave 3, with two cores and a
3.5 GBmemory. In this aspect, the RAPP algorithm promotes
1.9 times more computational resource usage than Flink’s
Broadcast. Flink’s Broadcast also transmits messages for all
computing resources, promoting data deluge in the internal
memory buffer and decreasing CPU consumption but a higher
computational cost. In the next experiments, this resource
consumption is evaluated in detail.

b: RESOURCE CONSUMPTION
The resource consumption evaluation enables identifying
bottlenecks that impact the application performance and the
solution as a whole. This subsection analyses the Central
Processing Unit (CPU) and memory use collected during the
execution time of applications. The results are the average
execution time to each experiment.

Figure 8, in the top, shows the results of the experiment
evaluating the average CPU usage for each machine in the
cluster for the algorithms applied to the BurstFlow. The CPU
usage is measured in percentage at the y-axis, and the x-axis
shows the machines. This experiment evaluates the influence
of BurstFlow on CPU usage.

In comparison, side by side, the presence of the ETAMBS
approach with the BurstFlow’s RAPP is up to 49%, in mean,
more efficient in exploring the available CPU resources in
opposition without its use. This result is due to the BurstFlow
with ETAMBS approach having more data to process at the
same time compared to the approach without resizing the data
flow. The one-at-a-time approach uses, in the mean, 40%
fewer CPU resources to a higher delay of 36% of execu-
tion time. Thus it produces lower execution throughput and
requires more communication, which results in the applica-
tion delay.

The CPU usage reflects in the use of memory for the
same scenarios. Figure 8 in the bottom displays the average
memory use of each node. The y-axis measures the memory
use in GB and the x-axis indicates the machines. There are
some contrasts in this chart because the BurstFlow’s RAPP
with ETAMBS seeks to optimize use of the memory. The
memory is determinant for stream processing because the
raw data is temporarily persisted in memory to be computed.
Thus, more homogeneous memory use is expected as well as
more CPU use since there is more data to process due to the
flow re-partitioning of data.

VOLUME 8, 2020 219133



P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

FIGURE 8. Average per node.

BurstFlow’s RAPP explores better the available CPU
resources without to compromise the memory use. It is clear
that the BurstFlow’s RAPP uses more CPU and memory
in comparison with baseline execution, either by a minimal
overhead in resizing the input data either by having more
data to process at same time. Other important details are that
Flink’s Broadcast compared with BurstFlow’s RAPP has a
32% lower use of processor and 36% higher consumption of
memory on the average.

In general, CPU usage achieves more availability with
BurstFlow, and owing to this, the performance increases.
It may not be ideal in some cases, such as using Flink’s
Random and Flink’s Rebalance algorithms when the data
distribution approach is to create equal load per partition or
seeking a uniform distribution.

D. THREATS TO VALIDITY
The experiments evaluation was performed in the Microsoft
Azure Cloud Computing Platform, and due to this, the model
has the following assumptions:

1) The machines are stables without failures and with a
high SLA level;

2) The Data Orchestrator, Apache Kafka, and Apache
Flink are safe and not exposed to the Internet directly,
because they are behind the Microsoft Azure Firewall,
and therefore the model is not subject to hackers or
malicious users.

VI. CONCLUSIONS AND FUTURE WORK
This paper introduced BurstFlow, a promising tool for
enhancing communication between multiple cloud providers.
The proposed solution overcomes existing orchestra-
tion issues presented in cloud-based stream processing

frameworks. For instance, Apache Flink permits to deploy
applications on a single cloud provider while the proposed
tool manages the computing resources dynamically in a
geographically distributed MC infrastructure. The proposed
solution also improves the application latency and through-
put by automatically adjusting the size of micro-batches
using a feedback loop to collect metrics and make
decisions.

BurstFlow also enables to control the distribution of
data in each operator replica by employing ad-hoc parti-
tioning policies. This flexibility leverages BurstFlow to be
applied to multiple scenarios without compromising mem-
ory usage, avoiding the swap context between storage and
memory, and leading to low application latency. Our solution
was evaluated in an MC deployment utilizing a real-world
application. The proposed solution was compared to the
state-of-the-art methods for data partitioning and policies
used in Apache Flink and cloud-based solutions. Results
have shown that BurstFlow reduces the execution time
by 77% in the best case, improves the CPU and mem-
ory usage by up to 49%, and delivers the throughput of
approximately 1.5GB/s.

For future work, BurstFlow intends to include methods to
estimate the micro-batches sizes by considering the infor-
mation of stream processing operators. For example, a big
part of stream processing applications has stateful operators.
These operators often process incoming data according to
a counter or time window. Considering the requirements to
build a window, we plan to adjust how to compute the size
of the micro-batches that will be transferred between cloud
providers. Also, it is feasible to evaluate our tool using bench-
marks from multiple fields in order to demonstrate all the
existing benefits of BurstFlow.

219134 VOLUME 8, 2020



P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

REFERENCES
[1] M. Hilbert, ‘‘Big data for development: A review of promises and chal-

lenges,’’ Develop. Policy Rev., vol. 34, no. 1, pp. 135–174, Jan. 2016,
doi: 10.1111/dpr.12142.

[2] N. Miloslavskaya and A. Tolstoy, ‘‘Application of big data, fast data,
and data lake concepts to information security issues,’’ in Proc. 4th Int.
Conf. Future Internet Things Cloud Workshops, Apr. 2016, pp. 148–153,
doi: 10.1109/W-FiCloud.2016.41.

[3] T. Mohammed, A. Albeshri, I. Katib, and R. Mehmood, ‘‘Ubipriseq—
Deep reinforcement learning to manage privacy, security, energy, and
qos in 5g iot hetnets,’’ Appl. Sci., vol. 10, no. 20, pp. 1–18, 2020,
doi: 10.3390/app10207120.

[4] N. Janbi, I. Katib, A. Albeshri, and R. Mehmood, ‘‘Distributed artificial
intelligence-as-a-service (daiaas) for smarter ioe and 6g environments,’’
Sensors, vol. 20, pp. 1–28, May 2020, doi: 10.3390/s20205796.

[5] M. T. Tun, D. E. Nyaung, and M. P. Phyu, ‘‘Performance evaluation of
intrusion detection streaming transactions using apache kafka and spark
streaming,’’ in Proc. Int. Conf. Adv. Inf. Technol. (ICAIT), Nov. 2019,
pp. 25–30, doi: 10.1109/AITC.2019.8920960.

[6] J. Abawajy, ‘‘Comprehensive analysis of big data variety landscape,’’ Int.
J. Parallel, Emergent Distrib. Syst., vol. 30, no. 1, pp. 5–14, Jan. 2015,
doi: 10.1080/17445760.2014.925548.

[7] K. J. Matteussi, B. F. Zanchetta, G. Bertoncello, J. D. D. Dos Santos,
J. C. S. Dos Anjos, and C. F. R. Geyer, ‘‘Analysis and performance
evaluation of deep learning on big data,’’ in Proc. IEEE Symp. Com-
put. Commun. (ISCC), Jun. 2019, pp. 1–6, doi: 10.1109/ISCC47284.2019.
8969762.

[8] A. Katsifodimos and S. Schelter, ‘‘Apache flink: Stream analytics at scale,’’
inProc. IEEE Int. Conf. Cloud Eng.Workshop (IC2EW), Apr. 2016, p. 193,
doi: 10.1109/IC2EW.2016.56.

[9] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, ‘‘Apache spark: A unified engine for
big data processing,’’Commun. ACM, vol. 59, no. 11, pp. 56–65, Oct. 2016,
doi: 10.1145/2934664.

[10] J. Berliáska and M. Drozdowski, ‘‘Comparing load-balancing algorithms
for MapReduce under zipfian data skews,’’ Parallel Comput., vol. 72,
pp. 14–28, Feb. 2018, doi: 10.1016/j.parco.2017.12.003.

[11] E. Alomari, I. Katib, and R. Mehmood, ‘‘Iktishaf: A big data road-traffic
event detection tool using Twitter and spark machine learning,’’ Mobile
Netw. Appl., vol. 2020, pp. 1–16, Aug. 2020, doi: 10.1007/s11036-020-
01635-y.

[12] R. Tudoran, A. Costan, O. Nano, I. Santos, H. Soncu, and G. Antoniu,
‘‘JetStream: Enabling high throughput live event streaming on multi-site
clouds,’’ Future Gener. Comput. Syst., vol. 54, pp. 274–291, Jan. 2016, doi:
10.1016/j.future.2015.01.016.

[13] M. Welsh, D. Culler, and E. Brewer, ‘‘SEDA: An architecture for well-
conditioned, scalable Internet services,’’ ACM SIGOPS Operating Syst.
Rev., vol. 35, no. 5, pp. 230–243, Dec. 2001, doi: 10.1145/502059.
502057.

[14] T. Das, Y. Zhong, I. Stoica, and S. Shenker, ‘‘Adaptive stream processing
using dynamic batch sizing,’’ in Proc. ACM Symp. Cloud Comput., 2014,
pp. 1–13, doi: 10.1145/2670979.2670995.

[15] A. Aral and T. Ovatman, ‘‘A decentralized replica placement algorithm
for edge computing,’’ IEEE Trans. Netw. Service Manage., vol. 15, no. 2,
pp. 516–529, Jun. 2018, doi: 10.1109/TNSM.2017.2788945.

[16] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. Ullah Khan, ‘‘The rise of big data on cloud computing: Review
and open research issues,’’ Inf. Syst., vol. 47, pp. 98–115, Jan. 2015,
doi: 10.1016/j.is.2014.07.006.

[17] C. Rista, D. Griebler, C. A. F. Maron, and L. G. Fernandes, ‘‘Improving the
network performance of a container-based cloud environment for Hadoop
systems,’’ in Proc. Int. Conf. High Perform. Comput. Simul. (HPCS),
Jul. 2017, pp. 619–626, doi: 10.1109/HPCS.2017.97.

[18] J. C. S. Dos Anjos, K. J. Matteussi, P. R. R. De Souza, G. J. A. Grabher,
G. A. Borges, J. L. V. Barbosa, G. V. Gonzalez, V. R. Q. Leithardt, and
C. F. R. Geyer, ‘‘Data processing model to perform big data analytics in
hybrid infrastructures,’’ IEEE Access, vol. 8, pp. 170281–170294, 2020,
doi: 10.1109/ACCESS.2020.3023344.

[19] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, ‘‘Twitter heron: Stream process-
ing at scale,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015,
pp. 239–250, doi: 10.1145/2723372.2742788.

[20] Q. Zhang, Y. Song, R. R. Routray, and W. Shi, ‘‘Adaptive block
and batch sizing for batched stream processing system,’’ in Proc.
IEEE Int. Conf. Autonomic Comput. (ICAC), Jul. 2016, pp. 35–44,
doi: 10.1109/ICAC.2016.27.

[21] J. C. S. dos Anjos, K. J. Matteussi, P. R. de Souza, A. S. da Veith,
G. Fedak, J. L. V. Barbosa, and C. F. R. Geyer, ‘‘Enabling strategies for
big data analytics in hybrid infrastructures,’’ Proc. Int. Conf. High Perform.
Comput. Simulation, 2018, pp. 869–876, doi: 10.1109/HPCS.2018.00140.

[22] R. Fernandez, P. R. Pietzuch, J. Kreps, N. Narkhede, J. Rao, J. Koshy,
D. Lin, C. Riccomini, and G.Wang, ‘‘Liquid: Unifying nearline and offline
big data integration,’’ in Proc. 7th Biennial Conf. Innov. Data Syst. Res.,
2015, pp. 1–8.

[23] (2020). Zookeeper. [Online]. Available: https://zookeeper.apache.org/
[24] Z. Zhuang, T. Feng, Y. Pan, H. Ramachandra, and B. Sridharan, ‘‘Effec-

tive multi-stream joining in apache samza framework,’’ in Proc. IEEE
Int. Congr. Big Data, Jun. 2016, pp. 267–274, doi: 10.1109/BigData-
Congress.2016.41.

[25] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, ‘‘StreamCloud: An elastic and scalable data streaming sys-
tem,’’ IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2351–2365,
Dec. 2012, doi: 10.1109/TPDS.2012.24.

[26] Z. Zhao, H. Zhang, X. Geng, and H. Ma, ‘‘Resource-aware cache man-
agement for in-memory data analytics frameworks,’’ in Proc. IEEE Intl
Conf Parallel Distrib. Process. with Appl., Dec. 2019, pp. 364–371,
doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00060.

[27] W. Xiu, J. Guo, and Y. Li, ‘‘A memory management strategy based
on task requirement for in-memory computing,’’ in Proc. Asia–Pacific
Conf. Image Process., Electron. Comput. (IPEC), Apr. 2020, pp. 406–412,
doi: 10.1109/IPEC49694.2020.9115157.

[28] Z. Tang, A. Zeng, X. Zhang, L. Yang, and K. Li, ‘‘Dynamic memory-aware
scheduling in spark computing environment,’’ J. Parallel Distrib. Comput.,
vol. 141, pp. 10–22, Jul. 2020, doi: 10.1016/j.jpdc.2020.03.010.

[29] K. Cao, Y. Liu, G. Meng, and Q. Sun, ‘‘An overview on edge
computing research,’’ IEEE Access, vol. 8, pp. 85714–85728, 2020,
doi: 10.1109/ACCESS.2020.2991734.

[30] R. Buyya and A. V. Dastjerdi, Internet of Things: Principles and
Paradigms, 1st ed. San Francisco, CA, USA: Morgan Kaufmann, 2016.

[31] R. Jain, The Art of Computer Systems Performance Analysis—Techniques
for Experimental Design,Measurement, Simulation, andModeling, 2nd ed.
Hoboken, NJ, USA: Wiley, 1991.

PAULO RICARDO RODRIGUES DE SOUZA, JR.
(Graduate Student Member, IEEE) received the
bachelor’s degree in computer science from the
University of Passo Fundo (UPF) and the master’s
degree in computer science from the Federal Uni-
versity of Rio Grande do Sul (UFRGS), in 2018.
He is currently pursuing the Ph.D. degree in com-
puter science with Univ Rennes, Inria, CNRS. His
areas of interests include big data, stream process-
ing systems, distributed and parallel programming,

load balance, and job scheduling.

KASSIANO J. MATTEUSSI (Member, IEEE)
received the bachelor’s degree in computer sci-
ence from the Regional Community University of
Chapecó (Unochapecó) and the master’s degree
in computer science from the Pontifical Catholic
University of Rio Grande do Sul (PUCRS),
in 2015. He is currently pursuing the Ph.D. degree
in computer science with the Federal University
of Rio Grande do Sul (UFRGS). He is certified in
software engineering from the Regional Commu-

nity University of Chapecó (Unochapecó). His areas of interests include big
data, cloud computing, virtualization, distributed systems, high-performance
computing, blockchain, FOG, and EDGE computing.

VOLUME 8, 2020 219135

http://dx.doi.org/10.1111/dpr.12142
http://dx.doi.org/10.1109/W-FiCloud.2016.41
http://dx.doi.org/10.3390/app10207120
http://dx.doi.org/10.3390/s20205796
http://dx.doi.org/10.1109/AITC.2019.8920960
http://dx.doi.org/10.1080/17445760.2014.925548
http://dx.doi.org/10.1109/ISCC47284.2019.8969762
http://dx.doi.org/10.1109/ISCC47284.2019.8969762
http://dx.doi.org/10.1109/IC2EW.2016.56
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.1016/j.parco.2017.12.003
http://dx.doi.org/10.1007/s11036-020-01635-y
http://dx.doi.org/10.1007/s11036-020-01635-y
http://dx.doi.org/10.1016/j.future.2015.01.016
http://dx.doi.org/10.1145/502059.502057
http://dx.doi.org/10.1145/502059.502057
http://dx.doi.org/10.1145/2670979.2670995
http://dx.doi.org/10.1109/TNSM.2017.2788945
http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1109/HPCS.2017.97
http://dx.doi.org/10.1109/ACCESS.2020.3023344
http://dx.doi.org/10.1145/2723372.2742788
http://dx.doi.org/10.1109/ICAC.2016.27
http://dx.doi.org/10.1109/HPCS.2018.00140
http://dx.doi.org/10.1109/BigDataCongress.2016.41
http://dx.doi.org/10.1109/BigDataCongress.2016.41
http://dx.doi.org/10.1109/TPDS.2012.24
http://dx.doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00060
http://dx.doi.org/10.1109/IPEC49694.2020.9115157
http://dx.doi.org/10.1016/j.jpdc.2020.03.010
http://dx.doi.org/10.1109/ACCESS.2020.2991734


P. R. R. de Souza, Jr. et al.: Boosting Big Data Streaming Applications in Clouds With BurstFlow

ALEXANDRE DA SILVA VEITH received the
Ph.D. degree in computer science from the Ecole
Normale Superieure (ENS), Lyon, and the Uni-
versity of Lyon. He is currently a Postdoc-
toral Researcher with the University of Toronto,
Canada. His interests include reinforcement learn-
ing, the IoT, and data stream processing on
cloud-edge infrastructure.

BRENO F. ZANCHETTA received the bachelor’s
degree of science in computer engineering from
the Federal University of Rio Grande (FURG)
in 2017. He is currently a Graduate Student in
computer science with the Federal University of
Rio Grande do Sul (UFRGS). He is also working
as a Java Developer for POS solutions at the Rio
Grande do Sul, Brazil. His topics of interest and
areas of research include edge computing, deep
learning, big data, and SOCs evaluation.

VALDERI R. Q. LEITHARDT (Member, IEEE)
received the Ph.D. degree in computer science
from INF-UFRGS, Brazil, in 2015. He is currently
anAdjunct Professor with the Polytechnic Institute
of Portalegre and a Researcher Integrated to the
VALORIZA Research Group, School of Technol-
ogy and Management (ESTG). He is also a Col-
laborating Researcher in the following research
groups: COPELABS from Universidade Lusófona
de Lisboa, Portugal; Telecommunications Insti-

tute of Portugal, IT Branch Covilhã, Portugal; Department of Informat-
ics, University Beira Interior, Covilhã, Portugal; Laboratory of Embedded
and Distributed Systems, University of Vale do Itajaí (UNIVALI), Brazil;
Expert Systems and Applications Laboratory; and is a Recognized Research
Group (GIR) of the University of Salamanca, Spain. Themainline of research
is in distributed systems with a focus on data privacy, communication and
programming protocols, involving scenarios and applications for the Internet
of Things, smart cities, BIG DATA, cloud computing, and Blockchain.

ÁLVARO L. MURCIEGO received the master’s
degree in intelligent systems and the Ph.D. degree
in computer engineering from the University of
Salamanca, in 2015 and 2019, respectively. He is
currently working on the Expert Systems and
Applications Laboratory Research Group, Com-
puter Science Department, University of Sala-
manca, as a Postdoctoral Researcher. Throughout
his training, he has followed a well-defined line
of research, focused on machine learning, route

optimization, IoT sensors, and edge computing.

EDISON PIGNATON DE FREITAS (Member,
IEEE) received the M.Sc. degree in computer sci-
ence from the Federal University of Rio Grande
do Sul (UFRGS), Brazil, in 2007, and the Ph.D.
degree in computer science and engineering from
Halmstad University, Sweden, in 2011. He is a
Computer Engineer at the Military Institute of
Engineering, Brazil, in 2003. He currently holds
an Associate Professor with UFRGS, where he
was also the Secretary for International Relations,

developing research in the Graduate Programs in computer science and in
electrical engineering. His research interests are mainly in the following
areas: computer networks, the Internet of Things, real-time systems, mas-
sively distributed systems, multiagents systems, and unmanned systems.

JULIO C. S. DOS ANJOS received the bachelor’s
degree in electrical engineering with an emphasis
on electronics from the Pontifical Catholic Uni-
versity of Rio Grande do Sul (PUC/RS), in 1991,
the master’s degree in computer science from
the Federal University of Rio Grande do Sul,
in 2012, and the Ph.D. degree in computer science
from the Federal University of Rio Grande do
Sul (UFRGS/RS), in 2017. He has been holding
a postdoctoral position in computer science with

UFRGS since 2017. He is currently a Researcher in the areas of big data,
MapReduce and streaming processing, distributed and heterogeneous sys-
tems, hybrid infrastructures, and big data analytics with machine learning
and deep learning.

CLAUDIO F. R. GEYER received theM.Sc. degree
in computer science fromUFRGS/RS in 1986, and
the Ph.D. degree in informatics from the Univer-
sité de Grenoble I, in 1991. He was a Mechanics
Engineer at UFRGS/RS in 1978, where he is also a
Tenured Professor in computer science. His areas
of interest are pervasive and ubiquitous comput-
ing, grid and volunteer computing, scheduling and
data-intensive computing, and big data.

219136 VOLUME 8, 2020


