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P. Blauth Menezes * 

Abstract 

A categorical semantic domain is constructed for Petri nets which satisfies the diagonal 
compositionality requirement with respect to anticipations, i.e., Petri nets are equipped with 
a compositional anticipation mechanism (vertical compositionality) that distributes through 
net combinators (horizontal compositionality). The anticipation mechanism is based on 
graph transformations (single pushout approach). A finitely bicomplete category of partia! 
Petri nets and partia! morphisms is introduced. Classes of transformations stand for 
anticipations. The composition of anticipations (i.e., composition of pushouts) is defined, 
leading to a category of nets and anticipations which is also complete and cocomplete. 
Since the anticipation operation composes, the vertical compositionality requirement of 
Petri nets is achieved. Then, it is proven that the anticipation also satisfies the horizontal 
compositionality requirement. A specification grammar stands for a system specification 
and the corresponding induced subcategory of nets and anticipation's stands for ali possible 
dynamic anticipation's of the system (objects) and their relationship (morphims). 

Keywords: anticipatory systems, concurrency, compositionality, graph transformation, 
category theory. 

1 INTRODUCTION 

Petri nets (see, for instance, [19]) are one ofthe first models for concurrency developed and 

are widely used in many applications. Also, as stated in [17], Petri nets are able to 

distinguish clearly the basic concepts in the behavior of processes and the graphical 

representation visualizes these concepts. However, nets lack the following properties: 
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a) Composition. Lack a way of composing larger nets from smaller ones through high 

levei operators (net combinators). Complex systems are structured entities and can be 

better understood if we can reason and build on their parts separately. 

b) Anticipation. Lack a way of modifying nets state or topology according to possible 

future causes, i.e. , nets in the sense of [19] do not model anticipatory systems in the 

sense of [21 , 5] . In fact, one of the drawbacks of Petri nets it that they have a static 

topology, i.e. a net may not change dynamically. 

Moreover, we aim a mathematical theory for concurrent, anticipatory systems which is 

compositional with respect to combinators, anticipations or both and thus, should satisfy 

the Diagonal Compositionality Requirement with respect to anticipations which means 

both: 

instantiation of 
No into N 

net to be transformed 

transformation 

No ........................ Dn•/ ~·1111 .................... .. 

"""""illlu .. N Mo '\.. p.o./ 
.............. :1111•·· <J>s ,n0 "' 

resulting net ...................................... :1111••· q>N 

rui e: 
specifies the 
replacement 

Figure 1 - Single pushout approach to net transformation 
.... 

a) Vertical Compositionality. Anticipations compose. 

b) Horizontal Compositionality. Anticipations distribute through net combinators, 

i.e., a concurrent system may anticipate before or after the joint behavior of 

component parts in order to obtain the same resulting system. 

Recently, (categorical) frameworks based on Petri nets have been proposed for expressing 

the semantics of concurrent systems in the so-called true concurrency approach. The 

framework in [23] provides compositionality of nets where categorical constructions such 

as product and coproduct stand for system combinators. The approach in [16] provides 

abstraction mechanisms where a special kind of net morphism corresponds to a notion of 

implementation. Menezes and Costa [14] introduces a semantic domain on this abstraction 
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mechanisms (which can be viewed,as an anticipation). Menezes and Costa [13] provides a 

framework for synchrcinization of Petri nets inspired by [22, 16] where the categorical 

product stands for parallel combinator and a functorial operation defined using the fibration 

technique stands for synchronization. 

The main goal of this paper is to achieve the diagonal compositionality for Petri nets. The 

anticipation mechanism proposed is based on graph transformation, introduced in [18], 

using the so-called single pushout approach [8] on a category of nets with partia! 

morphisms. In this context, a graph transformation stands for possible system anticipation. 

The approach proposed is for net-based systems. However, since it uses categorical 

constructions, it can be generalized for severa! other models for concurrency (through 

adjunctions or property analysis). 

The following graph transformation approach for Petri nets was first introduced in [11 , 12] 

but in a different framework (for reifications). First, we introduce the category of partia! 

Petri nets (with initial markings) and partia! morphisms that is finitely bicomplete. The 

category defined is inspired by [16] and we claim that, with respect to partia! morphisms, 

"Petri nets are semi-groups" . 

In most categorical frameworks for Petri nets, if an initial marking is added to the net 

structure, the resulting categories do not have colimits. For instance, in [16, 23] , the 

categories are restricted in order the have coproducts. In this paper, we define categories of 

Petri nets with a set of initial markings (instead of a single initial marking) based on [10, 

7] . The categories of Petri nets with partia! morphisms and initial markings defined are 

finitely complete and cocomplete. Note that, it is a basic result for this work, since the 

anticipation mechanism proposed is defined using the pushout construction. 

The graph transformation concept is extended for partia! Petri nets with initial markings as 

follows: a rule r: No~ Mo is a partia! net morphism specifying how No (left-hand side) is 

replaced by Mo (right-hand side) and an instantiation no: No ~ N is a partia! net 

morphism specifying how No is instantiated ("matched") into N (the net to be 

transformed). Then, cpN is the resulting net of the pushout construction of r along with no 
and <pr,no is the transformation morphism, as illustrated in Figure 1. 
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,.. no < 

Figure 2 - Replacement o f a transition by a net 

No' ---------------------~Oo' 

n' o 

r' 

No---.. ~~Mo 
s 

Po-----~~Oo 

1 "o p.~ ;o p.o. ~ 
cp ... M \jf N ... Q 

.... 

Figure 3 - Composition o f pushouts with one vertex in common 

For instance, Figure 2 illustrates the replacement of a transition (of a net) by a net 

preserving its source and target places. The rule r and the instantiation no preserve the 

places X and V and so, they are preserved in the resulting net (right most net in the figure). 

However, while the transition Xis "forgotten" by r (partia! morphism) it is preserved by no. 
Thus, in the resulting net, X is replaced by a, b, c, d and the nodes A and B are added. 

Note that the transformation operation may be used not only to "explode" or "collapse" 

transitions/places but also to "add" or "delete" parts to an existing net. 
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To achieve the Vertical Compositionality, we have to compose transformations, i.e. for 

given transformations <p N = M and \jf M = Q, we need a transformation <p • \jf such that 

(<p • \jf)N = O. Note that the matter is not only the composition of <p and \jf as partia! net 

morphisms, buf also as pushouts: given two pushouts with only one vertex in common, we 

have to determine a single pushout such that the resulting transformation is the composition 

of the component transformations, as illustrated in the Figure 3. 

In fact, for some given rule r and instantiation no, the resulting transformation <pr,no can be 

determined by severa! pushouts. Also, severa! rules and instantiations can give the 

composition of pushouts. Thus, we define classes of equivalencies of pairs of rules and 

instantiations such that the resulting transformation coincides. Therefore, a category of nets 

and partia! morphisms leads to a category where objects are nets and morphisms are classes 

of equivalence called Anticipations. Both categories are isomorphic. Then, we show that 

the Horizontal Compositionality for the category of Petri nets and anticipations is achieved. 

~----------------------c 

.. . ... . ............. . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 4 - Partia! morphism as an equivalence class 

Usually, to specify a given anticipatory system, only some anticipations are desired. For 

this purpose, we introduce the Specification Grammar and the induced Subcategory of 

Anticipations. A specification grammar is basically a collection of rules and instantiations 

and an initial net. Each specification grammar induces a subcategory of partia! Petri nets 

and anticipations, reflecting ali possible nets that can be derived from the initial one and the 

corresponding reachable markings. Therefore, a grammar can be considered as a 

specification of a system and the induced subcategory as ali possible dynamic anticipations 

of the system. This means that depending on the specified system (given grammar) its 
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dynamic behavior may anticipate in a deterministic (one future state) , nondeterministic 

(more than one possible future state) or concurrent (multiple future states) ways. The 

anticipation mechanism proposed is able to deal with internai or predefined externai 

aspects [5] . To deal with externai aspects (without restrictions), it is enough to modify the 

grammar definition allowing rules as inputs. 

2 PARTIAL PETRI NETS 

First we define partia! morphisms on a given category C as in [!]. Then, we introduce the 

concepts of graph as an element of a comma category over the base category Set, internai 

graph which is a graph where the base category is an arbitrary category C, and structured 

graph, which is an extension of the notion of internai graph where ares and nades may be 

objects of different categories, provided that there are functors from these categories to the 

base category. In this context, the category o f Petri nets is defined as the category o f partia! 

morphisms on a category of structured graphs. 

Definition I . Category with Partia/ Morphisms. Consider a category C = (Obc, More, 
ao, 81, t, • ) . A partia! morphism on C is an equivalence class of pairs of morphisms 

(m: DtH A, f: DtH8), where m is mono, with respect to the relation 

(m: DtH A, f: Dt ~ 8) pare (m': Dt• H A, f': Df' H 8) if and only if there is an 

isomorphism iso: Dt ~ Df' such that the diagram illustrated in Figure 4 commutes. 

Suppose that C has ali pullbacks. The category of partia! morphism on C is pC = (Obc, 
... 

pMorc, p8o, p81, t , p•) where pMorc, p8o, p81 are partia! morphisms on C and the 

composition of two morphisms f = (mf, f): A ~ 8, g = (m9, g): 8 ~ C is g • f = (mg • mt, 
g • f): A ~ C determined by the pullback as illustrated in 5. 

Let [(m, f)]: A ~ 8 be a partia! morphism where (m: Dt H A , f: Dt ~ 8) is a 

representative element of the class. Then [(m, f)] is also denoted by (m, f): A~ 8 or 

f: A t-< Dt ~ 8. 

Proposition 2. Consider the category pC and the partia! morphisms f: A t-< Dt ~ 8, 

g: 8 t-< Dg ~E, u: A f-( Du ~ C, v: C t-< Dv ~ E such that g • f = v • u. Then, there 

are morphisms p: Dt f-( M ~ Dv, q: Du f-( M ~ Dg where the middle object M is 
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umque (up to an isomorphism) and are such that the diagram illustrated in Figure 6 

cornrnutes. Moreover, CD and ®are pullback. 

r-------~------------------------------------- c 
A ~ rT1f ( Of ~ 8 ~ mg ( 0 9 g ~ C 

~'---~,·"" ' p.b. / ,., _ ... /~ 
- o o ------< fXB 9 ---

Figure 5- Composition o f partia! morphisms (right) 

c 
A ... < Dt ~ 8 

m"! 

mt 

mp! !mg CD 

Du ~ < M ~ Dg 

"l 
mq 

"l 
_q 

lg @ 

mv v 
c ... < Dv ~ E 

Figure 6 - Commutative square diagram in categories with partia! morphisms 

Proof: The compositions g • f, v • u are given by pullbacks in CD, ® where Dt x9 0 9, 

Du xc Dv are the pullback objects. Since g • f = v • u, there is an isomorphism iso: 

Dt x9 Dg ~ Du xc Dv and so, both objects represent the middle object M. 
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In what follows, the category Graph of graphs is defined as the comma category ó...l.-ó. 

where ó.: Set ~ Ser2 is the diagonal functor as in (0). Thus, a graph is a triple G = (V, T, a) 

where a= (ao, a1) or just G = (V, T, ao. a1). As stated in [1, 3], a (small) graph G = (V, 

T, ao. a1) can be considered as a diagram in the category Set where V and T are sets and 

ao, a1 are total functions. Moreover, graph morphisms are commutative diagrams in Set. 

This means that Set plays the role of "universe of discourse" of the category Graph: it is 

defined internally to the category Set. This suggests a generalization of graphs as diagrams 

in an arbitrary universe category. This approach is known as internalization. Moreover, 

structured graphs allows the definition of a special kind of graphs where nodes and ares are 

object of different categories. They are defined o ver internai graphs provided that there are 

functors from the categories o f nodes and ares to the base category. 

Definition 3. Interna! Graph, Structured Graph. Consider the (base) category C and the 

diagonal functor ó.: C~ c2. The category of internai graphs over C is the comma category 

ó...l.-ó., denoted by Graph(C). Consider the functors v: V~ C, t: T ~ C and ó.: C~ c2. 

The category of structured graphs over C with respect to the functors v and t denoted by 

Graph(v, t) is the comma category ó. • t..l.-ó. • v. 

As proposed in [ 16], to represent a Petri net as a graph we can consider the states as 

elements of a free commutative monoid generated by a set of places. In this case, for each 

transition, n tokens consumed or produced in a place A is represented by nA and ni tokens 

consumed o r produced simultaneously i~ Aj, for i = 1, . . . , k is represented by 

n1 A1 \Bn2A2\B ... \BnkAk (where \17 is the additive operation o f the monoid). 

Note that, we may consider that every monoid has a distinguished element which is the 

unity element. In some sense, the unity element leads to a notion of partiality: to forget an 

element in a monoid homomorphism it is enough to map this element to the unity of the 

target object. Considering that we need partia! morphism in order to define graph 

transformations, partia! monoid homomorphism can be seen as a partia! category of a 

category that already behaves as a partia! one. However, if we consider the category of 

semi-groups with partia! morphisms instead of the category of monoids, the notion of Petri 

nets as graphs as in [ 16] is kept. Thus, we claim that, for partia! morphisms "Petri nets are 

semi-groups". In what follows, the main reference for concrete categories is [2]. 
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The category of free comrnutative semi-groups with partia! morphisms pCSem, is concrete 

over the category of free commutative monoids CMon. In fact, any semi-group can be 

canonicaliy extended as a monoid and a partia! semi-group morphism can be viewed as a 

"pointed" morphism of monoids, where the distinguished elernent is the unity. Moreover, 

the limits and colimits of CMon are lifted to pCSem. 

Definition 4. Category pCSem. Consider the category of commutative semi-groups CSem. 

The category pCSem is the category of partia! morphisms on CSem. 

Proposition 5. The category pCSem is finitely complete and cocomplete. 

Proof: Consider the functor sm: pCSem ~ CMon such that for ali pCSem-object SEB, 
sm sEB = SeEB, where SeEB is the free monoid generated by the set s with e as the unity 

element and for ali pCSem-morphism h: S1 EB f-< Sh EB ~ S2EB, sm h = h e where he: Se1 EB 
~ Se2EB and for ali s in S1EB, if s is in ShEB, then he(s) = h(s); else, he(s) = e . The 

functor sm is faithful and so, (pCSem, sm) is a concrete category over CMon. Also, for 

each finite diagram in pCSem taken by the functor sm into CMon, the limits and colimits in 

CMon can be lifted as an initial source and final sink, respectively, in pCSem. 

The category of partia! Petri nets is defined as follows: first consider the category of 

structured graphs where the base category is pSet, the category of ares is Set and the 

category of nodes is CSem (and thus, the source and target functions are partia!); then 

consider the category o f partia! morphisms o f the previous category o f structures graphs. 

Definition 6. Partia[ Petri net. The category of partia! Petri nets is pPetri = pGraph(t, v) , 

i.e., the category of partia! morphisms on the category of structured graphs Graph(t, v) , 

where t: Set ~ pSet is the canonical embedding functor and v: CSem ~ pSet is the 

forgetful functor such that for ali CSem-object sEB = (S*, EB), v sEB = S* and for ali CSem

morphismh: S:ffi" ---r-S2EB, v h: S1* ~ S2*. 

Thus, a partia! Petri net N is a quadruple N = (VEB, T, oo, oo) where ye is a free 

comrnutative semi-group, T is a set and OQ, oo: t T ~ v yEB are partia! functions. Let N1 = 

<V1EB, T1, oo1, 81 1) and N2 = <V2EB, T2, oo2, 012) be nets. Frorn the definition ofpartial 
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morphism, we infer that apPetri-morphism h: N1t-< Oh~ N2 is a pair (hv: V1EBt-< Dhv 

~ V2EB, hT: T 1 t-< DhT ~ T 2) where hv is a pCSem-morphism, hT is a partia! function 

and satisfies the commutative square diagram in Figure 6. Also, using the proposition about 

the square diagram in pC, it is easy to prove that the corresponding square diagram in is not 

a commutative diagram in pSet. 

Proposition 7. The category pPetri is finitely complete e cocomplete. 

Proof: The forgetful functor v: pCSem ~ pSet that takes each semi-group sEB = (S*, EB) 
into S* has left adjoint which takes each set into the commutative semi-group freely 

generated. Thus, v preserves limits. Suppose k in {O, 1 }. Then: 

a) Let O and oEB be zero objects of pSet and pCSem, respectively. Then (OEB, O, !, !) 

where ! is the unique partial function, is a zero object of pPetri. 

~aaaaaaaaaaaaa VV 
1 
EBX vv

2
EB ~aaaaaaaaaaaaa~ 

Vn1v Vn2v 

Figure 7 - P~oducts o f partia! Petri nets 

eT fT • T UIIIIIIIIIRIIISIIIUIIII~ T1 T2 • --
la2, ',, la, 9T 

ak! \ k , 
vfv 

vv1EB ..... vv1EB • vvlv • vev vgv 

Figure 8- Equalizers of partia! Petri nets 
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b) Consider the nets N1 = <V1Et>, T 1, 010, 811) and N2 = <V2Et>, T 2. 020 , 821) . A product 

of N1 and N2 is the object NpN2 = <V1Et>xpCSemV2Ef>, TPpSetT2, o10xo20, o11xo21) 

together with the morphisms 11:1 = (7r1v• nh): N1 xN2 ~ N1 and 11:2 = (7r2v· 7r2T): NpN2 

~ N2 where 01 kxo2k are uniquely induced by the product in pCSem, taken in to pSet, as 

illustrated in Figure 7 (remember that v preserves limits) . 

c) Consider the nets N1 = <V1 Et>, T1, 810 , 011), N2 = <V2Et>, T2, 020 , 821) anda pair of 

parallel morphisms f, g: N1 ~ N2 where f= (fv, fr), g = (gv, 9T). Let ev: VEf> ~ V1Ef> be 

a pCSem-equalizer o f fv, 9V and er: T ~ T 1 be a pSet-equalizer o f fr, 9T· An equalize r o f 

f, g is the net N = (VEf>, T, oa, 81) together with the morphism e= (ev, er): N ~ N1 

where Dk are uniquely induced by the equalizer ev in pCSem, taken into pSet, as illustrated 

in Figure 8 (again, remember that v preserves limits). 

lt is easy to prove that the above constructions are, in fact, zero object, product and 
equalizers in pPetri. The constructions for coproducts and coequalizers are analogous. 

For instance, Figure 9 illustrates the resulting objects o f a coproduct and product in pPetri. 

3 PARTIAL PETRI NETS WITH INITIAL MARKING 

A Partia! Petri net with initial markings is a partia! Petri net endowed with a se~ of initial 

markings where the choice of which initial marking is considered at run time is an externai 

nondeterminism. The main advantage of considering a set o f initial marking as in [7, 1 O] 

.. instead of a, single initial rriarking as in [23 , 16] is that the resulting category has finite 

colimits. This solution is more general than restricting the category for safe nets as in [23] 

or considering initial marking with one token at most in each place as in [16] . Moreover, 

the coproduct construction reflects the asynchronous composition of component nets . 

Definition 8. Partia! Petri Net with Initial Marking. Consider the category pPetri. Let u: 

pPetri ~ pSet be a functor sue h that each pPetri-net N = (VEf>, T, oo, 81) wh;;re V@ = (V*, 

$) is taken into the set V* and each pPetri-morphism h = (hv, hr) is taken in to the partia! 

function canonically induced by the pCSem-morphism hv. The category of partia! Petri 

nets with initial markings, denoted by pMPetri, is the comma category idpSet -J..u, where 

idpSet is the identity functor in pSet, 
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Therefore, a partia! Petri net with initial markings M is a triple M = (N, I, init) where N = 
(VIJJ, T, oo, 01) is a partia! Petri net, I is the set of initial states or initial markings and init 
is the partia! function which instantiates the initial states into the net N. Thus, a net M may 

also be considered as M = (VIJJ, T, OQ, 01, I, init). lf init is the canonical inclusion, it may 

be omitted, i.e. , (VIJJ, T, oo, 01, I, inclusion) is abbreviated by (VIJJ, T, oo, 01, I). A 

pMPetri-morphism is a pair h = (hN, h1). Since hN is a pair hN = (hv, hT), we also 

representa pMPetri-morphism as a triple h= (hv, hT, h1). 

Figure 9 - Coproduct and product o f partia! Petri nets 

Figure 10 - Coproduct and product o f partia! Petri nets 

Proposition 9. The category pMPetri is finitely complete and cocomplete. 

Proof: Since pMPetri is the comma category idpSet J..u, we have only to prove that the 

functor u: pPetri ~ pSet preserves limits. Consider the initial object { } and the functor p: 

pSet ~ pPetri such that for ali set V, p V is the net (VIJJ, { }, !, !) where VIJJ is the semi

group freely generated from V. The functor p is left adjoint to u. 
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The product and coproduct in pMPetri have the same interpretation as in pPetri, i.e., the 

parallel composition and asynchronous composition, respectively . Figure 10 illustrates the 

resulting objects of a coproduct and product pMPetri where the set of initial markings are 

the following: ·l1 = {A}, l2 = {X, X+ Y}, l1 + l2 = {A, X, X+ Y}, l1 x l2 = {A, X, X+ Y, A+X, 
A+ X+ Y}. The possible initial markings in l1 x l2 are represented using the following 

symbols: 

e A •x • X+Y t- A+X • A+X+Y 

E 

Figure 11 - Rule, instantiation and the transformed net 

4 ANTICIPATORY PETRI NETS 

The anticipation mechanism defined extends the single pushout approach of graph 

transformation to partial Petri nets. 

Definition 10. Rule, Instantiation, Transformation. A rule r: No ~ Mo and an instantiation 

no: No ~ N are just pMPetri-morphisms. The transformation of a net N determined by a 

rule r and an instantiation no is given by the pushout of r along with no and <pr,no: N ~ M 

is the transformation morphism where M is the transformed net. 
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For instance, consider the rule r, the instantiation no and the transformed net, as in Figure 

11. Entities preserved by morphisms are identified with the same label. Note that c1 is 

replaced by a sequence of transitions c11 , c12 and that the state C' is introduced in the 

resulting net. With respect to the initial markings, the original one is preserved and a 

second marking is introduced. 

A transformation of a Petri net may be classified in one of the follows cases: 

a) Expansion .• Transforms part of a net (usually a transition) into a possible more complex 

net. Figure 12 illustrates an expansion where a single are is further detailed into four 

ares. 

b) Abstraction. It is the opposite of expansion. Figure 13 illustrates an abstraction where a 

sub-net with four ares (and four nodes) is abstracted into only one are (and two nodes). 

c) Addition. Adds states and transition to a net, possibly identifying some parts (which 

already exist in the net). Figure 14 illustrates an addition where four transitions and two 

states are added (and two states are identified). 

d) Deletion. Deletes parts of a net. Figure 15 illustrates a deletion where part of a net is 

deleted but the shape is preserved. 

e) Mix. Neither of the above cases. In the above cases, the instantiation morphisms are 

total and mono. However, it can be a partia! morphism of any kind as illustrated in 

Figure 16. 

< I r 

o 
Figure 12 - Expansion 
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11111 no < ) 

..,.,.-,.--+-- ............ 

Figure 13 - Abstraction 

... 

Figure 14 - Addition 

I r ... 

17\ v 

Figure 15 - Deletion 
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-- -.. -' ' 

... no I I r ... 

Figure 16 - Mix 

p::MPetri 

N M 

~ p.o. / 
\fJ ~ ~ idM 

M 

Figure 17- Pushout 

Consider a rule r, an instantiation no and the resulting transformation <p. Since, <p is a net 

morphism, by definition, it is also a rule. Also, it is straightforward to prove that the 

diagram illustrated in Figure 17 is a pushout. Thus, any pMPetri-morphism is both a rule 

and a transformation. 

Consider the rules r: No ~ Mo, s: Po ~ Oo, the instantiations no: No ~ N, po: Po ~ M 

and the transformations <p, 1.1' illustrated in Figure 18. The composition of 1.1' • <p should also 

be given by a pushout with rule r' and instantiation no' determined by r, s, no, PO· In fact, 
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there are many rules and instantiations which satisfy this requirement. But, since q> and \jf 

are also rules (determined by r, s, no, Po), a pushout which results in the composed 

transformation \jf • q> is given by the rule r' = \jf • q> and the instantiation no' = idN. 

Therefore, a transformation morphism q>: N ~ M is fully determined by a pair (r, no) 

where r: No ~ Mo is a rule and no: No ~ N is an instantiation. However, q> may also be 

determined by other pairs such as (<p, idN). Thus, we may consider classes of equivalence 

of pairs of morphisms with respect to the relation "the transformations determined by the 

pushouts coincide". A class of equivalence is called a anticipation. Petri nets as objects and 

anticipation's as morphisms constitute the category aMPetri. 

Definition 11. Category of Petri Nets and Anticipations. Consider the category pMPetri. 

The category aMPetri is defined as follows: 

a) aMPetri has the same objects as pMPetri; 

r--------------------------------------------p~em 

No' ----------------.-------.ao· 
f I 

No .., Mo Po s .., Oo I 

lno \(o ! / 
<p p.o. \ \jf p.o. / 

N-----1--~M .... a.k 

no' 

Figure 18 - Composition o f transformations 
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no' 
pMPetri 

No 
no 

1111111 No' ... N 

·l 
I l <p 

p.o. ' p.o . 

Mo ... M ... Mo' 

Figure 19 -Pushouts 

b) A morphism in aMPetri, called anticipation, is an equivalence class of pairs of 

morphisms (r: No ~ Mo, no: No ~ N): N ~ M with respect to the relation (r: No ~ Mo, 

no: No ~ N) ant (r': No' ~ Mo', no': No' ~ N) if and only if the resulting pushouts 

determine the commutative diagram illustrated in Figure 19. A class [(r, no)]: N ~ M may 

be denoted by a representative element (r, no) or by the transformation morphism q>: N ~ 

M which defines the class. The identity anticipation tN: N ~ N is the equivalence class 

[(idN, idN)]: N ~ N; 

c) The composition of q>: N ~ M, \j/: M ~ a, denoted by \jl• q>: N ~ a, is the class 

[(\V• q>, idN)]: N ~a. 

In the next proposition, we prove that the c'àtegories aMPetri and pMPetri are isomorphic. 

Thus, the vertical compositionality of Petri nets with respect to the anticipation is a direct 

corollary. In what follows, note that, for any class [(r, no)]: N ~ M where (r, no) is a 

representative element, the pair (q>r,no• idN) is also an element of the class. 

Proposition 12. The categories aMPetri and pMPetri are isomorphic. 

Procif: Let pa: pMPetri ~ aMPetri be a functor such that for ali net P , q>: N ~ M and \j/: 

M ~ a we have that pa P = P, pa idp = [(idp, idp)], pa q> = [(q>, idN)] and pa (\V• q>) = 
[(\j/, idM) • (q>, idN)] = [(\j/• q>, idN)J. Let ap: aMPetri ~ pMPetri be a functor such that for 

ali net P and for ali q>: N ~ M and \j/: M ~ a we have that ap P = P, ap [(idp, idp)] = 

idp, ap [(q>, idN)] = q> and ap [(\jl• q>, idN)] = \jl• q>. Then ap • pa = idpMPetri and pa • ap = 

idaMPetri· 
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Since aMPetri and pMPetri are isomorphic the composition of anticipations is 

straightforward and thus, the vertical compositionality is achieved. Also, we identify both 

categories by pMPetri and use the terms anticipation and transformation indifferently. A 

morphism <p: A ~ 8 which is a anticipation may also be represent as <p: A => 8. In the 

following proposition, we prove that the horizontal compositionality of Petri nets is 

achieved, i.e. _.. the anticipation of nets distributes through the parallel composition 

(categorical product) of component nets. 

Proposition 13. Let {<pj: Nj => Mj}iEI be an indexed set of aMPetri-anticipations, where I is 

a set. Then x iEI <pi: x iEI Nj => x iEI Mi. 

Proof: Since pMPetri is complete, x iEI <pi: x iEI Ni => x iEI Mi is the morphism uniquely 

induced by the product construction in pMPetri, as illustrated in Figure 20. 

Figure 20 - Horizontal compositionality 

Therefore, the diagonal compositionality requirement is achieved for antiCipation and 

parallel composition. To achieve this requirement for general constructions of net 

.... combinators it is enough to extend the proposed approach using the synchronization 

mechanism introduced in [13] inspired by [22,16] where the categorical product stands for 

parallel combinator and a functorial operation defined using the fibration technique stands 

for synchronization. Basically, induced functor restricts the parallel composition according 

to given table of synchronizations. 

Usually, for some given system, only some anticipations are desired. For this purpose, we 

introduce the specification grarnmar and the induced subcategory of anticipations. A 

specification grammar is basically an initial net and a collection of possible rules and 

instantiations. Each specification grarnmar induces a subcategory of pMPetri reflecting ali 
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possible nets that can be derived from the initial one. A specification grammar can be 

viewed as a specification of a given system and the induced subcategory as ali possible 

dynamic anticipations of the system (objects) and their relationship (morphisms). 

Definition 14. Specification Grammar. A specification grammar or just grammar is Gram 
= (R, I, N) where R, I are collections of pMPetri-morphisms representing the rules and 

instantiations of the grammar and N is an pMPetri-object called initial net. 

Definition 15: Subcategory lnduced by a Grammar. Let Gram =(R, I, N) be a grammar. 

The subcategory Gram of pMPetri induced by the grammar Gram is inductively defined 

as follows: 

a) N is an Gram-object and [(idN, idN)]: N ~ N is a Gram-morphism; 

b) for ali Gram-object M and for ali instantiation mo: Mo~ M and for ali rule r: Mo~ 

Po, [(r, mo)]: M ~ P is a Gram-morphism and P is an Gram-object; 

c) for ali Gram-morphisms q>: M ~ P, l.jf: P ~ Q, the morphism [(I.Jf • q>, idM)]: M ~O 
is a Gram-morphism. 

The understanding of the behavior of a specified system, according to ali possible 

reachable marking for ali possible anticipation can be achieved through an adjunction to a 

category Nonsequential Automata as introduced in [15]. The details of this approach is left 

as a future work. 

5 CONCLUSION 

We construct a categorical semantic domain for Petri nets which satisfies the diagonal 

compositionality requirement, i.e., anticipations compose and distribute through net 

combinators. The anticipation mechanism is based on graph transformations using the 

single pushout approach. For this purpose, we introduce a finitely bicomplete category of 

partia! Petri nets and partia! morphisms and we claim that, with respect to partial 

morphisms, "Petri nets are semi-groups". Classes of net transformations stand for 

anticipations. The composition of anticipations (i.e., composition of pushouts) is defined, 

leading to a category o f nets and anticipations which is also bicomplete. In this context, the 
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diagonal compositionality is achieved. A specification grammar stands for a system 

specification and the induced subcategory of nets and anticipations can be viewed as ali 

possible dynamic anticipations of the system (objects) and their relationship (morphims). 

Currently we are working on an adjunction between the categories in the proposed 

approach and categories of Nonsequential Automata as introduced in [15] to give a better 

understanding of a specified system, according to ali possible reachable marking for ali 

possible anticipations. 

If an anticipation replaces part of a net by another net we can not expect that the original 

net and the resulting one are equivalent, according to some notion of direct simulation 

between ali component transitions. Foliowing the same idea, if an anticipation introduces 

new places we can not expect an equivalence according to some notion of observation of 

state changes. We are working on a notion of equivalence based on computations. Also, we 

wili investigate the diagonal compositionality of anticipatory, concurrent systems equipped 

with reifications (refinements) in the sense of [15]. 
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