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Abstract

Electrocardiographic analysis has the capability to diagnose and locate abnormali-

ties relating to the heart. There are several lead systems, such as the 12-lead ECG,

that are commonly used in clinical settings. One aspect of this thesis is to derive

additional posterior and right-sided chest leads from the 12-lead ECG, and to evalu-

ate the performance of the derived leads in the detection of ECG changes associated

with myocardial ischaemia.

The 12-lead ECG is also not practicable for long term ambulatory monitoring,

especially in the detection of paroxysmal cardiac abnormalities such as unstable

angina. Therefore, the second study of this thesis introduces a novel patch-based

short-spaced lead system sensitive to ST-segment changes associated with ischaemia.

With the increasing numbers of electronically-stored patient data, it is imperative

that clinicians can develop their own algorithms. In the third study, a framework

for biomedical algorithm development is introduced, with a focus on its use by non-

coders to pass data through multi-lingual scripts.

Derived posterior (V7-V12) and right-sided chest leads (V3R-V6R) from the 12-

lead ECG were closely correlated to those recorded. Myocardial infarction detection

was improved as additional leads were added to the 12-lead ECG, however, this was

not statistically significant.

A patch-based short spaced lead system that was sensitive to ST-segment changes

associated with ischaemia was suggested. It consisted of two bipolar leads. Coeffi-

cients were generated to derive this short spaced lead system from the 12-lead ECG.

ST-segment changes associated with ischaemia were detected with the highest F1

score (86.7%).

A web-based framework was introduced to reduce the barrier to entry in biomed-

ical digital signal processing for non-coders. A Python framework was used with
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the MATLAB Engine to allow users to create algorithms consisting of multi-lingual

scripts capable of processing patient data, without the need to write code. The

framework was reproducable and scalable.
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Chapter 1

Introduction

1.1 Research Background and Motivation

Heart diseases cause more than a quarter of all deaths in the UK. One patient is

admitted every five minutes with a heart attack [1]. The 12-lead Electrocardiogram

(ECG) remains the most popular method to triage cardiac events [2], however, the

sensitivity of 12-lead ECG for Myocardial Infarction (MI) detection remains low at

66% for an expert cardiologist [3]. Other lead systems have been introduced to detect

MI, but the current diagnostic criteria and clinicians rely heavily on the 12-lead

ECG to provide a diagnosis [4]. Moreover, electrode misplacement by clinicians can

affect the diagnosis of cardiac abnormalities and decrease the specificity of the ECG

for certain conditions [5]. Using computational techniques such as Digital Signal

Processing (DSP) and Artificial Intelligence (AI), the sensitivity of MI detection

can be improved [6].

In particular, the introduction of novel lead systems such as the BSPM has al-

lowed a torso-wide view of the electrical activity surrounding the heart [7]. Previous

studies have investigated the optimal leads to detect MI [8, 9], however, these are

inconvenient for ambulatory use and long term monitoring. It is possible to expand

the diagnostic capability of the 12-lead ECG by means of deriving additional leads

[10]. There are two major challenges associated with the derivation of additional

leads, however. The first is selecting the optimal lead system to derive. Previous

studies have introduced novel lead systems [11, 12], but their clinical use is not famil-
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iar or well understood by clinicians [13]. Furthermore, there are limited diagnostic

criteria available for these novel lead systems. The second challenge associated with

deriving additional leads is the introduction of amplitude errors during the interpo-

lation process [14]. These amplitude errors are introduced due to the differences in

body composition, heart structure, and skin conduction that vary between individ-

uals. It is impossible to correct this without personalised models of each patient,

however, using a highly varied dataset with a realistic study population can assist

with reducing these amplitude errors. There are also multiple ways of interpolating

expanded lead systems, such as linear interpolation, multiple linear regression, cubic

interpolation, and deep learning methods [15].

The number of ambulatory ECG devices in use have increase dramatically in

recent years [16, 17, 18]. These devices allow long-term recording of the ECG using

a mobile patch or vest-based design, with captured data either transmitted or stored

for later analysis. Many of these patch devices focus on paroxysmal conditions such

as Atrial Fibrillation (AF) [19, 20, 21], however, few focus on MI or other ischaemic

conditions such as unstable angina. Additionally, there are no open source patch-

specific datasets that allow the evaluation of this lead system. However, just like the

additional leads discussed previously, the leads in a patch device can be evaluated via

the derivation of existing lead systems such as the 12-lead ECG [22]. Furthermore,

existing datasets such as those containing BSPM data possess torso-wide electrode

coverage to assist with the evaluation of novel patch devices by comparing the de-

rived leads with those recorded on the BSPM [9, 23]. An additional challenge in the

presentation of a patch-based diagnostic lead system is the lack of criteria relating

to MI diagnosis. The use of AI techniques has enabled the introduction of both the

automated diagnosis of cardiac conditions, and the suggestion of novel diagnostic

criteria [24, 20, 25].

The processing of biomedical data is increasingly occurring using cloud comput-

ing architectures [26, 27, 28]. These architectures provide multiple frameworks and

tools for developers, however, they are not useful for those who cannot code but have

access to patient data, such as clinicians or administration staff. With patient data

being increasingly stored electronically, this presents challenges to clinicians who

seek to identify patterns in the data, or who seek to develop their own algorithms.
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1.2. AIMS AND OBJECTIVES OF THIS PROJECT

Many existing frameworks for cloud-based processing of biomedical data focus on

a propriety solution whereby data is sent to a server, processed, and returned with

a diagnosis [29, 30, 31]. For specific scenarios, such as MI diagnosis, this is suffi-

cient, however this does not allow the clinician to experiment with the detection

algorithm, or change how the data is handled. A web-based and code-free algorithm

development environment is necessary to fulfill this requirement.

1.2 Aims and Objectives of this Project

The aim of this thesis is to investigate different processing techniques and methods

to improve upon MI detection techniques from the ECG. The aim has been met by

the following objectives:

1. Studying the current state-of-the-art in ECG processing techniques, with a

focus on those relating to MI detection, to discover current gaps in the litera-

ture.

2. Identifying suitable datasets suitable to investigate how ischaemia affects the

ECG.

3. Investigating how the spatial resolution of the 12-lead can be expanded using

additional derived leads.

4. Introducing a patch-based Short-Spaced Lead (SSL) system suitable for ambu-

latory monitoring and the detection of ischaemic-type ECG changes associated

with MI.

5. Developing a framework to assist non-developers to create their own ECG

processing algorithms with an open-source web-based tool.

1.3 Structure of this Project

This thesis has been presented in seven chapters. Chapter one, this chapter, is

an introduction to the thesis. It highlights the motivation and areas this thesis

aims to investigate. Chapter two gives a description of the history of the ECG
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with a thorough review of the literature surrounding ECG processing, lead systems

used to record the ECG, the current detection methods for MI, datasets containing

ischaemic ECG information, the derivation of leads, and how cloud computing can

be used in the processing of the ECG. Chapter three presents the datasets used

during this work, accompanied by the pre-processing methods necessary for the

recordings to be used within the experimental chapters. Chapter four presents work

aimed to derive additional leads from the 12-lead ECG. In particular, posterior and

right-sided precordial chest leads to give an increased spatial resolution across the

torso. This chapter aims to investigate whether these derived leads can improve on

the diagnostic performance of the 12-lead ECG towards MI detection. Chapter five

introduces a patch-based short spaced lead system that is sensitive to ST-segment

changes associated with MI. This chapter includes the selection and derivation of the

patch, with a study into the diagnostic ability of the patch using machine learning

techniques. Chapter six covers the development of a web-based framework to assist

with the rapid creation of algorithms to process biomedical data. A python-based

solution is presented to handle multi-lingual scripts and user information, allowing

a non-coder to develop their own DSP algorithms without the need for prior coding

experience. Chapter seven, the conclusion, presents a summary of the findings

introduced in this work with the future possibilities stemming from this thesis.
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Chapter 2

Literature Review

2.1 Physiology

This chapter aims to investigate the state-of-the-art research related to the work

carried out as part of this thesis. It is important to understand the basic principles

and physiology that create the ECG.

2.1.1 Circulatory System

The circulatory system is the network of arteries and veins throughout the body.

This system centres around the heart and consists of three main circuits: pulmonary,

systemic, and coronary. The following sections will provide an overview of this

system.

2.1.1.1 Circulation

The primary role of the circulatory system is to enable respiration via the transporta-

tion of nutrients and oxygen to the tissues [1]. With blood as the transportation

media, the heart provides the mechanical force to deliver these materiel around the

body. To facilitate the delivery of nutrients to the tissues, blood will become en-

riched by passing through the gut and liver. To provide oxygen, blood will pass via

the lungs where the infusion of oxygen and effusion of carbon dioxide occurs.

Starting at the lungs, oxygenated blood will return to the heart through the

pulmonary artery. The heart will pump this oxygenated blood around the body
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Figure 2.1: The human circulatory system [2]

via the aorta and branching arteries, where it will diffuse to the tissues through

capillaries. Following diffusion, the subsequently deoxygenated blood will return

to the heart through the veins and venae cavae. The heart will pump the blood

through the lungs, where it is oxygenated and the cycle can repeat. A diagrammatic

representation of the circulatory system is shown in Figure 2.1.

Within the circulatory system, the pressure of blood can vary. Arteries, in

particular the aorta, are associated with higher pressure. This higher pressure is

required to pump the oxygenated blood around the majority of the body. In contrast,

the veins have a lower pressure due to perfusion to the tissues. Arterial blood

pressure is the primary measure of blood pressure in the body. Two values are used

in clinical practice: systolic, referring to the pressure under contraction of the heart

and; diastolic, referring to the relaxed period in between heart beats.

The pulmonary circuit carries blood between the heart and lungs for oxygenation

and waste gas release. The systemic circuit carries blood from the heart to the rest

of the body for diffusion of nutrients into the tissues. There is a third circuit of
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the circulatory system: the coronary circuit. This is the circuit responsible for the

delivery of nutrients and oxygen to the heart itself. It is the smallest of the three

circuits, but important to the function of the heart. Dysfunction of the coronary cir-

cuit may induce ischaemia of cardiac muscle. Its causes and effects will be analysed

later.

2.1.1.2 Anatomy of the Heart

The primary role of the heart is a pump. The mechanical pumping action of the

heart is possible using muscle cells, known as cardiac myocytes. These myocytes

comprise most of mass of the heart, leading to many referring to the heart as as

muscle. However, the heart also consists of tissues, chambers, vessels, and valves

that allow it to pump blood around the body.

The diagram in Figure 2.2 show the heart to have four chambers: two atria and

two ventricles. The heart is split into right and left halves. The right half supplies

the pulmonary circuit and is supplied by the systemic circuit described in Section

2.1.1.1. The left half supplies the systemic and coronary circuits and is supplied by

the pulmonary circuit. The right heart is a low pressure circuit, since the pressure

required to perfuse the lungs is lower, and the return of blood from the body is under

lower pressure. The left heart is a high pressure circuit because it is responsible for

supplying blood to the rest of the body.

The heart is also split into atria and ventricles. The atria pump blood from the

low pressure return from the systemic and pulmonary circuits into the ventricles.

The ventricles then pump blood from the heart to the entire body.

The thickness of muscle is different for the four chambers. For example, the

ventricles are the thickest since they pump blood through the lungs (right) and the

rest of the body (left). The left ventricle is thicker than the right ventricle due to

the systemic circuit requiring higher cardiac output to perfuse the tissues than the

pulmonary circuit.

The heart also contains nerve tissue to initiate and execute contractions. The

sinoatrial (SA) node is the “pacemaker” of the heart. Located in the right atrium,

it initiates the contraction of the heart using specialised pacemaker cells. The con-

traction pulse is carried to the atrioventricular (AV) node where it is delayed. This
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Figure 2.2: Structure of the heart. Areas containing deoxygenated blood shown in
blue, and oxygenated areas in red. Modified from[3].

delay allows the atria to contract before the ventricles to deliver blood into the lower

chambers. Following the delay, the Bundle of His carries the contraction pulse to

the ventricles, where it expands via the Purkinje fibres. The ventricle myocytes

contract during this contraction pulse, pumping blood out of the heart to supply

the circulatory system.

The coronary system is the supply of blood to the heart itself. The blood travels

from the left ventricle to one of three main coronary arteries: the RCA, left anterior

descending, and left circumflex. Shown in Figure 2.3, the left anterior descending

and circumflex arteries primarily supply the left ventricle, whereas the right coronary

artery supplies the right ventricle. Later sections will discuss how restriction of these

arteries can cause cardiac ischaemia.

2.1.2 Electrophysiology of Cardiac Cells

To initiate a contraction of the heart, the myocytes must be stimulated. There are

three primary ions involved in a contraction: sodium (Na+), potassium (K+), and

calcium (Ca2+) [1]. This begins in in the sinoatrial node where the resting potential
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Figure 2.3: The heart the primary coronary arteries annotated [4]

is −60 mV. The slow intake of Na+ ions decays this potential, until a threshold of

−40 mV is reached. This triggers the intake of voltage-gated Ca2+, which rapidly

increases the potential until the cell is depolarised (0 mV). Channels in the cell

membrane open to effuse K+ ions. This repolarises the cell to its resting potential,

where the cycle repeats. This process is visualised in 2.4a.

Cardiac myocytes differ to sinoatrial cells by the addition of voltage-gated Na+

channels. Once a threshold of −65 mV is reached, these Na+ channels allow a

rapid intake and depolarisation of the cell, until +30 mV, where voltage-gated Ca2+

channels cause an influx that prevents the cell from repolarising. This causes a

plateau effect shown in phase two of Figure 2.4b. The plateau lasts for approximately

250 ms until the channels close, allowing K+ to flow out of the cell. This repolarises

the cell, where the potassium channels close. Differing to sinoatrial cells, cardiac

myocytes do not effuse Na+, so they remain at a more stable and lower resting

potential of −90 mV.

The activation and subsequent contraction of a single myocyte is spread to other

cells in the vicinity via gap junctions. The increased potential caused by Ka+ flowing

to the next cell through a gap junction triggers to voltage-gated Na+ channels, where

the cycle repeats for the next cell.

2.1.3 Genesis of the Electrocardiogram

The flow of ions through the myocytes, Bundle of His, and Purkinje fibres cause a

potential difference across the torso. The summation of the action potentials across

the heart gives rise to the ECG, as seen in Figure 2.5[5].
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(a) Sinoatrial node action potential for one
cardiac cycle.

(b) Cardiac myocyte action potential for one
cardiac cycle.

Figure 2.4: Cardiac action potentials for two different cardiac cells: sinoatrial node
cells, and cardiac myocytes. Adapted from [1]

Atrial activity, including activation of the sinoatrial node, is associated with

the P-wave. Rapid intake of Na+ ions through the voltage-gated channels and the

rapid transmission of this through the Bundle of His creates the QRS-complex.

Repolarisation of the myocytes is seen as the T-wave. [6]

2.1.4 Cardiac Abnormalities

2.1.4.1 Myocardial Infarction

An infarction is the death of tissue following a blockage of blood supply. The lack of

blood, or ischaemia, starves the cardiac myocytes of oxygen and nutrients, causing

them to die. The primary cause of an MI is a coronary embolism. The death of

cardiac myocytes can lead to reduced cardiac output, heart failure, and subsequent

death due to arrhythmia or cardiogenic shock.

The position of an infarct within the heart can be detected using multiple ECG

leads recorded simultaneously. The primary method of detecting an infarction is

the presence of ST-elevation, the normally isoelectric segment between the S and T-

waves. Ischaemic myocytes are surrounded by an increased concentration of K+ ions

[8]. Additionally, the plateau duration is also decreased. During repolarisation of

the ventricles, an injury vector towards the centre of the heart is introduced, caused

by a greater depression of epicardial action potentials. This causes the ST-segment

to appear elevated [9]. An example of an ECG recording during MI can be seen in

Appendix C.

Depression of the ST-segment can occur too. Ischaemia of the endocardium,
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Figure 2.5: Representation of cardiac action potentials in the formation of the elec-
trocardiogram signal [7]

the inner walls of myocytes, can cause an injury vector during repolarisation of the

ventricles. This injury vector will radiate towards the epicardium, appearing as a

depression.

2.1.4.2 Hypertrophy

Increased stress on the heart through high blood pressure or heart failure can cause

a thickening of the cardiac muscle. This is known as hypertrophy [10]. This compen-

satory process ironically causes a reduction in cardiac output due to the restricted

motion of the heart. The heart cannot contract as freely, decreasing the ejection

fraction, the ratio of systolic to diastolic volume. Additionally, hypertrophy can

restrict the conduction of action potentials across the heart. This may manifest

as prolonged depolarisation on the ECG, leading to a wide-QRS. More likely is an

increased R-wave amplitude, with a potential ST-depression. This effect on the

ST-segment may cause confusion with MI. Hypertrophy is subsequently confirmed

using an echocardiogram, and can occur in either
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2.1.4.3 Bundle Branch Block

An altering or dysfunction of the His-Purkinje system can be referred to as Bundle

Branch Block (BBB) [11]. The interruption of this system may cause one ventricle

to contract before the other. The lack of His-Purkinje conduction on one ventricle

means gap junctions are used to transmit the contraction across that side of the

heart. This is a slow process and can block the next electrical stimuli causing

further dysfunction of the ventricle.

Hypertrophy is also confused with MI, since the delayed depolarisation of the

ventricle can cause ST-depression. Additionally the prescence of BBB, specifically

Left Bundle Branch Block (LBBB) can mask a true MI. Therefore, modified cri-

teria to detect infarcts are required which can complicate autonomous detection

algorithms [12].

2.2 Electrocardiogram Information

The ECG is a term given to the measurement of electrical activity associated with

the heart. There are a variety of methods, lead systems, and uses of this technology.

The following section will provide an overview of these topics.

2.2.1 Measurement

The first record of electrical activity associated with an animal heart was made by

Carlo Matteucci in 1842. [13]. Augustus Waller used a mercury capillary tube and

two electrodes on the anterior and posterior torso to record the electrical activity

of a human heart in 1887 [14]. Einthoven later used the term EKG (ECG) for the

first time in 1893 [15] and improved previous designs of the electrometer capable of

annotating the P, Q, R, S, and T waves in 1895 [16]. Each wave of the ECG denotes

a difference phase of the cardiac cycle. The P-wave represents the depolarisation

(contraction) of the atria, to pump blood into the ventricles of the heart. The QRS

complex represents the depolarisation of the ventricles. The T-waves denote the

repolarisation of the ventricles. The QRS complex is much larger than the P-wave,

owing to the relative size of the ventricular muscle compared to the atria. Figure

2.6 shows an example of a single heart beat, with PQRST waves annotated.
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Figure 2.6: ECG lead II with annotated PQRST segments.

2.2.1.1 Bipolar Leads

Bipolar refers to a two-electrode measurement. The negative electrode potential is

subtracted from the positive to give a lead. The orientation of each lead allows

physicians to view the electrical activity of the heart from different angles. On a

12-lead ECG, leads I, II and III are real bipolar leads (Figure 2.7a). Three electrodes

are used: right arm (RA), left arm (LA) and left leg (LL). These are referred to

as the limb leads and are attached to the wrists and leg [17]. Figure 2.7b shows a

modified version of the limb leads, called the Mason-Likar (ML) system [18]. The

ML system is often referred to as ‘exercise leads’, since it allows a more ambulatory

measurement than the 12-lead ECG.

The sum of these three leads form the Einthoven Triangle [19]. In the centre

of the triangle, the signal is considered negligible and is referred to as the Wilson

Central Terminal (WCT) [20].

2.2.1.2 Unipolar Leads

The WCT described in Section 2.2.1.1 is used as a reference for a series of unipolar

leads. These comprise of six leads: V1-V6. The augmented leads (aVR, aVL, aVF)

are oriented between the limb leads and can be calculated from their potentials as

follows:

aV R = RA− 0.5(LA+ LL) (2.1)

aV L = LA− 0.5(RA+ LL) (2.2)
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(a) Einthoven’s triangle with leads I, II and III (b) ML limb leads I, II, and III

Figure 2.7: Bipolar leads of the 12-lead ECG [21]

aV F = LL− 0.5(LA+RA) (2.3)

Using leads I-aVF, a physician can estimate the orientation of the heart, also

known as the heart vector. Figure 2.8 shows the hexaxial reference system. This

uses 30◦ sections rotating clockwise from the anterior view with lead I denoting

the 0◦ point. Electrical activity travelling in the direction of a lead will produce

a positive signal on the ECG. Therefore, some leads can be assumed to measure

specific aspects of the heart’s cycle. For example, aVF views the inferior wall of the

ventrical [22]. Additionally, gaps in the hexaxial system can be filled by inverting

one lead’s signal. One example is the 30◦ point can be represented by -aVR.

The precordial leads give additional information along the ventricles of the heart

and are used in the diagnosis or location-specific defects e.g. MI or LBBB. The leads

are categorised based on their view of the heart: V1-V2 are septal leads, V3-V4 are

anterior leads and V5-V6 are lateral leads. Figure 2.9 shows the location of these

electrodes:
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Figure 2.8: The hexaxial reference system with bipolar leads annotated [23]

Figure 2.9: The precordial lead system - 12-lead ECG [22]

2.2.2 Short Term Recording

In many clinical settings, short duration recordings of 30 seconds or less are used to

provide a snapshot of the electrical activity of the heart. Acute cardiac conditions

that manifest on the ECG may be diagnosed quickly using some of the methods

discussed below.

2.2.2.1 12-lead Electrocardiogram

The 12-lead ECG is captured on suspicion of AMI, and often transmitted from

paramedics to the receiving hospital for expert diagnosis. To confirm MI, following

diagnostic criteria are used as shown in Table 2.1.

Note, the confirmation of MI where elevation is present in the ST-segment is

referred to as a ST-elevation Myocardial Infarction (STEMI). A Non ST-elevation
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Table 2.1: STEMI detection criteria using the 12-lead ECG

Leads Criteria

All, except
V2-V3

ST-elevation ≥ 100µV at the J-point in two contiguous leads
OR

V2-V3 ≥ 200µV in men ≥ 40 years; ≥ 250µV in men < 40 years; or
≥ 150µV in women OR

All leads New horizontal or down-sloping ST depression ≥ 50µV in two
contiguous leads OR

All leads T-inversion > 1mm AND prominent R wave or R/S ratio > 1

Myocardial Infarction (NSTEMI) is where a STEMI has not been confirmed using

the ECG, but is later confirmed by other means. These make up roughly 40% of all

diagnoses.

With the maturity of this lead platform and the standardisation of many diag-

nostic criteria, health informaticians have turned their focus into investigating how

the lead system can improve patient outcome. A study from Sejersten et al. [24]

aimed to investigate whether the transmission of the 12-lead ECG by paramedics

could reduce the door-to-balloon time. The study found call to balloon time was

reduced in those with a 12-lead ECG transmitted directly to a cardiologist compared

to a control group (74 vs 127 minutes). This highlights how important multiple-

lead short term recording systems can be in the triage of Acute Coronary Syndrome

(ACS).

Van’t Hof et al. [25] suggested the 12-lead ECG was capable of predicting car-

diac risk factor following coronary artery reperfusion. A study of 403 patients who

received successful reperfusion therapy had 12-lead ECGs recorded before and one

hour after primary Percutaneous Coronary Intervention (PCI). A risk-factor was cal-

culated using the relative thrombus size, biomarker activity and ventricular activity.

The ST-segment deviation following reperfusion was compared to each patient’s risk

factor. Fifty-one percent of patients had complete ST-segment resolution, 34% par-

tial and 15% no resolution. The mean total ischaemic time for patients with full

ST-restoration was 226 minutes compared to those with no restoration at 338 min-

utes. The mortality rate was four percent for total resolution and 29% for those

with no resolution after three years and one month. This study provides positive
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evidence towards increased mortality for longer door-to-balloon times. Additionally,

a connection between ST-segment restoration after an ischaemic event and predicted

mortality has been established. Forty-four percent of the patients were not followed

up after the study with no reason stated. The reasons may have affected the overall

results.

Moye at al. [26] suggested the 12-lead ECG is insensitive to right coronary

artery occlusion. A case study of the ECG traces from two patients presenting with

confirmed RCA occlusion was conducted. Both patients met the STEMI criteria

introduced in Table 2.1, however, the location of the infarct was more easily identified

when using additional precordial leads. This was a small study, so additional leads

will be discussed in more detail in Section 2.2.2.6.

2.2.2.2 Electrode Placement

During ACS, it is important to locate the position of the coronary lesion. The 12-

lead ECG is the most commonly used method of determining the infarct location

using the STEMI criteria previously mentioned. The performance of the 12-lead

ECG has been evaluated for specific coronary arteries including the LAD, LCX and

RCA by Zalenski et al. [27]. The patient cohort (n = 418) undergoing primary PCI

would have ECG recordings analysed against the standard 12-lead ECG criteria in

Table 2.1. The results concluded that ST-elevation using the standard 12-lead is

marginally less sensitive without the addition of posterior and right-precordial leads.

An improvement in sensitivity of 2%-8% from 85%/45%/85% (LAD/LCX/RCA)

was noted with the patient cohort using additional leads (n = 102). These results

fail to differentiate STEMI diagnosis for age and sex as discussed in the fourth

universal definition of MI [28]. Furthermore, the 12-lead sensitivity is abnormally

high compared to First Medical Contact (FMC) figures of 55.4% and 57% for AMI

in related studies by Fesmire et al. [29] and Welch et al. [30], respectively. This is

possibly because the ECG recordings were taken during Percutaneous Transluminal

Coronary Angioplasty (PTCA); this would only be undertaken after the previous

confirmation of AMI including angiography blood biomarker tests as discussed in a

more recent study by Miranda et al. [31].

The effect of electrode misplacement in clinical settings can have significant im-
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Figure 2.10: The proportion (100% = 1) of test subjects who placed precordial lead
V1 in the correct location [33]

pact on the diagnostic quality of the ECG signal in computerised diagnosis. A study

by Schijvenaars et al. [32] interpreted ECG changes on a BSPM with simulated elec-

trode placement errors in a subset of 80 patients with cardiac abnormalities (n = 40

MI, n = 40 Left Ventricular Hypertrophy (LVH)). The precordial leads were shifted

by up to ± 5 cm in four configurations including longitudinal, transverse and rota-

tional movement. The computer algorithm recommended position changes in half

(n = 20) of the STEMI subset, however, an expert cardiologist only agreed with

four of these changes. This is an old study, dated 1997, with significant advances in

algorithm development since then.

Further studies such as Rajaganeshan et al. [33] note the human-error aspect

of electrode misplacement. A group of 120 professionals from cardiac technicians,

nurses, physicians and cardiologists were asked to mark precordial leads (V1-V6) on

a picture of the anterior torso. The results found a significant number of cardiologists

misplaced the electrodes, with only 16% of cardiologists placing V1 correctly. The

highest success rate was among the cardiac technicians at 90%. As previously dis-

cussed, electrode misplacement can affect the diagnosis for STEMI [32]. Figure 2.10

shows these results. Additionally, a recent study from Bickerton et al. [34] found a

lack of refresher training and confidence in ECG electrode placement increased the

number of diagnostic errors.

The use of machine learning has led to studies such as Kalkstein et al. [35]

where errors in electrode placement of 12-lead ECG recordings can be classified. An

accuracy of 91.2% was noted for the test set (n = 500 samples), with 93% accuracy

on training data (n = 1000 samples). An ensemble of k-nearest neighbour (KNN),
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Figure 2.11: Locations of 352 nodes (black) and 120 leads of the Dalhousie torso
[38]

random forest and quasi-linear classifiers were used to train the model. The ECG

data was annotated by 3 to 18 examiners as part of the PhysioNet Computing in

Cardiology challenge 2011 [36].

2.2.2.3 Body Surface Potential Maps

BSPMs were introduced with the goal of improving the sensitivity of heart abnor-

mality detection by gaining a broader perspective of cardiac electrical activity. All

BSPMs are recorded over the thorax, both anterior and posterior. The BSPM has

not been standardised. In fact, there are multiple variations of recording, ranging

from 32 leads (Lux-anterior) to 219 leads (Parma) [37]. Each map consists of unipo-

lar leads referenced to the WCT. One such example of a mapping system is the

Dalhousie torso, consisting of 120 recording sites. These sites have been expanded

to 352 nodes through Laplacian interpolation. Figure 2.11 shows this BSPM with

leads (blue) and nodes (black). EASI (red), ML (yellow) and precordial (green) are

also annotated:

BSPMs are primarily used in two ways:

1. Clinical diagnosis

2. Experimental research

2.2.2.3.1 Clinical Diagnosis BSPMs have been proposed to improve diagnos-

tic yield through increased spatial sampling. One of the early uses for this technology
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was in the diagnosis of ischaemic heart disease. Kornreich et al. [39] aimed to find

the most effective leads for diagnosing anterior and inferior myocardial infarction.

There was significant work conducted at the Royal Victoria Hospital, Belfast, in

these areas throughout the 1990s up to recently [40, 41, 42, 43]. These studies

focused on the use of commercially available cable harnesses in a clinical setting

(Heartscape, NI). Early work from this group reported the sensitivity of MI detec-

tion could be improved by increasing the number of available leads with respect to

the 12-lead ECG [40, 41]. The work also focused on areas of MI detection with low

sensitivity using the 12-lead ECG, specifically LCX occlusion. Later work from this

group continued the investigation of improved performance in ACS. This included

the investigation of performance gains that could be achieved through the addition

of novel cardiac biomarkers [42] and the calculation of epicardial potentials from

the BSPMs of patients presenting with chest pain [43]. Both agreed BSPMs were

more valuable in MI detection than the conventional 12-lead ECG. Most recently

this group have investigated the performance gain achieved when customised torso

geometries were used in the calculation of epicardial potentials [44]. Other groups

such as Hoekstra et al. [45] have reported large increases (27.5%) in STEMI detec-

tion using BSPMs in comparison to the 12-lead ECG. Currently there are a number

of commercially available solutions toward BSPM capture [46, 47]. These are de-

signed for both diagnostic purposes and epicardial potential mapping important to

investigate arrhythmia-inducing abnormalities.

2.2.2.3.2 Experimental Research Finlay et al. [48] investigated the selection

of optimum recording sites in BSPMs. This study sought to reduce the number of

recording sites used in BSPMs, while retaining reconstruction integrity. BSPMs have

proved valuable in experimental research relating to the development of electrocar-

diographic lead systems. Given that all potential lead combinations are effectively

recorded simultaneously the opportunity arises to select lead subsets that are valu-

able for a particular purpose. Kornreich conducted a number of studies that used

117 lead BSPMs to find the best lead subjects for discriminating between a number

of abnormalities which included MI and LVH [39, 49, 50, 51]. Barr [52] and Lux [53]

sought to find the best subset of BSPM leads that would allow for the most accurate

reconstruction of BSPMs. This is based on the assumption that leads that can most
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accurate reconstruct the entire surface distribution are those which capture the most

information. More recently the analysis of BSPMs by Horacek et al. [54] has been

used to detect bipolar leads specific to vessel lesion location. Kennedy et al. [55]

used BSPMs to select a lead specific to P-wave analysis.

As outlined above BSPMs have been used across a number of clinical and ex-

perimental application areas. The use of BSPMs in detection of acute coronary

syndromes is less widespread for a number of reasons. BSPMs in the acute clinical

environment have always been challenging due to the complexity of the recording

process e.g. the high number of leads, difficulty in using the recording device and

patient stability. In addition, the mechanisms for rapid treatment of ACS in the

form of coronary artery lesions are much better established and come at a greatly

reduced risk to the patient than was the case decades ago. The main change here

has been in the introduction of Primary PCI. Whilst new treatment mechanisms

have reduced the need to perform complex BSPM measurement procedures in the

acute setting this does not negate the need for convenient ECG detection methods

for acute coronary occlusion. For example, the triage of patients with chest pain

and no STEMI diagnosis using the 12-lead ECG currently uses blood biomarker

analysis. This could be improved by BSPM recording and subsequent diagnosis for

a number of patients.

2.2.2.4 Vectorcardiogram

In 1954, Ernest Frank developed a VCG lead system for clinical use [56]. Eight

electrodes were used denoting three leads: X±, Y± and Z±. Figure 2.12 shows the

lead placement:

The time domain signal for one P–T complex from leads X, Y and Z are compared

in three dimensions. When plotted against each other, the Q, R, and S waves of

the ECG (QRS) complex forms a loop. The loop can be viewed from three planes:

frontal (F), right sagittal (R) and transverse (T). This can show conduction changes

in the heart including the flow of current for each contraction. Figure 2.13a shows

the XYZ signals respectively. These are transformed in Figure 2.13b:

A study by Howitt & Lawrie [58] aimed to investigate the use of the Frank VCG in

MI detection. The recordings from 100 patients were plotted and compared against

24



2.2. ELECTROCARDIOGRAM INFORMATION

Figure 2.12: Frank lead system (VCG) placement - anterior torso [57]

each other. The population consisted of antero-septal infarction (n = 26), posterior

infarction (n = 11), lateral infarction (n = 4) and posterior/septal infarctions (n =

9). The remaining patients were normal controls (n = 50). The authors witnessed

distinct differences in the VCG for each condition. They noted the loops were

abnormal or distorted in 78% of MI subjects. Spatial QRS-T Angle (SA) were

also distorted from −63◦ – 83◦ for normal subjects to −175◦ – 153◦ for antero-

septal infarcts. This study provided an insight into VCG for MI classification,

however a small dataset and lack of information against conditions imitating MI

(LVH, LBBB/Right Bundle Branch Block (RBBB)) on conventional ECGs lowers

the specificity of the conclusions.

Starr et al. [59] used a larger dataset of 226 patients with the aim of developing

criteria in MI detection for VCG. The algorithm was tested on another subset of 222

patients with >95% sensitivity and specificity respectively. Patients with BBB were

excluded from this study, which may limit the specificity toward MI. Additionally,

a single centre was used in the study, limiting the diversity of conditions present.

The suggested criteria were compared against existing symptoms from Hugenholtz

et al. [60].

Güldenring et al. [61] suggested the VCG was seldom recorded in clinical prac-

tice, but noted the SA was a useful tool for abnormality detection. A transformation

matrix was derived to convert a ML 12-lead ECG into the Frank VCG in a single

step via linear regression. BSPMs from 726 subjects consist of 120-leads of ECG
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(a) Frank lead system signal in the time domain [5]

(b) Transformed XYZ signals (F = front, R = right
sagittal, T = transverse) [5]

Figure 2.13: Vectorcardiogram derivation from the Frank lead system

recordings across the thorax of each patient. The recordings were split by patient

condition. One third of subjects were normal, one third with MI and one third with

LVH. The derived transformation matrix was compared against an existing two-step

method. The authors found the Root Mean Square Error (RMSE) was lower for the

single-transformation in comparison to a 2-step method. The use of BSPM assumes

patient anatomy is identical across the study group. This may not be as reliable

as placing the Frank VCG electrodes manually and comparing it with the ML 12-

lead as a test data set. However, this method has been accepted by the US Food

and Drug Administration (FDA) as the standard for computing VCG leads from a

12-lead ECG to evaluate drug effects on the heart (in vitro Proarrhythmia Assay

(CiPA)). Vicente refers to this method as the “Güldenring matrix” [62].

Güldenring et al. [63] recognised the SA and spatial ventricular gradient have
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clinical value. Using the Güldenring matrix discussed previously [61], the VCG of

181 subjects was computed from their respective ML 12-lead ECG recordings. In

comparison to an existing 2-step method from Kors et al. [64], the SA and spatial

ventricular gradient error was lower using the Güldenring matrix. This study was

performed to compare two transformation methods directly using BSPMs. These

assume all subjects have the same torso shape and may not reflect a true VCG

recording to compare against.

2.2.2.5 Reduced Lead Sets

2.2.2.5.1 Lead Transformation A reduced lead set is often more convenient in

a clinical setting than bulkier recording platforms such as the 12-lead ECG. However,

many cardiac diagnostic criteria rely on the 12-lead ECG. Therefore, it is important

that reconstruction of the 12-lead ECG ensures a high coefficient of correlation

between recorded and derived leads. Wei [65] investigated a method of using leads

I, II, V1 and V6 to reconstruct leads V2–V5. A lead vector algorithm based on the

Frank torso least squares method [56] produced coefficients to reconstruct V2–V5 as

a function of the recorded leads. They concluded their system was more convenient

than conventional 12-lead systems for ambulatory monitoring, however, their results

only provide 12-lead traces with no statistical analysis.

Drew et al. [66] aimed to prove the clinical effectiveness of derived 12-lead sys-

tems from reduced lead sets. A set of 250 patients presenting with transient MI were

monitored using a reduced lead system using lead II and V1. The 12-lead ECG was

derived from the reduced lead set. The derived ECG detected ischaemic ST-changes

in 55 patients, whereas the more convenient reduced lead set failed to detect 64%

of these. Of the five patients with reocclusion following PTCA, 100% were detected

by derivation and only 40% where detected via routing monitoring. This is a rela-

tively small study size to prove effectiveness towards ischaemia, however, constant

monitoring via an ambulatory system will be more sensitive to acute changes in the

ST-segment.

Drew et al. [67] continued by investigating the use of derived 12-lead ECGs

further. They measured ST-segment changes during PTCA-induced ischaemia in

a cohort of 207 patients who had a derived 12-lead ECG recording. Of these, 151
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had a concurrent conventional 12-lead recording. The derived ECG detected 82.1%

of ischaemic episodes, compared to 82.8% of episodes detected by the conventional

12-lead ECG (99% similarity). The study concluded a reduced lead system can

be used to detect episodes of ischaemia with a comparable performance to current

systems. During the study, the derived ECG collection method changed. Although

the results are similar, this has introduced a variable which may have skewed the

results.

Kors et al. [68] reviewed the principle in reconstructing missing leads that were

not recorded as a practical application in clinical settings. A study from Nelwan et al.

[69] was cited where noisy or poorly connected leads could be negated by removal

and reconstruction. A dataset of 234 twenty-four hour continuous 12-lead ECG

recordings was used. All patients were presenting with ischaemic chest pain and

had previously recorded ST-segment changes. Five precordial leads were removed in

differing orders, with the missing leads being calculated by linear regression. There

was a 94.5–100% agreement between baseline samples for both the derived and

recorded 12-lead signals. ST+60 ms amplitude differences ranged from a median of

9 µV with one lead removed to 43 µV with five leads removed.

Feild et al. [57] agreed that reconstruction of the 12-lead ECG from a subset

produces an error which is too large for the reliable detection of abnormalities. For

example, the MI predictor leads V2 and V3 showed up to 150µV of error where a

STEMI diagnosis might be missed.

Other studies have investigated the use of reduced lead sets [70, 71, 65, 72], as re-

viewed by Finlay et al. [73]. All of these studies expanded signals to a 12-lead ECG.

Drew et al. [71] uses six electrodes to focus on diagnosing cardiac abnormalities and

ischaemia. A dataset of 649 patients, 120 of which were ischaemic through MI or

balloon catheter inflation, was used to verify the interpolated leads. A similarity of

82–97% was reported during ischaemic events. This does not necessarily represent

a diagnosis of MI, although it is credible since the original 12-lead ECG is available

where the original diagnosis was given.

2.2.2.5.2 EASI The EASI lead system was introduced by Dower et al. [74]

as replacement of the 12-lead ECG with fewer electrodes. The system uses five

electrodes on the anterior torso. Four of these are bipolar (EASI), with one as a
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Figure 2.14: The EASI lead system electrode positions [75]

reference electrode (R). A series of coefficients based on the Frank lead system (XYZ)

expand the recorded signal to a 12-lead ECG. Figure 2.14 shows their position on

the torso:

Nelwan et al. [72] tested the EASI lead system as a method of detecting ischaemic

events using the algorithm described by Dower et al. [74]. This study derived

the 12-lead ECG from the EASI recordings. The median correlation for each lead

between derived leads of the 12-lead and those physically recorded were 0.886–0.987.

The standard summated 12-lead ST-deviation (SUMST) was the highest (113 µV)

compared to generic population linear regression coefficients (104 µV) and patient

specific coefficients (62 µV).

Horacek et al. [76] used a series of BSPM from 892 subjects with various con-

ditions to derive an 18-lead ECG from the EASI lead system. Two methods were

used: a set of transformation coefficients based on the recorded data alone; a linear

regression method based on the location of the electrodes in 3D space. The large

dataset used in this study contained healthy controls (n = 290), previous MI (n

= 497) and Ventricular Tachycardia (VT) patients (n = 105). Ninety-one patients

with single-vessel Coronary Heart Disease (CHD) undergoing PTCA were used to

simulate ischaemic changes on the ECG. Correlation for transformation by recorded

data was between 0.725 (III) and 0.979 (V2). Correlation by torso model trans-

formation was between 0.597 (III) and 0.971 (V2). V2 is a predictor lead for MI

detection [28], therefore a strong correlation between the EASI lead system and the

12-lead ECG is positive. The mean RMSE was 95 µV and 122 µV respectively.
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A study from Drew et al. [77] aimed to compare the EASI lead system with

the conventional 12-lead ECG for diagnosing cardiac abnormalities. A cohort of 540

subjects had an EASI recording taken. Included were 426 subjects whom a continu-

ous 12-lead ECG was taken concurrently. Of this, 238 ST-events were recorded (26

AMI; 62 PTCA-induced ischaemia; 150 transient ischaemia). They found a 100%

agreement between the two systems in recognising AMI, 90% for PTCA-induced

ischaemia and 89% for transient ischaemia. The study provides strong evidence in

favour of the EASI lead system, however serial ECGs were not recorded. Further-

more, the criteria for ischaemic events was ST-changes only which does not reflect

a true diagnosis of cardiac ischaemia.

Although studies show strong correlation between EASI-derived and conven-

tional 12-lead ECG recordings, cardiologists are sceptical toward replacing the lat-

ter. A recommendation was made by Kligfield et al. [78] to use EASI systems for

rhythm analysis and labelling the recording as a derived 12-lead ECG. Additionally,

these recordings must not be used routinely in cardiac abnormality diagnosis.

2.2.2.6 Additional Lead Sets

The 12-lead ECG, particularly the precordial leads, has limited sensitivity in de-

tecting abnormalities associated with the right and inferior sides of the heart [79].

Additional leads to complement the 12-lead ECG have been introduced. These in-

clude posterior leads V7–V9 and right precordial leads V3R–V5R, known as the

18-lead ECG. During an 18-lead ECG recording, V1R and V2R are the same as V2

and V1 respectively. Figure 2.15a shows the added precordial leads (V7–V9) and

Figure 2.15b shows additional right precordial leads (V1R–V6R).

Schmitt et al. [82] investigated the sensitivity of STEMI diagnosis in comparison

with extended precordial leads (V7–V9, V3R–V6R) for right ventricular MI diag-

nosis. An occluded vessel was identified during coronary angioplasty to ensure all

patients were experiencing AMI. Of the two patients observed, both showed larger

ST-segment deviation in the extended precordial leads, especially right chest leads.

Hebbal et al. [83] aimed to investigate the role of aVR with additional precordial

leads V7–V9. A study of 209 patients presenting with anterior and inferior wall

STEMI were used. All patients were followed-up one month after revascularisation.
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(a) Extended precordial lead placement (V1–V9) [80]

(b) Right precordial leads (V1R–V6R) [81]

Figure 2.15: Extended ECG electrode placement (V1–V9, V1R–V6R)

They found a more pronounced ST deviation in V7 was prognostic of high-risk

patients. All patients who died in hospital (11.9% mortality total population) had

V7 and aVR deviation. Sixty-five percent of these had aVR depression and 88% had

V8–V9 depression. Different levels of ST-elevation and the prognosis of mortality

were not evaluated, neither was a healthy control population used. There is limited

information in the 1-month follow up to further evaluate the additional leads.

Wong [84] reviewed the usefulness of ST-elevation in leads V7–V9 to diagnose

posterior MI. They confirmed a posterior MI will masquerade as an Non-ST Ele-

vation Myocardial Infarction (MI) on the standard 12-lead ECG. Six studies were

reviewed on detecting MI with the 15-lead ECG. There was a wide range of results

between 3.7%–22.4% regarding the additional diagnostic value of using V7-V9. One

study by Brady et al. [85] found no additional diagnostic value, however, there were

only 13 STEMI patients.

Konishi et al. [86] studied the effectiveness of synthesising an 18-lead ECG from

the 12-lead to detect Left Ventricular Reverse Remodelling (LVRR). A cohort of
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216 patients hospitalised with a Left Ventricular Ejection Fraction (LVEF) ≤35%

were confirmed to have non-ischaemic cardiomyopathy previously. On the 12-lead

ECG, the study introduced three indicators of LVRR as a result: QRS amplitude in

aVR ≥675 µV; QRS duration <106 ms without fragmentation; and QRS axis <67◦.

Their results confirmed the 18-lead ECG is useful, however the information can be

synthesised from an existing 12-lead configuration. The study was conducted in an

institute specialising in heart transplantation. Given it is not a community hospital

and a single centre study, there may have been referral filter bias.

Ashida et al. [87] conducted a retrospective study on the sensitivity of a synthe-

sised 18-lead ECG. A cohort of 33 patients presenting with STEMI had a 12-lead

ECG recording taken within 10 minutes after first medical contact. An angiogram

further confirmed the diagnosis of STEMI during PTCA, including the infarct lo-

cation. They found ST-elevation in the synthesised leads was higher in patients in

whom the RCA or the LCX was the occluded artery (15/22 (68.2%)) than in those

in whom the LAD was the occluded artery (3/11 (27.3%)). They also claim the

12-lead ECG could only locate the area of infarction in 45.5% of patients, with the

synthesised 18-lead ECG diagnosing the remaining 54.5%. The study size was small

(n = 33) and conducted in a single centre. It is unclear how the 18-lead ECG was

synthesised as there is no description in the article.

Additional precordial leads have been shown to detect more than ST-deviation.

A study from Sasaki et al. [88] used leads V7–V9 to analyse the dominant frequencies

associated with AF-induced atrial remodelling. In total, 48 patients with AF had a

15-lead ECG and Intra-cardiac Electrogram (IEGM) recorded before AF ablation.

The QRS-T complex was removed to analyse the AF wave. A Fast Fourier Transform

(FFT) revealed the dominant frequency for each subject. The results found a strong

correlation (R) between the dominant frequencies in V8–V9 and the left-atrial floor

(R = 0.55, p = 0.0061; R = 0.68, p<0.0001 respectively). This study compares

both IEGM and ECG to give a more specific insight into atrial activity. However,

the algorithm used to remove the QRS-T complex was by a third-party source

(Cuoretech Pty Ltd) and have not been described. It is possible this system has

introduced harmonics, decreasing the specificity in locating the source of fibrillation.

The addition of right precordial leads has been shown to increase the sensitivity
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of right ventricular MI in a review by Nagam et al. [79]. Using the criteria V4R ≥ 1

mm, the sensitivity of right ventricular MI was 100%, specificity 87%. However, their

reference later states the sensitivity was 80%–100% [89]. This makes the accuracy

of the review questionable. The article also referenced Andersen et al. [90] who

claimed there is a significant correlation between right ventrical ejection fraction

and ST-depression in lead V4R. This was a case-study of five patients, which is too

small a cohort.

2.2.3 Long Term Recording

Where short-term recordings can provide rapid diagnoses of ACS, long term record-

ing can extend this capability. Additionally, many of these systems record for several

hours to days. Such systems are discussed in the following sections.

2.2.3.1 Single-lead Systems

At present, at least two contiguous leads are required to diagnose MI [28]. However,

there are several patch-based devices available that aim to detect cardiac abnormal-

ities using short spaced leads. Additionally, a wearable device may assist physicians

by extending the duration of ECG records and catch events happening outside the

surgery. In this section, we will discuss the studies leading to patch development

and their uses.

Studies such as Stamkopoulos et al. [91] investigated the use of a single lead

in MI detection. Records from the European ST-T dataset [92] (n = 90) were

used to construct a back-propagated neural network able to classify MI with 84.4%

sensitivity. This is not useful in a clinical setting, but studies such as Atoui et al. [93]

have synthesised the 12-lead ECG from a reduced lead set. Using a 12-lead dataset

[94] (n = 300), three leads were selected (I, II, V2) to reconstruct the remaining

precordial leads. An Artificial Neural Network (ANN) was trained and compared

to a linear regression-based model. The RMSE ranged between 64–127 µV with

an ANN approach being more accurate. Despite the high RMSE, the Correlation

Coefficient (CC) was high between 0.91–0.98.

Drew et al. [95] aimed to determine whether all 12-leads in a conventional

ECG are required to detect ischaemia. A total of 422 patients had continuous
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Figure 2.16: Vital Connect® disposable patch (left) and wireless activity tracker
(right) [96].

12-lead ECG recordings taken while experiencing AMI or during PTCA at Peak

Balloon Inflation (PBI). An algorithm determined which lead showed the largest

ST-segment deviation. In the refractory period, 28% of patients experienced an

ischaemic episode. Using the single lead system, 80% of these were undetected. The

article concluded the 12-lead ECG is necessary to detect ischaemia, however more

recent studies have contradicted these findings.

A single-lead and short-spaced lead wireless patch introduced by Vital Connect®

measures ECG, respiration and kinetic activity. The patch is disposable, with a

removable activity monitor and transmission device. A study by Chan et al. [96]

investigated the patch performance by comparing it to existing pedometers Fitbit®,

Omron® and a nasal canula. Three patch orientations were tested. They found the

patch location with the least number for beat errors was diagonally oriented on the

left side of the upper torso. This gave the lowest median heart rate error and highest

fall detection sensitivity (95.7%). Figure 2.16 shows the patch and wireless activity

tracker below:

Breteler et al. [97] used the Vital Connect Health Patch® in a study of 25

high-risk surgical patients admitted to a step-down unit. They concluded the patch

was accurate for heart rate detection (−8.8 to +6.5 bpm), however, respiration rate

was inaccurate (−15.8 to +11.2 breaths per minute). The authors admitted the

technology is useful for monitoring potential patient decline post-discharge from a

high-risk procedure.

The CardioSTAT® is a single-lead patch which can detect and report AF [98].

The patch is placed laterally in the upper centre of the chest, similar to the lead I
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configuration. A study by Nault et al. [99] compared the patch with a 24h Holter

monitor. Seven patients with suspected AF were recruited for a 24-hour recording

from both devices. They found a strong correlation between the CardioSTAT and

Holter monitors, with 100% detection similarity for AF beats.

iRhythm’s Zio XT® monitor is a single lead patch designed to compete with the

Holter monitor [100]. The XT has been reviewed by many articles [101, 102, 103,

104, 105, 106, 107]. Rosemberg et al. [104] attached the patch and a Holter monitor

to 74 patients with diagnosed paroxysmal AF for a mean of 10.8 days. There was no

difference in AF burden estimated between the two. The patch changed the diagnosis

and further treatment of 28.4% of patients in the study, an improvement over the

existing technology. Additionally, it was noted the patch allowed a significantly

longer recording period up to 14 days.

The BardyDX Carnation Ambulatory Monitor (CAM)® [108] is a single lead

patch which adheres vertically along the sternum. It is primarily for detecting P-

wave abnormalities toward AF diagnosis. Rho et al. [102] compared the Zio XT®

to the CAM® in a study of 30 patients. The CAM® performed more favourably,

with a 40% higher detection rate of abnormalities than the competitor. A study

from Smith et al. [109] found 96% of patients preferred to wear a patch device than

a Holter monitor.

The RootiCare® is a single lead patch mounting laterally across the upper chest,

much like lead I [110]. It can record for seven days continually and has a patient event

button. The supplied software suggest a diagnosis for abnormal beats. Karaoguz

et al. [111] held a study with 33 healthy subjects and 67 patients referred from an

arrthythmia clinic. They found a strong (98%) correlation in beats to the Holter

monitor. Detectable abnormalities included AF, VT, paroxysmal supraventricular

VT and abnormal R–R pause.

2.2.3.2 Holter Monitors

A Holter monitor is an ambulatory lead system designed to be worn for 24–48 hours,

similar to that shown in Figure 2.17. The Holter is primarily designed to monitor

arrhythmia, however studies from Vukajlovic et al. have investigated the use of the

device for 12-lead reconstruction and subsequent abnormality diagnosis [112, 113].
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Table 2.2: Current patch-based ECG recorders

Ref. Manufacturer Electrodes
(#)

Description

[96] Vital Connect 2 (1-lead) A single-lead disposable patch with ac-
tivity, fall and respiration tracking

[98] CardioSTAT 2 (1-lead) Primarily for AF and paroxysmal AF
detection

[100] iRhythm Zio XT 2 (1-lead) Primarily for AF and paroxysmal AF
detection, up to 14 days recording

[108] BardyDX CAM 2 (1-lead) Primarily for detecting P-wave abnor-
malities, including AF.

[110] BeyondCare
EPM/RootiCare

2 (1-lead) Lead I configuration

This work particularly focused on AF detection. Stern & Tzivoni [114] identified

the use of Holter monitoring for ischaemic heart disease. A 12-lead was recorded in

situ, with transient ischaemic attacks identified in all patients by both systems.

Jernberg et al. [115] found patients who had continuous 12-lead ECG recordings

gave clinicians a clearer understanding of their cardiac risk. Kuchar et al. [116]

showed the monitor can improve the prognosis of patients discharged after MI.

Treatment can be delivered for paroxysmal or transient arrhythmia after analysis of

the ECG traces.

A study from Brodsky et al. [117] highlighted the importance of cardiac monitor-

ing in the absence of symptoms. A cohort of 50 apparently healthy male volunteers

were fitted with Holter monitors for 24 hours. Fifty percent of subjects experienced

sinus arrhythmia without symptoms. Using the monitor, the authors concluded

frequent atrial and ventricular premature beats are unusual in a young adult male

population, with bradyarrhythmia being common.

The use of ambulatory monitors has allowed correlation between arrhytmia and

life-threatening illnesses. Ventricular ectopic beats were found to correlate cardiac

death after AMI by Moss et al. [118]. Analysis of the frequency domain of Holter

recordings post-MI showed signals relating to malignant arrhythmia lack power at

higher frequencies (0.15 to 0.50 Hz) [119]. Holter monitoring has use in cardiac

performance under strain. Langer et al. [120] investigated the effects of exercise
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Figure 2.17: Holter monitor with electrodes fitted [122]

after AMI. Thirty-three percent of patients developed ST-depression, with the same

group having a higher mortality rate (27% vs 6%). They concluded the utility of

Holter monitoring for prognosis post-MI.

More recently, Mäkikallio et al. [121] aimed to evaluate the risk of Sudden

Cardiac Death (SCD) following AMI using a Holter monitor. Two thousand, one

hundred and thirty subjects who had suffered MI were fitted with monitors and

followed up after a median of 1012 days. The study concluded the Holter monitor

was sensitive in the detection of SCD with an ejection fraction >35%, but insensitive

≤35% Ejection Fraction (EF).

2.2.3.3 Ambulatory Multiple-lead Systems

Mason et al. [123] highlighted the need for long term ambulatory ECG systems,

particularly to monitor arrhythmia during exercise. Roelandt et al. [124] recognised

the need by investigating 20 instances of monitored cardiac death. The study found

no warning arrhythmia or predictors of SCD, but highlighted the need for further

research and large-scale ambulatory monitoring of high-risk patients.

Deanfield et al. [125] monitored 20 patients with stable angina for four days

about their daily lives. Downsloping ST-depression was an indicator of angina in

24% of cases in the absence of symptoms. This study allows clinicians to better

understand how out-of-hospital behaviours affect the heart, particularly in managing

the risk of a future MI.
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To further understand the mechanisms of SCD, Bayés de Luna et al. [126] used

ambulatory monitoring to investigate the fatal arrhythmia of 157 patients. The

most common arrhythmia as the cause of death was ventricular tachyarrhythmia

(84%). The study theorised spontaneous VT was the cause of death, but there is

little evidence on the root cause in the article. Subsequent studies have used more

portable monitors to detect SCD, such as Simpson et al. [105] who used a single

lead patch.

Martinez et al. [127] found continuous ECG monitoring increases the sensitiv-

ity of myocardial ischaemia detection. During the study, 149 patients undergoing

elective infrainguinal or aortic vascular surgery who were admitted to the intensive

care unit post-operatively were used. The results showed the current intensive care

5-lead monitor is not sensitive in detecting prolonged MI (12%). The study urged

caution in the use of reduced-lead systems in critical-care environments. This is a

small study, with advances being made toward MI detection since then.

Finlay et al. [128] reviewed practical scenarios for wearable ECG monitors. Al-

though the study investigated optimal lead placement, the focus was to develop a

shirt-based lead system for smart clothing/smart textiles. BSPM data was used to

select multiple areas of the thorax to capture the most electrocardiograhic infor-

mation. Ten recording sites were proposed, with the number of electrodes ranging

from 10 to 32. Since then, numerous studies have investigated the use of wearable

shirt-based devices to capture ECG data [129, 130, 131, 132].

Having recently been granted FDA approval, the LifeSignals Patch is available for

clinical trials, ambulatory monitoring and consumer use [133]. It has six electrodes

and a software package to further analyse signals. The device is disposable and

communicates via Wi-Fi for up to five days. LifeSignals has designed the device to

work on their CardiacApp and Receiver platforms. There are currently no studies

validating the patch accuracy. The ScottCare Novi® patch is a 3-lead device with

14-days recording time. It is compatible with existing Holter monitor software and

is offered as a replacement monitor. No publications were found for this device.
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2.2.3.4 Cardiac Event Recorders

A cardiac event recorder is a wearable ECG-based device which allows patients to

record when they experience symptoms. The monitor is worn for days or weeks. A

clinician will review the recorded events before recommending further treatment or

medication. They are typically sorted into two categories:

1. Loop recorders - a pager-sized device with electrodes attached to the chest

with an event button. The patient will press the button upon symptom onset

to begin the recording

2. Symptom event monitors - a handheld or wrist-worn device designed to

be placed on the chest when the patient experiences symptoms

Roche et al. [134] aimed to test the accuracy of a device called the R-Test

Evolution in arrhythmia detection. A small study of 35 patients were fitted with

the device and a Holter monitor. The device performed with 100% agreement in

bradyarrhythmia, but 86% for tachyarrthyhmia. The single-lead system was able to

capture Atrio-Ventricular (AV)-block and AF upon further analysis from a clinician.

The value of event recorders was investigated by Caires et al. [135] with the

conclusion that symptom outcome from advanced treatment was more favourable

in those who had worn a device (97% vs 55%). This is particularly true in the case

of sporadic symptoms. Kinlay et al [136] suggested event recorders were more cost

effective than 48-hour Holter monitors in monitoring patients experiencing palpita-

tions. A small study of 43 patients with previously uninvestigated palpitations were

referred for Holter monitoring. The event recorders detected arrhythmia in 19% of

patients, with the Holter monitors detecting none. The study concluded Holter mon-

itoring is $213 more expensive for each diagnostic rhythm strip and less sensitive.

Each patient had either a Holter or an event recorded fitted, not both. These findings

are confirmed by Asmundis et al. [137] using the OMRON HeartScan®. A larger

study of 577 patients with palpitations (92.3%) and dizziness in 48 (7.7%) found the

Holter was only sensitive to 1.8% of arrhythmia. Conversely, the Heartscan detected

89% of arrhythmia. Rothman et al. [138] compared the two-lead MCOT monitor

to a single-lead loop recorder in the detection of arrhythmia. 300 patients were

recruited who had presented to a clinician with previous symptoms. The MCOT
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device was found to be more sensitive (89% vs 69%) in providing the clinician with

sufficient information for diagnosis.

Numerous studies have investigated the use of event recorders in diagnosing pa-

tients experiencing syncopal (fainting) episodes [139, 140, 141, 142]. Sarasin et al.

[140] used a population of 611 patients experiencing syncope. Of these, 69% had the

cause identified, however the remaining patients underwent further testing including

event recorder fitting. A further 25% of arrhythmatic causes were identified, with

this group showing the highest mortality rate (9%). This highlights the need for

ambulatory monitoring. More recently, Brandt et al. [143] investigated the link be-

tween syncopal hallucinations and out-of-body experiences using an event recorder.

Multiple events of arrhythmia were noted, with subsequent treatment involving a

pacemaker implant. Syncopal episodes and hallucinations stopped following surgery.

This is a single case study so a larger dataset is needed before drawing conclusions.

Multiple studies have used cardiac event recorders in the detection of paroxysmal

AF [144, 145, 146]. In these studies, there is particular interest in the area of

transient ischaemic attacks and their connection with AF.

Early intervention in cardiac abnormalities is essential. A study by Park et al.

[147] emphasised the use of monitors for all ages. A study of 30 children between

9–14 years experiencing syncopal episodes led to the subsequent diagnosis of su-

perventricular tachycardia in four patients. All were treated with cardiac ablation

therapy and showed no further symptoms.

2.2.3.5 Modified Chest Leads

MCL are adaptations of standard bipolar leads worn on the anterior torso. They

offer the advantage of maximising P-waves for dysrhythmia monitoring and increase

sensitivity of three electrode system for anterior wall ischaemia monitoring [148].

Most variations range from the 3-electrode MCL1 to the 5-electrode MCL5 with the

precordial lead V1 recorded. The ML 12-lead ECG described previously in Section

2.2.1.1 is also an example of a MCL, with distal limb leads moved proximally to the

shoulders. Figure 2.18 shows a limited number of MCL configurations:

The use of MCLs was investigated by Marriott [149] who suggested MCL1 was a

suitable variation for detecting arrhythmia and conduction defects. From a practical
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Figure 2.18: MCL positions on the anterior torso [148]

view, Desanctis et al. [150] agreed MCL1 was convenient and commented it removed

electrodes from areas frequently examined by clinicians. At the time (1972), record-

ing ECGs was done by memory loops. A single lead setup like this also reduced the

need for large recording systems. Additional early work from Gay & Brown [151]

saw the use of MCLs toward the detection of RBBB after AMI.

Marriott later confirms the use of MCLs as a detector for AV block. Specifically,

it was noted the use of a right chest lead for continuous monitoring is sensitive

for AV block and BBB detection [152]. Campbell et al. [153] compared an MCL

lead variation for Holter monitoring, noting 56% of subjects developing arrhythmia

during anaesthesia who had a history of MI or Cardiovascular Disease (CVD).

Drew et al. [154] conducted a study into the value of MCL1 and MCL6 in the

diagnosis of wide QRS complex tachycardia. They found a single MCL was more

valuable than a single bipolar lead II. The combination of MCL1 and MCL6 was

also more sensitive than the routinely monitored V1 with lead II.
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2.2.4 Other Lead Systems

2.2.4.1 Condition-specific leads

A condition-specific lead system is designed with high sensitivity in detecting a small

number of abnormalities. Early work from Aldric et al. focused on selecting the

optimal leads toward AMI [155]. This work aimed to find ST-deviations during

ischaemia using existing 12-lead ECG. Specifically, ST-elevation was used as the

predictor. Lead III saw the highest frequency of ST-elevation for inferior MI (94%)

and lead V2 for anterior MI (99%). All patients were previously triaged as STEMI

and no BBB or LVH was noted. This may not be accurate for the additional

conditions mentioned.

Work from Lux et al. [156] studied the use of optimal leads for ST-T elevation

in a large-scale study of 1,000 patients. Leads chosen from earlier work [157] were

tested against Mortara H12 Holter monitors (leads I, II, V2, V6). Initial findings

found 17% of MI diagnoses (troponin positive) could be detected as STEMI using

MI-specific leads. More recent work from Loewe et al. [158] has attempted to localise

the position of infarct to 17 areas using Magnetic Resonance Imaging (MRI) and

ECG data. The specific lead detected 60% of AMI. Of those, the location was

detected correctly between 50–75% of the time in the left ventrical. The authors

admit only two patients MRI models were used, but personalised medicine could

improve the sensitivity of STEMI classification.

Numerous studies have investigated optimum leads of measuring atrial activity,

with the focus towards AF [159, 160, 161, 162, 163, 164, 165]. The P-wave is an

indicator of atrial activity, so work by Waktare et al. [160] aimed to subtract QRS-T

complexes from each beat, leaving only atrial information. Gerstenfeld et al. [159]

used BSPMs to find seven optimum leads in detecting pulmonary ectopic beats. The

seven-electrode setup was more sensitive than the nine-electrode ML 12-lead ECG

(97% vs 95.7%). Ihara et al. [161] sought to modify the precordial lead positions

of the 12-lead ECG to focus on atrial activity. A simulation moved the six leads to

a closely-spaced grid on the anterior torso, however there is limited information of

the diagnostic significance of this. Ihara et al. [163] improved the study by using

a larger dataset of 25 patients, suggesting modified precordial leads offer a five-fold
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increase in AF detection rates compared to the 12-lead ECG. Igual et al. [162] noted

the practicality of a reduced lead set towards AF detection. BSPMs were used to

extract the areas with significant potential differences during AF episodes. Only five

patients were used in this study, so further investigation is required. Petrénas et

al. [164] used a modified Lewis lead system [166] in comparison with the ES lead of

the EASI system for ambulatory monitoring. The study concluded that strenuous

activity such as heavy lifting can trigger AF.

Patch-based devices are often designed for single-condition diagnosis. For exam-

ple, a study from Alcaraz et al. [165] aimed to cancel ventricular activity from a

single-lead system to ease AF detection. Invasive methods such as the esophageal

ECG have been used in monitoring atrial activity, including a study from Haeberlin

et al. [167] which aimed to investigate the optimum depth insertion for electrodes.

Electrocardiograms also capture noise. A study from Finlay et al. [48] identified

three bipolar leads, called Eigenleads, to capture the maximum signal amplitude

and reconstruct the total body surface potential while minimising signal to noise

ratio (SNR). The chosen leads were shown to increase signal strength (RMS) by

27.9%, 39.0%, and 20.3% for P-waves, QRS, and ST-T segments. These leads were

primarily in the precordial region of the anterior torso.

Ito et al. [168] highlighted the need for specific leads during ablation therapy.

Analysis of 12-lead ECG suggested an algorithm correlating to the ablation, however

the authors admitted a limitation could have been the choice of recording site. This

has been more thoroughly investigated by Hachiya et al. [169].

For drug dose validation, Sadanaga et al [170] suggested limb leads are more

sensitive to Q to T segment of the ECG (QT) prolongation, however concluded the

use of leads V3 and V4 together would differentiate between QT interval and pro-

longation more accurately. The use of VCG has more recently been used to validate

drug dosages with the introduction of the Güldenring matrix [61], as discussed in

Section 2.2.2.4.

2.2.4.2 Vessel-specific Leads

Early work from Feldman et al [171] aimed to find the optimum recording sites for

use during PTCA. The priority was the detection of ST-segment deviation during
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Figure 2.19: Optimal electrode locations (+,-) to detect myocardial ischaemia for
each coronary artery with precordial leads shown (V1–V6) [54]

balloon inflation and subsequent deflation. The study highlighted the need for a

complete 12-lead ECG to be recorded, as different coronary vessel occlusions will

show elevation in different leads. Since then, other studies have highlighted the

importance of locating the coronary lesion [172, 173].

Horacek et al. [54] investigates the use of vessel-specific leads towards a more

sensitive detection of STEMI. Patients undergoing elective PTCA have ECG record-

ings taken before and during balloon inflation in LAD, LCX and RCA vessels. The

difference in ST-segment amplitudes are recorded (∆ST) for each possible lead. The

leads with the highest ∆ST for each coronary artery were found. These can be seen

in Figure 2.19. The use of Vessel-Specific Leads (VSL)s for STEMI detection is not

described in the definition of MI, therefore, it is difficult for a physician to diag-

nose AMI with certainty. Horacek et al. [174] built upon the previous study by

extrapolating the VSL from a 12-lead ECG. Linear regression developed a series

of coefficients to estimate each VSL. The results improved upon the 12-lead ECG

sensitivity, from 60% to 76%. A ∆ST of 125 µV is set as the threshold for STEMI

detection. This also contradicts the universal definition of MI [28] and does not take

sex-specific changes into account. They note the sample size (n = 99) is too small

to take individual differences into account.
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2.3 Myocardial Infarction Detection

2.3.1 Clinical Definitions

The first agreed clinical classification of ischaemic heart disease (IHD) between the

World Health Organisation and Joint International Society and Federation of Cardi-

ology defined ECG changes as a classifier of MI [175]. Specifically, T-wave inversion,

new Q-waves and conduction changes are symptoms of AMI. This definition has

evolved to a first universal definition of MI from the joint ESC/ACCF/AHA/WHF

task force [176]. The fourth universal definition of MI is the current edition at the

time of writing [28]. Based off this, MI can be sorted into five categories, with only

relevant ECG changes described below:

1. Atherothrombotic occlusion: new ischaemic ECG changes and the develop-

ment of pathological Q-waves

2. Mismatch between oxygen supply and demand: new ischaemic ECG changes

and the development of pathological Q-waves

3. Deceased patients with presumed MI: ECG changes leading to Ventricular

Fibrillation (VF) and subsequent death

4. Medically-induced MI: split into three categories encompassing type 4a to

4c. Percutaneous Coronary Intervention thrombosis, stent/scaffold thrombosis

and restenosis following PCI

5. Thrombosis during coronary artery bypass grafting

The ECG is measured using a 12-lead ECG or equivalent. An elevated ST-

segment in at least two contiguous leads is an indicator of MI, designated as an

STEMI. Specifically, >1 mm (100 µV) ST-elevation in all leads other than V2/V3.

Men over 40 require ≥2 mm (200 µV) ST-elevation in leads V2/V3 and ≥2.5 mm

(250 µV) in men below 40 years old. Women require ≥1.5 mm (150 µV) ST-elevation

regardless of age. ST-depression of ≥0.5 mm (50 µV) in two contiguous leads or >1

mm of T-wave inversion with an R/S ratio of >1 also indicate AMI. If a previous

ECG recording of the same patient is available, this can be compared with a current
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Figure 2.20: Electrocardiogram trace during AMI. (1) new pathological Q-wave. (2)
ST-elevation at the J-point [28]

recording with new J-point (ST) elevation of >1 mm as an ischaemic response. The

aforementioned criteria are absent of LBBB and LVH. Figure 2.20 shows the effect

of a STEMI on the ECG. New pathological Q-waves are visible with 2 mm (200 µV)

of ST-elevation at the J-point.

Patients may delay visiting a hospital after AMI. A prior MI can be detected

as a Q-wave in leads V2/V3 >0.02 s (0.5 mm) or >0.03 s (0.75 mm) in leads of

contiguous grouping. Any contiguous lead grouping with a QS complex indicates

prior MI. A wide R-wave >0.04 ms (1 mm) in V2/V3 and an R/S ratio of >1 with

a positive T-wave is also indicative of a prior MI.

Upon presenting to paramedics with chest pain, an ECG is recorded and inter-

preted by a trained professional. A STEMI diagnosis will be treated with primary

PCI. The affected coronary artery will undergo reperfusion within 120 minutes of

symptom onset. Patients not fulfilling the STEMI criteria require further testing

including serial ECGs every 15–30 minutes and blood tests. A MI may be diagnosed,

where primary PCI or fibrinolysis will treat the lesion [177]. Figure 2.21 shows the

Minnesota Chest Pain/ACS tool-kit guidelines of ACS treatment. The focus of this

review is on ECG changes during MI, so we will focus on STEMI diagnosis and

treatment.

2.3.2 Rule-based Diagnosis

Although universal definitions of MI exist, many institutions develop rule-based

diagnostic methods which claim higher sensitivities toward MI detection.

Mair et al. [178] investigated existing methods of MI detection at the time

including creatine-kinase, troponin, and myoglobin biomarkers. They noted that
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Figure 2.21: Minnesota Chest Pain/ACS diagnosis toolkit guidelines showing three
steams of ACS treatment [177]

ECG had the highest Area Under the Curve (AUC) in the Receiver Operating

Characteristic (ROC) curve. Grijseels et al. [179] suggested a pre-hospital rule

matrix to more efficiently triage patients with chest pain. The study focused on

the use of five predictors to qualify further treatment. The more predictors were

present, the more likely the patient would be admitted. For inferior MI, Pahlm

et al. [180] developed a decision rule approach focused on Q-wave amplitude with

75% sensitivity and 97% specificity. Cayley [181] developed a broader decision tree

to triage chest pain into MI, heart failure, pulmonary embolism and asthma. The

aim was to improve the current triage of chest pain so more serious conditions like

MI are correctly treated. Following this trend, Christenson et al. [182] developed

prediction rules to expedite the discharge of less critical patients based on ECG,

pain levels and blood biomarkers. More recently, Hess et al. [183] used a wider

number of variables from patient history, demographics and physical characteristics

to triage emergency department patients with chest pain. Glickman et al. [184]

used numerous features from emergency department visits and subsequent STEMI

diagnoses to develop a simplified flowchart for further treatment. Conditions such

as dyspnea, altered mental status and syncope were identified for immediate triage.

A rule-in, rule-out strategy towards high sensitivity cardiac troponin (hs-cTn) was

developed by Reichlin et al. [185]. This was designed to reduce the complexity in

AMI triage, noting further treatment will rule-out AMI if the test was not specific.
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2.3.3 Automated Diagnosis

The use of automated tools assists physicians in the detection of AMI. Many devices

exist with embedded algorithms which monitor the ECG and alert medical staff in

the presence of abnormalities [186][187][188]. In this section we will investigate the

scope of current MI detection methods.

The fourth universal definition of MI notes ST-segment changes and T wave

deviations as indicators of AMI for clinicians [28]. Research by Prescedo et al. [189]

discussed the use of fuzzy logic to detect deviations in the ST-segment of ECG

recordings. Using the European ST-T dataset [92], five subjects were selected who

were previously diagnosed with MI. Deviations in the ST-segment were weighted

and increased linearly from 50 µV to 100 µV. The duration of ST-deviation was also

weighted linearly between 20–30 seconds. The combination of fuzzy logic variables

yielded a sensitivity of 98.00% and specificity of 91%. With the low number of

participants (n = 5), these values were calculated based on the total number of

ischaemic beats.

Bozzola et al. [190] built upon this with the introduction of a neuro-fuzzy hybrid

classifier. A larger dataset from the Catholic University of Louvain [191] was used

with 539 subjects: 300 subjects with diagnosed MI, 139 with LVH/Right Ventricu-

lar Hypertrophy (RVH) and 100 healthy controls. Linguistic description (fuzzifier)

weights the extracted features where a Multi-Layer Perceptron (MLP) outputs the

certainty of MI. The linguistic justifier determines whether the MLP certainty is

≥75% for diagnosis. Both MLP and hybrid fuzzy-MLP methods were used. Fuzzy-

MLP performed marginally better than the former. The sensitivity was between

60.00–72.00% depending on the ischaemic location with a specificity between 92.73–

95.45%.

Vectorcardiograms have been used by Correa et al. [192] to identify key features

between healthy and ischaemic subjects. A cohort of 132 subjects were chosen: 80

of these were recorded before PTCA with 52 healthy controls. The VCGs were

calculated from X, Y and Z electrodes, with the QRS loop selected for further

analysis. The differences between QRS loops of normal vs ischaemic subjects were

clustered. A classifier was used to suggest MI, exhibiting 85.50% sensitivity and

92.10% specificity. A follow-up study from Correa et al. [193] identified four VCG
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features they deemed most suitable for MI detection using the same dataset. This

improved the sensitivity and specificity to 90.50% and 92.60% respectively.

Similar to VCG studies, Dhawan et al. [194] suggested transforming an ECG into

three dimensions. A total of 201 subjects presenting to an emergency department

(n = 113) or cath lab (n = 88) were selected, with 52 STEMI, 60 MI and 89 subjects

with no AMI. The three-dimensional ECGs were clustered based on the differences

between STEMI, MI and control. A Support Vector Machine (SVM) was able to

classify MI for both STEMI and MI, with a sensitivity of 86.82% and specificity of

91.05%.

A study from Wang et al. [195] used the 12-lead ECG to propose the car-

diodynamicsgram (CDG). A learning algorithm extracts ST-T features from the

Physikalisch-Technische Bundesanstalt (PTB) database [196] and compares ischaemic

responses with normal ECG. Three hundred and eighty five subjects of which 234

suffering MI and 151 healthy subjects were used. A sensitivity of 90.30% and speci-

ficity of 87.80% was achieved.

The diagnostic performance of ECG recording devices in clinical settings varies

significantly. A retrospective study by Garvey et al. [197] analysed three algorithms

on a subset of 500 patients. Of these, 151 of the subjects were presenting to an

emergency department with confirmed STEMI, 349 were controls. The three algo-

rithms had a sensitivity of 67–79% and specificity of 95–98%. There was a larger

number of males in the STEMI group compared to females (104 vs 47). The control

group, in contrast, had more females (180 vs 169). The authors admit this may have

affected the results. Additionally, there was no follow-up with patients after visiting

the catheterisation lab, so there may have been more patients in the MI group.

Table 2.3 compares the sensitivity and specificity of various algorithms discussed:
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2.4 Ischaemic Electrocardiogram Datasets

Norman et al. [205] discussed the use of public ECG databases toward a less-biased

diagnosis of cardiac abnormalities. The use of clinical data which would have been

previously discarded could promote better informed algorithm development and a

better understanding of the “grey-areas” in cardiology. A selection of currently

available public databases relevant to ischaemia are described below:

PhysioNet [36] contains a large selection of datasets from various sources. There

are over 30 ECG-specific datasets, including six ischaemic ECG sets. The site also

hosts data for the annual Computing in Cardiology challenge [206]. All datasets

discussed below are taken from PhysioNet.

The European ST-T dataset [92] contains 91 recordings from 79 subjects with

suspected myocardial ischaemia. Each recording is two hours long and is annotated

with ST-segment and T-wave changes. Header files give additional information such

as medications, electrolyte imbalance and technical information which may be useful

to modern deep learning algorithms.

The PTB dataset [196] contains 549 records from 290 subjects. A 12-lead ECG

recording is included with three Frank leads for VCG. The subjects have the follow-

ing conditions: MI (148), cardiomyopathy/heart failure (18),BBB (15), dysrhythmia

(14), myocardial hypertrophy (7), valvular heart disease (6), myocarditis (4), misc

(4), healthy control (52) and 22 not annotated. A header file is also provided with

patient details.

Data from the Catholic University of Louvain [191] records 12-lead ECG and

3-lead Frank signals across an enormous cohort of 2810 subjects. Of these, 1042

were normal, 279 had anterior MI, 589 interior MI, 203 dual location infarct and 95

LVH with MI. Other records included ventricular hypertrophy and BBB. The data

was collected over five years from patients presenting to the emergency room with

chest pain with the original purpose of reconstructing a VCG from 12-lead ECGs

for improved MI detection sensitivity. The data is not publicly available. This may

be due to ethical concerns, or the authors are not willing to release it.

The Long-Term ST Database [207] contains 86 recordings from 80 subjects last-

ing between 21 to 24 hours each. Each subject had known ST-segment changes, in-
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cluding ischaemia, axis-related ST episodes, and non-ischaemic ST deviation. Each

record contains detailed patient information. The dataset was originally intended to

support the development of algorithms to differentiate ischaemic from non-ischaemic

episodes using ST-segment deviation.

The PhysioNet/Computing in Cardiology (CinC) challenge 2007 dataset [208]

contains BSPM recordings of four subjects (labelled case 1–4). Each recording was

taken using a 120-lead device, expanded to 352 nodes using Laplacian extrapola-

tion. This is known as the Dalhousie torso, described by Horacek, Warren & Penney

[54]. The subjects were undergoing elective PTCA where baseline (normal) and PBI

(ischaemic) recordings were sampled. One subject (case 3) has a detailed heart ge-

ometry and thorax models taken from MRI. An expanded version of this dataset

from Dalhousie university contains 99 subjects with balloon inflation in three coro-

nary arteries: LAD, LCX and RCA.

The St.-Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database

[209] contains 75 annotated recordings from 32 subjects. Each recording lasts 30

minutes and contains 12-lead ECGs. The data was recorded from patients presenting

with suspected CHD. Included in the dataset are two AMI, five transient ischaemic

attack, four prior MI and seven CHD samples. Header files are available for all

patients and all beats are marked using an automated QRS detection algorithm.

The STAFF III database [210] contains 152 recordings of PTCA-based occlusion

of the main coronary arteries (3 Left Main (LM), 58 LAD, 59 RCA, 32 LCX) in-

cluding 35 patients with prior MI. 12-lead ECGs were recorded five minutes before

catheter insertion. Mean balloon-inflation time was 4 min 23 seconds with annota-

tions available in the dataset. Post-inflation ECG was recorded for five minutes after

balloon deflation. Precordial leads were standard to the 12-lead format, however,

limb leads were modified to the ML (exercise lead) configuration to reduce skeletal

noise.

A summary of the datasets discussed in this section is included in Table 2.4.
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2.5 Derivation of Lead Systems

2.5.1 Background

Studies such as that from Pahlm et al. [211] have shown additional leads such as

the 24-lead ECG to be more capable of detecting AMI than the 12-lead ECG. Many

additional lead systems with a larger number of leads, such as the 18-lead ECG are

inconvenient when used in a clinical setting. This is due to both the large number

of electrodes needing placed on the chest, and the requirement to move a patient

to apply electrodes to the posterior torso. Additionally, the requirement for more

electrodes to be placed may increase the number of placement errors introduced.

This has been highlighted in a review from Lynch [212]. This review identified

the confusion by clinical staff that may arise when placing chest electrodes, even

when the instrument provides colour-coded labels. It may be more convenient to

derive non-standard lead systems from that of leads already recorded. For example,

deriving additional chest leads from the 12-lead ECG. This means one standard

ECG can be used, with other leads systems derived from it, potentially reducing the

effects of electrode misplacement from unfamiliar lead systems.

Due to the prevalence of the 12-lead ECG, many datasets have focused on this

lead system during their respective studies, as shown in Table 2.4. When attempting

to evaluate a novel lead system, this requires the researcher to prove the capability

of their introduced lead system with the well established gold standard of the 12-

lead ECG. For example, a pilot study by Ashida et al. [213] and later by Wada

et al. [214], investigated the use of a synthesised 18-lead ECG in the detection of

AMI when compared with the 12-lead ECG. This 18-lead system used six derived

leads: the right-sided chest leads V3R–V5R, and the posterior chest leads V7–V9. A

small improvement in diagnostic sensitivity was observed between the 12 and 18 lead

ECGs, with 94.7% and 95.2% respectively. This study only considered those who

had been diagnosed with either STEMI or MI via ECG or blood biomarkers. This

means the specificity of these synthesised leads could not be accurately determined.

With derived leads, there is always the danger that the derived lead is dissimilar

to a lead physically recorded. A study from Li et al. [215] showed a 100% agree-
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ment between derived and recorded leads of the 18-lead ECG in the diagnosis of

ST-elevation and ST-depression among AMI patients. However, the derived leads

had 95% sensitivity in identifying T-wave inversions. Although this dataset had a

large number of participants, with 295 enrolled, only 45% of the study population

underwent cardiac catheterisation as a result of either a STEMI or blood biomarker

diagnosis. This may not be enough data to be conclusive. Additionally, the data

were recorded in a single centre with non-standard lead locations compared to the

clinical standard of the 12-lead ECG. Confusion with lead placement may have

introduced subtle errors when recording the data.

Derivation of lead systems is not just limited to expanding the 12-lead ECG. It

can also be used to derive the 12-lead ECG from a more limited lead set. This may be

required where the limited lead-set is difficult to interpret using existing diagnostic

criteria. In the context of AMI, the 12-lead is the current diagnostic standard, so

a patch-based lead system or ambulatory monitor is required to generate a 12-lead

ECG plot before a diagnosis can be made. Obviously, with the introduction of AI-

based approaches, MI can still be diagnosed, however, this “black box” approach is

often not trusted by clinicians [216].

A study from Lee et al. [217] investigated the derivation of the 12-lead ECG from

reduced lead sets. The study used ANN and Multiple Linear Regression (MLR)

methods to derive the 12-lead ECG from several different combinations of leads

across the anterior torso. The CC across all combinations of leads was at least 0.92,

but the reconstruction performance was lower in leads III and aVL. The bottom-

centre of the chest was found to have the most favourable 12-lead ECG derivation

performance. A small number of recordings were used, with only 14 participants. To

produce coefficients suitable for a population, a wider variety of participants would

be required.

2.5.2 Reconstruction

It is often required to reconstruct an ECG lead where misplacement, disconnection,

or noise occurs. Additionally, a lead may require reconstruction in instances where

it is deliberately not recorded due to injury or simplistic sample-capture equipment.

A study by Schijvenaars et al. [218] investigated four methods of reconstructing
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leads via interpolation. The leads were selected from a 117-electrode BSPM in a

dataset containing 746 recordings. The study extracted a subset of leads from the

BSPM, interpolated to form a reference signal, then resampled based on the number

of leads to be evaluated. The four interpolation methods used were linear, fourier

transform, Chebyshev, and cubic spline interpolation. The results suggested cubic

spline interpolation to have the best overall performance. This was determined by

interpolating leads in both horizontal and vertical directions, while measuring the

mean absolute error between interpolated leads and those physically recorded.

Rababah et al. [219] employed a similar method using the same dataset, which

aimed to derive leads that may have been disconnected in a clinical setting due to

poor electrode contact or noise. However, Laplacian interpolation and PCA was

used instead of the aforementioned interpolation methods. Additionally, a hybrid

method using both Laplacian interpolation and PCA were also used. Seven problem-

areas where leads may be disconnected were chosen to be derived from the BSPM

data. Laplacian interpolation was found to have the lowest relative error of the two

methods. The hybrid method improved upon this relative error further.

Reconstruction of lead systems can also be used to make them more convenient

in a clinical setting. For example, a study from Drew et al. [220] aimed to evalu-

ate the ischaemic diagnostic performance of derived precordial chest leads (V2–V4;

V6) from a modified 12-lead ECG, with only ML limb leads, V1 and V5 recorded.

The recordings were acquired from patients experiencing myocardial ischaemia with

continuous 12-lead ECG monitoring (n=120). The standard 12-lead ECG and in-

terpolated ECGs were compared against each other using a blinded test from a

cardiologist. Ischaemic-type ECG changes were detectable by the interpolated ECG

in 97% of those deemed ischaemic by the 12-lead ECG. This shows a strong clinical

impact for the interpolation of missing leads in a clinical setting, however, these

results do not include healthy controls. Therefore, the more popular criteria to de-

termine performance, such as sensitivity or specificity cannot be reliably calculated

from this study.

It is also possible to derive other lead systems from the well-established 12-lead

ECG. Kusayama et al. [221] performed a study which aimed to determine how

the derived right-sided chest leads were characterised in patients with pulmonary
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embolism. Fifty six patients with the condition had 12-lead ECG recordings taken

at rest. The right-sided chest leads V3R–V5R were derived using the least-squares

method. The study concluded that the derived V3R lead was useful in the detection

of T-wave changes associated with pulmonary embolism, and derivation of this lead

should be performed on suspicion of pulmonary embolism. However, there were no

physically recorded right-sided chest leads during this study, so the derived leads

cannot be properly evaluated.

2.5.3 Deep Learning

The majority of research into deep learning-based methods of lead derivation focus

on the estimation of the 12-lead ECG from a reduced lead set. This is primarily due

to the inconvenience of the 12-lead ECG for remote and long-term monitoring. For

example, a study from Lee et al [222] aimed to synthesise the 12-lead ECG precordial

chest leads (V leads) from the limb leads. Using the PTB dataset [196], summarised

previously in Table 2.4, each ECG beat was extracted from the recordings of the 52

subjects. The R wave peaks were aligned using the Pan-Tompkins algorithm, before

classification by a Generative Adversarial Network (GAN). The correlation for each

synthesised lead was either 0.99 or 1.00, suggesting that a GAN-based architecture

is highly accurate when estimating precordial leads.

Xu et al. [223] proposed a similar method using the PTB dataset, whereby the

precordial chest leads were being derived from leads I, II, and the chest lead V2.

A General Vector Machine (GVM) was employed in the estimation of chest leads.

This network was compared with MLR, backpropagation and a genetic algorithm

optimised backpropagation network. It was found that a GVM performed between

1.5–11% better than the other methods investigated. The mean CC of the derived

leads was between 0.81 for V5, to 0.96 for V1. This study is limited by the inability

of the chosen networks to fit the R wave peaks, which may have worsened the

performance.

Lee et al. [224] were more ambitious in the synthesis of a 12-lead ECG from a

reduced lead set. They presented a four-electrode patch-based device which used

an ANN-based approach to estimate the 12-lead ECG. The electrode patch was

selected from a matrix of 35 electrodes on the anterior torso, spaced five centimetres
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apart in a grid. This was placed on 19 participants with the 12-lead ECG recorded

simultaneously. The authors reported a CC of between 0.95 for aVL, and 0.99

for V3. This is promising for a patch with electrode distances of five centimetres

apart, however, such a small number of subjects used in the study and a lack of

information on the diversity of the cohort makes it difficult to determine whether

this device would work for a wide variety of individuals.

A study by Sohn et al. [225] aimed to reconstruct the 12-lead ECG from a

three-lead patch device using a Long Short-Term Memory (LSTM) approach. A

population of 60 subjects, 30 of which were normal and 30 were patients with an ECG

abnormality, were fitted with a four-electrode patch on the left-superior anterior

torso. The patch transmitted ECG data from the device to a LabView equiped

receiver, where an LSTM model would derive the 12-lead ECG. The mean CC was

between 0.92 for lead I, and 0.96 for lead II, aVR, and V2–V5 respectively. Using

the derived ECGs, the sensitivity and specificity were 100% in the affirmation of

LVH, ST elevation, ST depression, and wide QRS respectively.

Grande-Fidalgo et al. [226] was a sponsored study from Analog Devices, which

shows the application of commercial hardware to ECG capture and further process-

ing. This study used an analogue frontend, coupled with an ANN-based backend to

derive the 12-lead ECG. The signals were captured using the standard 12-lead ECG

for reference, three electrodes on the anterior-central torso, and one on the posterior-

left torso. These four extra electrodes for the basis of the custom three-lead system.

The three leads were passed through an ANN to derive the 12-lead ECG. The CC

between derived and recorded 12-lead ECG signals was 0.99, suggesting a pseudo

perfect performance. This is promising, however, the lead system is non-standard

and may be confusing for clinicians. The spacing between electrodes is also an issue.

It is too large for a patch, and the posterior-attached electrode may be inconvenient

in a clinical setting. Furthermore, only healthy subjects were used in this study, so

there is no evidence to suggest its efficacy to detecting cardiac abnormalities.
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2.6 Cloud Computing in ECG Processing

2.6.1 Background

Over recent years, there has been an increased use of cloud computing technologies

related to healthcare [227]. Vendors such as Amazon Web Services (AWS), Microsoft

Azure, and Google Cloud have popularised the use of Infrastructure as a Service

(IaaS) [228]. This is where a consumer will rent hardware to run scripts, servers or

algorithms. On example of this may be hosting a website in a distributed network.

This frees the creator from the burden of hosting, load managing and hardware

maintenance. An abstraction of IaaS is the use of platform or Software as a Service

(SaaS). This is where the platform provider hosts their software, then allows users

to access it remotely. For example, the use of an API to process requests sent

from users or devices. The API receives a request, performs some computation

and returns a rendered response via Javascript Object Notation (JSON) or similar

format. Not all cloud computing is IaaS or SaaS based, however. It is possible

to manage your own cloud platform by means of self-hosting. This may be more

suitable for security-sensitive applications, but presents challenges in deployment

and upkeep [229].

In relation to the processing of ECG information, progress is somewhat restricted

due to several reasons. First, the concerns of passing confidential patient data to a

third party provider provides a path for so-called bad actors to steal information.

Second, many ECG capture methods are proprietary, where the manufacturer is not

willing to share the data. Third, the need for server-side processing of ECGs has

not been realised until AI-based processing methods have matured. Some of these

methods are discussed in Table 2.3. While providing a diagnosis on the manufac-

turer’s device is ideal, the AI model used is fixed. This would not allow retraining

and reinforcement learning which is commonplace amongst AI-based algorithms.

This necessitates the need for sending the ECG data to a server for further analy-

sis. Electrocardiographic data, such as the 12-lead ECG is often sampled between

250–1000 Hz and captured over a ten second period in 12 channels of data. Given

a sampling resolution of 12 bits per channel, one recording may only be up to 1.4
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megabytes in size, not including patient metadata. This is a relatively small package

size for cloud computing architectures that are capable of handling real-time voice

and video applications.

With the rise of “big data” and cloud computing, open source software has

also expanded rapidly. This is particularly true in the field of medicine, where

the sharing of open datasets have been shown to produce innovations years after

release, often not in the same area as the publisher originally intended [230]. Many

companies are reluctant to release open source software, especially in the field of

cloud computing, citing losses of revenue as a potential reason. However, open

source software can encourage users to become more loyal towards a particular

application [231]. Additionally, the switch from proprietary to open source evolves a

project into a community-led ecosystem, furthering the technological progress of the

original product. In the field of ECG processing, a platform for sharing open-source

datasets such as Physionet has further progressed the development of beat-detection

algorithms beyond the original study where the data were recorded [232].

The aim of this section is to evaluate the current application of cloud computing

architectures in the processing of ECG signals. In particular, the use of cloud

computing in telemedicine, ambulatory devices, the hosting of algorithms, and the

development of novel algorithms.

2.6.2 Remote Monitoring

One of the main advantages of a cloud-based ECG service is the realisation of rapid

diagnosis from ambulatory devices. The transmission of ECG data to the cloud

presents several challenges, mainly from the architecture or framework of either the

data formatting or handling. Hsieh & Hsu [233] aimed to provide a telemedicine

approach to this issue. This service allows the processing of 12-lead ECG data that

has been sent via the internet. The Microsoft Azure-based system receives ECG

data and queues it via a scheduler called a ’fabric controller’, where it is parsed

and processed by the Azure kernel. The results of the process are stored in an SQL

database after encryption.

Similarly, Venkatesan et al. [234] introduced a CHD detector suitable for the

storage and processing of single-lead ECG data. The server backend hosts a heart
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rate variability detector and CHD classifier to provide a diagnosis and waveform

on a Graphical User Interface (GUI). However, there was no consideration given to

allowing a user to store the diagnoses and view multiple at one time.

Shu et al. [235] provided a full-stack solution to the transmission and processing

of ECG data in the cloud. An analogue frontend was designed with signal acquisi-

tion, filtering, and encoding performed by an android-based device. The recorded

ECG data were then transmitted to a cloud platform to be decoded and linked to

a patient-profile while being stored on the server. This data were then accessible

via an android application on the transmitting device. For a physician, this may

be convenient as it allows a tablet device to transmit ECG data to be stored and

recalled at a later date. However, there is no consideration for further processing of

the ECG on the cloud, for example, automated diagnosis of cardiac abnormalities.

2.6.3 Hosted Algorithms

The previous section discussed systems that focus on the transmission or storage of

ECG data in the cloud, but a cloud-based system is also capable of hosting various

algorithms to process the incoming ECG data and provide diagnoses.

A study from Mutlag et al. [236] investigated the role of fog computing, also

known as edge computing, to process patient data from multiple sources. Their

solution used a task scheduler to prioritise incoming data before being passed into

the dedicated processing algorithm on the cloud. This is inherently scalable as it

can divert traffic away from a cloud server if it is perceived as being overloaded.

This fog computing system was also used by Cheikhrouhou et al. [237] to produce

a system capable of diagnosing ECG arrhythmia using a Convolutional Neural Net-

work (CNN). Data were sent from multiple sources, where a fog system would queue

and transmit the ECG data to the cloud for processing. The cloud server hosted

the CNN that provided a diagnosis. The fog system provided a lower latency from

transmission to the receipt of diagnosis, but it was unclear how the diagnosis would

be shown to the clinician.

Zhang et al. [238] provided a full stack example to the processing of ECG data in

the cloud. Data were collected using a sensor that would transmit the ECG data via

Bluetooth to an Android device. A Python-based web socket would allow data to be
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streamed from the device to the backend server. The server passes the collected data

to a MATLAB engine that provides an SVM classifier to diagnose any abnormalities.

The diagnostic results are then passed back to the Android application to be shown

along with the ECG signal. The solution presented in this study shows how an

established DSP software package such as MATLAB can be used in real-time with

web-based applications. It also demonstrates how the classification algorithms can

be changed using a single language, rather than converting it to C++, or hosting

the algorithm on a dedicated platform such as AWS.

2.6.4 Algorithm Development Platforms

There has been a huge increase in the number of biomedical data collection plat-

forms, primarily those in the consumer sector, such as Fitbit and the Apple Watch.

Devices such as the Apple Watch are capable of providing basic diagnosis on a single

lead ECG, that has led many consumers to seek medical advice. This has led to

clinicians becoming overwhelmed with novel data platforms, and little means to sift

through the information other than running additional tests. This has led to articles

like that from Bose & Saxon [239] highlighting the need for new methods to break the

inefficiency of emergency departments in dealing with this data. One such solution

may be platforms designed to assist clinicians in the handling of patient data.

Kasthurirathne [240] discussed the development of an open source software plat-

form to allow clinicians to process patient records, called OpenMRS. The platform

is operable with no prior programming knowledge, a key requirement for systems

for use by medical staff. A patient workflow can be created which facilitates report

generation and efficient patient transfer.

Van Poucke et al. [241] highlighted the need for visual platforms to gain novel

insights into data and correlate patterns. They created a system which allows users

to extract information from a dataset, build a predictive model, and deploy it under

different feature selection schemes. The platform focuses on the use of draggable

blocks that can be connected together to form a data flow. This allows a code-free

option for clinicians to evaluate new data, whether creating reports or providing a

basic diagnosis.

Ghaderi [242] provided a meta-platform to allow clinicians to create an appli-
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cation and dashboard-type GUI to assist with the automation of disease diagnosis.

In their example, the platform was used to create a patient-facing breast cancer

screening tool that can triage patients that have concerns about their own health.

They can fill out a series of questionnaires to track their symptoms before alert-

ing a clinician. This has the capability to decrease the time a clinician may spend

in triaging false positives from overly-concerned individuals, however, care should

be taken that the platform does not turn away those who genuinely need medical

intervention.

Sanders et al [243] combined deep learning with a GUI to allow clinicians to train

their own AI classification models on patient data. This code-free platform enables

the user to load data, create a model architecture, then store the model for later use.

The application also supports the use of existing models as part of a transfer learning

approach. Whilst any clinician using this application will need some knowledge of

deep learning architectures, the barrier to entry has been significantly reduced by

removing the need to write code.

2.7 Conclusions

This chapter has investigated the current state of the art in ECG technologies,

with a focus on the use of ECG toward MI detection. This review of the literature

has shown gaps, specifically in the use of derived additional lead systems, other

than the 12-lead ECG. Furthermore, the lack of ST-sensitive monitoring devices

suited towards detecting ischaemic-type ECG changes has been identified. Many of

the technologies reviewed in the processing of ECG, particularly the use of systems

capable of designing novel ECG processing algorithms are complex and not suited for

clinical use or experimentation by non-experts. The areas identified in this literature

review will guide the work presented in upcoming chapters, while informing many

of the methods employed during the work.
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[75] G. Wehr, R. J. Peters, K. Khalifé, A. P. Banning, V. Kuehlkamp, A. F.
Rickards, and U. Sechtem, “A vector-based, 5-electrode, 12-lead monitoring
ECG (EASI) is equivalent to conventional 12-lead ECG for diagnosis of acute
coronary syndromes,” Journal of Electrocardiology, vol. 39, pp. 22–28, 1 2006.

[76] B. M. Horacek, J. W. Warren, D. Q. Feild, C. L. Feldman, B. M. Horáček,
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[121] T. H. Mäkikallio, P. Barthel, R. Schneider, A. Bauer, J. M. Tapanainen, M. P.
Tulppo, G. Schmidt, and H. V. Huikuri, “Prediction of sudden cardiac death
after acute myocardial infarction: Role of Holter monitoring in the modern
treatment era,” European Heart Journal, vol. 26, pp. 762–769, 4 2005.

[122] Bradenton Heart Center, “Holter and Event Monitoring.”

[123] R. E. Mason, I. Likar, R. O. Biern, and R. S. Ross, “Multiple-lead exercise
electrocardiography. Experience in 107 normal subjects and 67 patients with
angina pectoris, and comparison with coronary cinearteriography in 84 pa-
tients.,” Circulation, vol. 36, pp. 517–525, 10 1967.

73



CHAPTER 2. LITERATURE REVIEW

[124] J. Roelandt, P. Klootwuk, J. Lubsen, and M. J. Janse, “Sudden death during
longterm ambulatory monitoring,” European Heart Journal, vol. 5, pp. 7–20,
1 1984.

[125] J. E. Deanfield, A. P. Selwyn, S. Chierchia, A. Maseri, P. Ribeiro, S. Krikler,
and M. Morgan, “Myocardial Ischaemia During Daily Life in Patients with
Stable Angina: Its Relation to Symptoms and Heart Rate Changes,” The
Lancet, vol. 322, pp. 753–758, 10 1983.

[126] A. B. de Luna, P. Coumel, and J. F. Leclercq, “Ambulatory sudden cardiac
death: Mechanisms of production of fatal arrhythmia on the basis of data from
157 cases,” American Heart Journal, vol. 117, pp. 151–159, 1 1989.

[127] E. A. Martinez, L. J. Kim, N. Faraday, B. Rosenfeld, E. B. Bass, B. A. Perler,
G. M. Williams, T. Dorman, and P. J. Pronovost, “Sensitivity of routine
intensive care unit surveillance for detecting myocardial ischemia,” Critical
Care Medicine, vol. 31, pp. 2302–2308, 9 2003.

[128] D. D. Finlay, C. D. Nugent, M. P. Donnelly, P. J. McCullagh, and N. D.
Black, “Optimal electrocardiographic lead systems: Practical scenarios in
smart clothing and wearable health systems,” IEEE Transactions on Infor-
mation Technology in Biomedicine, vol. 12, pp. 433–441, 7 2008.

[129] J. Yoo, L. Yan, S. Lee, H. Kim, and H. J. Yoo, “A wearable ECG acquisi-
tion system with compact planar-fashionable circuit board-based shirt,” IEEE
Transactions on Information Technology in Biomedicine, vol. 13, pp. 897–902,
11 2009.

[130] B. A. Dolezal, D. M. Boland, J. Carney, M. Abrazado, D. L. Smith, and C. B.
Cooper, “Validation of heart rate derived from a physiological status monitor-
embedded compression shirt against criterion ECG,” Journal of Occupational
and Environmental Hygiene, vol. 11, pp. 833–839, 12 2014.

[131] T. Morrison, J. Silver, and B. Otis, “A single-chip encrypted wireless 12-lead
ECG smart shirt for continuous health monitoring,” in IEEE Symposium on
VLSI Circuits, Digest of Technical Papers, pp. 1–2, IEEE, 6 2014.

[132] A. Boehm, X. Yu, W. Neu, S. Leonhardt, and D. Teichmann, “A Novel 12-
Lead ECG T-Shirt with Active Electrodes,” Electronics, vol. 5, p. 75, 11 2016.

[133] LifeSignals, “Life Signal Patch,” 2018.

[134] F. Roche, J. M. Gaspoz, V. Pichot, F. Costes, K. Isaaz, C. Ferron, C. Roche,
A. Geyssant, J. R. Lacour, and J. C. Barthélémy, “Accuracy of an auto-
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Chapter 3

Datasets and Electrocardiogram

Pre-processing

3.1 Datasets

This section will focus on the datasets used throughout this thesis. Three datasets

were used, containing ECGs from patients recorded in a clinical setting. All three

have been published and have been cited multiple times from various studies, making

them well suited for the work carried out in this work.

3.1.1 Horáček et al.

3.1.1.1 Data

The data included were recorded at the Faculty of Medicine of Dalhousie University

in Canada, and was described previously [1]. The recording process and subsequent

pre-processing is described as follows: A population of 91 patients were involved,

all of which had single-vessel coronary artery disease. Subsequently, the patients

underwent PTCA in one of three coronary arteries. The lesion was in the LAD

artery for 32 patients; in the LCX for 23 patients; and in the RCA for 36 patients.

The criteria applied to diagnose coronary artery disease was 60% reduction in artery

diameter in any of the three aforementioned arteries, no recent MI diagnosis using a

12-lead ECG, and normal ejection fraction of ≥ 45%. The median age in the study
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population was 57 years old (±10, one standard deviation from the mean). The

recordings were taken from 64 males and 27 females.

Two recordings were acquired per patient. One recording was taken during

supine resting conditions, referred to as baseline. Another was taken during the

inflation of a balloon catheter in one of the three coronary arteries. During this

time, the artery was completely obstructed, meaning no blood could flow. A 120

lead ECG recording was taken for each patient. Three of these leads were distal limb

leads (lead I, II, III) and 117 unipolar thoracic chest leads arranged in accordance

with the Dalhousie Torso (Figure 3.1). The electrode system was comprised of

several silicon strips with multiple electrodes attached to each. These were placed

along the chest parallel to each other. Using Laplacian interpolation based on a

three dimensional Dalhousie model, the 120 leads were expanded to 352 leads.

The ECG signals were amplified and filtered using a bandpass filter of 0.025–

125 Hz. They were recorded with respect to the WCT. The sampling frequency

was 500 Hz. The sampling resolution was 12-bits, giving an amplitude resolution

of 2.5 µV . The recordings were averaged from a 15 s window to produce a single

representative complex: one for the baseline, and one for the peak ischaemic state.

The peak ischaemic state is defined as peak balloon inflation (PBI) and subsequent

total occlusion of the artery. Fiducial points of the ECG were annotated by two

cardiologists. These were P-onset, P-offset, QRS-onset, QRS-offset (J-point), T-

onset, and T-offset.

Depending on the difference in the ST segment amplitudes between baseline and

PBI, the patients were further split based on responders and non-responders. A re-

sponder was said to have a noticeable difference in ST-segment between baseline and

PBI. There were 44 responders, with 88 recordings. There were 45 non-responders,

with 90 recordings. Two recordings in total per patient, one for baseline and one

for PBI. Three patients were excluded due to the presence of balloon inflations in

more than one coronary artery. Table 3.1 shows a summary of the resulting dataset

to be used throughout this project.
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Figure 3.1: Dalhousie torso BSPM showing the 117 thoracic unipolar chest lead
locations (blue circle), and interpolated lead locations (black square) [2]. The left
half representing the anterior torso, and the right half representing the posterior
torso.

3.1.2 Kornreich et al.

3.1.2.1 Data

This dataset was recorded for the Unit for Cardiovascular Research and Engineering

in Free University Brussels, Belgium. It was described previously [3, 4]. A total of

746 subjects were involved. Of those, 232 subjects had no cardiac abnormalities or

history of cardiac defects, so are deemed normal. Myocardial infarction was present

in 277 subjects, confirmed with changes in blood enzyme levels. LVH was present

Table 3.1: Summary of the Horacek et al. dataset

Characteristic Value

Patients 88
Recordings 176
Baseline recordings 88
PBI recordings 88
LAD recordings 62
LCX recordings 44
RCA recordings 70
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Table 3.2: Summary of the Kornreich et al. dataset

Characteristic Value

Patients 734
Recordings 734
Normal recordings 226
MI recordings 271
LVH recordings 237

in a further 237 subjects. All subjects were over 30 years old. The mean age was

43 years. 72% of the subject population were male. The mean age for subjects

presenting with MI was 56. Those subjects with LBBB, RBBB, Wolf Parkinson

White syndrome, or left-sided valvular disease were excluded.

One recording was taken per subject. The recordings were acquired in the supine

position during rest. A BSPM with 117 unipolar thoracic chest leads was used

to record the ECG. Three distal limb leads were also included, bringing the total

measured leads to 120. The unipolar chest leads were recorded with respect to the

WCT. The sampling frequency was 500 Hz. Leads determined to be invalid were

interpolated from nearby leads. A single representative complex was calculated by

coherent averaging in each lead of each patient. Laplacian interpolation was used to

expand the 120 leads to 352 leads as per the Dalhouse torso [2]. From the original

recordings, 12 were excluded due to missing data and excess noise. This left 734

total recordings of one beat in length and 352 leads. Of these, 226 were without

disease (normal), 271 with MI, and 237 with LVH. The breakdown is summarised

in Table 3.2

3.1.3 STAFF III

3.1.3.1 Data

This dataset was acquired in the Charleston Area Medical Center, USA. It was

described previously [5, 6, 7]. A total of 104 patients were involved in the collection.

Each patient underwent elective PTCA where a balloon was inflated in one or more

coronary arteries. The patients were subjected to a prolonged balloon inflation to

simulate AMI. None of the patients involved had acute myocardial abnormalities

or chest pain, however, 35 patients with prior MI have been annotated. The mean
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Table 3.3: Summary of the STAFF III dataset

Characteristic Value

Patients 104
Recordings 467
Baseline recordings 352
Inflation recordings 115
LAD inflations 42
LCX inflations 25
RCA inflations 48

inflation time was 4 min 23 seconds, but ranged between 1 min 30 s to 9 min 54 s.

A total of 152 occlusions were performed. Of these, 58 were in the LAD, 59 in the

RCA and 32 in the LCX. A further three were performed in the LM artery. The

study population had a mean age of 60 ± 11 years. Men make up the majority,

66%, of the patients involved.

A total of 467 recordings were acquired from the patients. Each patient had at

least one five-minute recording taken at rest in a separate room to the procedure.

Each patient also has at least one recording, taken during the PTCA procedure. The

inflation onset and offset times were annotated. A further recording was acquired

at rest in a separate room after the procedure. All recordings contain the standard

leads of the 12-lead ECG (I–III, V1–V6). These were sampled at 1000 Hz with

an amplitude resolution 0.625 µV . No digital filtering was used post-capture. Any

recording with excess noise or invalid data were excluded prior. Of the 467 recordings

remaining, 352 were taken without an inflation. These were 179 before the PTCA

procedure and 173 afterwards. A total of 115 recordings contained balloon inflations.

Of these, 42 recordings with LAD inflations, 48 with RCA inflations, and 25 with

LCX inflations. A summary of this is shown in Table 3.3.

3.1.3.2 Pre-processing

Recordings from the STAFF III dataset (Section 3.1.3) were filtered to ISO stan-

dard 80601-2-86 [8], using a zero-phase second-order IIR bandpass filter with cutoff

frequencies of 0.05–150 Hz. Recordings with missing annotations, ventricular tachy-

cardia and invalid values were excluded (n=63). Data were separated to give relevant

annotations for AMI detection. Recordings taken during rest were labelled as con-
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trols (n=352), whereas those recorded during coronary artery occlusion were treated

as AMI (n=115). Those who have experienced a prior MI have also been included

(n=167).

3.2 Median Beat Extraction

The STAFF III data described in Section 3.1.3 contained recordings of several min-

utes in length. For this data to be useful when compared with the other datasets

used, it was necessary to derive a single beat complex for each lead, representative

of the entire recording. The primary challenge in accomplishing this task was the

annotation of beat complexes from the 12-lead ECG. Three methods were consid-

ered to extract a single complex from the 12-lead. The first used the VCG, Spatial

Velocity Gradient (SVG) and cubic spline interpolation to get one complex. The

second used wavelet decomposition to detect the beats before producing a median

beat. The third used a third party plugin, the BioSigKit, to annotate the differ-

ent fiducial points of the ECG before producing a median beat. In this section,

the methods employed in each of these potential solutions are shown, with some

discussion as to the limitations of each.

3.2.1 VCG/Cubic Spline Method

Dataset three, described in section 4.3.1, contained ECG recordings multiple minutes

in duration. Extracting a random beat in a recording that is several minutes in

duration is not representative of the entire recording. Instead, a single median beat

was derived for each lead of each recording.

The eight independent channels of the 12-lead ECG were extracted (I, II, V1–V6)

from each recording of dataset three. Cubic-spline interpolation was used to correct

baseline wander [9]. A three-lead Frank VCG was derived using the the Güldenring

matrix method [10]. A single-lead SVG was calculated from the Frank VCG. The

QRS complex was annotated based off the SVG [11]. The J-point was defined as

the QRS offset. A ten second strip was extracted from each recording, at least 60

seconds from the beginning. A single beat was generated for each lead of the 12-

lead ECG from the median amplitudes of the ten second excerpt. For baseline ECGs
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median beats were calculated from data extracted from 60 seconds after the start of

the record. For recordings containing balloon inflations in a coronary artery, median

beats were calculated from data extracted from 60 seconds after the onset of balloon

inflation. Once median beats were composed, further analysis was conducted to

extract relevant amplitudes and morphology features for each lead for each subject.

The details of this method are summarised below, but explained in greater detail in

the subsequent sections:

1. Derive the VCG from the 12-lead recordings

2. Derive the SVG from the VCG

3. Annotate the QRS onset and offset using the SVG

4. Remove baseline wander using cubic spline interpolation

5. Produce a single median-beat for each lead of each recording

3.2.1.1 Vectorcardiogram derivation

The eight independent channels of the 12-lead ECG were extracted (12L). These

are leads I, II, V1–V6, indicated in an 8×n matrix as follows, where n is the number

of samples in the recording:

12L =



I

II

V 1
...

V 6


A Frank VCG was derived from the independent channels using the Güldenring
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matrix, AV CG, [10]:

AV CG =



0.5169 −0.2406 −0.0715

−0.0722 0.6344 −0.1962

−0.0753 0.1707 −0.4987

0.0162 −0.0833 −0.0319

0.0384 0.1182 −0.2362

0.0545 0.0237 −0.0507

0.1384 −0.1649 −0.2007

0.4606 0.2100 0.4122


The 3-lead Frank VCG, described as a m × 3 matrix V CG = [x, y, z]. It is

calculated by the multiplication of the eight independent channels of the 12-lead

ECG (12L) by the Güldenring matrix (AV CG) as shown in (3.1):

V CG = 12L ·AV CG (3.1)

3.2.1.2 Spatial velocity gradient

The SVG was derived from the VCG to aide QRS annotation. An SVG signal

emphasises the QRS complex, while attenuating lower frequencies, such as baseline

wander. The SVG is a single-lead vector with length m (vSV G), derived using the

equation from Mori et al. [11]:

vSV G =

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

(3.2)

where x, y, and z are the respective columns of the derived Frank VCG (V CG).

3.2.1.3 Vector magnitude

To facilitate the annotation of the T-waves from the 12-lead ECG data, the vector

magnitude (VM) was calculated from the VCG data. The vector magnitude, unlike

the SVG, provides prominent P and T waves to assist with the later annotation.
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This was calculated using the following formula:

VM12L = (V CGX + V CGY + V CGZ)
2 (3.3)

where V CGX , V CGY , and V CGZ are the three channels of data from the VCG,

derived using the Güldenring matrix V CG described previously.

3.2.1.4 QRS annotation

The QRS complexes for each 12-lead ECG recording were calculated using the de-

rived SVG data from the VCG. A potential QRS complex was defined as having an

amplitude of greater than or equal to one-sixth of the mean SVG signal across the

recording.

QRSpotential(vSV G)
?
=

True if vSV G ≥ vSV G

6

False otherwise

(3.4)

where QRSpotential are all potential QRS complexes, vSV G is the VCG derived from

the recording, and vSV G is the mean VCG signal. Note, ‘
?
=’ denotes that we pro-

ceed on the assumption that Equation 3.4 is correct to test this method. Potential

QRS complexes with a duration of less than 200 µs were excluded as noise spikes.

Additionally, all complexes with a period of less than 300 ms were excluded. This

allows for a maximum detectable heart rate of 200 beats per minute. This can be

seen in Equation 3.5:

∀QRSpotential ∈ vSV G, QRS =

True if T (QRSpotential) < 200ms

False otherwise

(3.5)

where QRS are the confirmed locations of a QRS complex as per our algorithm,

QRSpotential are the potential QRS complexes, and T (QRSpotential) is the time pe-

riod between two consecutive potential QRS complexes. For each potential QRS

complex, the peak amplitude of the SVG was correlated with the 12-lead ECG data

to determine the location of the R wave.

To determine the position of the Q and S waves, the predetermined QRS complex

locations were used. The S waves were located based on the beginning of each QRS
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complex. The criteria used were that previously published by Macfarlane [12]. The

beginning of a QRS complex was defined as the first point where the signal drops

below 3 mV/s, before the R peak. The Q waves followed the same criteria, but in

reverse. The Q wave was defined as the first point where the signal decreases below

3 mV/s, after the R peak. This was carried out for each detected QRS complex.

3.2.1.5 Cubic-spline based baseline correction

The 12-lead ECG still has significant baseline wander as a result of respiration, even

after filtering. The use of a 0.05–150 Hz diagnostic filter is not sufficient to remove

this without compromising the ST-segment, which is essential for MI diagnosis. The

cubic spline interpolation method was used to create a spline curve connected to the

isoelectric PQ segment [13]. The amplitude of each sample of the spline is then

subtracted from each sample of the 12-lead ECG to produce an interpolated signal

tending around 0 V .

3.2.1.6 T wave annotation

Using the SVG signal, the T wave peaks were annotated where the signal drops

below 1.5 mV/s following a QRS complex. This is following the criteria previously

published by Marfarlane [12]. The T wave ends were annotated using the Philips QT

algorithm, described previously by Zhou et al. [14]. The vector magnitude signal

was used for this process, where a straight ancillary line is drawn from the T wave

peak to a point following the perceived end of the T wave. This was chosen as the

isoelectric line (0 V ). The point at which the difference between the y axis value of

the ancillary line and the vector magnitude signal is the largest was chosen as the

T wave offset/end.

3.2.1.7 Beat extraction

It was necessary to produce a single beat complex for each recording, since this is

common among datasets previously published, especially with those used as part of

this thesis, described in Sections 3.1.1 and 3.1.2. A ten second strip was extracted

from each recording, at least 60 seconds from the beginning of the record. Those

recordings containing balloon inflations, as described in Section 3.1.3, had ten second
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Figure 3.2: Aligned beats from the chosen ten second window of one record. Beats
were aligned from the R waves in the precordial chest lead V2

strips extracted 60 seconds from the onset of balloon inflation.

The R wave with the largest peak was chosen as the datum point during the beat

alignment. A fixed time of 200 ms before the R wave and 600 ms after the R wave

of each beat was used as a beat-wise window. Each complete beat occurring within

the ten second strip were extracted into the beat-wise windows. The extracted beats

were aligned based on their respective R wave peaks. An example of this can be

seen in Figure 3.2:

The median amplitude of each sample in the window was calculated based on all

aligned beats. This produced one median complex. The process was repeated for

each lead to produce one median complex for every lead in the recording. In this

case, the eight independent channels of the 12-lead ECG.

3.2.2 Wavelet Decomposition Method

Wavelets were considered as an alternative method of annotating the QRS complexes

of the 12-lead ECG. Wavelet-based methods of detecting beats and abnormalities
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Level 0
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Figure 3.3: A breakdown of wavelet decomposition coefficients from an original
signal (x), into average coefficients (cDn), and detail coefficients (cDn)

within ECG recordings is common [15, 16, 17]. This method uses banks of high pass

and low pass filters to extract information from a designated frequency band. There

are many wavelet topologies to choose from, but the Daubechies wavelet has been

shown effective in extracting features from the ECG [18, 19, 20]. For this method, a

five-level Daubechies-4 wavelet decomposition (db4) was chosen. This method uses

five levels of decomposition to create a series of coefficients, called decomposition

vectors. Each level has two sets of coefficients: average coefficients (cAn), and detail

coefficients (cDn). The average coefficients are low-pass filtered, whereas the detail

coefficients are high-pass filtered. Figure 3.3 shows this breakdown of coefficients:

The independent channels of the 12-lead ECG were extracted. These leads were

then decomposed using the method above. The coefficients were then reconstructed

into the separate detail (Dn) and average (An) signal branches. This ensures all

reconstructed branches are of equal length. The R wave peak was determined as

any prominent peak above one third of the mean signal across the reconstructed

detail signals in level five (D5). If an R wave was detected, a window encompassing

all samples in a 300 ms period after the detection was extracted. The R wave was

then said to be the most prominent peak of the absolute magnitude of the window.

Without this window, Q waves would be mistaken for R waves. An example of this

process is shown in Figure 3.4.

An example of a reconstructed signal compared with the input signal is shown

in Figure 3.5. A total of 15 beats were detected in the window shown. The second

graph shows the level five detail layer. This was deemed to be the most apt for R

wave detection due to both the prominence of the signal during the QRS complex and
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Single ECG Lead

5-level db4 decomposition

Reconstruction of average and
detail coefficients

A1 D1 D2 D3 D4 D5

300 ms window created post-
detection

Amplitude > 1/3 mean?

Y

Absolute magnitude of window
calculated

R-wave selected as most
prominent wave

Figure 3.4: A summary of methods used to detect R waves using wavelet decompo-
sition

the lack of noise present. All signals are the same length due to the reconstruction

of the different levels. Without this, the lower levels (i.e level 5) would be shorter

than the original signal. This would be problematic when extracting the R wave

locations from detail coefficients.

To create a single beat complex representative of the recording, a window of 15

beats was created. Each beat from the window were extracted so that the R wave

was in the centre. The median amplitude of each sample in the aligned beats was

calculated. This produced a single median complex. This process was repeated for

each lead. The median beats for a single recording is shown in Figure 3.6.

Ultimately, this method was not chosen to annotate the data described in Section
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3.1.3 due to the complexities associated with baseline wander, noise, and feature

extraction from the decomposed signals. Baseline wander was not compensated for

when using this method. This meant that some median beats had a significant DC

offset of up to 0.5 mV . Additionally, a reliable method was not established to signify

the start and end of a beat. This resulted in the T wave end of some beats being

cut off.
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Figure 3.5: Reconstructed detail signal of an ECG lead (V2), following a five-level
Daubechies-4 wavelet decomposition. R-wave annotations are annotated as green
triangles over the input signal (top)
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Figure 3.6: The median beats calculated for a single recording using wavelet decom-
position and beat alignment using a window of 15 detected R waves
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3.3 Conclusion

This chapter introduced the datasets and pre-processing steps used throughout this

work. Three ECG datasets were used: Horáček et al., Kornreich et al., and the

STAFF III dataset. The BSPM datasets were chosen due to the number of leads

across the torso, suited to the derivation of novel leads. Additionally, the prescence

of conditions that affect the ST-segment, such as ischaemic-type changes, made them

suitable for ST-sensitive lead selection. The STAFF III dataset was chosen due to

its reliability as a test set against ischaemic-type ECG changes associated with MI.

This dataset can be used to verify novel and derived lead systems.

Two pre-processing methods were investigated to extract a single median beat

complex from the STAFF III dataset: VCG/cubic spline interpolation, and wavelet

decomposition. The former was chosen due to its reliability and past use within the

faculty.

References

[1] B. M. Horacek, J. W. Warren, C. J. Penney, R. S. MacLeod, L. M. Title, M. J.
Gardner, and C. L. Feldman, “Optimal electrocardiographic leads for detecting
acute myocardial ischemia,” Journal of Electrocardiology, vol. 34, pp. 97–111,
12 2001.

[2] B. M. Horacek, “Numerical model of an inhomogeneous human torso,” Ad-
vanced Cardiology, vol. 10, no. 51, 1974.

[3] F. Kornreich, T. J. Montague, and P. M. Rautaharju, “Body surface potential
mapping of ST segment changes in acute myocardial infarction: Implications
for ECG enrollment criteria for thrombolytic therapy,” Circulation, vol. 87,
no. 3, pp. 773–782, 1993.

[4] B. J. Schijvenaars, J. A. Kors, G. van Herpen, F. Kornreich, and J. van Bemmel,
“Interpolation of body surface potential maps,” Journal of Electrocardiology,
vol. 28, pp. 104–109, 1 1995.

[5] J. Pettersson, E. Carro, L. Edenbrandt, C. Maynard, O. Pahlm, M. Ringborn,
L. Sörnmo, S. G. Warren, and G. S. Wagner, “Spatial, individual, and temporal
variation of the high-frequency QRS amplitudes in the 12 standard electrocar-
diographic leads,” American Heart Journal, vol. 139, pp. 352–358, 2 2000.

[6] J. P. Mart́ınez, O. Pahlm, M. Ringborn, S. Warren, P. Laguna, and L. Sörnmo,
“The STAFF III Database: ECGs recorded during acutely induced myocardial
ischemia,” in Computing in Cardiology, vol. 44, pp. 1–4, 2017.

101



CHAPTER 3. DATASETS AND ELECTROCARDIOGRAM
PRE-PROCESSING

[7] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley, “Phys-
ioBank, PhysioToolkit, and PhysioNet: components of a new research resource
for complex physiologic signals.,” Circulation, vol. 101, no. 23, 2000.

[8] ISO, “80601-2-86 Medical electrical equipment. Part 2-86: Particular require-
ments for the basic safety and essential performance of electrocardiographs, in-
cluding diagnostic equipment, monitoring equipment, ambulatory equipment,
electrodes,” 2018.

[9] L. Sornmo, “Time-varying filtering for removal of baseline wander in exercise
ECGs,” in Computers in Cardiology, pp. 145–148, Publ by IEEE, 1992.

[10] D. Guldenring, D. D. Finlay, D. G. Strauss, L. Galeotti, C. D. Nugent, M. P.
Donnelly, and R. R. Bond, “Transformation of the Mason-Likar 12-lead elec-
trocardiogram to the Frank vectorcardiogram,” in Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBS, pp. 677–680, 2012.

[11] H. Mori, H. Masaki, T. Niki, T. Nagao, S. Matsumo, T. Nii, and T. Oda,
“Qrs Waves of the Spatial Velocity Electrocardiogram in Atrial Septal Defect,”
Japanese Heart Journal, vol. 13, no. 5, pp. 407–417, 1972.

[12] P. W. Macfarlane, “ECG waveform identification by digital computer,” Car-
diovascular Research, vol. 5, pp. 141–146, 1 1971.

[13] J. N. Froning, M. D. Olson, and V. F. Froelicher, “Problems and limitations
of ECG baseline estimation and removal using a cubic spline technique during
exercise ECG testing: Recommendations for proper implementation,” Journal
of Electrocardiology, vol. 21, pp. S149–S157, 1 1988.

[14] S. H. Zhou, E. D. Helfenbein, J. M. Lindauer, R. E. Gregg, and D. Q. Feild,
“Philips QT interval measurement algorithms for diagnostic, ambulatory, and
patient monitoring ECG applications,” Annals of Noninvasive Electrocardiol-
ogy, vol. 14, no. SUPPL. 1, pp. S3–S8, 2009.

[15] J. P. Mart́ınez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, “A Wavelet-
Based ECG Delineator Evaluation on Standard Databases,” IEEE Transactions
on Biomedical Engineering, vol. 51, pp. 570–581, 4 2004.

[16] V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and S. Luo, “ECG beat detection
using filter banks,” IEEE Transactions on Biomedical Engineering, vol. 46,
no. 2, pp. 192–202, 1999.

[17] C. A. Ledezma and M. Altuve, “Optimal data fusion for the improvement of
QRS complex detection in multi-channel ECG recordings,” Medical and Bio-
logical Engineering and Computing, vol. 57, no. 8, pp. 1673–1681, 2019.

[18] V. Seena and J. Yomas, “A review on feature extraction and denoising of ECG
signal using wavelet transform,” in Proceedings of the IEEE International Cara-
cas Conference on Devices, Circuits and Systems, ICCDCS, Institute of Elec-
trical and Electronics Engineers Inc., 10 2014.

102



REFERENCES

[19] V. Kalidas and L. Tamil, “Real-time QRS detector using stationary wavelet
transform for automated ECG analysis,” in Proceedings - 2017 IEEE 17th
International Conference on Bioinformatics and Bioengineering, BIBE 2017,
vol. 2018-Janua, pp. 457–461, Institute of Electrical and Electronics Engineers
Inc., 7 2017.

[20] K. Mourad and B. R. Fethi, “Efficient automatic detection of QRS complexes in
ECG signal based on reverse biorthogonal wavelet decomposition and nonlinear
filtering,” Measurement: Journal of the International Measurement Confeder-
ation, vol. 94, pp. 663–670, 12 2016.

103



Chapter 4

Additional Derived Leads to

Improve the Detection of

Ischaemic Heart Disease

4.1 Abstract

Additional chest leads, particularly those on the right-side and posterior torso, have

the potential to increase the spatial resolution of the 12-lead ECG. These leads

are unconventional and typically not recorded in the clinical setting. This chapter

investigates the derivation of these leads and report on their performance in the

detection of ECG changes associated with acute MI.

ECG recordings (n = 1440) were used from three centres. Centre one (n =

176) and two (n = 734) contained BSPM recordings using 117 thoracic unipolar

leads, expanded to the 352-node Dalhousie torso using linear interpolation. Ten-

fold cross validation was used to generate coefficients for the derivation of posterior

(V7–V12) and right-sided (V3R–V6R) chest leads. The eight independent channels

of the 12-lead ECG were used as predictors for linear regression. CC and RMSE

were calculated to verify the derivation performance on the test set. Centre three

recordings (n = 467) contained 12-lead ECG recordings taken at rest (n = 352) and

during elective percutaneous coronary intervention (n=115). Posterior and right

sided leads were derived using generated coefficients. Derived leads were added
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to the 12-lead ECG to form 18 and 22-lead configurations respectively. Previously

published STEMI criteria were used to classify ischaemic-type ECG changes for each

configuration.

A matrix of derivation coefficients were produced. The correlation coefficient and

root mean square error between measured and derived leads varied between 0.83–

0.92/30.9–63.1 µV for posterior and 0.92–0.98/34.7–39.0 µV for right-sided chest

leads respectively. Compared to previously published derivation coefficients, CC was

significantly greater in leads V7–V12. F1 scores for the 12/18/22 lead configurations

were 69.1/69.4/69.5% respectively. Sensitivity improved from 58.3–64.4% between

12 and 22-lead configurations. No statistically significant improvements were noted

as leads were added.

4.2 Introduction

The inclusion of additional chest leads, complementary to the 12-lead ECG, may

increase the sensitivity of AMI detection due to an increased spatial resolution across

the torso [1]. Additionally, this provides clinicians a more complete view of the heart,

including the potential to locate which artery the infarct resides in [2].

It is known that clinicians sometimes may elect to move an electrode in the con-

ventional 12-lead ECG configuration to explore body surface territories, not cap-

tured by the 12-lead ECG. This process involves moving one of the chest lead elec-

trodes to the region of interest. This is done on an ad-hoc basis and does not follow

any convention for electrode placement. Conventions do also exist for the simul-

taneous recording of additional chest leads which are not part of the 12-lead ECG

configuration. The posterior (V7–V12) and right-sided chest leads (V3R–V6R), in

particular, extend the 12-lead ECG chest leads to facilitate a nearly 360 degree

spatial resolution across the heart’s longitudinal axis. Some of these leads already

exist in the 18-lead ECG configuration, namely V7–V9 and V3R–V5R. Furthermore,

the current published criteria for the detection of STEMI make reference to these

additional leads and propose criteria relating to voltage thresholds that reflect the

indicative ECG changes in these territories. The use of additional leads is especially

recommended on the clinical suspicion of MI in vessels of the heart where the 12-lead
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ECG has reduced resolution. Regardless, there is very limited routine use of lead

systems in clinical practice that extend the 12-lead ECG. These additional leads are

often inconvenient in a clinical setting due to their position on the posterior torso.

Furthermore, to allow true simultaneous recording of these leads, new hardware is

required with a greater number of recording channels. It is however possible to

derive the posterior and right-sided chest leads from the 12-lead ECG [3].

Previous studies into the synthesis of chest leads from the 12-lead ECG have

shown comparable results to those with those leads physically recorded [4, 5]. Many

focus on deriving the 18-lead ECG, due to its capability to detect infarcts in locations

not easily visible in the 12-lead ECG. For example, synthesised posterior leads such

as V7–V9 has been shown to improve the detection sensitivity of MI, especially

infarcts in the posterior of the heart [6, 7], while retaining the ability to distinguish

it from other diseases such as Takotsubo syndrome and bundle branch blocks [8, 9].

Synthesised right sided chest leads have a similar effect. They expand the spatial

resolution of the ECG to the right chest, improving its capability to detect infarcts in

the right coronary artery [4]. While the ST-segment is the most common predictor

or acute MI [10]. The derived ECG can also confirm clinical suspicions of MI from

anterior leads by exhibiting the opposite response. For example, ST-depression in

leads V5–V6 may show ST-elevation in V3R and V4R [7]. Additionally, T-wave

changes such as inversion in the posterior lead V7 have been shown to have a high

feature importance in detecting ischaemia [8]. The derivation of additional leads has

the capability to decrease the time to coronary intervention, called door-to-balloon

time, due to the reduced need to physically record the extended lead set [11, 1].

The aim of the work in this chapter is to assess the capability of derived poste-

rior and right-sided chest leads in the detection of AMI using the current diagnostic

criteria. This chapter will report on the development of a set of coefficients for the

accurate derivation of posterior and right sided leads. Additionally, it will evalu-

ate the derivation performance of these leads by comparing the shape of derived

waveforms to actually recorded waveforms. This chapter will also evaluate the per-

formance of the derived leads in the detection of ECG changes associated with acute

coronary artery occlusion.
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4.3 Methods

4.3.1 Data

Three datasets were used during this chapter, described previously in Chapter 3,

with a total of 1440 recordings. These have been broken down as follows:

1. Horáček et al, 176 recordings [12]

2. Kornreich et al, 734 recordings [13, 14]

3. STAFF III, 530 recordings [15, 16, 17]

The first and second datasets, Horáček and Kornreich, were used to generate

and evaluate coefficients capable of deriving the right sided and posterior leads from

the 12-lead ECG. Data were split at random into ten folds for cross-validation. The

training data (n = 819) were used to develop transformation coefficients to allow

the derivation of the posterior and right sided leads. The remaining test data (n =

91) were used to compare how well derived posterior and right sided leads matched

with actual recorded leads for the same subjects. In the first dataset, rest and PBI

recordings were kept together during training and test partition.

The third dataset, STAFF III, was used to evaluate the performance of the de-

rived posterior and right-sided chest leads in the detection of ischaemic-type ECG

changes associated with myocardial infarction. These data have been previously

described [15, 16, 17]. This dataset was chosen as it allows analysis of the effects of

AMI on the ECG within the first five minutes of artery occlusion [18]. Data were

separated to give relevant annotations for AMI detection. Recordings taken dur-

ing rest were labelled as controls (n=352), whereas those recorded during coronary

artery occlusion were treated as AMI (n=115). Those who have experienced a prior

MI have also been included (n = 167).

4.3.2 Coefficient Generation for Lead Derivation

Eight of the independent channels of the 12-lead ECG were extracted from each

recording (I–II, V1–V6). The leads to be derived were also extracted. The leads

to be derived consisted of the commonly recognised posterior leads (V7–V12) and
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right-sided precordial leads (V3R–V6R). The approximate locations of these leads

are shown in Figure 4.1.

Figure 4.1: Cross section (plan view) of the thorax, adapted from a computed tomog-
raphy (CT) scan, with approximate locations of precordial leads (blue), posterior
leads (red) and right-sided leads (green)

Recorded leads and the leads to be derived were used in the coefficient generation.

All recordings in the training dataset (n = 819) were pooled prior to calculation

by concatenating each recording. Linear regression was then used to derive the

transform coefficients as follows:

β =

[(
RLT

train ·RLtrain

)−1
RLT

train

]
·DLtrain (4.1)

where β is the resulting 8x10 matrix of coefficients that relates recorded and derived

leads. RLtrain represents an mtrainx8 matrix of recorded leads (I–II, V1–V6) taken

from the training dataset. DLtrain represents an mtrainx10 example of derived leads

(V7–V12, V3R–V6R) also taken from the training dataset. In all of the experiments,

both RLtrain and DLtrain were made up of pooled data from the corresponding

respective leads from all subjects in the training set. mtrain indicates the total

number of ECG samples in the training set (n = 259,059)

4.3.3 Lead Derivation

The derived leads (V7–V12; V3R–V6R) were generated using the calculated coeffi-

cients on the test dataset. The leads were derived using (4.2).

D̂Ltest = RLtest · β (4.2)
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where D̂Ltest was an mtestx10 matrix containing the estimate of the derived leads

(V7–V12, V3R–V6R). RLtest was an mtestx8 matrix of recorded leads (I–II, V1–

V6) taken from the test dataset. β was the 8x10 matrix of derivation coefficients

as defined in (4.1). mtest indicates the total number of ECG samples in the test

dataset (n = 28,944).

4.3.4 Verification of Derived Leads

The derivation performance was benchmarked by comparing the derived lead with

that physically recorded from the BSPM. Samples from the test dataset were used.

The Pearson CC and RMSE were calculated by comparing the leads previously

extracted from the BSPM data (x) with the derived equivalents (y). CC is calculated

as follows:

ρ(x,y) =
1

M − 1

M∑
m=1

(
ym − µy

σy

)(
xm − µx

σx

)
(4.3)

where ρ(x,y) is the CC. x and y represent the recorded leads (RLtest) and derived

leads (D̂Ltest) respectively. M indicates the number of samples, µ is the mean, σ is

the standard deviation and m is the sample number. The RMSE between recorded

and derived lead was calculated using Equation (4.4):

RMSE(x,y) =

√√√√ 1

M

M∑
m=1

(xm − ym)2 (4.4)

4.3.5 Cross Validation of Lead Derivation

Recordings from datasets (i) and (ii) were split using 10-fold cross-validation. The

steps outlined in Sections 4.3.2–4.3.4 were repeated for each fold. Ten sets of co-

efficients were produced from the training data. Ten sets of performance metrics,

RMSE and CC, were produced from the test data; one set for each fold. The median

of each performance metric was selected for each lead, across all folds. The final

coefficients were calculated using all the samples from datasets (i) and (ii).
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4.3.6 Median Beat Extraction

Data were processed to yield a median beat for each recording. Median beats were

calculated over a period of approximately ten seconds. All beats detected within

the ten second window were considered. For baseline (rest) ECGs median beats

were calculated from data extracted from 60 seconds after the start of the record.

For recordings containing balloon inflations in a coronary artery, median beats were

calculated from data extracted from 60 seconds after the onset of balloon inflation.

Once median beats were composed, further analysis was conducted to extract rel-

evant amplitudes and morphology features for each lead for each subject. These

features were extracted using an in-house automated algorithm and were checked

for accuracy by a human observer.

4.3.7 Disease Classification

To verify the performance of derived leads in the detection of ECG changes typical

of myocardial ischaemia, existing diagnostic criteria were used based on previously

published material [10]. This published criteria focuses on that applicable to the

conventional 12-lead ECG, but also extends to include thresholds suitable for use

in supplementary leads V7–V9 and V3R–V4R. Criteria are not published for leads

V10–V12 and V5R–V6R. For the purposes of this chapter, the same criteria proposed

for V7–V9 and V3R–V4R for these further additional leads were used.

To reflect clinical use, the derived leads were separated into groups of 12-lead,

18-lead, and 22-lead. The 18-lead ECG contains the standard 12-lead ECG, with

V7–V9 and V3R–V5R. The 22-lead ECG contains the standard 12-lead ECG with

all derived leads: V7–V12, V3R–V6R. Table 4.1 summarises the diagnostic criteria

applied to each lead configuration.

Following the published criteria by Thygesen et al. [10], an automated algorithm

was developed to consider ST-elevation, ST-depression, and T-wave changes during

the classification process. The ST-depression criteria requires greater than or equal

to 50 µV depression in two or more contiguous leads. T-wave inversion of greater

than 100 µV in two contiguous leads and a prominent R-wave or R/S ratio of greater

than one was also considered.
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Table 4.1: STEMI detection criteria for each combination of ECG leads

12-Lead 18-Lead 22-Lead

ST-elevation ≥ 100 µV
at the J-point in two
contiguous leads, except
from V2–V3 where the
following applies: ≥ 200
µV in men ≥ 40 years;
≥ 250 µV in men < 40
years; or ≥ 150 µV in
women

All 12-lead criteria, or
ST-elevation ≥ 50 µV at
the J-point in two con-
tiguous leads of V7–V9,
or ≥ 50 µV in leads
V3R–V5R, except from
males < 30 years where
≥ 100 µV applies

All 18-lead criteria, or
ST-elevation ≥ 50 µV
at the J-point in two
contiguous leads of V10–
V12, or ≥ 50 µV in V6R,
except from males < 30
years where ≥ 100 µV
applies

Horáček et al. Kornreich et al. STAFF III

Coefficient generation

BSPM Data 12-Lead ECG

Lead derivation

Waveform comparison
against those generated

from previously published
coefficients

Feature vector
generation

Disease classification

Figure 4.2: Summary of datasets and methods used

4.3.8 Summary of Methods

BSPM datasets were used in the generation of coefficients to derive the posterior

and right-sided leads. The performance of the generated coefficients was compared

with the performance of coefficients previously published. Twelve-lead ECG data

from the STAFF III dataset were used to derive posterior and right sided leads from

the generated coefficients. The 12-lead ECG and derived leads were then used to

classify changes associated with MI. A summary is shown in Figure 4.2.
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Table 4.2: Coefficients (β), median Correlation Coefficients (CC), and median Root
Mean Square Error (RMSE) for the derivation of posterior and right-sided chest
leads from the eight independent channels of the 12-lead ECG (I–II, V1–V6)

Derived Leads

V 7 V 8 V 9 V 10 V 11 V 12 V 3R V 4R V 5R V 6R

R
e
co

rd
e
d
L
e
a
d
s

I 0.0705 0.0218 -0.1207 -0.2569 -0.3424 -0.3843 -0.1810 -0.3234 -0.3828 -0.4038

II -0.0628 -0.0836 -0.0769 -0.0811 -0.0825 -0.0715 0.1366 0.1728 0.1640 0.1466

V 1 -0.1258 -0.1535 -0.1777 -0.1699 -0.1070 -0.0419 0.8286 0.5130 0.3205 0.1814

V 2 -0.0386 -0.0449 -0.0250 -0.0188 -0.0219 -0.0356 -0.1901 -0.1419 -0.0922 -0.0638

V 3 0.0653 0.0650 0.0446 0.0479 0.0443 0.0579 0.1475 0.0986 0.0433 0.0262

V 4 -0.0068 0.0145 0.0059 -0.0159 -0.0247 -0.0365 -0.0697 -0.0338 -0.0001 0.0094

V 5 -0.2234 -0.2949 -0.2782 -0.2002 -0.1060 -0.0545 0.0243 0.0192 -0.0041 -0.0349

V 6 0.7304 0.6722 0.5469 0.3102 0.1274 0.0543 -0.0457 -0.0604 -0.0473 -0.0155

CC 0.92 0.89 0.85 0.83 0.89 0.92 0.98 0.96 0.95 0.92

RMSE 57.8µV 63.1µV 56.9µV 44.9µV 35.4µV 30.9µV 36.1µV 39.0µV 34.7µV 35.3µV

4.4 Results

4.4.1 Generated Coefficients

The coefficients were arranged in an 8x10 matrix as shown in Table 4.2. The rows

represent the recorded leads (I–II, V1–V6) with columns representing the derived

leads (V7–V12, V3R–V6R). Both CC and RMSE were calculated for each derived

lead. The median values are displayed in Table 4.2.

4.4.2 Verification of Derivation Coefficients

4.4.2.1 Derived leads vs recorded leads.

Figures 3(a) and 3(b) show the CC and RMSE values for each derived chest lead

respectively. The error-bar plot indicates the median value (circle) with the 25th

and 75th interquartile ranges (whiskers). For derived posterior leads (V7–V12), the

largest median CC was observed in V7 as 0.92. Median CC decreases towards V10

to the minimum value of 0.83. Median CC increases in V11 and V12. For derived

right-sided chest leads (V3R–V6R), median CC decreases from the maximum of 0.98

in V3R to the minimum 0.92 in V6R. The interquartile range of CC for posterior

leads varies between 0.04 in V7 to 0.13 in V10. For right-sided chest leads, the

interquartile range is reduced between 0.01 in V3R to 0.07 in V6R.

For derived posterior leads, the maximum error was observed in V8 as 63 µV .

112



4.4. RESULTS

This decreased towards V12, which exhibited the minimum error value of 31 µV .

For right-sided chest leads, no obvious pattern was observed for RMSE, with errors

between 35 µV (V5R) to 39 µV (V4R). The interquartile range of RMSE for pos-

terior leads varies from 18 µV in V12 to 37 µV in V8. For right-sided chest leads,

the interquartile range is more uniform between 18 µV in V3R to 20 µV in V5R.

(a) (b)

Figure 4.3: Derivation performance between recorded and derived right-sided and
posterior chest leads as correlation coefficients 3(a) and root mean square error 3(b)

4.4.2.2 Comparison with previously published coefficients

Coefficients previously published from [19] were used to test the performance of the

generated coefficients in the derivation of right sided and posterior leads against

a known benchmark. The previously published coefficients transform the 12-lead

ECG to posterior leads V7–V12 using coefficients calculated from a multiple regres-

sion model. Figure 4.4 shows a box plot comparing the coefficients introduced in

this chapter with those previously published. Median (centre), interquartile ranges

(box edges) and extremes (whisker) are displayed for both sets of coefficients. A

Wilcoxon signed-rank test was used to indicate statistical difference between results

for each lead of each subject in the test dataset. Significant improvements in CC

(p<0.05) between previously published coefficients and the coefficients introduced

in this chapter were noted in all tested leads (V7–V12).

Compared to leads derived from previously published coefficients, the median

CC values were higher for all leads using coefficients introduced in this chapter.
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The largest difference in median CC between previously published coefficients and

those in this chapter was 0.038 in V10. The smallest difference in median CC was

0.013 in V7. The largest interquartile range difference between previously published

and introduced coefficients was 0.070 (V9). The minimum difference was 0.010 in

V7.

Figure 4.4: Box plot of correlation coefficients comparing previously published co-
efficients [19] with the those introduced in this chapter

4.4.3 Disease classification

The performance results for classification of myocardial infarction on dataset three

(STAFF III) are found in Tables 4.3 and 4.4. When applying the standard diagnostic

criteria [10] to the recordings used in this work, comparable results were achieved to

those published in related studies [20, 21]. This provides reassurance the diagnostic

algorithm is functioning as expected. The highest sensitivity (SE), Negative Pre-

dictive Value (NPV), and F1 score, was observed in the 22-lead configuration. The
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Table 4.3: Classification performance of each lead derived lead configuration (rows)
toward ischaemic-type ECG changes using the current AHA diagnostic criteria for
AMI [10]. The highest values for each column have been marked in bold text.

Lead Configuration SE (%) SP (%) PPV (%) NPV (%) F1 (%)

12-Lead 58.3 96.6 84.8 87.6 69.1

18-Lead 63.5 93.8 76.8 88.7 69.4

22-Lead 64.4 93.2 75.5 88.9 69.5

Table 4.4: Sensitivity of STEMI detection by vessel-specific occlusions in one of
three coronary arteries: LAD, LCX, and RCA. The highest values for each column
have been marked in bold text.

Lead Configuration All LAD LCX RCA

12-Lead 58.3 73.8 28.0 60.4

18-Lead 63.5 73.8 36.0 68.8

22-Lead 64.4 76.2 36.0 68.8

highest specificity (SP) and Positive Predictive Value (PPV) was observed in the

standard 12-lead configuration. The 18-lead configuration had no extreme values.

As the number of leads increased from 12 to 22, the sensitivity increases from

58.3% to 64.4%. The opposite is true for specificity, where a decrease from 96.6%

to 93.2% was observed. PPV decreases from 84.8% in the 12-lead to 75.5% in the

18-lead configuration. NPV increases from 87.6% to 88.9% as more leads are added.

The F1 score follows the same pattern, with an increased score from 69.1% to 69.5%.

Table 4.4 shows the sensitivity for each lead configuration when occlusions were

performed in specific coronary arteries. These include occlusions in the LAD, LCX

and RCA. For comparison, the sensitivity from occlusions happening across the

entire dataset were included (All).

Across all vessel-specific occlusions, sensitivity increases as the number of leads

increases. The highest sensitivity observed was 76.2% in those detected by the 22-

lead configuration during LAD occlusions. The lowest sensitivity was 28.0% noted

from the 12-lead configuration during LCX occlusions. The largest difference in

sensitivity between lead configurations was observed in RCA occlusions, with an

8.4% increase between 12-lead and 18/22-lead configurations.

A McNemar test was performed to ascertain the statistical significance between

the 12-lead and the 18/22-lead diagnostic performances. There was no significance
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(p > 0.05) observed between the diagnostic performance of the 12 and 18/22-lead

configurations.

4.5 Discussion

In the derivation of posterior leads (V7–V12), CC is inversely proportional to dis-

tance from the recorded chest leads (V1–V6). This may be due to the increasing

distance between the electrode positions of recorded and derived lead electrode po-

sitions on the torso. CC for derived leads increases in V11–V12. The electrode

locations of these leads are almost opposite the recorded leads V2–V4 across the

thorax, potentially making them pseudo-inverse. This may have increased the accu-

racy of the derived coefficients. For derived right-sided chest leads (V3R–V6R), CC

is similarly inversely proportional to distance from the recorded leads. The high CC

value for V3R may be explained by the close proximity to the electrode location of

V1.

RMSE does not follow the same pattern as CC. RMSE is proportional to the

recorded lead amplitude. Lower potentials present in leads more distal from the

heart may have made RMSE appear lower compared to leads more proximal to the

heart. For example, V7 is proximal to the heart, however it has the largest CC

value of the derived posterior leads, but one of the largest RMSE. In contrast, CC is

amplitude independent, and used to measure how strong a relationship is between

the recorded and derived leads. To compare the similarity of derived leads to their

recorded counterparts, both CC and RMSE must be compared together.

In the classification of ischaemic-type ECG changes associated with myocardial

infarction, the 12-lead ECG results were comparable to those previously published

[20, 21]. The 12-lead ECG is generally highly specific, but insensitive to these

changes. The addition of more leads in the form of the 18 or 22-lead configurations

improved the sensitivity. An increased spatial resolution across the torso from the

additional leads may allow for infarctions in the posterior of the heart to be detected,

where they would have been previously missed by the 12-lead ECG. This is evident

in Table 4.4, where the sensitivities of LCX and RCA occlusions were increased by

8.0% and 8.4% between the 12 and 18/22-lead configurations respectively.
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Additional derived leads decreased the specificity of STEMI detection. The

recommended criteria requires 50 µV of ST-elevation across two contiguous leads

in either the posterior or right-sided chest leads. Compared to the 12-lead criteria

of 100–200 µV ST-elevation in the chest leads, this is relatively low-amplitude.

More false-positives may have resulted from a combination of prior MI and the low

amplitude ST-elevation criteria in additional leads.

The median RMSE for each derived lead varies between 30.9 µV (V12) to 63.1

µV (V8). Given the criteria calls for 50 µV of ST-elevation in the derived leads, this

may result in many false classifications within leads with larger derivation errors.

This is evident when comparing the 12 and 18-lead configurations together. The

18 lead adds V7–V9 and V3R–V5R to the 12-lead ECG. V7–V9 possess the three

highest RMSE values among the derived leads. The reduction in specificity may

be due to derivation errors causing the ST-segment to exceed the 50 µV STEMI

classification criteria. Notwithstanding variations in other performance metrics, the

F1 score increases linearly as the number of derived leads increases.

There were recordings involving participants with prior MI in the dataset (n=167).

When recordings involving patients with prior MI are excluded, both the specificity

of STEMI detection in the 12-lead and 18/22-lead configurations increase to 94.40%

and 91.8% respectively. In a clinical setting, the history of prior MI would be inves-

tigated by the clinician to inform their diagnosis. This was not considered in this

chapter, as only the ST-segment and T-wave criteria were employed.

When splitting recordings with inflations into their respective vessels, the maxi-

mum sensitivity values increased to 76.2% in the 22-lead configuration for LAD oc-

clusions. The 12-lead configuration was less sensitive than the 22-lead ECG across

all coronary arteries, with a maximum sensitivity of 73.8% during LAD occlusion.

MI detection in the LCX artery was poor in comparison to others, with 28% in the

12-lead configuration. However, MI detection saw the greatest improvement between

12 and 18/22-lead configurations during LCX occlusion, with an 8% increase in sen-

sitivity. The 18-lead adds V7–V9 across the left torso. This may have improved the

resolution of the ECG to detect occlusions in the LCX compared with the precor-

dial chest leads V5 and V6. RCA occlusions were detected with higher sensitivity

in the 18/22-lead configurations, increasing by 8.4% compared to the 12-lead ECG.
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Similarly to the LCX occlusions, the sensitivity may have been improved by the

addition of V3R–V5R in the 18-lead ECG. This may increase the resolution of MI

detection towards the right side of the heart, where RCA occlusions may occur.

To compare with those coefficients previously published, described in Section

4.4.2.2, the 18-lead ECG was also derived for each subject of dataset (iii). The

MI classification performances were 64.0% (SE), 96.0% (SP) and 70.9% (F1). The

sensitivity and F1 score was higher using these coefficients, however the specificity

was lower. Additionally, these results were not statistically significant compared

with the 12-lead ECG classification.

4.6 Limitations

Deriving leads instead of recording them adds error into the derived leads. As such,

the 18 and 22-lead configurations that contain derived leads may not be representa-

tive of a recorded signal. This may affect ST-segment amplitudes, particularly those

with electrode locations further from recorded leads such as leads V6R and V12.

In the pre-processing step, discussed in Section 4.3.6, median beats were pro-

duced for each lead of the 12-lead ECG. This may have introduced both amplitude

and phase errors during the conversion due to misalignment of R-waves, differences

in beat length and noise. Additionally, the J-point annotations, although manu-

ally reviewed, may not be entirely accurate. This may introduce erroneous J-point

amplitudes to the STEMI classifier, resulting in a false positive or false negative.

ST-elevation criteria for the detection of ischaemic-type ECG changes in derived

leads were not available for leads V10–V12 and V5R–V6R. Instead, the criteria were

assumed by extending the criteria for their neighbouring leads respectively. This is

not currently clinically accepted, potentially affecting the validity of the 22-lead

ECG observations. Additionally, Q-wave criteria were not employed during this

chapter. Abnormal Q-waves in posterior leads can be a predictor of MI [22]. This

may has reduced the overall performance of the derived leads.
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4.7 Conclusion

In this chapter, coefficients were introduced toward the derivation of posterior and

right-sided chest leads from the 12-lead ECG with an improvement in derivation

accuracy compared to previously published coefficients. Additionally, it has been

shown that derived posterior and right sided chest leads are capable of detecting

ischaemic-type ECG changes associated with myocardial infarction. The addition of

derived leads was shown to increase the sensitivity and F1 score of STEMI detection,

however, these results were not statistically significant.
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Chapter 5

Utilising Short-spaced Leads in

the Detection of Ischaemic-type

ECG Changes

5.1 Abstract

The 12-lead ECG is the most prevalent tool in clinical use to detect acute cardiac syn-

dromes. In particular, myocardial infarction and related ischaemic disorders. This

lead system is inconvenient for ambulatory use, especially when detecting paroxys-

mal conditions. A patch-based lead system is more convenient for these use-cases.

There is a lack of such lead systems that are specific to ST-segment monitoring, so

one must be derived. In particular, the use of a SSL patch with lead spacing of 100

mm or less would be sufficiently comfortable while allowing the wearer to under-

take ambulatory tasks. In this chapter, a SSL patch-based lead system suitable for

ST-segment monitoring will be introduced and evaluated.

This chapter is broken into three parts. Part one focuses on the selection of a

patch-based SSL system from BSPM data showing ischaemic-type ECG changes.

Part two focuses on the derivation of the SSL system from the 12-lead ECG via

linear interpolation, while producing transform coefficients. The final section uses

both machine learning techniques and ST-segment based criteria to classify ST-

segment changes associated with AMI in the absence of specific diagnostic criteria
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for SSLs.

The SSL selected was below 100 mm in distance between electrodes. It is located

between an electrode between Dalhousie nodes 173 and 254). A spatially orthogonal

lead was also introduced between Dalhousie nodes 212 and 234. The derivation co-

efficients between 12-lead ECG and the SSL patch ST-lead and spatially orthogonal

lead had a CC or 0.969 and 0.987 respectively. The RMSE was 18.6 µV for the

ST-lead and 15.5 µV for the orthogonal lead. In the classification of ischaemic-type

ECG changes in the SSL patch, the ST lead had the highest F1 score of 80.4%

using a Naive Bayes classifier. The sensitivity and specificity were 86.7% and 80.4%

respectively.

In this chapter, SSL patch suited to the classification of ischaemic-type ST-

segment changes associated with AMI has been introduced. Transform coefficients

were generated to derive this lead system from the 12-lead ECG. Additionally, it

was shown a SSL patch to be capable of classifying myocardial ischaemic-type ECG

changes.

The code for this chapter is freely available on GitHub. [1].

5.2 Introduction

Current diagnostic criteria recommends that decision thresholds are met in at least

two contiguous leads in the diagnosis of MI [2]. This makes the 12-lead ECG highly

specific to ischaemic-type changes. However, the 12-lead ECG is inconvenient for

ambulatory use, or when recording from body positions other than supine. Addi-

tionally, a 12-lead recording is usually between three to ten seconds in duration.

This may not detect certain paroxysmal conditions such as atrial fibrillation or

unstable angina [3]. Additionally, the placement of electrodes across the torso is

inconvenient compared to other systems designed for longer term monitoring that

use fewer electrodes. A patch-based lead system is more convenient compared to the

12-lead ECG, with the capability for ambulatory monitoring. The development of

new patch-based SSL ECG systems to detect cardiac defects has increased dramat-

ically, with a lack of academic literature investigating their performance [4]. Novel

techniques of ambulatory monitoring are capable of storing and transmitting ECG
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data for diagnostic purposes [5]. Furthermore, a patch-based lead system has been

shown to be effective in the detection of cardiac arrhythmia [6, 7], including those

that display intermittent ECG changes, such as ventricular tachycardia [8]. Exist-

ing patch-based lead systems such as the Zio XT and BradyDx CAM have shown

comparable performance to the standard ambulatory Holter monitors [9], but with a

longer recording period than 24 hours [10]. However, there are a lack of patch-based

ECG systems sensitive to ST-segment changes [11]. Many focus on the reproduction

of the 12-lead ECG for further analysis [12, 13], or focus on the diagnosis of other

cardiac abnormalities, such as AF [14].

Deviation from 12-lead ECG configurations has been shown to reduce the di-

agnostic accuracy of algorithms relying on current ST amplitude criteria [15, 12].

The Zio® XT is an example of an existing SSL patch-based ECG monitor designed

to challenge existing diagnostic methods, particularly with longer recording dura-

tion and automated arrhythmia detection [16]. Further studies have discussed novel

VSLs to detect STEMI [17].

Machine learning might be an effective method for detecting STEMI when trained

using ECG data, particularly when applied to pre-hospital admission [18]. Machine

learning has allowed more diverse methods of classifying cardiac abnormalities than

the 12-lead ECG [19]. Patch-based lead systems have been introduced for cardiac

arrhythmia monitoring, however, there has been less emphasis on the development

and reporting of systems designed for ischaemic heart disease [20]. Such devices

are prone to placement errors, however, machine learning can detect misplacement

[21]. There are currently no agreed criteria for the diagnosis of ischaemia using

patch-based devices; potentially due to the lack of clinical uptake in patch-based

monitoring devices. This means criteria for the diagnosis of ECG changes asso-

ciated with MI must be assumed from existing lead systems, such as the 12-lead

ECG.

The first aim is to investigate a new SSL as a means to detect ST-Elevation

(STE) constrained to 100 mm between electrodes suitable for patch-based contin-

uous monitoring. Secondly, the introduction and evaluation of coefficients for the

derivation of the ST-sensitive SSL patch. Thirdly, assessing the performance of the

SSL-based system using both machine learning and traditional ST-based methods
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in the classification of STEMI.

5.3 Method

5.3.1 Short Spaced Lead Selection

The proposed method uses BSPMs to investigate lead placement in the detection of

STE for SSLs.

5.3.1.1 Data

The data are previously described in Section 3.1.1 [22, 23] and include recordings

(n = 88) from 44 subjects undergoing elective PTCA. Electrocardiograms during

PBI (n = 44) were assumed to represent changes compatible with those observed in

patients suffering ischaemic episodes, while those with no balloon inflation (n = 44)

were assumed to represent normal baseline recordings.

5.3.1.2 Algorithm

The difference between non-ischaemic (baseline) and ischaemic (peak-balloon infla-

tion) recordings formed the basis of selecting the SSL. Bipolar leads with the largest

difference between these two scenarios can be sensitive to ECG changes associated

with MI. In particular, amplitude changes in the ST-segment were used to select the

SSL.

MATLAB 2021b was used to calculate all possible lead combinations (n =

123904) from all possible pairs of the 352 nodes. The signal amplitude was ex-

tracted from 40 ms after the J-point (J + 40 ms) to give a representative measure

of ST-segment value. The difference at J + 40 ms between baseline and PBI was

calculated. This process was repeated for all leads created previously. Each lead

was sorted in descending order of absolute ST-segment change (∆ST). This process

was repeated for each subject (n = 44), where the sort-index given to a lead for the

previous subject is added to the sort-index of the next subject. The lowest sort-

index value denotes the lead with the highest ∆ST across all subjects. A generic

3D torso (Dalhousie torso) described in a previous study [22] was used to calculate
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Subjects with ST changes
during PBI selected (n=44)

All possible lead-combinations
calculated (n=12904)

Amplitude at J + 40 ms is
recorded for both baseline
and PBI cases (n=25808)

STE between baseline and
PBI at J + 40 ms recorded

Lead combinations ranked
in descending order

Process repeated for each
patient. Cumulative ranks
calculated for each lead

Cumulative ranks sorted
in descending order

Exclude leads over 100
mm apart (n=9760)

Figure 5.1: Sorting algorithm

the distance between electrodes for each lead. Leads with electrode spacing greater

than 100 mm apart were excluded. The SSL was selected as the lead with the low-

est cumulative sort-index from remaining leads (n = 9760). Figure 5.1 shows this

process.

5.3.2 Short Spaced Lead Derivation

5.3.2.1 Data

The dataset used in this section has been described previously in Section 3.1.2

[24, 25]. The data were comprised of recordings (n = 734) from patients experiencing

MI (n = 271), LVH (n = 237), and healthy controls (n = 226). The data were

recorded using a BSPM of 117 unipolar thoracic leads, recorded with respect to

the WCT. Distal limb leads were also recorded. Each recording was a single beat

in length, sampled at 500 Hz. These were expanded to the 352-node Dalhousie

torso [26, 27] using Laplacian interpolation. The data were split at random to 80%
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training (n = 588) and 20% test (n = 146).

5.3.2.2 Coefficient Derivation

The eight independent channels of the 12-lead ECG were extracted from each record-

ing (I–II, V1–V6). The two bipolar leads of the SSL patch were also extracted: an

ST-sensitive lead (SSLST ) and a spatially orthogonal lead (SSLorth). The positions

of these leads were decided based on Section 5.3.1.2. Specifically, the SSLST elec-

trodes are at nodes 173 and 254 while SSLorth is located between nodes 234 and

212 on the Dalhousie torso.

Both recorded leads (12-lead) and leads to be derived (SSL patch) were used in

generating the coefficients. All training set recordings (n = 588) were concatenated

prior to computation. Linear regression was used to calculate transform coefficients

as shown in Equation 5.1:

β =

[(
RLT

train ·RLtrain

)−1
RLT

train

]
·DLtrain (5.1)

where β represented an 8x2 matrix of transform coefficients. RLtrain and DLtrain

were matrices ofmtrainx8 andmtrainx2 respectively. They represented recorded leads

(I–II, V1–V6) and leads to be derived from the training dataset (n = 588). mtrain

was the total number of samples in the training dataset (n = 171,726).

5.3.3 Lead Derivation

Using the coefficients derived in section 5.3.2.2, the leads to be derived can be

calculated from the test dataset (n = 146). These were calculated using Equation

5.2:

D̂Ltest = RLtest · β (5.2)

where D̂Ltest was an mtestx2 matrix containing an estimate of the derived leads:

SSLST , and SSLorth. RLtest was an mtestx8 matrix of recorded leads (I–II, V1–V6)

taken from the test dataset (n = 147). β was the 8x2 matrix of derivation coefficients

as defined in Equation (4.1). mtest indicates the total number of ECG samples in

the test set (n=42,802)
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5.3.3.1 Derivation Performance

Recorded leads from the test dataset were used to benchmark how accurately the

leads were derived. Pearson CC and RMSE were calculated by comparing the

recorded leads (x), previously extracted from the BSPM data, with the derived

equivalents (y). CC was calculated as shown in Equation 5.3:

ρ(x,y) =
1

M − 1

M∑
m=1

(
ym − µy

σy

)(
xm − µx

σx

)
(5.3)

where ρ(x,y) is the CC. x and y represent the recorded leads (RLtest) and derived

leads (D̂Ltest) respectively. M indicates the number of samples, µ is the mean, σ is

the standard deviation and m is the sample number. Similarly, the RMSE between

recorded and derived leads was calculated using Equation (5.4):

RMSE(x,y) =

√√√√ 1

M

M∑
m=1

(xm − ym)2 (5.4)

5.3.4 Ischaemia Classification - Machine Learning

Two methods of classifying ECG changes associated with MI were used. The first

was a machine learning approach, using subjects (n = 44) from the Horacek et al.

dataset [28] described in Section 3.1.1.

5.3.4.1 Feature Extraction

The amplitudes at the J-point for each generated lead of the patch-based lead sys-

tem. This comprised the feature set. The SSLST and SSLorth identified in Section

5.3.1.2 formed the basis of the patch. To increase spatial resolution, all possible

bipolar leads within 100 mm of the patch were added. A total of six bipolar SSLs

were used: ST-sensitive (SSLST ), spatially orthogonal (SSLorth) and four comple-

mentary leads (SSL3−6).

The amplitude at the J-point was extracted as the feature for each SSL based on

its importance in standard STEMI criteria [2]. This resulted in six features for each

recording, one for each SSL. Recordings at rest were annotated as healthy (false),

whereas PBI were annotated as STEMI (true).
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5.3.4.2 STEMI Detection

Given that no criteria exist for the new leads, a machine-learning based approach

was employed to assess the performance of the extracted J-points at distinguishing

between ECGs recorded at rest and those indicative of MI. The standard STEMI

detection criteria were also used, as applied to the standard 12-lead ECG that were

extracted for the same patient. 12-lead ECG channels were extracted from each

recording at both rest and PBI. Currently accepted STEMI criteria were employed

based on J-point amplitudes, age and sex [2]. The criteria used did not include new

Q-wave, ST-slope or T-wave changes.

Three classifiers were used to detect STEMI. The C4.5 (J48) decision tree [29],

MLP and Naive Bayes [30] classifiers. These were performed using the WEKA 3.8.4

software. Three different combinations of SSLs were used for each classifier. The first

involved all SSLs (n=6). The second omitted the four complementary SSLs, leaving

only the SSLST and SSLorth leads. The third involved only SSLST . Ten-fold cross

validation was used in generating the respective models.

5.3.5 Ischaemia Classification - ST-Amplitudes

The second method of detecting ischaemia in the patch system was based on the

amplitude of the ST-segment. The STAFF III dataset was used for this method,

previously described in Section 3.1.3. It comprised of recordings (n = 467) at baseline

(n = 352) and PBI in the LAD (n = 42), LCX (n = 25), and RCA (n = 48). This

dataset was chosen since it was not involved in the selection of the patch, or the

generation of derivation coefficients. It is an independent test set.

5.3.5.1 Feature Extraction and Classification

The eight independent channels of the 12-lead ECG were extracted. The leads of the

patch system were derived from the 12-lead ECG using the coefficients and methods

described in Section 5.3.2.2. The amplitude of SSLST and SSLorth at the J-point

were extracted as features for MI classification. The diagnostic criteria for patch

leads were an ST-elevation or depression of greater than a variable threshold. This

threshold was in 50 µV increments from 50–300 µV .
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f(x, y, z) =

True if |x| > z ∧ |y| > z

False otherwise

(5.5)

where x and y are the amplitudes of SSLST and SSLorth at the J-point. Either

of these values must exceed the variable threshold, z, to class as potential MI.

A recording with an inflation present in any coronary artery was assumed to be

indicative of MI.

5.4 Results

5.4.1 Short Spaced Lead Selection

5.4.1.1 Position of selected lead

The selected SSL which reflected the highest ST-segment change within the physical

100 mm constraint was identified as being on the anterior torso between a region

in the left precordium and a more inferior abdominal region. Specifically, according

to the node numbering on the Dalhousie torso, the SSL was positioned between

an electrode superior to V3 (Dalhousie torso node 173) and an electrode left of

the sagittal axis between the epigastric and umbilical abdominal regions (Dalhousie

torso node 254). Figure 5.2 illustrates the position of the SSL with respect to the

the six precordial leads of the 12-lead ECG. The BSPM shows the median observed

signal amplitude during PBI at J + 40 ms for subjects undergoing LAD occlusion

PTCA (n=14).

5.4.1.2 ST segment changes on selected lead

The two leads comprising the patch-based lead system, SSLST and SSLorth, are

plotted in Figure 5.3. The recording shown was taken from a subject undergoing

PBI in the LAD coronary artery. SSLST shows an ST-segment difference between

baseline and PBI of 275 µV. SSLorth does not show the same difference at the

ST-segment, with little difference between the two scenarios.

Figure 5.4 shows the absolute change in ST-elevation (∆ST) across all subjects

as median, 25th and 75th percentiles. The SSL has a median ∆ST of 125 µV with
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Figure 5.2: Location of short spaced leads SSLST (white circles) and SSLorth (white
squares). Torso-wide median amplitude 40 ms after the J-point in patients with LAD
occlusion. Precordial chest leads (V1–V6) plotted as black circles.

a maximum value of 277 µV. This performs comparatively with the precordial lead

V2. VSLs from a previous study [28] are used in comparison with the SSL and

12-lead ECG for a critical analysis. The median ∆ST for VSLs are as follows: LAD

= 156 µV, LCX = 162 µV, RCA = 187 µV.

5.4.1.3 LAD occlusion

To further analyse the SSL performance, it is necessary to look at specific vessel

occlusions. In this example, only subjects with LAD occlusion are considered with

the same method as described in Section 5.3.1.2 (n=14). The observed median ∆ST

of 134 µV in the SSL, comparable with the precordial leads V2 and V3 both showing

137 µV ∆ST. This is 36% lower than the relevant VSL. The maximum SSL ∆ST

recorded across all subjects was during LAD occlusion at 277 µV. Figure 5.5 shows

the performance of each lead at J + 40ms across LAD PTCA subjects.

5.4.1.4 LCX occlusion

In subjects undergoing PTCA in the LCX coronary artery (n=15), a ∆ST median

of 65 µV was observed in the SSL. The SSL performs comparatively to V3, with a

median of 58 µV. Figure 5.6 illustrates the SSL characteristics. This is the lowest
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Figure 5.3: SSLST and SSLorth before inflation (baseline) and during inflation PBI
in the LAD coronary artery.

∆ST value observed across the three coronary arteries at 63% below the VSL. The

maximum ∆ST in the SSL was 166 µV.

5.4.1.5 RCA occlusion

∆ST observed in RCA PTCA subjects (n=15) possess the highest overall values.

The SSL shows a median ∆ST of 166 µV, 28% below the relevant VSL. The SSL

exhibits similar ST-segment changes to aVF which has a median ∆ST of 151 µV

across subjects. Figure 5.7 shows the SSL performance. The maximum ∆ST in the

SSL was 257 µV.

5.4.2 Short Spaced Lead Derivation

The coefficients calculated in section 5.3.2.2 (β) are shown in Table 5.1. They are

arranged in an 8x2 matrix where the rows represent the recorded leads (I–II, V1–

V6), and the columns represent the leads to be derived of the SSL patch (SSLST ,

SSLorth). CC and RMSE for each lead are included at the bottom: For the ST-

sensitive SSL, SSLST , the CC was lowest with 0.97. It had the highest RMSE with

18.6 µV . The spatially orthogonal lead, SSLorth, had a higher CC of 0.9872, and a

lower RMSE of 15.5 µV

Figure 5.8 shows the recorded leads (RLtest) and the derived leads (D̂Ltest) for
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Figure 5.4: ∆ST across all leads, all subjects (n=44)

one recording, as performed in section 5.3.3. The recording was taken from a patient

with MI. The leads to be derived are shown with a dashed line, and derived leads

are shown as a solid line.

5.4.3 Ischaemia Classification

5.4.3.1 Machine Learning

The sensitivity (Se), specificity (Sp) and F1 score (F1) were calculated for each

SSL combination and classifier. Table 5.2 shows the results. The results are also

visualised in Figure 5.9. The highest overall performance was using only SSLST

with a Naive Bayes algorithm. The sensitivity and specificity were 86.7% and 71.1%

respectively.

The chosen classifiers generally exhibited greater sensitivity than specificity in

their default configurations. It should be noted that these classifiers do not offer

the facility to easily adjust thresholds towards either sensitivity or specificity. Fur-

ther work is required to facilitate this or a ROC based approach. The C4.5 and

Naive Bayes classifiers had similar performances across lead combinations. Overall,

sensitivity and specificity were higher when only SSLST was used. The MLP is an

exception to this. Performance was considerably reduced when a single SSL was used

with MLP. This classifier is a feed-forward classifier that relies on back-propagation.
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Figure 5.5: ∆ST deviation, LAD occlusions only (n=14)

A lack of input features may negatively affect its performance [31].

The 12-lead ECG classifier based on current diagnostic criteria had a sensitivity

and specificity of 62% and 93%, respectively. This is comparable to the known 12-

lead diagnostic capability [32]. Unlike the SSL-based classifiers, the specificity is

higher than sensitivity. The 12-lead ECG has a higher spatial resolution than an

SSL patch which may increase specificity to ischaemic-type ECG changes.

Compared to the 12-lead ECG, the SSLST -based Naive Bayes classifier was more

sensitive. The bipolar lead of the SSL is across the highest amplitude gradient on

the torso during the ST-segment. This will emphasise J-point changes in this lead

during ischaemia. The SSL is unspecific in comparison. There is a lower distance

between electrodes compared to the 12-lead ECG. The 12-lead criteria used age, sex

and J-point changes, however, the SSLs only used J-point changes.

Electrode placement errors affect the diagnostic capability of lead systems. An

SSL patch may be affected more than the 12-lead ECG by misplacement. This may

reduce the sensitivity of STEMI detection.

5.4.3.2 Variable ST-Amplitude

Table 5.3 shows the classification performance of derived patch-based lead system.

As the elevation or depression ST criteria increase, the sensitivity and PPV decrease.
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Figure 5.6: ∆ST deviation, LCX occlusions only (n=15)

Contrarily, the specificity and NPV decrease. The F1 score varies, with 100 µV of

ST deviation obtaining the same score as the 12-lead ECG.

The affect of vessel-specific occlusions on the sensitivity are shown in Table 5.4.

The highest sensitivity for each vessel was recorded in the patch lead system with

50 µV elevation or depression. This decreases as the ST threshold increases, with

the lowest sensitivity recorded with a threshold of 300 µV .
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Figure 5.7: ∆ST deviation, RCA occlusions only (n=15)

Table 5.1: Derived lead coefficients (β) and their calculated performance as CC and
RMSE

Derived Leads

SSLST SSLorth

R
e
co

rd
e
d

L
e
a
d
s

I 0.4479 -0.1503

II -0.7107 -0.0464

V 1 -0.4740 -0.8052

V 2 0.4327 -0.0662

V 3 0.2623 0.0801

V 4 -0.0453 0.6295

V 5 0.1277 -0.0769

V 6 0.0324 -0.0311

CC 0.9695 0.9872

RMSE 18.6µV 15.5µV
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Figure 5.8: Recorded leads (RLtest) and derived leads (D̂Ltest) for both the ST-
elevation sensitive SSL (SSLST ) and the spatially orthogonal SSL (SSLorth) from a
patient with myocardial infarction
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Table 5.2: Classifier performance for each combination of SSLs

Short Spaced Lead (SSL) Combination

Classifier SSLST SSLST & SSLorth All SSLs

C4.5 (J48)

Se (%) 86.7 86.7 80.0

Sp (%) 68.9 66.7 60

F1 (%) 79.6 78.8 72.7

MLP
Se (%) 53.3 80.0 75.6

Sp (%) 46.7 68.9 68.9

F1 (%) 51.6 75.8 73.1

Naive Bayes
Se (%) 86.7 84.4 82.2

Sp (%) 71.1 66.7 66.7

F1 (%) 80.4 77.6 76.3

Figure 5.9: Sensitivity (Se), specificity (Sp) and F1 score (F1) for different combi-
nations of short-spaced leads (SSL)

Table 5.3: Classification performance of each lead lead configuration (rows) toward
ischaemic-type ECG changes. ST-elevation and depression criteria for the patch are
shown in brackets. The highest values for each column have been marked in bold
text.

Lead Configuration SE (%) SP (%) PPV (%) NPV (%) F1 (%)

12-Lead 62.6 93.5 75.8 88.4 68.6

Patch (50 µV ) 83.5 62.8 42.2 92.0 56.1

Patch (100 µV ) 61.7 94.0 77.2 88.3 68.6

Patch (150 µV ) 49.6 99.4 96.6 85.8 65.5

Patch (200 µV ) 37.4 99.7 97.8 83.0 54.1

Patch (250 µV ) 27.0 100 100 80.7 42.5

Patch (300 µV ) 23.5 100 100 80.0 38.0
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Table 5.4: Sensitivity of STEMI detection for the patch-based lead system by vessel-
specific occlusions in one of three coronary arteries: LAD, LCX, and RCA. The
highest values for each column have been marked in bold text.

Lead Configuration All LAD LCX RCA

12-Lead 62.6 73.8 28.0 60.4

Patch (50 µV ) 83.5 85.7 72.0 87.5

Patch (100 µV ) 61.7 71.4 40.0 64.6

Patch (150 µV ) 49.6 69.1 20.0 47.9

Patch (200 µV ) 37.4 50.0 16.0 37.5

Patch (250 µV ) 27.0 40.5 4.00 27.1

Patch (300 µV ) 23.5 31.0 4.00 27.1
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5.5 Discussion

SSLST shows ST-elevation symptomatic of MI, whereas SSLorth provides increased

spatial resolution by showing cardiac activity orthogonally from SSLST . A high CC

value was reported for both SSLST and SSLorth. This may be due to the proximity

of these leads to the precordial chest leads used during derivation. SSLST had a

lower CC, but also a higher RMSE. This is potentially due to the energy present in

SSLST recordings being higher than that of SSLorth. In the detection of STEMI, the

ST criteria for the precordial leads of the 12-lead ECG requires between 150-250 µV

depending on age and sex. The 18.6 µV of SSLST is below that range. However, a

patient presenting with a marginal STEMI using a 12-lead ECG may not be detected

using a patch-lead system. Furthermore, the error may result in more false positives

in women, whose ST-elevation criteria are lower than men. The shorter distance

between electrodes in patch based systems result in lower amplitude recordings.

This may also affect the ability of such a system to detect changes associated with

MI.

No specific criteria exist for cardiac abnormality detection using patch-based

devices, especially regarding behaviour of the ST-segment. To fully evaluate such

a lead system in the detection of disease, a clinical consensus must be reached.

Placement errors are an issue for all lead systems, including the 12-lead ECG [33]. A

placement error for a patch-based lead system may have a more amplified effect than

those of the 12-lead ECG due to the decreased spatial resolution of a patch across

the torso. The non-standard locations of this lead system may result in a larger

number of placement errors than existing ambulatory systems such as the Holter

monitor. In the data collection described previously, a homogeneous torso was used

to interpolate the 117-node recordings to the 352-node Dalhousie torso. This may

not be representative of all patients, further exacerbating derivation errors. There

are limited datasets available to evaluate patch-based lead systems. This emphasises

the need to derive them from other, more prominent, datasets such as the 12-lead

ECG. The efficacy of such a lead system in the detection of cardiac abnormalities

cannot be fully determined since limited data specific to this lead configuration exist.

More data is required to evaluate patch-based leads further.
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The diagnostic criteria for patch-based ST monitoring explored in this chapter

were basic compared with the 12-lead ECG. Consideration was only given for the

absolute amplitude, rather than separate criteria for ST-elevation and depression.

Additionally, no consideration was given for patient metadata, such as age or sex.

By developing these criteria further, the diagnostic performance could be greatly

increased.

An SSL patch is more convenient than the 12-lead ECG. An unskilled operator

could fit the patch prior to paramedical intervention and recording of the 12-lead

ECG. Additionally, such a device could be complementary to the 12-lead ECG

to increase performance. One proposed design for such a device is using a four-

electrode, two-lead patch such as that described in this chapter. SSLorth can be

used for QRS detection while SSLST is used for ST-segment monitoring. Figure

5.10 shows two SSLs during PBI in the right-coronary artery.

There is no doubt that the performance of the 12-lead ECG will be superior to

that with a greatly reduced number of leads. This has been well illustrated in the

past when limited lead systems have been considered for derivation of the 12-lead

ECG from a reduced number of recording sites. Nevertheless, this work has indi-

cated that there is potential to greatly reduce the recording complexity of the 12

lead ECG towards a patch based system. This may greatly streamline the acqui-

sition process. This work has introduced machine learning techniques and further

refinement of these methods could bring the performance of the patch based system

closer to that of the 12-lead system. Further work is required to allow us to tune

the machine learning techniques so that a better comparison can be made, in terms

of the sensitivity and specificity balance, with the 12-lead ECG. A larger dataset of

ischaemic-type ECGs will also strengthen this comparison. Specifically, there is a

need to further evaluate the proposed patch based leads in more complex MI disease

cohorts, e.g. those with multi-vessel disease. In addition, it is envisaged that future

work will also investigate the variations in placement that may be encountered in

the use of such a patch based system whose application is not based on the well

known anatomical landmarks associated with 12-lead precordial lead placement.
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Figure 5.10: SSLST (top) and SSLorth (bottom) plotted for one recording. PBI in
the RCA.

5.6 Conclusion

In this chapter, an SSL-patch based lead system suitable for the detection of ischaemic-

type ECG changes associated with AMI has been introduced. This patch based sys-

tem had two bipolar leads, one ST-sensitive lead and one spatially orthogonal lead.

The ST-sensitive lead was between Dalhousie nodes 173 and 254. The spatially or-

thogonal lead was between Dalhousie node 212 and 234. The SSL shows the highest

performance during RCA occlusion which has been verified by the associated body

surface potential maps and previously studied vessel specific leads.

Additionally, coefficients towards the derivation of this patch-based SSL system

from the 12-lead electrocardiogram using a linear regression method were generated.
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The Pearson’s correlation coefficient and root mean square error were above 0.97

and below 75 µV for both leads respectively.

Out of nine different combinations of leads and classifiers, a single SSL coupled

with a Naive Bayes classifier yielded the highest sensitivity/specificity combination

(86.7%/71.1%). 12-lead ECG recordings and current diagnostic criteria were used

for comparison purposes (62%/93%). Further research into patch placement, feature

extraction and classification methods must be carried out to truly evaluate the lead

system.

Although the findings of this chapter support an SSL-based method of detecting

ST elevation, a larger dataset is required with more complex coronary artery lesions

to verify the results. Patient specific 3D torso models would improve the location

accuracy of the chosen lead and account for anatomical variability. Furthermore,

the need for at least two contiguous leads for STEMI detection reduces the impact

of an SSL for clinical use. Specifically, these studies may investigate the use of SSLs

toward detection of MI and their use in patch-based ECG.
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verse electrocardiography to image myocardial infarction-reflecting on the 2007
PhysioNet/Computers in Cardiology Challenge,” Journal of Electrocardiology,
vol. 41, pp. 630–635, 11 2008.

[24] F. Kornreich, T. J. Montague, and P. M. Rautaharju, “Body surface potential
mapping of ST segment changes in acute myocardial infarction: Implications
for ECG enrollment criteria for thrombolytic therapy,” Circulation, vol. 87,
no. 3, pp. 773–782, 1993.

[25] B. J. Schijvenaars, J. A. Kors, G. van Herpen, F. Kornreich, and J. van Bemmel,
“Interpolation of body surface potential maps,” Journal of Electrocardiology,
vol. 28, pp. 104–109, 1 1995.

[26] B. M. Horacek, “Numerical model of an inhomogeneous human torso,” Ad-
vanced Cardiology, vol. 10, no. 51, 1974.

[27] B. Horacek, J. W. Warren, C. J. Penney, R. S. MacLeod, L. M. Title, M. J.
Gardner, C. L. Feldman, B. M. Horacek, J. W. Warren, C. J. Penney, R. S.
MacLeod, L. M. Title, M. J. Gardner, and C. L. Feldman, “Optimal elec-
trocardiographic leads for detecting acute myocardial ischemia,” Journal of
Electrocardiology, vol. 34, pp. 97–111, 10 2001.
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Chapter 6

Web-based Architecture Toward

the Democratisation of Digital

Signal Processing

6.1 Abstract

Cloud computing has the ability to offload processing tasks to a remote computing

resources. Presently, the majority of biomedical digital signal processing involves a

ground-up approach by writing code in a variety of languages. This may reduce the

time a researcher or health professional has to process data, while increasing the

barrier to entry to those with little or no software development experience. This

chapter aims to provide a service capable of handling and processing biomedical

data via a code-free interface. Furthermore, this solution should support multiple

file formats and processing languages while saving user inputs for repeated use.

A web interface via the Python-based Django framework was developed with the

potential to shorten the time taken to create an algorithm, encourage code reuse, and

democratise digital signal processing tasks for non-technical users using a code-free

user interface. A user can upload data, create an algorithm and download the result.

Using discrete functions and multi-lingual scripts (e.g. MATLAB or Python), the

user can manipulate data rapidly in a repeatable manner. Multiple data file formats

are supported by a decision-based file handler and user authentication-based storage
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allocation method.

A web-based system was introduced capable of reducing the barrier to entry for

inexperienced programmers. Furthermore, this system is reproducible and scalable

for use in a variety of clinical or research fields.

The code for this chapter is freely available on GitHub.. Additionally, this work

as been published in Computer Methods and Programs in Biomedicine (CMPB) [1].

6.2 Introduction

Previous chapters have discussed the computation and classification of ECG signals,

however, the algorithms developed are not readily available for clinicians or other

researchers to use. To run the algorithms introduced previously, knowledge of source

control, MATLAB, and data types is required. Additionally, the machine running

the code must meet the minimum systems requirements. Accessible code sharing

platforms such as server-side processing are potential alternatives for clinicians or

researchers who do not have the time or ability.

Server-side processing of biomedical signals is widely prevalent [2, 3] to the extent

where specific standards have been formulated to support aspects of this approach

[4]. However, the sharing of code and processing techniques is limited by both the

skill of the user and the willingness of the developer to format their code compre-

hensibly. This could be indifference of a developer to format code legibly, or it could

be aversion due to time constraints. For example, there are an abundance of DSP

algorithms proliferating, but limited initiatives are making these accessible to oth-

ers. AI techniques garner significant interest in multidisciplinary research, however,

the abstraction from the developer to the user causes a lack of uptake in many cases.

Additionally, few developers are willing to share their models directly, forcing the

user to recreate already existing software. Furthermore, whilst new software tools

and techniques have made specialist domains like DSP more accessible the technical

barrier to comprehending algorithms based on advanced techniques remains high.

Many junior developers find it more difficult to reuse or recreate another published

algorithm due to a lack of information surrounding its use or a lack of clarity in the

method. This may reduce the eagerness of others to begin research into a novel area
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or technique and further publication bias [5]. Additionally, it may discourage junior

developers from furthering their understanding of the area since an extensive time

investment is required.

Notwithstanding, non-developers could benefit most from the increased avail-

ability of well-documented code since they are often experts in the application of

software, rather than it’s development. One example is that from the medical do-

main. Specifically, a physician likely has little-to-no experience in software devel-

opment, but they process large quantities of data on a daily bases. Much of this

data is processed using experience and judgement learned through years of training,

however, this training is not available to everyone. Additionally, many assignments

undertaken by the clinician are, in fact, quite routine and could be automated, al-

lowing them to focus time on other areas. A system that allows the clinician to

offload the processing of data has the capability to reduce the decision-time over-

head, potentially enabling more patient-centric care. Additionally, medical data

science is often undertaken by non medical professionals. Removing the coding bar-

rier may facilitate the discovery of new findings in medical science by increasing its

availability.

Clinicians often have access to biomedical data such as the ECG which require

extensive filtering between capture and interpretation. Presently, cardiology pro-

fessionals are required to manually review information and return a diagnosis or

opinion. ECG traces may be seconds to hours in length for some ambulatory moni-

tors, requiring considerable time for interpretation. Cloud-based approaches to in-

terpretation of biomedical signals may be a solution to this. Previous research have

tackled code-free server-side signal processing and data-visualisation [6, 7, 8, 9, 10],

however, such approaches do not allow the user to develop their own algorithm or

experiment with different functions. One solution may be an architecture that allows

users to create algorithms by connecting multiple combinations of code or functions

then expose it to data. Such a system allows the code to be reused; essential to

overcome the ‘replication crisis’ in health informatics [11].

There are many different file formats that can be used containing patient data,

although, they are generally not interchangeable [12]. Previous research have pro-

posed middleware format conversion methods capable of adapting data to a universal
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format [13, 14].

In the work reported in this chapter, a system capable of abstracting the user

from the need to write code or possess a strong understanding of digital signal pro-

cessing was developed. This has been developed based on the notion of streamlining

the algorithm development process and aiding code reuse by allowing the rapid con-

figuration of new algorithms while supporting the repeatability of experiments. In

this work, particular attention has been paid to the notion of abstracting the user

from the various integration issues such as different programming languages, com-

patible functions, and data formats to allow them to focus on processing biomedical

data. In addition to facilitating biomedical data processing functionality, the work

proposed in this chapter also includes provision to facilitate storage of associated

data. This data storage functionality has been incorporated to reduce the probabil-

ity of data silos forming due to the distributed nature of sensitive information [15]

by offering a central data store and development area for each user [16]. It is hoped

that this may increase the willingness of healthcare providers to share information

by removing incurred costs [17], potentially negating many of the data-sharing com-

plications that result in inconsistent care [18].

Furthermore, this work will provide a more beginner-friendly system to those

unfamiliar with DSP with the capability to further the democratisation of com-

putational health informatics [19]. This platform aims to be language-agnostic by

supporting multiple different programming languages e.g. MATLAB or Python.

The suggested framework will offer a platform for peer review where code written

by one author can be shared with another. This may reduce the impact by which

applications created by non-experts with potentially unethical consequences have on

the community [20] since the code can be compared against other ‘gold standard’

approaches.

6.3 Background

To investigate the context of source code sharing and reuse culture in academia, a

sub-review was devised. The purpose of the sub-review was to quantify the pro-

portion of authors who share their source code, program or provide an example
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Table 6.1: Sub-review of Code Sharing Prevalence in Literature

Metric Prevalence
Total Articles 25
Included Articles 13
Excluded Articles 12
Matching ‘T’ Criteria 3 (23%)
Matching ‘F’ Criteria 10 (77%)

application e.g. working website. Using Google Scholar, a search was devised using

the terms ”novel web framework”. The top 25 results were used as the basis for

the following rules. The inclusion criteria comprised of journal or conference pa-

pers with a clear indication a computerised method published in the past ten years

(since 2011). Articles that did not fulfill the inclusion criteria were excluded (n =

12). Those matching the inclusion criteria (n = 13) were sorted into two categories:

‘T’, representing those linking their source code, website, or program in the arti-

cle; ‘F’, representing those who did not meet the ‘T’ criteria. Those matching the

‘T’ (n = 3) and ‘F’ (n = 10) criteria comprised 23% and 77% of the included set

respectively. These results are shown in Table 6.1.

Of the articles in this sub-review, only 23% shared their code, website or appli-

cation. To facilitate the democratisation of DSP and code reuse, a higher number

of authors must release their source code. This allows other researchers to not only

evaluate the performance, but verify their results and collaborate on changes as part

of the scientific method.

6.4 Methods

6.4.1 Framework

A framework abstracts common software functions and provides a template which

can save development time [21]. Multiple frameworks were evaluated, with the

Python-based Django framework being chosen. The Django framework was chosen

as the basis of this chapter due to the apparent ease of use in creating web appli-

cations, primarily in the provision of an automatic graphical administrator (admin)

interface to assist with database management. This allows an administrator to add

and remove data without writing code. Additionally, it has a comprehensive docu-
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mentation library and active user community to aid debugging. Furthermore, using

a popular language such as Python may facilitate the reuse of this system by mak-

ing it more accessible to those willing to recreate it. In the spirit of reusability, the

source code of this project has been made available.

Django abstracts database creation to a number of potential SQL backends. The

database schema is derived directly from classes within the source code, with items

within the class informing columns and attributes within the database. This ensures

consistency between the software and database schema and automated database

migrations.

The Django framework is inherently open-source. This allows developers to view

and edit aspects of the framework to suit their application [22]. In this chapter,

the Django request-handling middleware was not manipulated, however, it is an

important feature when considering scaling a project or addressing architectural

issues in future [23].

6.4.2 Database Construction

The database structure is central to a cloud computing architecture. The purpose of

the database, in this chapter, was to hold data files, code/executable files (scripts),

user details and user inputs. Primarily, the database stored what data the user would

like to process (File), what scripts to run (Script) and their order (Algorithm), and

the result of each script (Execution). This allows the user to see upload data and

process it repeatedly using either a novel or existing Algorithm they have created.

In Django, database tables are referred to as models. Five database tables (models)

were identified as core to this chapter:

Algorithm is the highest-level model in that it contains multiple other models

within it. It is a user-created entry with a number of potential scripts to be executed

in order. This model is linked to one user allowing them to document the order in

which their uploaded data is processed. One field, scripts, is linked to a Script via

a many to many relationship. This link is made through an intermediary table,

Execution, which provides further details. One example of an Algorithm could

be a disease classifier. An input file of patient data (XML) would be uploaded

by the user. The data could be passed through two hypothetical scripts: first a
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MATLAB file ‘data sanitisation.m’ and secondly a Python file ‘knn classifier.py’ to

return a spreadsheet or Comma Separated Variable (CSV) file with the result. In

principle, however, an arbitrary number of such processes could be employed within

an Algorithm. This architecture allowed multiple combinations of the same Script

to be called across various Algorithms without destroying or editing the original

Script.

Execution is an object used to describe an instance of one file being processed by

one script to produce an output file. Any data file being processed by a MATLAB

or Python script will become part of an Execution. This model is hidden from

the user. It contains one input file data input, a script to execute the data script,

and an output file data output. The order in which each script was executed is

stored in order. The purpose of this model was to separate each processing step

of an Algorithm by handling the inputs and outputs of each Script individually.

This allowed error handling, logging of output files and subsequently the removal of

unused intermediary files.

Script is an executable file model. Its programming language (language), sup-

ported input file format (data input) and output file format (data output) are core

fields. Only an admin can upload a Script to reduce the risk of malicious code injec-

tion. A description field is included to provide instructions for use and information

as to how the Script works. The executable file is held in uploaded script and is

stored in a media file folder (/algorithms/). This allowed each executable file to be

read-only by a user and so improved the application’s security. Additionally, only

an admin could edit the contents of the executable file repository. An example of a

Script might be a MATLAB low pass filter function that supports a single row CSV

file and outputs the same type of file.

File is any file that can be attached to a user. For example, data files uploaded

by the user or the result of an Execution. The user can provide a descriptive name

(name) for the data and specify the data format (format). A example File may be

a MATLAB data file (‘.mat’) of ECG data with the name ‘ecg data.mat’

FileFormat contains metadata for a File instance. Primarily, this model is

used to filter what Scripts are supported via a one to many relationship with the

Script entries data input and data output. Also, FileFormat is used to store the
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FileFormat

name char(100)

io char(1)

extension char(100)

mime_type char(100)

description text

File

user user

identifier UUID4 (PK)

name char(100)

uploaded_file file

format FileFormat

Script

identifier char(100)

description text

language char(1)

data_input FileFormat

data_output FileFormat

uploaded_script file

Algorithm

identifier UUID4 (PK)

user user

name char(100)

description text

scripts M2M (Script)

Execution

identifier UUID4 (PK)

data_input File

data_output File

script Script

algorithm Algorithm

order int

Figure 6.1: Entity relationship diagram (ERD) of the algorithm development
database. Each table represents a model in the Django framework. ‘Algorithm’
is the user-created entry consisting of a list of ‘Scripts’ which process ‘Files’ in the
order set by ‘Execution’ providing they are a compatible ‘FileFormat’

Multipurpose Internet Mail Extensions (MIME) type for if the user downloads the

file (mime type). It is important to note the MIME type does not decide if a File

is supported by a Script, that is handled by the administrator-controlled list of

supported FileFormats for a given Script. The field io shows if the file is in input

file, output file or both.

This schema allows users to create a library of data files in various formats,

and build algorithms comprised of individual scripts to act upon them in a repro-

ducible manner. This also makes the evolution and comparison of algorithms a more

streamlined process.

Figure 6.1 shows an entity relationship diagram (ERD) of each table (model).

6.4.3 Data Upload

Data are handled in two discrete scenarios: upload and execution.

Only authenticated users can upload data. When accessing the file upload page,

an empty instance of File is created. In the class-based approach of Django, this

creates an empty row in the File table. The user is prompted to upload their file, give

it a descriptive name and specify the input format. These were stored in a media

directory (/user data/) and assigned a filename corresponding to the username and

a universally unique identifier (UUID) e.g. ‘user a535562 ... .csv’. In this way data
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File form submitted

Yes

No
Form valid?

Save 'File' to
database

Error message

Figure 6.2: Overview of the POST request checking following the user uploading a
data file. Note: ‘File’ is a table (model) representing the data file and user metadata

can be traced to a user by searching file structure or querying the database.

Data are passed to the controller using a POST request. If the form data and file

upload were valid, the file would be saved within the system and the model instance

of File updated with the user-provided information. The path to the uploaded file

and meta information such as FileFormat could be accessed by a database query.

Figure 6.2 shows the process to upload user data.

6.4.4 Data Processing

6.4.4.1 Algorithm Creation

Creating an algorithm is handled in a similar way to uploading data. A blank HTML

form was created with the following fields: Algorithm name, description, input data

and scripts. The name and description are customisable to assist the user in keeping

track of previous entries and to ensure a research team have a shared knowledge of

the algorithm construction. The input data is derived from a selectable list of user

data files. Only files from the current user are shown. The script form fields allow the

user to select one or more Scripts in the desired execution order. Once submitted, a

POST request is sent to the controller with the user-selected input data, executable

scripts and a description from the algorithm creation form. In the model layer, an

intermediary table was created to handle the ordering and metadata for each script.

The Execution model was used for this. An instance of Execution was created for

each chosen Script and the order assigned. This allows for additional Scripts to be

added into the Algorithm construction at a later date. The input file chosen by

the user is assigned to the first Execution. The input and output files for other
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Executions are set to null temporarily.

6.4.4.2 Execution

A complete instance of Execution contains an input data file, executable script and

output data file. To complete the first instance of Execution for this Algorithm,

the input data file was passed to the Script via a handler file. The handler file is

different depending on the language of the Script. For example, a MATLAB file will

have a ‘handler.m’ file and Python may have another file. The role of the handler

file is to take the file path of the input data file, run a script at a given file path

and return the file identification number. The output file was then assigned to the

first Execution to complete it. The next Execution uses the output data file of

the previous Execution as its input data file. It executes the script and returns an

output file. If the last execution is reached, the output data file is returned to the

user as a downloadable file and all previous intermediary files are cleared from the

system to reduce storage overhead.

6.4.4.3 MATLAB Engine for Python

The Django framework uses Python, so the native environment can be used to

process scripts, however, the same is not true for licensed software such as MATLAB.

The MATLAB Engine for Python is an API for Python capable of accessing the

MATLAB work space and executing scripts. This allows a licensed copy of MATLAB

to be stored on the server with the current session shared with the Python virtual

environment. Errors from MATLAB can be passed to Python via the API and

raised to the user as a MatlabExecutionError. Figure 6.3 shows a flowchart of how

data is executed.

6.4.5 User Interaction

A front-end was developed to facilitate testing. Separate webpages were created to

demonstrate the following features: uploading and viewing data files, creating and

viewing algorithms, and user registration.

When uploading a file, the user was presented with three input fields as an HTML

form: ”Name”, ”Uploaded file”, and ”Format”. The user could view and manage
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their stored files via an HTML table including deleting unwanted data files. Each

table row was an instance of File attributed to that user

To create an Algorithm, the user entered details into another HTML form. They

could select a file from the file management area to process or enter it from the form

directly. The following input fields were available: ”Algorithm name”, ”Descrip-

tion”, ”Data input” and ”Scripts”. For the purposes of demonstration, up to four

scripts were allowed, however an arbitrary number can be used within the model and

administrator interface. Each successive script field denotes an instance of Script

and allocated the order of each Execution instance. The data file selection is a fil-

tered list of files for only that user. Once the user submits the Algorithm creation

form, the data file will be processed in the manner previously described. The user

will be requested to download the data output file. The user could also view and

edit their created algorithms using the same method as data files. Figure 6.4 shows

the suggested user interaction with the system.

To show the user interaction in more detail, Figure 6.5 provides a sequence di-

agram of user inputs followed by the backend response. Five objects have been

described here. First, the web interface, is the frontend developed for testing pur-

poses. This provides renders of forms such as file upload and algorithm creation

forms. Second, the web application, is the backend model-view-controller architec-

ture written using the Django framework. It handles user requests, renders and

queries to the database. Third, the processing engine or API, describes the system

which executes a given file by passing it to the selected script as an argument. The

API will then return a result file and status message to indicate a successful exe-

cution. Finally, the database, is used to store the tables described in Section 6.4.2

and allows the user input to be preserved in case of an exception e.g. the processing

API raises an error.
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Yes

No
Form valid? Error message

Create 'Execution' for each 'Script' selected

Yes

No

First 'Execution'?

Output file from previous 'Execution' assigned
to the current 'Execution'

Input data file assigned
to first 'Execution'

No

Yes
Last 'Execution'?

Start API related to 'Script' language e.g.
MATLAB, Python

Pass Script and data input ('File') path to the
Execution handler

Process the 'Execution'

Yes

No

Error raised?

Delete the intermediary data input ('File')

Return error to user

Algorithm form submitted

Return data output ('File') to user as a
download

Save 'Algorithm' with all 'Executions'

Save 'Execution' instance

Save the order of each 'Execution'

Save 'Algorithm' to database with empty
'Executions'

Figure 6.3: Data flow following the submission of an ‘Algorithm’ form to process a
user input file through multiple different scripts (‘Execution’) and return an output
file
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Upload
data

Select
'Script(s)'

Download
result file

Submit
'Algorithm'

Figure 6.4: User interaction steps required to process data
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Web Interface Web Application 
(Django)

Processing 
Engine/API

User

Submit file for upload

Database

POST file form

Form valid?

Alternative

[If FileForm is valid]

[Else]

Store File

Create File instance

Complete

Successful uploadShow table of 
uploaded files

Form invalid

Error message

Create algorithm
page

GET algorithm form Fetch available 
files & scripts

Return files & scriptsRender algorithm
formDisplay algorithm

form

Select file to process
POST file format Fetch compatible

scripts for the file format

Return files & scripts

Alternative

[If Execution complete]

[Else]

Render algorithm
formDisplay algorithm

form

Select script

Loop

[for each 
new script
selected]

Display selected
script

Update
form

Submit algorithm
form

POST algorithm form

Create Algorithm
instance

Store Algorithm

Complete

Create Execution
instance

Loop

[for each selected script]

Process file MATLAB/
Python API

Store result

Return result

Complete

Return result file

Return error message

Display error

Delete temp files

Complete

Download results

Figure 6.5: Sequence diagram showing interactions between the user and the sys-
tem when uploading a file, creating an algorithm and running the algorithm. User
interface refers to the frontend browser-based platform. The web application is the
backend model-view-controller logic. The processing engine is the API which uses
a selected script to process a file e.g. MATLAB or Python. The database is the
server used for storage and queries.
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6.5 Discussion

A web-based approach to algorithm development allows a user to trial many dif-

ferent parameters without writing code. For example, a user can combine different

filters and compare which has the most favourable performance for their signal. Ad-

ditionally, a user could compare classifiers written by different team members. This

system is not limited to comparing scripts though, it could be utilised by medical

professionals for statistical analysis or used by administrators to sort patient records

without prior knowledge of programming.

Code reuse, particularly in open source software, has the capability to reduce

development time and increase collaboration [24, 25]. This system allows code to be

stored in the form of discrete functions. Users can reuse a function multiple times

and in different orders. In particular, a developer can see all previously created

Algorithms or Scripts with metadata on the inputs, outputs and function of the

program. If a Script has been previously created, there is no need for a developer

to recreate it, thus, saving time during the development process. A function-based

approach to Scripts abstracts the user from the coding aspect of algorithm design to

promote a trial and error method where non-experts can experiment with their data.

Additionally, a Script is linked to the user who uploaded it. In teams of developers

or clinicians, this allows a potential user of the Script to contact the original author

or team they are associated with. When compared with existing systems such as

Apache Kafka, this system is complementary. Kafka implements an event-driven

approach for data monitoring, however, this system employs a data-driven approach

instigated by the user to allow experimentation. This may be beneficial in the

design-phase of automation algorithms as a test-bench before using an event-driven

architecture such as Kafka.

DSP software is often licensed. For a user to operate the software, they must

purchase a licensed copy and activate it. Each user requires a license which some

institutions or companies may not be able to afford. This system requires a single

server license by running one copy of licensed software in the backend. Functions

are called via the handler by using an API, negating the requirement for the user to

have licensed software.
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Many users may not have an in-depth understanding of file formats or DSP

principles. There may be many errors when processing data. Licensed software APIs

such as the MATLAB Engine for Python raise errors in the Django framework. This

enables the development of an error handler to return exceptions to the user. This

is a reactive error handling which happens after the error has occurred. A pro-active

approach is to query the backend before submitting the Algorithm. Javascript in

the form of an AJAX query was used to filter the supported Scripts available to the

FileFormat of the input data file. This would reduce the likelihood of import errors,

however, it would not address run-time errors.

Using APIs and file handlers allows the use of multiple programming languages

and data types. For example, the output of a MATLAB Execution may be a CSV

file. This could be passed to a Python Execution and processed interchangeably.

Providing the Script supports a particular data file, it can be executed without

knowledge of the previous programming language which processed it. This may

introduce an environment where DSP software development teams can write func-

tions in multiple languages without the need for single-language specialists. When

recruiting developers, this would increase the number of potential candidates for a

role and encourage a deeper understanding of the DSP principles rather than a deep

understanding of one programming language.

This application is user agnostic. A wider variety of individuals can interact

without specialist knowledge of the software. For example, a medic could process

patient records to show risk factors for a specific ailment. Likewise, an embed-

ded systems engineer could design filter coefficients for a medical device to meet a

regulatory requirement. Abstraction of these tasks from the user reduces the time

invested in the task, allowing them to focus elsewhere. The principle of democrati-

sation in software development is to allow any user to interact and access the core

functionality. A user agnostic system by default achieves these principles.

Data files are uploaded by users to the system. Keeping data files in one system

can reduce the probability of data silos forming, especially when the data storage is

centralised. The user can provide descriptive information to describe their data file,

potentially increasing the prospect of data reuse and collaboration.

In this system, only MATLAB and Python scripts have been tested. The archi-
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tecture has the potential for many different programming languages and programs

to execute arbitrary scripts in various languages such as R, C++ and Java, but

with administrative safety measures. Additionally, this system could be used to

output typographic information by employing TeX-based compilers. One utilisation

instance of typographic processing could be the cleaning of patient record files to

output a formatted table or document.

Executable scripts can only be uploaded by admins or super-users. This reduces

the risk of malicious code injection by only allowing users to upload data files.

Additionally, it ensures that only approved executable files are included in the Script

database. In a software development environment, this would be post code-review

and could reduce the number of errors experienced by clients.

This architecture is inherently scalable. An object-based approach to processing

scripts allows multiple instances of ‘Executions’, each with their own engine. For

example, multiple MATLAB engines or Python environments can be created, each

with separate memory. Since the memory space is not shared by these ‘Executions’,

they can be containerised using platforms such as Docker and Kubernetes. These

systems allow scaling to occur automatically while processing data in parallel to the

main web application thread.

The file management system links all files with a user. This enables efficient

clearing of old or disused files by the user or by an administrator. Additionally,

data associated with the user can easily be collated or removed to comply with

right-to-erasure requests such as GDPR or similar ‘right to be forgotten’ requests.

Assessing the security and vulnerabilities of a code is an important factor due to

the increase in global cyber security threats. The code has been subjected to vulner-

ability scanning using Bandit, a popular tool used to detect known common issues

in Python code. According to the scan the security risk of the code is considered

‘medium’ due to the MATLAB engine requiring the use of command-line tools.

6.6 Limitations

Remote code execution (RCE) presents a considerable security concern in web-based

applications. Malicious code can be injected to such a system and potentially lead to
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compromise of the system [26]. The Django framework provides features to improve

security such as cross site scripting (XSS) and SQL injection protection [27], however

specific protection measures would be required for the deployment environment.

Regular expressions (regex) and user input sanitisation was limited during this

chapter in the interest of time. For this application to be deployed and secured, care

would be taken to reduce the likelihood of string-based injection attacks by parsing

user files for executable scripts [28].

At present, handler functions are used to execute scripts. The handler function

is passed an absolute file path to the data and script files. This requires a file to be

present for each execution instance. For less complex scripts, much of the processing

time would be allocated to reading and writing data files. It would be more efficient

to use the Django framework to handle the files as imported variables, however this

was beyond the scope of this chapter.

6.7 Future Work

Many DSP functions collate multiple data files during execution. For example,

combining ECG waveforms and contextual patient metadata to produce a patient-

specific diagnosis. This would require multiple data files for each instance of Exe-

cution, necessitating a database architecture change. Following this, a user could

select multiple data files of different file formats for one script. This may allow more

context to be given to classifiers.

To reduce the risk of damage due to malicious code injection, a sandboxing

method could be employed. Sandboxing can isolate server instances to that user

or group of users to assist with malware detection [29]. A compromised sandbox

instance will damage the virtual machine (VM) it is incased within, however, it is

less likely to affect other sandboxes due to their distributed nature.

Automation of file upload and execution could be handled by the development

of an API. More specifically, medical devices and embedded systems could use this

architecture to offload processing requirements to the cloud. This can reduce the

size and cost of hardware required while allowing algorithm and software changes

to be handled remotely, reducing the need for product recall and firmware updates.
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Medical devices such as Holter monitors could upload ECG data and have near

to real-time decisions using this approach. Additionally, all patient data would be

accumulated in one location, lessening the data silo effect. Cloud storage systems

could be linked such as Microsoft OneDrive or Google Drive to further improve the

centralisation of data. However, this would be limited by regulations on patient

data sharing with third parties.

Error handling in this chapter is limited, however a separate error handling

user interface could allow users to debug data files and code simultaneously. Fur-

thermore, the handler could include a conditional-based flow during the Execution

phase whereby a certain output may trigger a response. For example, if a single

row of a patient record is missing it could be estimated by another script instead of

raising an error.

6.8 Conclusions

This chapter has presented an adaptive cloud computing architecture capable of pro-

cessing arbitrary input files through ordered executable scripts using multiple pro-

cessing languages in a repeatable manner. Using the Django framework, a database

was introduced to handle and store files as they are processed. This work has the ca-

pability to assist algorithm research teams during development by reducing the time

taken to incorporate previously developed code. Additionally, this work provided

an insight into the potential for automation to process IoT device data, particularly

long-term patient monitoring systems.
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Chapter 7

Conclusions

The aim of this thesis was to investigate different processing techniques and methods

to improve upon MI detection techniques from the ECG. To achieve this, several

objective were met, including a) reviewing the current state-of-the-art presented

in published literature surrounding the processing of ECG data for MI diagnosis

b) identifying suitable datasets to investigate how ischaemia affects the ECG c)

exploring how additional derived leads can improve upon the diagnostic performance

of the 12-lead ECG d) introducing a short spaced lead system sensitive to ST segment

changes associated with MI e) developing a framework to facilitate the rapid creation

of biomedical digital signal processing algorithms by non-coders.

Chapter 2 provided a detailed review of the literature surrounding the work in

this thesis. An introduction and overview of different ECG lead systems related

to the detection of MI was presented. Specific attention was given to reduced lead

systems, including ambulatory and patch-based devices. During this process, it was

identified that the spatial resolution of the 12-lead ECG could be expanded by using

additional leads. A hypothesis formed around the use of derived additional leads

for MI classification. This formed the basis of the work for Chapter 4. Additionally,

the rise of ambulatory devices for conditions such as AF presented an opportunity

to investigate the use of such a device in detecting ECG changes associated with

MI. This formed the hypothesis surrounding the work in Chapter 5. It was found

that few publications make the code used during the study open for public use.

Additionally, the algorithms developed were not readily implemented by clinicians,
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potentially due to a lack of coding skills or lack of access to a suitable software

platform such as MATLAB. These identified issues justified the work carried out in

Chapter 6.

Three datasets containing ischaemic ECG recordings were discussed in Chapter

3. Two of the datasets included BSPM data. The first had BSPMs (n = 176)

recordings from subjects at rest (n = 88) and during PBI in one of three coronary

arteries. Dataset two contained BSPM recordings (n = 734) from subjects in one of

three categories: normal controls (n = 226), those with MI (n = 271), and those with

LVH (n = 237). The third dataset contained 12-lead ECG recordings (n = 467) from

subjects (n = 104) undergoing elective PTCA in one or more coronary arteries (n =

115). Also discussed in Chapter three were the different pre-processing techniques

used to allow the experimental work discussed later in the thesis, including VCG and

Discrete Wavelet Transform (DWT) methods to annotate the beats within 12-lead

ECG signals.

Chapter 4 introduced coefficients toward the derivation of posterior (V7-V12)

and right-sided (V3R-V6R) chest leads from the 12-lead ECG with an improvement

in derivation accuracy compared to previously published coefficients. Additionally, it

was found that derived posterior and right sided chest leads are capable of detecting

ischaemic-type ECG changes associated with MI. The addition of derived leads was

shown to increase the sensitivity of STEMI detection from 58.3% in the 12-lead

ECG to 64.4% in the 22-lead ECG. F1 score increased from 69.1% in the 12-lead

configuration to 69.5% in the 22-lead configuration. However, these results were not

statistically significant with a p-value greater than 0.05.

Chapter 5 introduced an SSL-patch based lead system suitable for the detection

of ischaemic-type ECG changes associated with AMI. This patch based system had

two bipolar leads, one ST-sensitive lead and one spatially orthogonal lead. The

ST-sensitive lead was between Dalhousie nodes 173 and 254. The spatially orthog-

onal lead was between Dalhousie node 212 and 234. The SSL shows the highest

sensitivity during RCA occlusion which has been verified by the associated body

surface potential maps and previously studied vessel specific leads. Additionally,

coefficients towards the derivation of this patch-based SSL system from the 12-lead

electrocardiogram using a linear regression method were generated. The Pearson’s
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CC and RMSE were above 0.96 and below 18.7 µV for both leads respectively.

Out of nine different combinations of leads and classifiers, a single SSL coupled

with a Naive Bayes classifier yielded the highest sensitivity/specificity combination

(86.7%/71.1%). 12-lead ECG recordings and current diagnostic criteria were used for

comparison purposes (62%/93%). An additional classification method using varying

ST-segment elevation or depression showed the highest F1 score to be 68.6% with an

ST-threshold of 100 µV . The F1 score was the same for the 12-lead ECG. Further

research into patch placement, feature extraction and classification methods must

be carried out to truly evaluate the lead system. Although the findings of this study

support an SSL-based method of detecting ST elevation, a larger dataset is required

with more complex coronary artery lesions to verify the results. Patient specific 3D

torso models would improve the location accuracy of the chosen lead and account

for anatomical variability. Furthermore, the need for at least two contiguous leads

for STEMI detection reduces the impact of an SSL for clinical use. Specifically,

these studies may investigate the use of SSLs toward detection of MI and their use

in patch-based ECG.

Chapter 6 presented an adaptive cloud computing architecture capable of pro-

cessing arbitrary input files through ordered executable scripts using multiple pro-

cessing languages in a repeatable manner. Using the Python-based Django frame-

work, a database was introduced to handle and store files as they are processed

through multiple scripting languages such as MATLAB or Python. Scripts could be

uploaded via an administrator interface, and shared between teams of developers.

Users could design algorithms from these scripts without the need to write code.

The algorithms would then be stored for later use. This work has the capability to

assist algorithm research teams during development by reducing the time taken to

incorporate previously developed code. Additionally, this study provided an insight

into the potential for automation to process IoT device data, particularly long-term

patient monitoring systems.

Future work should focus on the clinical testing of the lead systems presented

in this thesis. Additional lead systems such as the posterior, right-sided leads,

and patch-based leads were derived and compared with existing data, however, this

was not tested on real subjects in a clinical setting. To verify the practicality and
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efficacy of the patch-based lead system introduced in Chapter five of this thesis,

further studies must be carried out by clinicians to verify the position is feasible

and convenient for ambulatory monitoring. Additionally, the nuances of physically

creating such a device may add more scope for refinement in the position and size

of the patch. The framework introduced in Chapter six was tested locally, but not

deployed in the two use cases discussed: a software development team, and a team

of clinicians needing to experiment with patient data. Future work in this area

should focus on deploying this web framework and performing in-situ user tests.

Additionally, the security vulnerabilities identified in the chapter should be resolved

before committing to a live test.
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Appendix A

Glossary of Terms

Atrial Fibrillation Rapid uncoordinated contractions of the atria of the heart

resulting in a lack of synchronism between heartbeat and pulse beat. 2, 32,

34–36, 39, 40, 42, 43, 124, 169

Bundle Branch Block An acute episode of coronary heart disease marked by the

death or damage of heart muscle due to insufficient blood supply to the heart

usually as a result of a coronary artery becoming blocked by a blood clot

formed in response to a ruptured or torn fatty arterial deposit. 15, 25, 41, 42,

50, 51

Ejection Fraction The percentage of blood that is pumped out of a filled ventricle

as a result of a heartbeat. 37

Electrocardiogram The electrocardiogram (ECG or EKG) is a noninvasive test

that is used to reflect underlying heart conditions by measuring the electrical

activity of the heart. ix, x, xiii, xiv, 1–4, 8, 12–34, 36–63, 85, 86, 88–96, 99,

101, 104–113, 115–119, 122–125, 127–131, 134, 135, 138, 140–143, 148, 149,

153, 164, 165, 169–171

Left Ventricular Hypertrophy Enlargement or overgrowth of the left ventrical

of the heart due to the increased size of the constituent cells. 21, 23, 25, 26,

42, 46, 48, 51, 53, 58, 87, 88, 126, 170

Myocardial Infarction An acute episode of coronary heart disease marked by the

death or damage of heart muscle due to insufficient blood supply to the heart

usually as a result of a coronary artery becoming blocked by a blood clot

formed in response to a ruptured or torn fatty arterial deposit. 1–4, 13–15, 17,

18, 20, 21, 23–31, 33, 36–38, 41, 42, 44–55, 63, 85, 88, 90, 94, 101, 104–107,

111, 117, 118, 123–126, 128–130, 133, 140, 141, 143, 169–171
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Non-ST Elevation Myocardial Infarction A form of myocardial infarction where

no ST-elevation is present on the electrocardiogram. 31, 42, 46, 49, 50, 54

Percutaneous Coronary Intervention A nonsurgical procedure that relieves nar-

rowing and obstruction of the arteries to the muscle of the heart. 19, 20, 24,

45, 46

Percutaneous Transluminal Coronary Angioplasty The insertion of a balloon-

tipped catheter inserted through an artery in the groin or wrist to enlarge a

narrowing in a coronary artery. 20, 27, 30, 32, 34, 44, 48, 52, 53, 85, 88, 89,

125, 130–132, 170

Short-Spaced Lead An electrocardiographic bipolar lead with a short spacing,

usually below 100 mm, between electrodes. xi, 3, 122–128, 130–134, 137, 141–

143, 170, 171

ST-Elevation An increased amplitude of the ST-segment of the electrocardiogram.

This is commonly associated as a symptom of myocardial infarction. 124–126

ST-Elevation Myocardial Infarction A myocardial infarction with ST-segment

elevation present on two or more contiguous leads. xiii, xiv, 19–21, 23, 24, 28,

30–32, 42, 44–47, 49, 50, 54, 55, 105, 111, 115, 117–119, 124, 125, 128, 129,

134, 139, 140, 143, 170, 171

Sudden Cardiac Death A medical emergency with absent or inadequate contrac-

tion of the left ventricle of the heart that immediately causes bodywide circu-

latory failure. 37, 38

Vectorcardiogram a method of recording the direction and magnitude of the elec-

trical forces of the heart by means of a continuous series of vectors that form

a curving line around a centre. ix, 24–27, 43, 48–51, 90–93, 101, 170

Ventricular Fibrillation An abnormal and irregular heart rhythm in which there

are rapid uncoordinated fluttering contractions of the lower chambers (ventri-

cles) of the heart. 45

Ventricular Tachycardia An abnormal heart rhythm that is rapid and regular

and that originates from an area of the lower chamber (ventricle) of the heart.

29, 35, 38

Wilson Central Terminal The isoelectric (0 V) point for ECG leads, calculated

from distal bipolar limb leads. 16, 22, 86, 88, 126
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Research Output

Journal Publications

Jennings, M.R., Turner, C., Bond, R.R., Kennedy, A., Thantilage, R., Kechadi,

M.T., Le-Khac, N.A., McLaughlin, J. and Finlay, D.D., 2021. Code-free cloud com-

puting service to facilitate rapid biomedical digital signal processing and algorithm

development. Computer Methods and Programs in Biomedicine, 211, p.106398.

Jennings, M.R., McCausland, C., Turner, C., Güldenring, D., Brisk, R., Bond,

R.R., Biglarbeigi, P., Mclaughlin, J., Finlay, D.D., 2021. Computational approach

to deriving posterior and right sided chest leads in the detection of ECG changes

associated with acute myocardial ischaemia. IOP Physiological Measurement [Sub-

mitted]

Conference Publications

Jennings, M., Guldenring, D., Bond, R., Rababah, A., McLaughlin, J. and Finlay,
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able for Patch Based Monitoring. In 2019 Computing in Cardiology (CinC) (pp.

1-4). IEEE.
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In 2020 Computing in Cardiology (pp. 1-4). IEEE.

Jennings, M., Rababah, A., Gueldenring, D., McLaughlin, J. and Finlay, D., 2021,

June. Coefficients for the Derivation of an ST Sensitive Patch Based Lead System

from the 12 Lead Electrocardiogram. In Computing in Cardiology 2021.

Other Publications

Guldenring, D., Finlay, D.D., Kennedy, A., Bond, R.R., Jennings, M. and McLaugh-

lin, J., 2019, September. The Effects of 40 Hz Low-Pass Filtering on the Magnitude

of the Spatial Ventricular Gradient. In 2019 Computing in Cardiology (CinC) (pp.

Page-1). IEEE.

McCallan, N., Finlay, D., Biglarbeigi, P., Perpiñan, G., Jennings, M., Ng, K.Y.,
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Appendix C

Twelve-lead electrocardiogram

recording from a patient

undergoing percutaneous

transluminal coronary angioplasty

in the left anterior descending

coronary artery
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