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Abstract

In this paper, we compute the Gallai-Edmonds decomposition of a unicyclic graph
G using linear algebraic tools. More precisely, the Gallai-Edmonds decomposition of
G is obtained from the null space associated with adjacency matrices of its subtrees.

1 Introduction

The aim of spectral graph theory is to obtain structural properties of a graph using the
eigenvalues and eigenvectors of the matrices associated with the graph. In particular, relating
classical parameters with spectral parameters is quite useful and this is the general goal of
this paper. Here, we use the null space of a unicyclic graph G, which is the null space of
its adjacency matrix, to compute the Gallai-Edmonds decomposition of G. More precisely,
we obtain the Gallai-Edmonds decomposition (see definition below) of unicyclic graphs from
the null decomposition of its subtrees.

Null decomposition of a graph (see definition in Section 2), is defined from subsets of
vertices of a graph that satisfy certain properties related to the null space. We remark
that the null decomposition provides information on structure of a graph, as for example,
matching and independence number [2, 3, 14, 15].

In order to explain our results, we need a few definitions here. For an undirected graph
G = (V,E), a matching M in G is a set of pairwise non-adjacent edges. A maximum
matching is a matching of largest cardinality in G and the matching number of G, denoted
by ν(G), is the size of a set of any maximum matching. M(G) denotes the set of all maximum
matchings of G. A vertex is saturated by M , if it is an endpoint of one of the edges in the
matching M . Otherwise the vertex is said to be non-saturated. The neighborhood of a
vertex v ∈ V in G is defined to be N(v) = {u ∈ V : {u, v} ∈ E}. The Gallai-Edmonds
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decomposition of G [8, 11] is a partition of V into three sets with certain properties related
to maximum matchings of G. More precisely, V is partitioned into three sets EG(G), R(G)
and S(G) where:

� EG(G) = {v ∈ V : ∃M ∈ M(G) such that M does not saturate v}.

� R(G) = N(EG(G))− EG(G), where N(EG(G)) =
⋃

v∈EG(G)

N(v).

� S(G) = V − (EG(G) ∪R(G)).

To give a glimpse of our results, we will compute the Gallai-Edmonds decomposition of
the unicyclic graph G in Figure 1 (left) using our technique which is based on linear algebra.
Consider C the cycle of G. First, using the null space we compute the support (the subset
of vertices for which at least one of its corresponding coordinates of the eigenvectors of the
null space of the adjacency matrix is nonzero), core (neighborhood of the support) and N-
vertices (the remaining vertices) of the graph G − C. Note that Supp(G − C) = {f, g},
Core(G − C) = {e} and V (GN(G − C)) = {a, b, j, ℓ}. Since |V (C)| is even, by Theorem
4.6, the Gallai-Edmonds decomposition of the unicyclic graph G is given by EG(G) =
Supp(G− C) = {f, g}, R(G) = Core(G− C) = {e} and S(G) = V (GN(G− C)) ∪ V (C) =
{a, b, c, d, i, h, j, ℓ} as depicted in Figure 1 (right).
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Figure 1: Unicyclic graph G and its subtrees G− C.

Gallai-Edmonds decomposition was independently introduced by Gallai [10, 11] and
Edmonds [8]. This classical decomposition has several applications [7, 16] and it has been
studied by many mathematicians [1, 4, 6, 7, 9, 17, 20] over the years. Many tools for matching
theory have been developed from this decomposition. For instance, the well-known Gallai-
Edmonds structure theorem ([18], Chapter 3) which states the following:

� The subgraph induced by S(G) has a perfect matching.

� ν(G) = 1
2
(|V | − c(EG(G)) + |R(G)|), where c(EG(G)) denotes the number of components

of the graph induced by EG(G).

Cymer [7] shows that the Gallai-Edmonds decomposition can be applied to the pruning
methods of constraint programming. The authors of [19, 21] used, respectively, the notions
of path-matching and matching cover to obtain more general versions of the Gallai-Edmonds
structure theorem for graphs and hypergraphs. For any graph, the Gallai-Edmonds decomposition
can be obtained in polynomial time via the Edmonds Matching Algorithm (see [18], Chapters
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3 and 9). Unicyclic graphs are important because there are many molecules that can be
modeled as a unicyclic graph [12, 22, 24] and, using the spectral graph theory, it is possible
to discuss and predict some behaviors of these molecules [5]. Moreover, a chemical application
of null space of a molecular graph G is related to its dimension, because if nullity of G is
greater than 0, then the corresponding chemical compound is highly reactive and unstable,
or nonexistent [13].

In this paper, we compute the Gallai-Edmonds decomposition of a unicyclic graph G
through linear algebra. More precisely, we use the null decomposition of its subtrees to
obtain EG(G), R(G) and S(G).

The outline of the paper is as follows. In Section 2, we recall some basic definitions
and preliminary results. In Sections 3 and 4, we obtain our main results. More precisely,
we give a relationship between the Gallai-Edmonds decomposition of a unicyclic graph and
the null decomposition of its subtrees. This relationship gives a nice way to compute the
Gallai-Edmonds decomposition of unicyclic graphs from the null space of its subtrees, that
is, from linear algebra.

2 Basic definitions and preliminary results

The support of a graph G is given by

Supp(G) = {v ∈ V (G) : ∃x ∈ N (G) such that xv ̸= 0},

where N (G) denotes the null space of G, that is, the null space of its adjacency matrix.
Support gives important information about structure of trees. The next two lemmas show
the relationship between the support of trees and their independent sets and matchings.

Lemma 2.1. [14] Let T be a tree. Then Supp(T ) is an independent set of T .

Lemma 2.2. [2] Let T be a tree. Then EG(T ) = Supp(T ).

The core of G, denoted by Core(G), is defined by:

Core(G) =
⋃

v∈Supp(G)

N(v).

The set of N -vertices of G, denoted by V (GN(G)), is given by:

V (GN(G)) = V (G)− (Supp(G) ∪ Core(G)).

For a tree T , we have that Core(T ) = R(T ) and V (GN(T )) = S(T ), see [2, 14]. Null
decomposition of G is a pair of induced subgraphs of G. The first subgraph is induced by
Supp(G) and Core(G) and the second one is induced by V (GN(G)). Lemma 2.3 gives
a nice way to compute the independence and matching numbers of trees using its null
decompositions.
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Lemma 2.3. [14] Let T be a tree. Then

ν(T ) = |Core(T )|+ |V (GN(T ))|
2

α(T ) = |Supp(T )|+ |V (GN(T ))|
2

.

Let G be a unicyclic graph and let C be the unique cycle of G. For each vertex v ∈ V (C),
we denote by G{v} the induced connected subgraph of G with maximum number of vertices,
which contains the vertex v and no other vertex of C. G{v} is called the pendant tree of G
at v (see Figure 3). The unicyclic graph G is said to be of Type I if there exists at least one
pendant tree G{v} such that v /∈ Supp(G{v}), otherwise, G is said to be of Type II (for
more details see [2]). Notice that the set of unicyclic graphs can be divided into two classes,
the set of unicyclic graphs of Type I and the set of unicyclic graphs of Type II.

Lemmas 2.4 and 2.5 give a nice way to compute the matching number of unicyclic graphs
using the null decomposition of its subtrees.

Lemma 2.4. [2] If G is a unicyclic graph of Type I and G{v} a pendant tree such that
v /∈ Supp(G{v}), then

ν(G) = |Core(G{v})|+|Core(G−G{v})|+ |V (GN(G{v}))|+ |V (GN(G−G{v}))|
2

= ν(G{v}) + ν(G−G{v}).

Lemma 2.5. [2] Let G be a unicyclic graph and C its cycle. Let G − C =
k⋃

i=1

Ti, where Ti

is a connected component of G− C. If G is a unicyclic graph of Type II, then

ν(G) =

⌊
|V (C)|

2

⌋
+

k∑
i=1

|Core(Ti)|+
|V (GN(Ti))|

2

= ν(C) +
k∑

i=1

ν(Ti).

In the next sections we will study the Gallai-Edmonds decomposition of unicyclic graphs
of Type I and II, respectively.

3 Gallai-Edmonds decomposition of unicyclic graphs

of Type I

In this section, we obtain a relationship between the Gallai-Edmonds decomposition of a
unicyclic graph G of Type I and the null decompositions of G{v} and G − G{v}, where
v /∈ Supp(G{v}).

The next technical lemmas and remarks will be used to prove our main result in this
section (Theorem 3.9).
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Remark 3.1. LetG be a unicyclic graph andG{v} a pendant tree. Let u,w ∈ N(v) ∩ V (G−G{v}).
Notice that E(G{v}), E(G − G{v}) and {{u, v}, {w, v}} form a partition of E(G), thus,
E(G) = E(G{v}) ∪ E(G−G{v}) ∪ {{u, v}, {w, v}}. Hence, given M a matching in G we
have that

M = (M ∩ E(G{v})) ∪ (M ∩ E(G−G{v})) ∪ (M ∩ {{u, v}, {w, v}}) .

Remark 3.2. Note that for all graph G and v ∈ V (G) we have that

ν(G)− 1 ≤ ν(G− v) ≤ ν(G).

Lemma 3.3. Let T be a tree and v ∈ V (T ). Then v ∈ Supp(T ) if and only if ν(T − v) =
ν(T ).

Proof. Suppose that v ∈ Supp(T ), then by Lemma 2.2 there is M ∈ M(T ) such that M
does not saturate v. Thus, M is a matching in T − v. Then ν(T ) = |M | ≤ ν(T − v).
Given M ∈ M(T − v). Note that M is a matching in T , because T − v ⊆ T . Thus,
ν(T − v) = |M | ≤ ν(T ). Therefore, ν(T ) = ν(T − v).

Conversely, suppose that ν(T ) = ν(T − v). Given M ∈ M(T − v). Notice that M is
a matching in T , because T − v ⊆ T . Since ν(T ) = ν(T − v), we have that M ∈ M(T ).
Moreover, M does not saturate v. Hence, by Lemma 2.2 we conclude that v ∈ Supp(T ).

Lemma 3.4. Let G be a unicyclic graph of Type I and G{v} a pendant tree such that
v /∈ Supp(G{v}). If M ∈ M(G), then M ∩ E(G−G{v}) ∈ M(G−G{v}).

Proof. Suppose there is M ∈ M(G) such that M ∩ E(G−G{v}) /∈ M(G − G{v}). Thus,
we have that

|M ∩ E(G−G{v})| ≤ ν(G−G{v})− 1.

Let u,w ∈ N(v) ∩ V (G−G{v}).
Case 1: {u, v} /∈ M and {w, v} /∈ M
Since |M ∩ E(G−G{v})| ≤ ν(G−G{v})− 1, we have that

ν(G) = |M |
= |M ∩ E(G{v})|+ |M ∩ E(G−G{v})|
≤ ν(G{v}) + ν(G−G{v})− 1

< ν(G{v}) + ν(G−G{v}),

which is a contradiction, because by Lemma 2.4, we have that ν(G) = ν(G{v})+ν(G−G{v}).
Case 2: {u, v} ∈ M or {w, v} ∈ M
Note that in this case M∩E(G{v}) does not saturate v, because v is saturate by {u, v} or by
{w, v}. Since v /∈ Supp(G{v}), by Lemma 2.2 we conclude that M ∩E(G{v}) /∈ M(G{v}).
Thus, |M ∩ E(G{v})| ≤ ν(G{v})− 1.

Hence,
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ν(G) = |M |
= |M ∩ E(G{v})|+ |M ∩ E(G−G{v})|+ |M ∩ {{u, v}, {w, v}}|
= |M ∩ E(G{v})|+ |M ∩ E(G−G{v})|+ 1

≤ ν(G{v})− 1 + ν(G−G{v})− 1 + 1

≤ ν(G{v}) + ν(G−G{v})− 1

< ν(G{v}) + ν(G−G{v}),

which is a contradiction, because by Lemma 2.4, we have that ν(G) = ν(G{v}) + ν(G −
G{v}).

Lemma 3.5. Let G be a unicyclic graph of Type I and G{v} a pendant tree such that
v /∈ Supp(G{v}). Let u,w ∈ N(v) ∩ V (G−G{v}) and M ∈ M(G). If {u, v} /∈ M and
{w, v} /∈ M , then M ∩ E(G{v}) ∈ M(G{v}), otherwise, M ∩ E(G{v}) ∈ M(G{v} − v).

Proof. Case 1: {u, v} /∈ M and {w, v} /∈ M
Using Remark 3.1 and Lemma 2.4, we have that

ν(G{v}) + ν(G−G{v}) = ν(G) = |M | = |M ∩ E(G{v})|+ |M ∩ E(G−G{v})|.

Since, by Lemma 3.4,
|M ∩ E(G−G{v})| = ν(G−G{v}),

we have that
ν(G{v}) = |M ∩ E(G{v})|.

Hence, M ∩ E(G{v}) ∈ M(G{v}).

Case 2: {w, v} ∈ M or {u, v} ∈ M
Note that {w, v} and {u, v} can not belong simultaneously to M , because both are incident
in v. Moreover, M ∩E(G{v}) does not saturate v, because {w, v} or {u, v} is incident in v.
Thus, M ∩E(G{v}) is a matching in G{v}− v. Using Remark 3.1 and Lemma 2.4, we have
that

ν(G{v}) + ν(G−G{v}) = ν(G) = |M | = |M ∩ E(G{v})|+ |M ∩ E(G−G{v})|+ 1.

Since, by Lemma 3.4,
|M ∩ E(G−G{v})| = ν(G−G{v}),

we have that

|M ∩ E(G{v})| = ν(G{v})− 1.

Therefore, using Lemma 3.3 and Remark 3.2 we conclude that M ∩ E(G{v}) ∈ M(G{v} −
v).
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Lemma 3.6. Let G be a unicyclic graph of Type I, G{v} a pendant tree such that v /∈
Supp(G{v}), u ∈ N(v) ∩ V (G−G{v}) and M ∈ M(G). If u /∈ Supp(G−G{v}), then
{u, v} /∈ M .

Proof. Suppose there is M ∈ M(G) such that {u, v} ∈ M . Note that M ∩ E(G−G{v})
is matching in G − G{v}. Moreover, M ∩ E(G−G{v}) does not saturate u. Since u /∈
Supp(G−G{v}), by Lemma 2.2 we conclude that M ∩ E(G−G{v}) /∈ M(G − G{v}).
Thus, using Lemma 3.4 we conclude that M /∈ M(G), which is a contradiction.

Proposition 3.7. Let G be a unicyclic graph of Type I and G{v} a pendant tree such that
v /∈ Supp(G{v}). Let u,w ∈ N(v) ∩ V (G−G{v}) such that u,w /∈ Supp(G−G{v}). Then
M ∈ M(G) if and only if M = M1 ∪M2, where M1 ∈ M(G{v}) and M2 ∈ M(G−G{v}).

Proof. Given M ∈ M(G). Using Lemma 3.6 we conclude that {u, v} /∈ M and {w, v} /∈ M .
Moreover, using Remark 3.1, we have that M = (M ∩E(G{v}))∪ (M ∩ E(G−G{v})). By
Lemmas 3.5 and 3.4, we have that M ∩ E(G{v}) ∈ M(G{v}) and M ∩ E(G−G{v}) ∈
M(G−G{v}).

Conversely, given M = M1∪M2, where M1 ∈ M(G{v}) and M2 ∈ M(G−G{v}). Thus,
we have that |M | = |M1|+ |M2| = ν(G{v})+ ν(G−G{v}) = ν(G). Hence, M ∈ M(G).

Lemma 3.8. [3] Let G be a unicyclic graph of Type I and G{v} a pendant tree such that
v /∈ Supp(G{v}). Then Supp(G{v}) ⊆ Supp(G{v} − v).

Now, we are able to present the relationship between the Gallai-Edmonds decomposition
of a unicyclic graph of Type I and the null decomposition of its subtrees. Theorem 3.9
gives a way to obtain the Gallai-Edmonds decomposition of a unicyclic graph from the null
decompositions of G{v}, G−G{v} and G{v} − v, where v /∈ Supp(G{v}).

Theorem 3.9. Let G be a unicyclic graph of Type I, G{v} a pendant tree such that v /∈
Supp(G{v}) and u,w ∈ N(v) ∩ V (G−G{v}). If u,w /∈ Supp(G−G{v}), then

(i) EG(G) = Supp(G{v}) ∪ Supp(G−G{v})

(ii) R(G) = Core(G{v}) ∪ Core(G−G{v})

(iii) S(G) = V (GN(G{v})) ∪ V (GN(G−G{v}))

otherwise,

(i) EG(G) = Supp(G{v} − v) ∪ Supp(G−G{v})

(ii) R(G) = {v} ∪ Core(G{v} − v) ∪ Core(G−G{v})

(iii) S(G) = V (GN(G{v} − v)) ∪ V (GN(G−G{v})).

Proof. Case 1: u,w /∈ Supp(G−G{v})
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(i) Given x ∈ EG(G). Thus, there is M ∈ M(G) such that M does not saturate x. By
Proposition 3.7 we conclude that M = M1 ∪ M2, where M1 ∈ M(G{v}) and M2 ∈
M(G − G{v}). Note that M1 and M2 do not saturate x. Therefore, if x ∈ V (G{v}),
then by Lemma 2.2 we conclude that x ∈ Supp(G{v}). Similarly, if x ∈ V (G−G{v}),
then we conclude that x ∈ Supp(G−G{v}).
Now, given x ∈ Supp(G{v}) ∪ Supp(G−G{v}). We will obtain M ∈ M(G) such that
M does not saturate x. If x ∈ Supp(G{v}), then by Lemma 2.2 there isM1 ∈ M(G{v})
such that M1 does not saturate x. Consider M2 ∈ M(G−G{v}). Define M = M1∪M2.
We have that |M | = |M1|+ |M2| = ν(G{v})+ν(G−G{v}) = ν(G). Hence, M ∈ M(G)
and M does not saturate x, that is, x ∈ EG(G). Similarly, if x ∈ Supp(G−G{v}),
then we defineM = M1∪M2, whereM2 ∈ M(G−G{v}) such thatM2 does not saturate
x and M1 ∈ M(G{v}). We conclude that M ∈ M(G) and M does not saturate x,
thus, x ∈ EG(G).

(ii) Notice that

V (G−G{v}) ∩N(V (G{v})) = {u,w} and V (G{v}) ∩N(V (G−G{v})) = {v}.

Since u,w /∈ Supp(G−G{v}), N(Supp(G{v})) ∩ V (G−G{v}) = ∅ and N(Supp(G−
G{v})) ∩ V (G{v}) = ∅. Moreover, note that

N(EG(G)) = N(Supp(G{v}) ∪ Supp(G−G{v}))
= Core(G{v}) ∪ Core(G−G{v}).

By Lemma 2.1, we have that Supp(G{v}) ∪ Supp(G−G{v}) is an independent set,
thus,

(Supp(G{v}) ∪ Supp(G−G{v})) ∩ (Core(G{v}) ∪ Core(G−G{v})) = ∅
EG(G) ∩N(EG(G)) = ∅.

Therefore, N(EG(G))− EG(G) = R(G) = Core(G{v}) ∪ Core(G−G{v}).

(iii) Just use the items (i) and (ii).

Case 2: u ∈ Supp(G−G{v}) or w ∈ Supp(G−G{v})

(i) Given x ∈ EG(G). Thus, there is M ∈ M(G) such that M does not saturate x.
Note that in this case we can have {u, v} ∈ M or {w, v} ∈ M. If {u, v} ∈ M or
{w, v} ∈ M , then by Lemma 3.5 M ∩E(G{v}) ∈ M(G{v}− v). Moreover, by Lemma
3.4, we have that M ∩E(G−G{v}) ∈ M(G−G{v}). Notice that M ∩E(G{v}) and
M ∩ E(G−G{v}) do not saturate x. Thus, if x ∈ V (G{v} − v), then using Lemma
2.2 we conclude that x ∈ Supp(G{v} − v). Similarly, if x ∈ V (G−G{v}), then we
conclude that x ∈ Supp(G−G{v}).
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If {u, v} /∈ M and {w, v} /∈ M , then by same argument as in item (i) of the Case 1 we
have that x ∈ Supp(G{v}) ∪ Supp(G−G{v}). Thus, using Lemma 3.8, we have that
x ∈ Supp(G{v} − v) ∪ Supp(G−G{v}).
Now, given x ∈ Supp(G{v} − v) ∪ Supp(G−G{v}). We will obtain M ∈ M(G) such
that M does not saturate x. If x ∈ Supp(G{v} − v) and u ∈ Supp(G−G{v}), then
by Lemma 2.2 there are M1 ∈ M(G{v} − v) and M2 ∈ M(G − G{v}) such that M1

and M2 do not saturate x and u, respectively. We define M = M1∪M2∪{u, v}. We
have that |M | = |M1| + |M2| + 1 = ν(G{v} − v) + ν(G − G{v}) + 1 = ν(G{v}) +
ν(G−G{v}) = ν(G). Therefore, M ∈ M(G) and M does not saturate x. Similarly, if
x ∈ Supp(G{v} − v) and w ∈ Supp(G−G{v}), then we define M = M1∪M2∪{w, v},
where M1 ∈ M(G{v} − v) and M2 ∈ M(G − G{v}) and M1 and M2 do not saturate
x and w, respectively. Hence, M ∈ M(G) and M does not saturate x. If x ∈
Supp(G−G{v}), then we define M = M1∪M2, where M1 ∈ M(G{v}) and M2 ∈
M(G − G{v}) and M2 does not saturate x. Therefore, M ∈ M(G) and M does not
saturate x.

(ii) Note that

N(EG(G)) = N(Supp(G{v} − v) ∪ Supp(G−G{v}))
= {v} ∪ Core(G{v} − v) ∪ Core(G−G{v}).

Moreover N(EG(G)) ∩ EG(G) = ∅. Therefore, N(EG(G)) − EG(G) = R(G) =
{v} ∪ Core(G{v} − v) ∪ Core(G−G{v}).

(iii) Just use the items (i) and (ii).

In the following example, we use the Theorem 3.9 to obtain the Gallai-Edmonds decomposition
of the unicyclic graph G in Figure 2. Analyzing the entries of the vectors of the basis of the
N (G{v}) and N (G − G{v}) we obtain that Supp(G{v}) = {z, x, k}, Core(G{v}) = {v},
V (GN(G{v})) = {c, y}, Supp(G − G{v}) = {e, d, i, g, h,m, n, o, p, s, t}, Core(G − G{v}) =
{a, j, l, q, r} and V (GN(G−G{v})) = {u, f, w, b}.
Note that G is a unicyclic graph of Type I, because v /∈ Supp(G{v}). Moreover, u,w /∈
Supp(G−G{v}). Therefore, by Theorem 3.9 the Gallai-Edmonds decomposition of G is
given by:

EG(G) = Supp(G{v}) ∪ Supp(G−G{v}) = {z, x, k, e, d, i, g, h,m, n, o, p, s, t},
R(G) = Core(G{v}) ∪ Core(G−G{v}) = {a, j, l, q, r, v},
S(G) = V (GN(G{v})) ∪ V (GN(G−G{v})) = {u, f, w, b, c, y}.
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Figure 2: Unicyclic graph of Type I and its subtrees G{v} and G−G{v}.

4 Gallai-Edmonds decomposition of unicyclic graphs

of Type II

In this section, we obtain a relationship between the Gallai-Edmonds decomposition of a
unicyclic graph G of Type II and the null decompositions of G−C or G{v}, where C is the
unique cycle of G and v ∈ V (C).

Next, we will define the set of intermediate edges. We study under what circumstance
these edges are in a maximum matching of G (see Lemma 4.4).

Definition 4.1. Let G be a unicyclic graph and C its cycle. The set of intermediate edges,
denoted by IE(G), is defined as IE(G) = E(G)− (E(C) ∪ E(G− C)).

The following lemmas and remarks will be crucial to prove our main results in this section
(Theorems 4.6 and 4.8).

Remark 4.2. Let G be a unicyclic graph and C its cycle. Notice that E(C), E(G−C) and
IE(G) form a partition of E(G), thus, E(G) = E(C)∪E(G− C)∪IE(G). Therefore, given
a matching M in G we have that

M = (M ∩ E(C)) ∪ (M ∩ E(G− C)) ∪ (M ∩ IE(G))

= (M ∩ E(C)) ∪
⋃

v∈V (C)

M ∩ E(G{v}).

Lemma 4.3. Let G be a unicyclic graph of Type II and C its cycle. If M ∈ M(G), then
M ∩ E(C) ∈ M(C) and M ∩ E(G{v}) ∈ M(G{v}) for all v ∈ V (C).
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Proof. Suppose there is M ∈ M(G) such that M ∩ E(C) /∈ M(C) or M ∩ E(G{w}) /∈
M(G{w}) for some w ∈ V (C). That is, |M ∩ E(C)| ≤ ν(C)− 1 or |M ∩ E(G{w})| ≤
ν(G{w})− 1. Note that given u ∈ V (C) we have that u ∈ Supp(G{u}). Then by Lemma

3.3, ν(G{u}) = ν(G{u} − u). Consider G− C =
k⋃

i=1

Ti, where Ti is a connected component

of G− C. Thus, we have that

ν(G) = |M |
= |M ∩ E(C)|+

∑
u∈V (C)

|M ∩ E(G{u})| (Remark 4.2)

= |M ∩ E(C)|+ |M ∩ E(G{w})|+
∑

u∈V (C)−{w}

|M ∩ E(G{u})|

≤ +ν(C) + ν(G{w})− 1 +
∑

u∈V (C)−{w}

ν(G{u})

= −1 + ν(C) +
∑

u∈V (C)

ν(G{u})

= −1 + ν(C) +
∑

u∈V (C)

ν(G{u} − u) = −1 + ν(C) +
k∑

i=1

ν(Ti)

< ν(C) +
k∑

i=1

ν(Ti),

which is a contradiction, because by Lemma 2.5 ν(G) = ν(C) +
k∑

i=1

ν(Ti).

Lemma 4.4. Let G be a unicyclic graph of Type II, C its cycle and M ∈ M(G). Let
e ∈ IE(G). If |V (C)| is even, then e /∈ M .

Proof. Let e ∈ IE(G). Suppose there is M ∈ M(G) such that e ∈ M . Consider G − C =
k⋃

i=1

Ti, where Ti is a connected component of G− C. Define e = {u, v} such that u ∈ V (Tj)

for some j ∈ {1, 2, . . . , k} and v ∈ V (C). Note that M ∩E(C) is a matching in C. Moreover,

M ∩E(C) do not saturate v, because v is saturate by e. As |V (C)| is even and ν(C) = |V (C)|
2

,
all maximum matchings in C are perfect matching. Therefore, M ∩ E(C) /∈ M(C). Hence,
using Lemma 4.3, we have that M /∈ M(G), which is a contradiction.

Lemma 4.5. [2] Let G be a unicyclic graph and C its cycle. Let G{v} be a pendant tree
such that v ∈ Supp(G{v}). If u ∈ N(v) ∩ V (G{v}), then u /∈ Supp(G− C).

We are now ready to prove our main results in this section. Theorems 4.6 and 4.8 provide
a way to obtain the Gallai-Edmonds decomposition of a unicyclic graph of Type II from the
null decompositions of G− C and G{v}, respectively.
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Theorem 4.6. Let G be a unicyclic graph of Type II and C its cycle. If |V (C)| is even,
then

(i) EG(G) = Supp(G− C)

(ii) R(G) = Core(G− C)

(iii) S(G) = V (GN(G− C)) ∪ V (C).

Proof. (i) Consider G − C =
k⋃

i=1

Ti, where Ti is a connected component of G − C. Given

x ∈ EG(G). Thus, there is M ∈ M(G) such that M does not saturate x. Since |V (C)|
is even, using Remark 4.2 and Lemma 4.4 we conclude that

M = (M ∩ E(C)) ∪

(
k⋃

i=1

(M ∩ E(Ti))

)
.

Note that by Lemma 4.3, we have that M ∩ E(C) ∈ M(C). Moreover, we have that
M ∩ E(Ti) ∈ M(Ti), otherwise

ν(G) = |M | < ν(C) +
k∑

i=1

ν(Ti),

which is a contradiction by Lemma 2.5. As |V (C)| is even and ν(C) = |V (C)|
2

, all
maximum matchings in C are perfect matching. Hence, x /∈ V (C), otherwise would
be saturated by M ∩ E(C) and consequently saturated by M . That is, x ∈ V (Ts) for
some s ∈ {1, . . . , k}. Since M ∩ E(Ts) ∈ M(Ts), by Lemma 2.2 x ∈ Supp(Ts), that is,

x ∈ Supp(G− C) =
k⋃

i=1

Supp(Ti).

Now, given x ∈ Supp(G− C), we will obtainM ∈ M(G) such thatM does not saturate

x. Consider G − C =
k⋃

i=1

Ti, where Ti is a connected component of G − C. Note that

Supp(G− C) =
k⋃

i=1

Supp(Ti). Thus, there is s ∈ {1, . . . , k} such that x ∈ Supp(Ts).

Since x ∈ Supp(Ts), by Lemma 2.2 there is Ms ∈ M(Ts) such that Ms does not
saturate x. Let Mi ∈ M(Ti) with i ∈ {1, . . . , k} − {s} and Mc ∈ M(C). Define

M = Mc ∪
(

k⋃
i=1

Mi

)
. Note that M is a matching in G and M does not saturate x.

Moreover, by Lemma 2.5 we conclude that M ∈ M(G).

(ii) Using Lemma 4.5 we conclude that N(Supp(G−C))∩V (C) = ∅. Thus, N(EG(G)) =
N(Supp(G−C)) = Core(G−C). Moreover, by Lemma 2.1, we have that N(EG(G))∩
EG(G) = N(Supp(G− C)) ∩ Supp(G− C) = ∅. Therefore,
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R(G) = N(EG(G))− EG(G)

= N(Supp(G− C))− Supp(G− C)

= Core(G− C).

(iii) Just use the items (i) and (ii).

Lemma 4.7. Let G be a unicyclic graph of Type II and G{v} a pendant tree. Let u ∈ V (G)
and M ∈ M(G). If u ∈ Core(G{v}) ∪ V (GN(G{v})), then M saturates u.

Proof. Let C be the cycle of G. Suppose there is M ∈ M(G) such that M does not saturate
u. Note that M ∩E(G{v}) is a matching of G{v} and does not saturate u, thus, by Lemma
2.2 we conclude that M ∩E(G{v}) /∈ M(G{v}). Hence, using Lemma 4.3 we conclude that
M /∈ M(G), which is a contradiction.

Theorem 4.8. Let G be a unicyclic graph of Type II and C its cycle. If |V (C)| is odd, then

(i) EG(G) =
⋃

v∈V (C)

Supp(G{v})

(ii) R(G) =
⋃

v∈V (C)

Core(G{v})

(iii) S(G) =
⋃

v∈V (C)

V (GN(G{v})).

Proof. (i) Given x ∈ EG(G). Thus, there is M ∈ M(G) such that M does not saturate
x. Then by Lemma 4.7 we conclude that x ∈ Supp(G{v}) for some v ∈ V (C).

Given x ∈ Supp(G{v}) for some v ∈ V (C). We will obtain M ∈ M(G) such that M
does not saturate x. Suppose first x = v. Since |V (C)| is odd, there isMc ∈ M(C) such
thatMc does not saturate v. LetMw ∈ M(G{w}) such thatMw does not saturate w for

all w ∈ V (C) (notice that Mw exists for Lemma 2.2). Define M = Mc ∪

( ⋃
w∈V (C)

Mw

)
.

Consider G − C =
k⋃

i=1

Ti, where Ti is a connected component of G − C. Note that M

is a matching in G does not saturate v and for all w ∈ V (C) we have that ν(G{w}) =
ν(G{w} − w) (see Lemma 3.3). Moreover, we have that
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|M | = |Mc|+
∑

w∈V (C)

|Mw|

= ν(C) +
∑

w∈V (C)

ν(G{w})

= ν(C) +
∑

w∈V (C)

ν(G{w} − w)

= ν(C) +
k∑

i=1

ν(Ti) = ν(G).

Then M ∈ M(G). Therefore, x ∈ EG(G).

Now, suppose x ̸= v. Let Mv ∈ M(G{v}) and Mc ∈ M(C) such that Mv does not
saturate x and Mc does not saturate v (notice that Mv by Lemma 2.2). Consider
Mu ∈ M(G{u}) such that M does not saturate u for all u ∈ V (C)− {v}. Define

M = Mc∪

( ⋃
u∈V (C)

Mu

)
. Similarly we conclude that M ∈ M(G) and does not saturate

x. Hence, x ∈ EG(G).

(ii) Note that N(EG(G)) = V (C) ∪

( ⋃
v∈V (C)

Core(G{v})

)
and N(EG(G)) ∩ EG(G) =

V (C). Therefore,

R(G) = N(EG(G))− EG(G)

= N

 ⋃
v∈V (C)

Supp(G{v})

−
⋃

v∈V (C)

Supp(G{v})

=
⋃

v∈V (C)

Core(G{v}).

(iii) Just use the items (i) and (ii).

In this example, we use Theorem 4.8 to obtain the Gallai-Edmonds decomposition of
the unicyclic graph G in Figure 3. Consider C the cycle of G. Analyzing the entries of
the vectors of the basis of the N (G{a}), N (G{b}), N (G{c}), N (G{d}) and N (G{e}) we
conclude that support, core and N -vertices set of the pendant trees of G are given in Table
1.
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Support Core N -vertices
Supp(G{a}) = {g, h, a, l, t} Core(G{a}) = {f,m} V (GN(G{a})) = {i, j}
Supp(G{b}) = {b} Core(G{b}) = ∅ V (GN(G{b})) = ∅
Supp(G{c}) = {c, n, p, q} Core(G{c}) = {o} V (GN(G{c})) = {v, r, s, u}
Supp(G{d}) = {d} Core(G{d}) = ∅ V (GN(G{d})) = ∅
Supp(G{e}) = {e} Core(G{e}) = ∅ V (GN(G{e})) = ∅

Table 1: Support, Core and N -vertices of the pendant trees of G.

a

b

c

de
f

g

h

ij

l m

n

o

p q

r st uv

G{a}

G{c}

G{b}

G{e} G{d}

Figure 3: Unicyclic graph of Type II and its pendant trees.

Note that G is a unicyclic graph of Type II, because a ∈ Supp(G{a}), b ∈ Supp(G{b}),
c ∈ Supp(G{c}), d ∈ Supp(G{d}) and e ∈ Supp(G{e}). Moreover, |V (C)| is odd. Therefore,
by Theorem 4.8 the Gallai-Edmonds decomposition of G is given by:

EG(G) =
⋃

v∈V (C)

Supp(G{v}) = {a, b, c, d, e, g, h, l, t, n, p, q},

R(G) =
⋃

v∈V (C)

Core(G{v}) = {f,m, o},

S(G) =
⋃

v∈V (C)

V (GN(G{v})) = {v, r, s, u, i, j}.

5 Concluding remark

In this paper, we have provided a way to obtain the Gallai-Edmonds decomposition of
unicyclic graphs from the null space of its adjacency matrix.

Similarly to the Gallai-Edmonds decomposition, the Zito decomposition [23] is also a
partition of the vertex set. The difference is that Zito decomposition is defined through
certain properties of the maximum independent sets. In trees and C4k-free bipartite graphs
all three decompositions coincide, that is, form the same partition of the vertex set [2, 14, 15].
For graphs in general, this is not the case (consider, for example, the pan graph of order 6,
that is, the graph obtained by joining the cycle graph C6 to the complete graph K1 with an

61



Allem et al./ American Journal of Combinatorics 1 (2022) 47–64

edge).
In view of this fact, the following question naturally arises: Is there a relationship between

Zito decomposition of unicyclic graphs and null decomposition of its subtrees?
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[19] B. Spille and L. Szegő, A Gallai-Edmonds-type structure theorem for path-matchings,
Journal of graph theory 46.2 (2004): 93-102.

[20] K. Steffens, Maximal tight sets and the Edmonds-Gallai decomposition for matchings,
Combinatorica 5.4 (1985): 359-365.
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emilio.allem@ufrgs.br Porto Alegre, Brazil

Daniel Alejandro Jaume Instituto de Matemáticas Aplicadas de San Luis
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