
AtL~=~o_~~ ~ ~~ -~Bu
~o._.___ e.-=', ~o...~~
~~·.é\-_~~~'
?f\...() }e

A State-Space Appr~ç
e-~?~ A. o~. o~. oo-

José Mauro Volkmer de Castilho*

1 INTRODUCTION

The E-R approach [Chen76] has nearly become a standard for the specification of
database's conceptual data requirements in database systems design, due to its simplicity,
easy understanding, and wide use within the software development community. Most of the
information systems in use today, specially those that have been properly designed, have E
R diagrams documenting their conceptual schemes, describing the structure and
interdependencies of corresponding conceptual data.

It seems then adequate that such diagrams ought to be used when one has to study
the redesign of available databases, adjusting them to new requirements defined by the
user. Modifications, new data structures, and enhancement of existing data structures result
in the specification of new E-R diagrams, which normally show strong similarity with the
original diagrams.

Data conversion from an old version to a new version of a database is a criticai task,
whose results may have heavy impact on the existing set of application programs that
manipulate the database. The ideal situation is one in which only exactly the programs that
access data involved ·in the modification of data requirements, and the corresponding stored
data structures, should be adapted, recreated or recompiled, and in which ali still
meaningful data is moved to the new stored data structures, with small computational effort
(meaning few time and few additional storage space).

Chen has briefly studied diagrams transformation in an old paper [3], presenting a
set of operations on E-R diagrams which correspond to diagram modifications performed
more frequently during the enhancement of a software system's data description. Batini et
al., in [1], present a more complete study on E-R diagram transformations, classifying them
as transformations that preserve information contents of the corresponding data
descriptions (seeking minimality or redundancy avoidance, diagram normalization, better
expressivity and legibility), andas transformations that increase information contents of the
corresponding schemes.

The above mentioned studies worried basically with the increase of quality of the
schemes themselves, a task to be performed by the system's designer during the conceptual
data design phase. Chen's study considers the availability· of an already existing database,
but Batini's study seems to be applicable only during the conceptual data design phase.

Instituto de Informática-UFRGS, Caixa Postal15064- CEP91501 -970 Porto Alegre-RS

A State-Space Approach for Database Redesign

The redesign of a database, adapting it to new data requirements , may make use of
diagram modifying operations mentioned in both studies , for better results :

(I) the operations in [3], and those in [1] that increase scheme' s information
contents, may be used to modify the diagrams, adjusting them directly to satisfy the new
requirements;

(2) the operations in [1] that preserve information contents o f the old schema, may
be used to enhance the quality of the new schema.

A simple way to map old->new diagram modifications to corresponding old->new
modifications on stored data structures could be: associate to each diagram transforming .
operation , from [3] and [1], a programming language procedure that should create the
contents of new stored data structures, or adapt the contents of old ones, to adjust them to
the new conceptual diagram. Studies in this direction were done by [Gazola92] and [2],
considering data stored as database relations. The general expression for data conversion
could be specified as:

reference to a new stored data structure <- (programming language procedure
whose execution retrieves and uses a set of data values extracted from old stored data
structures, to c reate the contents o f the new stored data structure)

The study and definition of such programming language procedures for database
conversion are outside the scope of this work.

Considering the available sets of diagram transformation operations, there are
usually many alternate ways of using them to construct a new diagram from an old one.
The set o f operations actually used by the systems designer is only one of them, maybe the
one that seemed more "natural" to him for this task. Alternate diagram transformation sets
of operations may be grouped in clas~es, which have in common the particular set of
operations used, together with their opposite operations (well-defined sets of operations
have positive, or concept including, operations, and negative, or concept excluding,
operations. This does not imply that any well-defined set of operations should have an even
cardinality, because two or more operations may have as opposite a single operation. This
will not be explored here any further, but the reader may examine the sets of operations
proposed by Chen and Batini for a hint on this statement).

In any class there is at least one minimal transformation set, which is, simply, the
smallest set of elements in the class. Any transformation set which is not mínima! in the
class, must exhibit some sort of transformation cycle, involving operations and their
opposites (transformations done by some operations are undone by others, and vice-versa).

It is important to observe that the set of diagram transformation operations that the
designer has used may not be one of the best, that is, one that corresponds to a sequence of
programming language procedures whose execution produces a new database in less
execution time and using less auxiliary storage space during database conversion.

In fact, what one has in hand here is a rather complex optimization problem, whose
ultimate goal is the systematic construction of a complete program that should create a new

8 RITA • Volume V • Número 1 • Julho 98

L

A State-Space Approach for Database Redesign

database from the old one, in less time and using less auxiliary storage space. This paper
proposes an approach to solve this problem in two steps:

(1) to identify ali sets of diagram transformation operations that may transform an
old diagram in a new one, using available operations from a given operations' universe
(i.e., the sets of operations presented in [3] and [1]) ;

(2) for each minimal set found , identify what order should be defined on the
operations of the set, so that the optimization goals may be achieved. This order will
determine the order of execution of the corresponding set of database conversion
procedures.

Any one of the two problem steps may be expressed as a state-space search problem
[7] or plan-formation problem [6]. For both steps, the state space is the set of ali correct E
R diagrams (those that do not have entity boxes directly connected to other entity boxes, or
relationship boxes connected directly to other relationship boxes). In the first step, the
state-space search should look for sets of diagram transformation operations that generate
the new diagram from the old one. Each operation in the set should take the diagram
produced by another operation in the set and make its resulting diagram "closer" to the new
diagram, in the sense that the corresponding operation introduces a diagram part that the
new diagram has and the old one has not, or takes out a part that the old diagram has and
the new one has not.

In the second step, the state-space search looks for sequences of diagram
transformation operations, each sequence taken from one of the sets identified in the first
step, with the initial state represented by the old diagram and the final state represented by
the new diagram.

The fir~t step has not yet been examined in depth. It should group in sets ali possible
and productive combinations of instances of diagram transformation operations (operations
with instantiated arguments) taken from a given set of operation schemes (parameterized
operations, defined like the ones proposed by [3] or [1]) . Productive here means that the
corresponding combination of instantiated operations should exhibit the "closeness"
property outlined above.

Any set of (instantiated) operations identified in this first step should also have a
sort of sequencing property : it should be possible to establish at least one sequence of
operations in the set, where the first one uses as initial state the old diagram, the second
uses the diagram produced by the first operation as its initial state, and so on until the new
diagram is produced by the last operation in the sequence. Operation sets without the
sequencing property should be discarded. In general , the identification of productive
combinations of operations, and the verification of the sequencing property of a set of
operations seems to be a hard task.

To simplify the presentation of the whole idea, it was decided here to make this first
step trivial, using a small set of atomic operations schemes, instead of using the more
natural sets proposed by [3] o r [1]. This set has only operations for the creation and
exclusion of entity and relationship elements from diagrams. Just by inspecting the

RITA • Volume V • Número 1 • Julho 98 9

l

A State-Space Approach for Database Redesign

differences between old and new diagrams, one can determine a set of instantiated
operations which has the sequencing property described above.

This work then concentrares on the outlining of a solution for the second step,
through the presentation of a small example. To make the presentation still more simple, it
was used, instead of the full E-R model, a shortened version of it, having only the Entity
and Relationship modeling concepts, with no attributes or relationship cardinalities, and no
extensions to deal with data abstractions.

It may be shown that such simplifications do not invalidare the generality of the
approach taken. For instance, semantic extensions, like specialization/generalization or
aggregation , may be modeled as special relationships . Attributes may be modeled by
defining value domains as entities and attributes themselves as binary relationships between
normal entities and domain entities. Cardinalities are more difficult to deal with. Their
treatment may need the addition of some sort of cardinality constraint defining mechanism
to our simple E-R model. This will be left for !ater studies on the subject.

It is supposed, in some explanations made during the example presentation, that data
are stored as relations, following the relational model o f data [4].

The paper is organized in four sections, including this introduction. Section 2 gives
a general idea of the proposed approach for the second step, and section 3 details the
formalisation of the problem as a state-space search problem, with the use of a small
example. Section 4 presents conclusions and further research directions.

2. A QUICK OUTLINE OF THE STATE-SPACE APPROACH TO
DATABASE REDESIGN.

This work's proposal is based ' on a simple basic idea: having at hand the E-R
diagram that describes the current contents of the software system's database, the data
designer defines how it should be modified to satisfy new data requirements from the user.
The modifications introduced should preserve the properties o f legibility, expressiveness
and minimality in the resulting diagram [1].

In order to formally present the approach taken in this work, a sort of E-R diagram
transformation algebra is defined. Its domain is the set of ali possible E-R diagrams, and its
operations set comprehends operations of creation and exclusion of entity and relationship
concepts on diagrams. Each transformation operation of this algebra has at least one input
argument denoting an E-R diagram, and produces as resulting value a correspondingly
transformed E-R diagram. The operations set should exhibit the property that, given any
pair of correctly expressed E-R diagrams, one called old and the other new, there should
exist at least one sequence of transformation operations, where each operation uses the
resulting diagram produced by the previous operation in the sequence, which could create
the new diagram from the old one. Normally many sequences satisfying this condition may
exist for the same set o f operations.

10 RITA • Volume V • Número 1 • Julho 98

-

A State-Space Approach for Database Redesign

As already said, the conversion of the old database version to the new one is done
with the use of a set of predefined programming language procedures, arranged in a
sequence that follows the sequence of corresponding diagram transformation operations.

The redesign problem then reduces itself to: given an old diagram, that describes the
contents o f an (old) relational database, look for the best sequence o f diagram
transformation operations. Such sequences are intuitively characterized as those that
correspond to a sequence of data conversion procedures, which produces a new version of
the stored database, with the minimum of computational effort (access time, auxiliary
storage space), and using the maximum of information contained in the old database.

The approach taken in this work is also based on the premise that old and new
versions of a database cannot exist at the same time: the new version should be obtained by
"on the spot" modifications performed on the old version. This premise must in fact be true
when the database is stored in relatively small secondary memory, as happens quite often in
software systems implemented on personal microcomputers.

Severa! cri teria may be used to characterize what is the best sequence of diagram
transformation operations: number of operations in the sequence; size of auxiliary storage
space, necessary during data transport between old and new versions of the database; size
of the total amount of bytes transported between versions (remember that both occupy
more or less the same areas on secondary storage!); amount of secondary memory physical
accesses, necessary to seek and get/write data. To simplify the discussion , only the first two
are used here: the best transformation sequence is one that is short enough, and uses
minimum amount of secondary storage space (none, if possible).

3 FORMALISATION OF THE DIAGRAM TRANSFORMATION
PROBLEM·AS A PROBLEM OF STATE-SPACE SEARCH, WITH
ANEXAMPLE

To study the problem of E-R diagram transformation and databases conversion as a
state-space search problem [7], the syntax of a convenient First Order Language [5] is
defined, to specify the algebra of diagram transformations. The language is many sorted,
and the main sort is E-R diagram. To this sort corresponds the domain of "correct E-R
diagrams" , including the empty, or initial , diagram. Other sorts are: entity (meaning: entity
name), relationship (meaning: relationship name), entity set (meaning: set of entity names) .
To each one of those sorts correspond, respectively: the domain of entity names; the
domain of relationship names; the domain of sets of entity names. The syntax of the
language's functional symbols (which represent diagram transformation operations) is
defined below:

c reate-e (entity, diagram)

create-r (relationship, entity set, diagram)

exclude-e (entity, diagram)

exclude-r (relationship, entity set, diagram)

RITA • Volume V • Número 1 • Julho 98 11

A State-Space Approach for Database Redesign

Considering exactly these operations, there exists always only one class of sets of
transformation operations for any pair old--new of E-R diagrams. Hence, the first step of
the redesign problem is easy to perform, since any instantiated operation includes or
excludes a single concept from the diagram.

So, just by inspecting the diagrams, one may identify the elements of the class: are
ali those sets o f instantiated operations which contain operations that perform the inclusion
of concepts existing in the new diagram and not existing in the old one, and which contain
operatíons that perform the exclusion of concepts not existing in the new diagram, but
existing in the old, plus any quantity of operations forming pairs of opposite operations.
The minimal element of the class is also easily identifiable: it is the smallest set in the class,
and is unique.

Figures 1 and 2 show a pair of old-new diagrams to illustrate the approach. Both
diagrams represent a database for an Academic Management application. The old diagram
(figure 1) has three entities (S, for Students; D, for Disciplines; T, for Teachers), and two
relationships (m, for inscribed-in; t, for teach).

s D

T

Figure 1: Old diagram

The new diagram (figure 2) is similar to the old one, but has one entity more (P, for
Presentations of disciplines), and three new relationships (ad, for advise; p, for is
presented-at; a , for attend) . One relationship has disappeared (m), because, according with
information given by the user, it became redundant with the information contained in the
path a-P-p. Also, the meaning of some elements of the old diagram has changed slightly,
but no name was changed. For instance, the entity Disciplines was representing in the old
diagram also the notion of Presentation. There are no redundancies, since the set of
students a teacher advises may be different from the set of students he or she teaches.

12 RITA • Volume V • Número 1 • Julho 98

A State-Space Approach for Database Redesign

p

s D

T

Figure 2: New diagram

The minimal alternative set of diagram transformation operations for this example is
composed by the following operations:

(a) create-e (P , d) •.
(b) create-r (a , { S , P } , d)

(c) create-r (p , { P , D } , d)

(d) create-r (ad , { S , T } , d)

(e) exclude-r (m , { S , D } , d)

where "d" above corresponds to the E-R diagram received as argument by the
operation.

If the set of transformation operations was another (like, for example, the set
proposed by Chen in [3]), then the identification of such a minimal set would have been
much more difficult. To complicate things, there would exist severa! alternative classes of
transformation operations, each one o f them with more than one minimal set.

A state is an E-R diagram instance. Each state may be described by a set of atomic,
variable-free, formulas, written in the Iogic Ianguage, that are true in it. The set of atomic
formulas should show ali the state's relevant information, in such a way that two states are
the same if and only if they are described by exactly the same set of atomic formulas. In

RITA • Volume V • Número 1 • Julho 98 13

A State-Space Approach for Database Redesign

this work's example, the alphabet of the logic language should contain the following set of
predicate symbols:

(e) exists-e (entity , diagram)

(f) exists-r (relationship, set of entities, diagram)

The states corresponding to the old (D) and new (D') diagrams are described below.
For!> :

exists-e (S, D)

exists-e (D, D)

exists-e (T , D)

exists-r (m, { S , D }, D)

exists-r (t , { D, T } , D)

ForD':

exists-e (S, D')

exists-e (D , D')

exists-e (T , D')

exists-e (P, D')

exists-r (a , { S , P } , D')

exists-r (p, { P , D } , D') ~.

exists-r (t , { D , T } , D')

exists-r (ad, { T , S } , D')

The rules governing the construction of search paths in the state space are described
in the following, and the logic language needs one more auxiliary predicative symbol,
belongs, which tests pertinence o f an element to a set:

(g) belongs (entity , set of entities)

In the sentences below, variables e, r, d, and eset correspond, respectively , to the
sorts entity, relationship, E-R diagram, and set of entities. To simplify the expression of the
sentences, universal quantifiers are not explicitly represented. Variables that seem to be
free are actually universally quantified.

(r1) not exists-e (e, d) -> exists-e (e, create-e (e, d))

(r2) (not (exists-r (r, eset, d)) and (belongs (e, eset) -> exists-e (e, d))) ->

exists-r (d, eset, create-r (r, eset, d))

14 RITA • Volume V • Número 1 • Julho 98

A State-Space Approach for Database Redesign

(r3) (exists-e (e, d! and (exists-r (r, eset, d) -> not (belongs (e, eset))) ->

not exists-e (e, exclude-e (e, d))

(r4) exists (r, eset, d) -> not exists (r, eset, exclude-r (r, eset, d))

The intended interpretation of the rules is complemented by a set of meta-rules,
presented below (following a similar approach taken in the formalisation of logical
specifications in [8]):

(ml) "only-if": the rules express the only conditions in which an existence
assertion is valid;

(m2) "frame axiom": if a condition is not explicitly indicated as being affected
by an operation, then it is not affected;

(m3) "non-applicability": i f the antecedent o f a rule fails, then the condition on
the consequent is not affected by the operation (the operation has no effect).

The search on the state space is done along the paths, or ·sequences of instantiated
transformation operations, that satisfy the rules and meta-rules above. One of those
sequences is described by the following expression:

create-r(p , { P,D} ,create-r(a, { S,P},
r(ad, { S,T},D))))

create-e(P, exclude-r(m, { S,D}, c reate-

It is possible to demonstrate that the set of instantiated diagram transformation
operations has the property of, given any pair of non-equal correct diagrams, allow the
construction of at least one transformations' sequence that generates one from the other.
This is a very important property, beca use it guarantees that a data designer may propose a
new diagram, nn matter what is the old diagram, and it will always be possible to transform
the old in the new, using operations instantiated from the given set.

A sequence of transformations is valid when ali intermediate diagrams generated
during the execution of the sequence are structurally correct. For instance, the creation of a
relationship between entities that do not exist in the old diagram may not precede the
creation of the entities that will be related, and the exclusion of an entity may not precede
the exclusion of any relationship in which it plays apart.

A valid sequence of transformations is good when it satisfies certain given
precedence rules between operations. Such precedence rules are defined considering, for
instance, conditions of minimal use of auxiliary memory for the conversion of the old
database in the new database.

As a consequence, there should exist a precedence order, on the sequence of
operations, between operations that create a new entity or relationship which corresponds
to old stored data structures from where data will be extracted in the new stored data
structures.

Such data conversion precedence relation should be specified previously, from
information given by the system's user. To characterize which are the good sequences, it is

RITA • Volume V • Número 1 • Julho 98 15

A State-Space Approach for Database Redesign

not necessary to know in advance how the database conversion will be done, but only what
operation should come before or after another in the sequence.

An optimal sequence is a good sequence that satisfies other database conversion
performance criteria, like: minimal quantity of physical a.ccesses to secondary memory,
smallest amount of bytes moved from one data structure to another, and so on.

The sequence

create-r(p, { P ,D} ,create-r(a, { S,P} ,
r(ad, { S,T),D))))

create-e(P, exclude-r(m, { S,D}, create-

is a valid sequence, but is not a good one, because the exclusion of the relationship
m before the inclusion of the relationships a and p, and of the entity P , may cause the
temporary storage of the contents of the data structure corresponding to m for the
subsequent creation of the data structures corresponding to a , p and P .

To characterize good sequences of transformation operations for the current set of
operations it is necessary to consider additional precedence rules. The only precedence rule
for the example being presented appears below.

(p1) exists-r(m,{S,D}, d) -> (exists-r(a,(S,P), d) and exists-r(p,{P,D),d)

and exists-e(P,d))

This rule reduces to only ten the quantity of good transformation sequences for the
example. They are ali those valid sequences where the exclusion of m happens after the
creation o f a, p, and P. One of them is shown below.

exclude-r(m, { S,D} ,
r(ad, { S,T},D))))

create-~(p, { P ,D} ,create-r(a, { S,P) , create-e(P, create-

Any good sequence may be used to indicate the ordering which the database
conversion procedures, corresponding to each transformation operation in the sequence,
will be executed. Some additional optimization criteria, like the ones mentioned above,
may be applied now. The study of those cri teria is oYtside the scope of this work.

4 CONCLUSIONS, FUTURE WORK.

This work has presented an approach for the systematic, and maybe automatic,
treatment for the problem of database redesign. The approach, is based on the use of E-R
diagrams for the conceptual representation of data structures, and on the existence of a set
of diagram transformation operations, like the ones proposed by [3] and [1] . The set should
have the property that, given any pair of correct E-R diagrams, it should be possible to
establish at least one sequence of instances of the diagram transformation operations that
could transform the first diagram into the second one. To each transformation operation
there should also correspond a convenient database conversion procedure, whose execution

16 RITA • Volume V • Número 1 • Julho 98

A State-Space Approach for Database Redesign

could create, from the previous database contents a new database, conforming to the new
diagram.

The approach uses state-space search methods, and proposes a two step procedure
for the identification of .sequences of diagram (and database) transformations that satisfy
database conversion performance with minimal computational effort and maximal use of
available stored data.

The first step looks for sets of instantiated diagram transformation operations that
may create a .new diagram from an old one. The second step uses state-space search
procedures to identify, for ali sets found in the first step, what are the good diagram
transformation operation sequences that satisfy conditions of minimal computational effort
and maximal old stored data utilization for the database conversion task.

Some topics mentioned in this work need more study , before one can really think in
turning the ' process automatic. The first one is the choice of the set of more adequate
diagram transformation operations. The operations should be natural (from the point of
view of the user), and the set should be complete (it should be possible to build at least one
good sequence of diagram transformations that change the old diagram into the new one,
the old and new diagrams being any pair of correct diagrams) . The operation sets proposed
by [3] and by [1] seem to be good candidates to such a set of operations.

A second topic is the definition of the database conversion procedures
corresponding to each instance of the diagram transformation operations. The definition of
the severa! data conversion modules, and their integration in a single database conversion
program, is not an easy task, considering the experiments already made. But the
prognostics for the construction of a usable database redesign tool based on the ideas
presented in this work seem to be good.

" Solutions for plan formation problems rely on theorem proving techniques, that are
normally computationally complex. The addition of semantic features, cardinalities,
attributes, and integrity constraints definitions to our simple E-R model, and the treatment
of big, realistic, diagrams, will require powerful optimization enhancements to our
approach. A lot of research work still has to be done to achieve practical results .

REFERENCES

[l] Batini C, Ceri S, Navathe SB. Conceptual Database Design- an Entity-relationship
Approach, Benjamin Cummings, Redwood City, CA, 1992.

[2] Casanova MA, Tucherman L, Laender AHF. On the design and maintenance of
optimized relational representations of entity-relationship schemas. In: Data &
Knowledge Engineering 11 (1993).

[3] Chen PPP. The entity-relationship model - a basis for the enterprise view of data. In:
National Computer Conference, 1977, pp 77-84.

[4] Date CJ An Introduction to Database Systems, Addison Wesley, 1976.

RITA • Volume V • Número 1 • Julho 98 17

A State-Space Approach for Database Redesign

[5] Enderton HB A Mathematical Introduction to Logic, Academic Press, New
[Gazola92] Gazola LG A study and implementation of database-restructuring
procedures, UFRGS, Bacharelado em Ciência da Computação, Trabalho de
Conclusão, Porto Alegre, 1992 (in Portuguese).

[6] Kowalski R Logic for Problem Solving, North Holland, New York, 1979.

[7] Nilsson NJ Problem-solving Methods in Artificial lntelligence, McGraw-Hill, 1971.

[8] , Veloso PAS, Castilho JMV de, Furtado AL. Systematic Derivation of
Complementary Specifications. In: Proceedings of the 7th lnternational Conference
on Very Large Databases, Cannes, France, 81.

Artigo originalmente publicado em: 12th International Conference on Entity-Relationship
Approach, 15-17 dezembro 93, Dallas, Texas, Proceedings, 1993.

18 RITA • Volume V • Número 1 • Julho 98

