
T ech n ica I Report

High Performance with High
Accuracy Laboratory

Tiarajú A. Diverio; Philippe O. A. Navaux; Dalcidio M. Claudio;
Carlos A. Hõlbig; Úrsula A. L. Fernandes; Rafael L. Sagula.

Instituto de Infonnática da UFRGS
P.O.BOX: 15.064- 91.501-970 -Porto Alegre- Brazil

Phone: (051) 316.68.46 - Fax: (051) 319.15.76
E-mails: {di ver i o, navaux }@inf. ufrgs. br

Abstract

..
In order to obtain high performance with high accuracy in the so­

lution of scientific computational problems, a computational tool has
been developed , called High Performance with High Accuracy Labora­
tory. In this paper we describe initially the high performance and then
the high accuracy and the interval mathematics. After that, the tool is
described, including two environments in which it has been developed,
that is , the Cray Supercomputer vector environment and the parai­
lei environment based on Transputers. The description summarizes
the modules, the basic interval library, the high accuracy arithmetic
kernel, the interval applied modules , especially the selint.p library.
Finally, there are some comments about the performance.

Key Words

High Accuracy, High Performance, lnterval Mathematics.

January, 1997. Extra Edition. 35

Technical Report

1. Introduction

Computations of large scale are numerical processes which require a large
quantity of floating-point operations. They appear in the military and sci­
entific areas, engineering, study and exploration of energy source, medicine,
artificial intelligence, basic research, and economics. More specific examples
'are: the atmospheric forecast, modeling of oil field, aircraft projects, simula­
tions of automobiles accidents to the determination for safer automobile and
traffi.c control.

For the solution of these problems, powerful computers such as Main­
frames and Supercomputers are necessary. They are modern, fast and with
process capacity to a large quantity of operations and/or a large volume of
data. To the Mainframes, it is attributed the feature of having high capacity
for working with a large volume of data, and for storing it , as well as for
transferring the data. An informal definition of supercomputer is not static.
It is seen as the most potent machine in a determined moment. A super­
computer of yesterday may be today less potent than a simple PC 586 and
a current supercomputer may be an obsolete machine tomorrow. The defini­
tion is associated to the performance. This one is measured according to the
quantity of operations that it processes per second. These operations can be
floating-point operations or instructions, resulting in units of measurement
well-known as flops or m:ips, respectively.

36

Volume
o f

Iri.g.Jt Pl!!lÍO~E!
Superccn:ttpu.ter

O p e :r.a.iioru ., ... ·.·.·.·.·.·.·.·.·.·.· .. ·. ···· ···)
hno P"' :::: ::J:' L ::. ::::

' !.! M-ainfr-uru:
:?.iw"u&Y..w~mzt.q:~;;:;zy;~ZQY~~
!~ t > ~

il I!. MIPS ' I
:í._._ u.·.w.·mmm.JL.. .. m.w.·.·m '''""'""'-"J

Figure 1: Machines of High Performance

Ja.nuary, 1997. Extra Edition.

Technical Report

Nowadays computers can carry -out above 10n fioating-point operations
in a second. It has just become possible by virtue of the development of
integrated circuit technology. The advances in the computation technology
suggest an attempt to render the computer arithmetically more powerful.
Thus , a special attention must be given to the validity of the calculated re­
sults. · A rapidly calculated but incorrect result is useless. The solution of
numerical problems continues using the same arithmetic of the first comput­
ers. That is , it is based on the four basic floating-point operations: addition ,
subtraction, multiplication and division. They are still used, but presently
many times faster and more frequently. Seemingly, we used the .floating-point
arithmetic with its well-known inefficiency, supposing it is a necessary evil.

The computer was invented to do the complicated work for people. The
evident discrepancy between the computational power and the control of
computational errors also suggests that the process of error estimation must
be placed inside the computer. This new task has been made satisfactorily
for practically all the basic problems of numerical analysis and many appli­
cations. In order to do it , the computer needs to be made arithmetically
more powerful than the ordinary one.

Examples show that it is necessary and even obligatory to render the nu­
merical methods and the computers more reliable than the computers and
methods that use only the ordinary floating-point arithmetic. This devel-...
opment began about 25 years ago and has gained more importance up to
now.

Some techniques have been developed in numerical analysis , which have
enabled the computer itself to verify the validity of the results calculated for
numerous problems and applications. The computer can also establish in
this manner the existence and the uniqueness of the solution. It is from this
point of view that the High Performance with High Accuracy Laboratory
was projected and is being developed.

2. High Performance

High performance is associated with machines , computer architectures, and
with the processing. In this work, it refers to the high performance in the
processing of large scale processes.

January, 1997. Extra Edition. 37

Tecbnical Report

Therefore, the emphasis is the use of high performance computers in order
to do a large quantity of floating-point operations. In these computers , the
type of processing is vectorial or parallel.

In vector processing, the computer has a hardware that makes possible
the execution of scalar operations for vector operations, and this produces a
decrease of the processing time. In parallel processing, the computer must
ha~e two or more units of processing or processors (CPUs) where the tasks
can be executed at the same time.

In order to give an idea of the dimension of the number of operations and
of the time spent for doing it , it will be considered a more speci:fic example of
atmospheric forecast, that is, in the multidimensional modeling of the atmo­
sphere. The predictive modeling is made through extensive computational
simulations of experiments, in which, generally, computations of large scale
are involved in order to guarantee the desired accuracy and the minimiza­
tion of the necessary time for the solution. Such numerical modeling needs
a computer able to process with a speed of thousands of megaflops. Using a
grid with 435 Km of a side, a forecast of 24 hours needs to ful:fill about one
hundred billion data operations. This forecast can be clone in a computer of
100 megaflops in around 100 minutes , that is, one hour and forty minutes.
The grid of 435 Km gives a forecast between São Paulo and Rio de Janeiro,
approximately. Increasing a little this grid, in order to comprise a larger
region, i t would be necessary to h ave a f as ter machine or we would run a risk
of spending more time of calculus for the forecast than the day that we want
to foresee.

2.1 High Accuracy Arithmetic

The high accuracy arithmetic enables the calculations to be clone with max­
imum accuracy. But it is necessary that the format or type of data, the
arithmetic operations supported by the hardware or by the programming
language satisfy the conditions of a semimorphism [KUL83]. All the opera­
tions constructed according to this de:finition will have maximum accuracy.
That is, the calculated result differs from the accurate value to the utmost
in one rounding.

The IEEE arithmetic standard has emerged with the purpose of setting
the standard of the fioating-point arithmetic in all the platforms. It has been
an initial step for obtaining the high accuracy arithmetic.

38 January, 1997. Extra Edition.

Technical Report

The standard has not specified the roundings for complex variables, op­
erations between vectors and matrices , and has not included the optimal
scalar product, essential for the guarantee of the calculations. For this rea­
son, GAMM/ IMACS have proposed another standard (see [IMA91]).

The use of high accuracy arithmetic associated with interval mathematics
produce results with maximum accuracy, where the calculated result differs ,
by just one rounding, from the real value, as the intermediate calculations
are clone in special registers, in order to simulate the operations· in the reals,
and the rounding is clone only at the end.

The requirements for having high accuracy arithmetic are: the use of
directed roundings (downwards V x and upwards .6.x); the four arithmetic
operations with maximum accuracy; the interval mathematics and the opti­
mal scalar product.

Directed roundings are monotone mappings (see [KUL83]) used to repre­
sent the real numbers in machine numbers. When the rounding function is
applied to any element of the machine number set , it produces the machine
number itself. In order to have implemented a high accuracy arithmetic, we
must have the two types of directed rounding:

• Upward rounding (.6.x) is the function that maps the real number x to
the smallest machine number that is greater than or equal to it.

• Downward rounding (V x) is the function that maps the real number x
to the largest machine number that is less than or equal to it.

These roundings are necessary in order to guarantee calculation, being
fundamental to the implementation of the machine interval arithmetic. An­
other type of rounding is the symmetrical rounding (or to the nearest machine
number) . It rounds the real number x to the nearest machine number. It is
defined according to the previous roundings and produces a smaller error of
approximation.

Arithmetic operations with maximum accuracy are defined in order that
just one rounding is applied in the basic arithmetic operations, resulting
that the calculated value and the accurate value are different only for one
rounding. If ois an arithmetic operation in the space R of the real numbers,
then the corresponding operation in the computer IQJ into the set F of the
machine numbers is defined by: xiQJy : = O(x o y) V x , y E F. (w here O is a
rounding) .

January, 1997. Extra Edition. 39

Technical Report

That is, the operation in the computer must be made as if the accurate
result were first calculated and then approximated by means of the chosen
rounding.

Briefiy, semimorph operations for real and complex numbers, vectors and
matrices, as well as for real and complex intervals, interval vector and matri­
ces, can be performed by fundamental arithmetic fioating-point operations
arithmetic: +, -, *, j, . (where . denotes an exact dot product), each one
with the roundings upwards, downwards and to the nearest number.

2.2 Interval Arithmetic

Interval arithmetic treats data in the form of numerical intervals and has
emerged with the purpose of automating the analysis of the computational
error, bringing a new emphasis that allows a control of errors with sure limits,
besides proofs of the existence or not of the solution of several equations.

Instead of approximating the real numbers by the fioating-point numbers
(through some of the approximation rules o r the types o f rounding), they
are represented by intervals of fioating-point numbers, that is, a real x is
represented by an interval X = [x1 , x2], where the lower bound (x1) and
the upper bound (x2) are machine numbers, so that x1 ~ x ~ x2 . All the
arithmetic operations, relational operators, as well as elementary functions
are defined for interval argufnents. Starting from the interval arithmetic, the
concepts that compose interval mathematics and interval methods for the
solution of numerical problems are developed. The table below shows some
of the existent operations for fioating-point interval sets.

40 January, 1997. Extra Edition.

Technical Report

Inverse additive: -X= [-x2, - ,;z;I]

Pseudo inv. mult.: 1 I X = [1 I x2, 1 I x1] i f O ~ X
Addition: X+ Y = [x1V' + y1,x2.0. + y2]
Subtraction: X- Y = [x1 V'- Y2, x2.6.- Y1J
Multiplication: X * Y = [min { x1 V' * Y1, x1 V' * Y2, x2 V' * YI, x2 V' * Y2},

max { xib. * Yl> xib. * Y2, x2 .0. * Y1> x2 .0. * y2}]
Division: XjY = [min{xiV'/ybx1V'/y2,x2V'/yi,x2V'/y2},

max{ xib./ Y1, x1A/ Y2, x2.6.l YI, x2.6.l Y2}]
Intersection: X n Y = {[max{ x1, yi}, min{ x2, y2}] , if xi ::; Y2

and YI ::; x2, 0- other cases
Union: X U Y = {[min{x1, yi}, max{x2, Y2}J, if X n Y # 0,

ERROR- other cases.
Distance: d(X, Y) = max{l XI- YI I, I x2- Y2 I}
Absolute Value: I x I= d(X, [o, o])= max{l x1 I, I x2 I}
Diameter: D(X) = X2- Xl

Table 1: Basic Interval Operations

3. High Performance with High Accuracy
Laboratory

The project of the High Performance with High Accuracy Laboratory has
been projected in three environments, that is, on three platforms. The first
platform is the environment of the, PC 486 with Pascal XSC language. The
second platform is the environment of the Cray Y-MP supercomputer with
the Fortran 90 language, where vector processing is explored.

The Cray Supercomputer is located at the Supercomputer Center (CESUP­
UFRGS). It belongs to the Y-MP family, with two vector processors, and with
the following features: maximum total speed of 660 Mflops; word lenght of
64 bits; RAM of 256 Mbytes and 16 Gbytes of disk, and UNICOS operational
system, compatible with UNIX system V.

The other platform comprises the parallel environment based on Trans­
puter processors, as the B004 board available at CPGCCIUFRGS. The em­
phasis is on the exploration of the parallelism of the interval operations and
the development of a project of a parallel tool.

January, 1997. Extra Edition. 41

Technical Report

Environment PC 486 Cray Y-MP Transputers

Language Pascal XSC Fortran 90 C++ parallel
Basic Interval Library Pascal XSC libavi.a libavip.h
Kernel High Accuracy Pascal XSC fpkernel.a m progress

Linear Systems selint.p libselint .a m progress
Integration intnum.p libintnum.a m progress

Table 2: Laboratory environments

The INMOS Transputer is the first single-chip microprocessor that pro­
vicies a high-speed processar, fast inter-processar communications, and an ex­
plicit support for multiple processes and multiple processar systems. The de­
sign aims were for a device that would be used in multiple processar message­
passing systems, where each processar had its own physical memory, but with
support for multiple shared-memory processes on each Transpu ter. What the
Transpu ter does not provide, therefore, is any memory management on chip ,
or any support for off-chip memory management devices. The Transputer is
a processar that does not control I/0 operations directly. Such operations
are required by the Transputer to the system's BIOS (Basic Input/ Output
System) in which it resides. Presently, it has interfaces with IBM-PC and
compatible computers , and with Sun workstations .

The T800 is a 32 bits RISC processar containing all the elements of a
microcomputer on a single VLSI chip. It includes a 32 bit CPU, a 4 Kbytes
on-chip static RAM, a 64 bit fioating-point unit (FPU), a memory interface
for externai memory and four bi-directional seriallinks. These four links are
the characteristic elements of Transputers . A further feature of the TSOO
is the support of multitasking which is essential for parallel programming.
Each Transputer can easily manage several processes, and process switching
is performed very fast by a hardware scheduler.

The development environment available at UFRGS consists of a B004
board with four T800 Transputers (one root Transpu ter and the other ones
of work) connected to a PC 486 IBM-PC compatible.

42 January, 1997. Extra Edition.

Tecbnical Report

PC~holteml1!lba'wht.,thl 'f~11,t''Jhoui U ~l'd~
Ràz:{Ba.t}- Tnn~p.J!uc=-át4in~K',d•'-bw:. }t~,the: comra:uicO:wrwilhohtr~ele:nat.tb;
roo~ IU1. mJ3 - dl.r r....,.,.., ;. ~ 1> ou!:
Q,l~)·tl.l!Dll.ticno(ti. coom:..ria.t.icn chamW O:ià•)o!u:l-.TW11Pl1t-

Figure 2: Environment of Transputer Board

3.1 Basic Interval Library

The standard used in the Basic Intervallibrary was the same as that used in
the Pascal XSC language, where intervals were available as intrinsic types of
the language as well as all its arithmetic operations. In the vector environ­
ment , it was necessary to define this data type. Intervals were carried out in
the libavi. a intervallibrary.

Li bavi. ais a library of interval routines that implements the high perfor­
mance arithmeticjoining the features of vector processing with the properties
of interval mathematics. The li bavi. a intervallibrary was designed in order
to make feasible the use of interval mathematics in supercomputers for the
solution of physical and- chemical problems and for the solution of engineering
problems that need high accuracy. Thus, besides the interval vector arith­
metic (operations, functions and expression evaluation) , we had to provi de
libraries that would render the interval methods for the solution of problems
available for these users.

Libavi. a library is composed of 290 interval routines organized in four
modules. The BASICO module includes the file which contains the definition
of complex and real intervals (inter. inc). In this module, all the operations
among real interval are implemented. These operations are the basis of all
the other modules.

The CI module contains routines for manipulation of data of complex in­
terval type. Basically, it contains the same routines as the BASICO module
rewritten for this kind of data and also specific routines for complex intervals
(such as the conjugated number). From this module, routines that manipu­
late vectors and matrices of complex intervals are being implemented.

January, 1997. Extra Edition. 43

Teclmical Report

Thus, it is enough to extend the complex operations for each element of
the vector or matrix of complex interval in a way similar to the one clone
with real intervals.

In the BASICO and CI modules there are sets of routines or functions
grouped according to the nature of the operations. There are six sets. The
first set is composed of transfer functions, which convert real or complex
nÚmbers into intervals or vice versa, as well as functions that calculate ge­
ometrical particularities of the intervals, such as diameter, radius, medium
point and distance among intervals.

The second set is composed of relational functions, in which the result
type is generally logical (Boolean). Among the relational functions are the
equality, the difference, to be smaller, to be larger, to be contained in, to
contain, inner inclusion relation and the pertinence relationship, that is, a
real belonging to the interval.

The third set of routines deals with operations among sets . Among these
operations are the intersection, the union and the convex union.

The fourth set of routines implements the arithmetic, that is, the arith­
metic operations of addition, subtraction, multiplication, and division. Some
arithmetic operations among different types of data are included. The ele­
mentary functions such as absolute value, square root, square, powers, ex­
ponential, logarithm and trigonometric functions constitute the fifth set of
routines. Finally, there are the routines of input and output, sread and
swri te for the new data types.

The MVI module includes the BASICO module and it is included into the
module of applications APLIC. This module implements all the operations
among interval vectors, interval matrices and routines of different types of
data with interval vectors and matrices. The module of the interval matrices
and vectors (MVI) has been organized in three parts: real interval vectors
and matrices and the part that contains arithmetic operations of different
types of data with intervals, real intervals vectors and matrices. Each one
of them contains different groups of routines. These groups . are: transfer
functions, relational operations and set operations, arithmetic operations,
transposition, basic functions and input and output routines.

The last module is the application module, called APLIC. In this part,
there are some routines that implement composite arithmetic operations ex­
istent in other libraries.

44 January, 1997. Extra Edition.

Technical Report

Operati ons with inter vais, m atric:es and. int.ervai vectors, etc:.

Four op erations, roundings and opt:ima1 ::;côlar pr ocluct.

Complri:Siol:'l, ~itioll. al'Ld i.rJ.w ger G~lbtra~tiol'l, shift >ll'Ld
multi.})li.ca ti.on o~ ra ti.ort an.d inte:ge:r division relation.sh.i:p.
Fl':st lev.zl

S2cor1.d Jwer

Figure 3: Levels of the Kernel

In order to choose these routines, some libraries have been analyzed,
such as NUMERALS, from Burroughs, BLAS, and Pascal XSC. The APLIC
module uses the BASICO and MVI modules.

In a parallel environment, it is necessary to implement the interval, inter­
vai vector and matrix types together with the arithmetic operations between
these data types. In the parallel environment, the intervallibrary is being
implemented in parallel C++ and it has been called libavip. a.

3.2 High Accuracy Arithmetic Kernel

In a scalar environment, the high accuracy arithmetic is one of the char­
acteristics of the Pascal XSC language. In the other environments, it was
necessary to implement routines with this quality, creating the High Accu­
racy Aritbmetic Kernel.

In order to obtain high accuracy arithmetic, a large gap has to be fi.lled .
Thus, a high accuracy arithmetic kernel is being implemented and going to
be incorporated into the libavi. a (developed in FORTRAN 90), including
the directed roundings, the four operations with maximum accuracy and the
optimal scalar product. The kernel is the basic module of the libavi. a
library. It is being entirely implemented by software. There have been fore­
seen three levels of implementation for high accuracy arithmetic. The picture
below illustrates the disposition of the levels of implementation.

January, 1997. Extra Edition. 45

Technical Report

The first level refers to the basic routines, such as shift routines; com­
parison relationship; shift, addition , subtraction, multiplication and integer
division operations. We assume that these routines are available in the com­
puter in arder that the other leveis may be implemented. The second level is
the high accuracy arithmetic kernel. It is fundamental for the high accuracy
arithmetic. Without this level, there is a "hole" in its specification. And
the' third level corresponds to the most elaborated operations of the fl.oating­
point numbers set . It corresponds to the operations with fl.oating-point in­
tervals , fl.oating-point interval vectors, etc. This level also corresponds to the
libavi. a library.

3.3 Interval Applications Modules

One of the purposes of High Performance with High Accuracy Laboratory
is the elaboration of computational tools that use interval arithmetic in the
solution of problems of scientific computation and of computation in several
areas of research. For example, problems that involve the solution of system
of linear equations (see [HOL96]). The module of applications is composed
of operations that correspond to the three levels of the BLAS library and of
routines that make easier the development of interval methods for solution
of linear systems.

The modules of applications were projected for the three environments
as shown in table 1. They were, ini t ially, implemented in PASCAL XSC like
in the case of linear systems solutions. In vector environment, the modules
are being implemented in FORTRAN 90, and in parallel environment, they
are in project stage.

3.4 Interval Applied Library for Linear Systems

Throughout the study of interval methods for the solution of systems of
linear equations ([HOL96]), it has been observed the need of defining applied
libraries which may concern chapters of numerical mathematics. The first
one of these interval applied libraries is the one that concerns the solution of
systems of linear equations.

46 January, 1997. Extra Edition .

Technical Report

The principal objectives in developing this interval applied library are
the following: the use of these libraries for the diffusion of the study of
interval methods near academic environments and near people who may be
interested in these methods and the use of these libraries in the solution of
computational problems in different areas of research.

The Linear System library has been developed in modules. Each one
corresponds to a methodology of developing interval methods. These mod­
ules are: dirint module, including the methods based on interval algebraic
operations and interval properties (they are also known as interval direct
methods); ref int module, including the methods based on inclusions o r in­
terval refinements of the solution and of the error (they are also called hybrid
methods , since we can use the initial solution calculated by punctual meth­
ods or by punctual inverse matrix); i trint module, including the interval
iterative methods, also known as relaxation methods (they are also based
on monotone inclusions). Besides these three modules, it has been defined
a fourth one, equalg, which contains routines for the particular case of lin­
ear system of order one, that is, algebraic solution of equations by interval
methods, like the interval versions of Newton's method (see [HOL96]).

Selint. p library has been developed in a personal compu ter environment
(PC type) and implemented in a PC-486, making use of Pascal-XSC com­
piler ([KLA92]).. Finally, through this library, there were made comparisons
among the results obtained (punctual and interval results) in order to do
an analysis of quantitative performance. For this comparison we used the
libselint. a intervallibrary, which has been developed for Cray Y-MP su­
percomputer of CESUP /UFRGS environment, implemented in FORTRAN
90 and making use of libavi. a intervallibrary ([DIV95]). This library be­
longs to the Interval Vector Arithmetic project of GMC/UFRGS, in which
there are also the libavi. a intervallibrary and the libselint. a interval
library.

For the use of the libselint .a library, the user must also include in

bis applied program the inter. inc file, which contains the definitions of
real and complex intervals and the libavi. a library, since the necessary
routines of manipulation of intervals, vectors and intervals matrices have
been implemented there. It may still be necessary to include the libsci . a
library, for some of the APLIC module use routines from BLAS library,
included in it.

January, 1997. Extra Edition. 47

Technical Report

The results obtained through implemented interval methods have proved
to be of good quality in their major part. Through the comparison of those
results with the punctual results of the tested systems, it has been verified
the same magnitude of accuracy, and that the punctual solution has been
contained in the solution interval. The order of the solution interval diam­
eter has been of 10-15

. This has guaranteed an accuracy around 14 correct
sign'ificant digi ts.

In the implemented and tested direct methods, the only method that
has not presented satisfactory quality was a version of Hansen's method,
described by hansen4, which produced interval results with a very large di­
ameter (in the order of 102

) that render the solution useless to the purposes
of the libraries.

In general, the methods based on refinement have been considered as
the methods that produce the best results. In some systems, they produced
a result which is considered arithmetically accurate. Those methods have
also used the least processing time for solving linear systems. Some of the
obtained data are presented and compareci in table 3 and figure 4.

48 January, 1997. Extra Edition.

Tecbnical Report

I order/method I hansen2 I hansen3 I hansen5 I refgeral I refdensa I
10 0,330 0,275 0,439 0,165 0,165
20 1,813 1,758 2,692 0,769 3,296
30 5,328 5,273 8,679 2,032 8,459
40 11,975 11,700 20,434 4,010 18,402
50 23,016 23,181 37,738 6,921 35,705
60 40,100 41,308 66,467 10,931 58,666
70 60,864 62,182 106,237 16,369 87,340
80 89,318 90,142 160,399 23,565 135,844

Table 3: Processing speed in selint . p program in seconds

lil '""""'"'~'
13 h-ar.r" ... ~

• h-..r ~ n:S

10
'?!.•

Figure 4: Comparison of the processing speed in selint. p program.

Tests clone in a PC 486 DX2 100 MHz, using the Hilbert matrix.

Ja.nuary, 1997. Extra Edition. 49

Teclmical Report

4. Interval Software Performance

The measure of performance of these libraries requires a previous study of
the best technique to be applied in order that common errors may be avoided
such as those described by Jain [JAI91], rendering all the work useless. These
errors may result from a biased goal, from a poor research, from an analysis
witl1out a deep knowledge of the problem, from a wrong measure of the data,
as well as by the erroneous presentation of the obtained results.

A difficulty in the comparison of performances is that in each one the
existing libraries use different environments, not only hardware but also soft­
ware. The libavi. a library, for example, has been developed in the Cray
Y-MP Supercomputer using the Cray's Fortran 90 compiler, trying to use to
the utmost what the machine offers. Consequently, programs that use it will
probably run faster than those that use libraries such as PROFIL, INTLIB,
or PXSC, running on PCs or Workstations, not by the software factor, but
by the hardware. The ideal program is the one that may be portable for any
environment that make necessary the definition of a standard for the interval
libraries of the BIAS type (Basic Interval Arithmetic Subroutines).

Thus, the development of a standard for measuring the interval software
performance requires an impartial analysis and, at the same time, show the
advantages of each software analyzed. Besides this, we must consider the
possibility of arising new tocrls to be tested in this field and which will have
fit in the previous method.

Having finished the phase of development and implementation of libavi. a
interval library, we begin to measure its performance. An easy way of do­
ing this was with the htrn (Hardware Performance Monitor) tool containing
UNICOS and other tools such as perfview and profview. With this, we could
define an important factor of the interval program: how many Mflops it has
achieved. As it was foreseen, the rate would be low (less than one Mflops),
because we did not have yet, from the inlining resource, a directive compiler,
in the version available of the Fortran 90 in the Cray Y-MP2E of CESUP.
Without this resomce it has been almost impossible to use all the advantages
of a vector processor and program restrict to a scalar code.

50 January, 1997. Extra Edition.

Tecbnical Report

For a person that does not know the Cray Y-MP2E supercomputer, this
value can be high , but when compareci with the potential of this machine
(peak of 330 Mflops per CPU), we verify that this value is insignificant.
Indeed, just in order to test the performance, it was made a manual inline of
the function of interval matrices sum and it was measured the performance
again: from 20 to 127 Mflops.

Another doubt concerning the data presented above is that the program
was used to make the measurement. Corliss' work was very useful is this
sense: he defined a workload to be used in performance tests of interval
packages. The work of Corliss together with each developer was impartial
and also showed all the potential of this product.

As seen before, an interval benchmark must have some special features,
such as: to be relative to system potential about what is running and show
impartially all potential of the software tested. On the other hand, we will
have absolute measures of performance that do not serve much to show the
reality. The use of BIAS (Basic Interval Arithmetic Subroutines) is also es­
sential in order that the test programs can be written and translated without
ambiguities , besides encouraging the use of this standard in other applica­
tions.

The benchmark development must not be an isolated effort of the user
interested in knowing which is the best software available in the market, but
it must have the participation of the person that develops the system, that
wants to show all the potential of this product.

5. Conclusions

This paper presented the high performance with high accuracy laboratory,.,,,
and it described its main features in its three environments: sequential, vectÓr
and parallel. It also showed the importance of having quality in the floating­
point operations, for in computations of large scale the errors accumulate
and they can produce wrong results.

The libavi . a library has been developed with the purpose of exploring
the Cray high performance with the use of Interval Mathematics.

January, 1997. Extra Edition. 51

Technical Report

The results obtained are contaiJ?.ed in intervals , which produce a certain
reliability, but they may carry with them an unnecessary quantity of infor­
mation, since the calculations are not clone with maximum accuracy, neither
is there the optimal scalar product. With the implementation of the high
accuracy arithmetic kernel, the intervals that contain the solution will be
the smallest possible and we will have the automatic result verification by
the computer itself. Thus, we will finally have the high accuracy and high
performance arithmetic available to the users of Supercomputer Center of
UFRGS .

Most of the results obtained from the interval methods implemented in
libraries were good when compareci to the punctual results systems tested
(see [HOL96]) . The methods based on refinement , in general, were considered
as methods that had produced the best results and, in some systems, they
produced the result considered arithmetically exact .

The comparison among the libraries implemented in this work has demon­
strated that the results obtained in these libraries were approximate, but the
results obtained in the selint. p library have better accuracy due to the
characteristics available in the Pascal-XSC compiler, which are not all avail­
able in the libselint. a library. One limitation of the selint. p library is
that the solution of large systems may be impracticable as it needs a large
scale of computation â nd a large amount of memory to store data.

The project in the parallel environment that has been developed at UFRGS
is in its initial stage. The basic interval routines have already been imple­
mented in the three environments. Today, we are studying the performance
speed optimization of them through its parallel processing in the hardware
based on available Transputers . The most delicate phase is choosing the levei
of their parallel processing, or which operations will be executed in parallel:
the most primitive, the intermediate ones , the most elaborated (with ma­
nipulation of vectors and interval matrices) , or a combination of the former
ones?

After the phases of definition and implementation, it will be possible
to compare the results obtained from intervallibraries in the three environ­
ments. Then, we will be able to evaluate the performance of the combination
between parallel algorithms and interval operations library with rounding er­
rors verification.

52 January, 1997. Extra Edition.

Teclmical Report

References

[COR93]

[DIV95]

[HAM93]

[HOL96]

[IMA91]

[JAI91]

[KLA 92]

[KUL83]

[KUL93]

CORLISS, G. F. Comparing Software Packages for In­
terval Arithmetic. Preprint presented at SCAN'93, Vienna,
1993.

DIVERIO, T. A. Uso efetivo da matemática intervalar
em supercomputadores vetoriais. Porto Alegre: CPGCC
da UFRGS, 1995. Tese de doutorado.

HAMMER, R. et al. Numerical Toolbox for Veri­
fied Computing I: basic numerical problems. Berlin:
Springer-Verlag, 1993. 337p.

HÕLBIG, C.A. Métodos Intervalares para a Resolução
de Sistemas de Equações Lineares. Porto Alegre: CPGCC
da UFRGS, 1996. Dissertação de mestrado.

IMACS, GAMM. Resolution on computer arithmetic. In:
Computer Arithmetic, Scientific Computation and Mathemat­
ical Modeling. KAUCHER, E.; MARKOV, S. M.; MAYER,
G.(Eds.).Basel: J.C.Baltzer , 1991. v.12. p.477-479 . •.
JAIN , R. The art of computer systems performance
analysis. Littleton, Massachussets, Digital Equipment Cor­
poration, 1991.

KLATTE, R. et al. PASCAL-XSC Language Reference
with Examples. Bedin: Springer-Verlag, 1992.

KULISCH, U.; MIRANKER, W. L. A new approach to
scientific computation. New York: Academic Press, 1983.
384p.

KULISCH,U.; RALL, L. B. Numerics with automatic re­
sult verification. Mathematics and Computers in Simula­
tion. (North Holland). v.35, p.435-450, 1993.

January, 1997. Extra Edition. 53

