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EU-Net: Enhanced U-shaped Network for Breast
Mass Segmentation

G. Jignesh Chowdary, and Pratheepan Yoagarajah Member, IEEE .

Abstract— Segmentation of breast masses in digital
mammograms is very challenging due to its complexity.
The recent U-shaped encoder-decoder networks achieved
remarkable performance in medical image segmentation.
However, these networks have some limitations: a) The
multi-scale context information is required to accurately
segment mass but is not effectively extracted and utilized.
b) The global context information is often ignored by the
skip connection. To overcome these limitations and achieve
better segmentation, we propose an Enhanced U-shaped
Network (EU-Net). The proposed EU-Net comprises of 3
novel components: 1) dense-block, which is employed in
the encoder and the decoder in place of convolutional lay-
ers to achieve the multi-scale features. 2) Multi-Scale Fea-
ture Extraction and Fusion, which is used in the junction
between the encoder and the decoder for further extract-
ing and fusing the multi-scale context information. 3) Skip
Connection Reconstruction, which is inserted between the
encoder and the decoder at each stage, to redesign the
skip connection and emphasize the global context infor-
mation. Extensive experimental results under different set-
tings show that the proposed EU-Net achieves superior
performances than the previous state-of-the-art segmenta-
tion models, and other existing approaches on IN-Breast
and CBIS-DDSM mammogram datasets. The generalization
ability of the proposed EU-Net is evidenced through cross-
dataset and ternary dataset evaluation performance. In the
ternary dataset evaluation, the model is trained and evalu-
ated on the UDIAT breast ultrasound dataset without fine-
tuning. The EU-Net achieves higher generalization perfor-
mance in both evaluation experiments. These experiments
collectively indicate the efficiency and high generalization
ability of the proposed EU-Net.

Index Terms— Atrous convolutions, U-shaped networks,
Breast mass segmentation, Digital Mammogram, Ultra-
sound, Medical image segmentation.

I. INTRODUCTION

BREAST cancer has the highest incidence rate among
different types of cancers worldwide; in 2020, approx-

imately 2.3 million new cases are reported, among which
685,000 women died from the disease [1]. Early screening can
help to detect breast lesions at early stages, thereby enhancing
the patient’s survival chances and helping them recover faster
[1]. Among the different screening facilities available like X-
ray, ultrasound, computed tomography (CT), and magnetic
resonance imaging (MRI), mammography is considered to be
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the best choice for the detection of breast cancer because they
are safer and fast [2]. The accurate detection of breast masses
in a mammogram is very challenging due to its complex
characteristics and is also time-consuming. According to [3],
the average misdetection rate among medical professionals
is around 30%. In a recent survey [4], it was found that
misdetection of breast cancer from mammograms is the main
cause of legal suits against medical professionals. To overcome
the above mention misdetection, computer-aided detection
(CAD) systems have been developed by researchers to reduce
false detection.

The CAD systems can detect several tissue abnormalities,
including masses, bilateral asymmetries, structural distortions,
and microcalcifications from mammograms [5]. Among these
abnormalities, masses are crucial for diagnosing breast ma-
lignancies [6]. Thus accurate segmentation of masses is very
important in a mammary CAD system. But, the irregularities
in shape, size, boundary, and location with poor contrast
make mass segmentation a complex task [7]. Many studies
employed active contour, region growing, Markov random
field, and Chan-Vese methods for mass segmentation. Since
these methods rely on the prior knowledge of mass contour [7],
[8], they cannot handle complex shape variations and masses
surrounded by tissues with different densities [7], resulting in
poor diagnostic performance.

With the rapid developments in deep learning, several
breast mass segmentation approaches based on deep learning
have been developed [9]–[12]. Singh et al. [13] designed an
adversarial network, where the generator produces the initial
breast tumor segmentation results. The discriminator learns
to differentiate the produced result from the ground truth
and forces the initial result to be close to the ground truth.
Li et al. [14] proposed a dual-path network for segmenting
the breast masses. One path hierarchically extracts features
from the input image, and the other path focuses on yielding
geometrical features of the image. With remarkable perfor-
mance achieved by the U-shaped encoder-decoder networks
in medical image segmentation [15] several studies employed
such U-shaped networks for mass segmentation. For instance,
Revitha et al. [16] developed an encoder-decoder network with
deep supervision for segmenting masses from mammograms.
And they also employed the conditional random fields method
as a post-processing step to reduce the false negatives. Sun et
al. [17] designed a segmentation approach with an attention-
guided upsampling module to integrate low-level and high-
level features to produce better segmentation results. However,
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Fig. 1. Structure of the proposed EU-Net.

the U-shaped based methods have some limitations. Firstly,
the multi-scale context information is not effectively extracted
and utilized. This information is essential when dealing with
targets with complex structures (breast masses) so that the
structure’s (masses) surroundings can be considered, and am-
biguous decisions can be avoided [18]. Secondly, the skip con-
nection at each stage of the U-shaped based methods [16], [17]
ignores the global context information and is an indiscriminate
combination of local information that introduces unnecessary
clutter and causes pixel misclassification.

Therefore, this work proposes an Enhanced U-shaped Net-
work (EU-Net) that comprises of Multi-Scale Feature Extrac-
tion and Fusion (MSFEF) and Skip Connection Reconstruction
(SCR) modules to overcome these two limitations. The illus-
trated version of the EU-Net is shown in Fig 1. For extracting
the multi-scale context information, the convolution stack used
in the standard U-shape network is replaced with dense-block
to extract the multi-scale feature at each stage in our proposed
EU-Net. After the multi-scaled feature extraction from the
last layer of the dense-block, the features are then passed to
the MSFEF module. The MSFEF module is embedded in the
junction between the encoder and the decoder to effectively
capture and fuse multi-scale context information. The MSFEF
module can then dynamically select appropriate receptive field
for masses through self-learning and fuse multi-scale context
information more effectively. To solve the second problem,
the SCR module merges the multi-stage global information
for reconstructing the skip connection. The SCR module is
placed at each stage of the network to fuse the global context
information extracted by the deeper layers of the network with
the local information extracted at the same stage. The SCR
module also guides global information flow to the decoder.
The main contributions of our work are summarized below:

• We propose a novel EU-Net that includes SCR and
MSFEF for segmenting breast masses efficiently in mam-
mogram and ultrasound imaging modalities.

• The MSFEF module, and the dense-block are proposed
to effectively exploit the multi-scale context information.

• The SCR module promotes global context information
flow to the decoder through skip connection.

• The extensive experimental results under different set-
tings indicate that our EU-Net not only achieves
higher segmentation performance than the state-of-the-
art (SOTA) models and other existing approaches on IN-
Breast [19] and CBIS-DDSM [20] mammogram datasets,
but also generalizes well on UDIAT [21] ultrasound
dataset.

The rest of the article is structured as follows: Section II
illustrates the proposed methodology, Section III presents the
results and discussion, and finally, Section IV concludes the
proposed work.

II. PROPOSED METHODOLOGY

The proposed EU-Net consists of four main components:
Encoder module, SCR module, MSFEF module, and Decoder
module. The encoder, and the decoder modules consists of
dense-block for capturing multi-scale features. These four
main components are explained below:

A. Encoder
With inspiration from the densenet [22], the proposed

encoder module is designed to: (a) extract more efficient
features from the input mammograms, (b) avoid the problem
of vanishing-gradients, and (c) reduce the number of training
parameters and over-fitting. Therefore, to achieve these, we
propose to use dense-blocks instead of convolutional blocks
at each stage of the standard UNet. The major difference
between the standard convolution block in UNet and the
dense-block is that the convolutional layers in the standard
convolution block take feature maps as input from the previous
one, whereas in dense-block the input to any layer is the
concatenated output of the preceding layers enabling feature-
reuse which is more advantageous. The proposed dense-block
consists of 5 convolutional layers as shown in Fig. 2, where
the first 4 convolutional layers use 3×3 kernels for extracting
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features layer-by-layer. And we use a 1× 1 kernel in the last
convolutional layer to restrict the number of output feature
maps from the dense-block to M, where M represents the
number of input, and output features of the dense-block.
After each convolutional layer, we use a Batch normalization
and Rectified Linear Unit (ReLU) layers for simplifying the
training process. The five convolutional layers in the dense-
block take M, 2M, 3M, 4M, and 5M feature maps as input,
and the output of the dense-block is M. In our case, in the
first dense block, the input is a mammogram image with one
channel, thus M = 1. As shown in Fig. 1, the encoder module
contains 4 dense-blocks. Instead of using a pooling operation
to downsample the feature map, we applied a stride of 2 to
the first convolutional layer of each dense-block in the encoder
module to reduce the feature map by half.

Fig. 2. Structure of the proposed dense-block.

B. SCR Module
The encoder extracts global context information from the

input mammogram images, including the surrounding objects.
However, such information is progressively diluted when grad-
ually transmitted to the shallow layers [23]. Furthermore, the
skip connection between the encoder and the decoder is prone
to introduce unnecessarily clutters and have segmentation gaps
due to the inconsistency of receptive fields. Therefore, to
address this problem, we design a SCR module (see Fig. 1).
In the SCR module, the skip connections are redesigned by
merging the feature maps of the deeper stages with the same
stage. For instance, Fig. 3 presents the SCR module of the
first stage.

Fig. 3. Structure of the proposed SCR module for stage 1.

This module works by employing 3 × 3 convolution to
map all stages’ feature maps into the same channel space
as stage 1. Then the generated feature maps F2, F3, and
F4 are upsampled to the size of F1 for concatenation. For
extracting the global context information from various levels of
feature maps, four dilated convolutions (ATconv 1, ATconv 2,
ATconv 3, ATconv 4) [24] with various atrous rates (2, 4, 8,
16) are employed in a parallel fashion. Finally, a convolution

operation is applied to obtain the final feature map. It has to
be noted that the number of parallel dilated convolutions and
the atrous rates vary depending on the number of stages to
be fused. The SCR module at any stage can be formulated as
follows:

SCROs = ©j=4
j=s(ATconv 2j−s(©j=4

j=s(FsU2j−s))) (1)

In Equation 1, © represents the concatenation operation,
Fs represents the feature map from encoder at sth stage,
ATconv 2j−s represents the atrous convolution with dilation
rate of 2j−s, U2j−s represents the upsampling operation with
rate of 2j−s, and SCROs represent the ouput of SCR module
at sth stage. In this work, the proposed EU-Net employs only
four SCR modules to reduce computational costs. By inserting
multiple SCR modules between the encoder and the Decoder,
the global context information from deep stages can be guided
to various stages.

C. MSFEF module
The multi-scale context information enhances the segmen-

tation performance. However, effectively integrating such in-
formation is difficult, but it is worth exploring. Therefore, we
design a MSFEF module to exploit multi-scale information.
This module is shown in Fig. 4.

Fig. 4. Structure of the proposed MSFEF module.

The MSFEF module consists of 4 parallel atrous convolu-
tions with dilation rates of 1, 2, 3, and 4 for capturing multi-
scale context information, followed by 3 cascaded Scale Atten-
tion (SA) blocks employing the spatial-attention mechanism.
These atrous convolutions have shared weights to achieve
faster convergence, and reduce the number of parameters. Then
we used SA blocks presented in Fig. 5 for fusing the multi-
scale information. These SA blocks employ spatial attention
mechanisms, as presented in Fig. 5, for dynamically choosing
the appropriate multi-scale features and fusing them through
self-learning. When two features, FS and FQ, with different
scales are passed to the SA block, a series of convolutions are
applied and features maps S, and Q ∈ RH×W are obtained,
where H , W represents the height, and width of the feature
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map. Secondly, a softmax operator is used to construct pixel-
wise attention maps AS , AQ. Then element-wise product
operations are performed between the multi-scale features
maps (FS and FQ) and their attention maps (AS and AQ).
The final fused feature map (Ffused) is obtained by adding
the resulting products. As shown in Fig. 4, we employ three
SA blocks to obtain the fusion feature of the four parallel
atrous branches. Finally, the output of the MSFEF module is
obtained by concatenating the fusion feature with the input
feature map through an auxiliary connection.

Fig. 5. Structure of the proposed SA block.

D. Decoder
As seen in Fig. 1, the decoder module consists of 4 dense-

blocks. At each stage, the global context information guided
by the SCR module is fused with the upsampled feature
maps from the succeeding stage. In this work, we used
deconvolution instead of upscaling. Because the deconvolution
employs a convolution operation to enlarge the image, which
could learn a self-adaptive mapping for restoring feature maps
with more detailed information. At the end of the last dense-
block in the decoder module, a 1 × 1 convolution layer and
a sigmoid layer are employed to project the multi-channel
feature-maps into desired segmentation mask.

E. Loss function
The proposed segmentation model is trained by minimizing

the joint loss function (JointLoss) consisting of dice loss and
the binary cross-entropy. This joint loss function is presented
as JointLoss = LBCE + LDICE where, LBCE , and LDICE

are the binary cross-entropy, and dice loss. These loss func-
tions are formulated below:

LBCE = − 1

N

N∑
j=1

[xj log(yj) + (1− xj)log(1− yj)] (2)

LDice = 1−
2
∑N

j=1 yjxj∑N
j=1 yj +

∑N
j=1 xj

(3)

In Equation (2)-(3), the xj ∈ [0, 1] represent the ground-
truth label of the jth pixel, where 1 means that pixel belongs
to the breast mass and 0 means that pixel belongs to the
background. The yj ∈ [0, 1] represent the class predicted by
the proposed EU-Net for the jth pixel. And N represents the
total number of pixels in an image.

F. Implementation details
Our network is programmed in Python using the PyTorch

library. All the experiments are conducted using NVIDIA
SCRU with 11 GB of on-chip memory. For optimization, the
Adam [25] optimizer is used. The initial learning rate is set
to 0.00001, which is further decreased by 1/25 for every 20
epochs. The proposed EU-Net is trained by 200 epochs, with a
batch size of 4. All the input images are resized to 256 × 256
resolution using inter-area interpolation in our experiments.
Since the datasets employed in this work are small, we em-
ployed several augmentation techniques, including horizontal
flipping, vertical flipping, random rotation, and translation, to
avoid the problem of over-fitting.

III. RESULTS AND DISCUSSION

A. Datasets
In this work, we employ two publicly available mammo-

gram datasets, namely CBIS-DDSM [20] and INBreast [19],
for evaluating our model. The CBIS-DDSM is a subset of
the Digital Database for Screening Mammography (DDSM)
[20], and it consists of 303 mammograms in DICOM format
with corresponding ground truths. The dataset provider has
already split the dataset into training and test sets consisting
of 242 and 62 images. These images are also categorized
based on the Breast-Imaging-Reporting-and-Data-System (BI-
RADS) scores. The number of images per BI-RADS score
is tabulated in Table I. We also employed the same split for
evaluating the proposed EU-Net. For configuring the hyper-
parameters, we used 10% of the training set to perform
validation experiments.

The INBreast dataset [19] is a Full Field Digital Mammog-
raphy (FFDM) dataset. This dataset consists of 410 mammo-
grams, among which 303 are normal cases, 72 are malignant
cases, and 35 are benign cases. We employed only mam-
mograms with breast masses (benign and malignant cases)
and corresponding ground truths in this work. The number of
images according to the BI-RADS score is presented in Table
I. Since there is no official data-split provided by the dataset
providers. We employed the 7:1:2 split (70% for training,
10% for validation, and 20% for testing) for evaluating the
proposed EU-Net. In addition to these two mammogram

TABLE I
BI-RADS SCORE IN CBIS-DDSM, AND INBREAST DATASETS.

Dataset BI-RADS score No. of images

CBIS-DDSM
[20]

1 91
2 159
3 40
4 13

INBreast
[19]

2 23
3 13
4 20
5 43
6 8

datasets, we employed one ultrasonic image dataset (UDIAT
[21]) to understand the generalization ability of the proposed
EU-Net. The UDIAT dataset consists of 163 ultrasound images
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with masses (110 benign, 53 malignant). All these images have
an average resolution of 760× 570 pixels.

B. Performance metrics
In this work, we employed both area-based and distance-

based metrics for evaluating the proposed EU-Net. The area-
based metrics, namely recall (REC), intersection over union
(IoU), dice coefficient (DC), and pixel accuracy (PA), are used
to compare the predicted segmentation result with the ground
truths. The metrics are formulated below:

REC =
TPseg

TNseg + FPseg
(4)

IoU =
TPseg

TPseg + FPseg + FNseg
(5)

DC =
2× TPseg

2× TPseg + FPseg + FNseg
(6)

PA =
TPseg + TNseg

TPseg + TNseg + FPseg + FNseg
(7)

In Equations 4-7, the TPseg represents the number of pixels
that are correctly classified as mass region, TNseg represents
the number of pixels that are correctly classified as back-
ground, the FPseg , and FNseg represents the number of pixels
that are wrongly classified as mass region and background.

The distance-based metrics are used to evaluate the segmen-
tation result regarding the predicted region’s shape accuracy.
The distance-based metrics, namely Hausdorff Distance (HD)
[26] and Mean Surface Distance (MSD) [27], are used in this
work. The metrics are formulated below:

MSD =
1

2
(
1

nb

∑
qϵsb

min
q ϵ sb

Ed(q, w)+
1

na

∑
wϵsa

min
w ϵ sa

Ed(q, w))

(8)
HD = max(max

q ϵ sb
min

w ϵ sa
Ed(q, w), max

w ϵ sa
min
q ϵ sb

Ed(q, w))

(9)
where the sa and sb represent the number of surface points,
Ed() represents the Euclidean distance, na and nb indicate the
surfaces of the predicted mask and ground truth.

C. Comparison with State-of-the-art models
We compared the performance achieved by our model

with 7 SOTA models namely UNet [28], DeepLabV3+ [29],
UNet++ [30], CE-Net [31], FCN [32], Attention U-Net [33],
and SENet [34] on the CBIS-DDSM, and INBreast datasets.
For a fair comparison, all these models are individually trained
and evaluated with the same hyperparameters, loss function,
and evaluation protocol on the two datasets.

1) Quantitative Comparison: The quantitative segmentation
results achieved by the proposed EU-Net and the SOTA
models on the INBreast dataset are tabulated in Table II. Our
model achieved superior performance in terms of PA, REC,
HD, and MSD over the SOTA models. Our model enhanced
the DC and IoU by 12.24% and 4.5% than the CE-Net [31]
(second-best performing model). Also, there is an enormous
reduction of HD and MSD by 6.82 mm and 3.37 mm than the
CE-Net [31]. The UNet [28] achieved the least segmentation

TABLE II
QUANTITATIVE RESULTS ON INBREAST DATASET.

Model HD
(mm)

MSD
(mm)

PA
(%)

REC
(%)

IoU
(%)

DC
(%)

SENet [34] 31.46 7.69 98.23 81.21 71.25 78.86
Attention
U-Net [33] 19.52 5.77 98.86 79.19 72.79 82.22

FCN [32] 24.59 6.42 98.64 75.92 73.47 79.28
CE-Net [31] 16.24 4.72 99.15 83.59 80.12 81.81
UNet++ [30] 17.93 5.25 98.94 77.84 72.46 80.14
UNet [28] 32.61 8.26 97.63 69.64 68.43 74.22
DeepLabV3+ [29] 29.57 7.01 98.47 74.81 70.69 76.92
Ours 9.42 1.35 99.85 86.30 84.62 94.05

performance with DC, IoU, and REC scores being lower than
75%, 70%, and 70% respectively.

Table III presents the segmentation results achieved by the
models on the CBIS-DDSM dataset. Our model achieved the
highest performance in terms of all the performance metrics
considered. This accounts for an increase of 0.67% PA, 3.26%
REC, 9.07% DC, and 18.29% IoU, and a decrease in HD and
MSD by 7.05 mm and 0.78 mm than the CE-Net [31]. The
least performance is achieved by UNet [28].

TABLE III
QUANTITATIVE RESULTS ON CBIS-DDSM DATASET.

Model HD
(mm)

MSD
(mm)

PA
(%)

REC
(%)

IoU
(%)

DC
(%)

SENet [34] 23.89 2.76 98.02 81.71 69.37 75.88
Attention
U-Net [33] 19.53 1.57 99.25 87.34 72.39 79.98

FCN [32] 20.74 2.06 99.39 82.03 70.42 78.63
CE-Net [31] 18.52 1.05 99.22 86.39 73.18 85.51
UNet++ [30] 19.12 1.09 99.18 87.12 71.57 77.95
UNet [28] 24.29 2.95 97.05 79.56 68.49 71.63
DeepLabV3+ [29] 21.54 2.51 98.63 83.49 71.42 78.18
Ours 11.47 0.27 99.89 89.65 91.47 94.58

In these 2 experiments our model achieved very high DC
values (i.e., 11.83% and 9.07%) compared to other models.
The experimental results from Tables II and III indicate that
the proposed EU-Net can work better and is more robust and
effective than the given 7 SOTA models.

2) Qualitative comparison: The visual segmentation results
achieved by the proposed EU-Net and the SOTA models
on mammograms from INbreast [19] and CBIS-DDSM [20]
datasets are presented in Fig. 6. The red and yellow contours
indicate the ground truth and the region predicted by the
models respectively. From Fig. 6, we can observe that the
proposed EU-Net can segment the breast masses of smaller
sizes, whereas the other SOTA models failed. Among the
SOTA models, CE-Net, and UNet++ produced better seg-
mentation results, but Attention U-Net, DeepLabV3+ slightly
over-segmented the background, and SENet slightly under-
segmented the breast lesion. The UNet produced very poor
segmentation results by over-segmenting the background and
under-segmenting the lesion in several cases. From Fig. 6,
we can understand that the proposed EU-Net is not sensitive
to glandular tissue and high-density mass compared to SOTA
models. These results show that the proposed EU-Net can
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Fig. 6. Qualitative comparison with SOTA models on CBIS-DDSM, and INBreast datasets; the pink, and the blue arrows indicates the glandular
tissue, and dense mass in the breast mammograms.

produce high precise segmentation results by adapting to
complex characteristics of masses, including varying sizes and
fuzzy boundaries.

D. Comparison with existing approaches
We compared the performance achieved by the proposed

EU-Net with the existing approaches, namely ARF-Net [35],
FS-Unet [36], Li et al. [14], ACMSCNet [37], Connected
ResUNets [38], DS U-Net [16], and MNPNet [12] on the
INBreast, and CBIS-DDSM datasets. These approaches em-
ployed different evaluation protocols: ARF-Net [35], Li et al.
[14], and DS U-Net [16] employed the official train/test split
provided in the dataset, whereas FS-Unet [36], ACMSCNet
[37], Connected ResUNets [38] employed customs data-splits.
And all these approaches [14], [16], [35]–[38] used the full
mammogram image as input, except the MNPNet [12]. The
MNPNet used the mass-centered RoI’s as input. Therefore we
re-evaluated our model with those evaluation protocols, and
input types for a fair comparison.This comparison is presented
in Table IV, and Table V. As seen in Table IV, and V, the
proposed EU-Net outperformed all the existing approaches in
their respective evaluation protocols. As recall be considered to
be the most important metric in medical image segmentation,
our model phenomenally enhanced the recall on both the
datasets. This shows the effectiveness of the proposed EU-Net
in segmenting breast masses from mammogram images.

E. Ablation study

To evaluate the efficiency of the proposed SCR and MSFEF
modules, we performed several ablation experiments on the
test set on CBIS-DDSM [20]. For convenience, we term the
standard UNet [28] as the baseline model. The results of all
the ablation experiments are tabulated in Table VI.

TABLE IV
QUANTITATIVE COMPARISON (%) WITH EXISTING APPROACHES

EMPLOYING INBREAST DATASET. THE * REPRESENTS THAT THE MODEL

IS TRAINED, AND TESTED USING THE MASS CENTERED ROI’S.

Methods Evaluation
protocol PA REC DC

ARF-Net [35] 5-fold 99.11 83.00 85.06
FS-UNet [36] 5-fold 99.19 79.31 84.57
Li et al. [14] 70:10:20 - - 93.69
MS-ResCU-Net [39] 3 fold 94.16 93.11 91.78
ACMSCNet [37] 5-fold 99.66 85.91 84.11
Connected
ResUNets [38] 70:10:20 93.03 - 89.52

DS U-Net [16] 5-fold 99.00 81.10 78.60
MNPNet [12] * 50:10:40 - - 91.10

Ours
5-fold 99.73 89.49 87.63
70:10:20 99.85 86.30 94.05
3-fold 96.29 93.62 93.58
50:10:40 93.57 92.83 94.31
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TABLE V
QUANTITATIVE COMPARISON (%) WITH EXISTING APPROACHES ON

CBIS-DDSM DATASET. THE * REPRESENTS THAT THE MODEL IS

TRAINED, AND TESTED USING THE MASS CENTERED ROI’S.

Methods Evaluation protocol PA REC DC

ARF-Net [35] Official split 99.80 88.91 85.75
FS-Unet [36] 80:10:10 99.80 85.47 84.19
Li et al. [14] Official split - - 92.27
ACMSCNet [37] 70:10:20 99.84 84.77 82.81
Connected
ResUNets [38] 70:10:20 86.91 - 89.52

DS U-Net [16] Official split 99.70 83.10 82.70
MNPNet [12] * 50:10:40 - - 91.69

Ours

Official split 99.89 89.65 94.58
80:10:10 99.90 86.96 85.72
70:10:20 99.89 85.69 90.42
50:10:40 93.54 90.41 95.26

TABLE VI
RESULTS OF THE ABLATION EXPERIMENTS.

Model REC
(%)

DC
(%)

IoU
(%)

baseline (UNet [28]) 79.56 71.63 68.49
baseline + Dense-block 81.62 76.59 79.18
baseline + SCR no-atrous 82.48 80.31 83.54
baseline + SCR 83.58 88.15 87.18
baseline + MSFEF no-atrous 80.17 81.49 80.57
baseline + MSFEF no-SA 81.58 81.62 82.59
baseline + MSFEF no-weight sharing 82.06 83.14 82.63
baseline + MSFEF 84.79 86.35 83.15
baseline + MSFEF + SCR 83.95 81.46 84.51
baseline + Dense-block + MSFEF 85.98 88.57 87.95
baseline + Dense-block + SCR 84.26 89.21 89.67
baseline + Dense-block +
SCR + MSFEF (no-weight sharing) 85.27 92.16 87.38

baseline + Dense-block +
SCR + MSFEF (Ours) 89.65 94.58 91.47

1) Evaluating the effectiveness of the dense-block: To
demonstrate the effectiveness of the proposed dense-block,
we conducted an experiment by adding dense-block to the
baseline and compared the performance achieved by this
baseline + dense-block with the baseline. As seen in Table
VI, after embedding the proposed dense-block there is an
enhancement of 2.06% of REC, 4.96% of DC, and 10.69%
of IoU.

2) Evaluating the effectiveness of the SCR module: For
evaluating the effectiveness of the proposed SCR module, we
conducted several experiments by adding the SCR module to
the baseline model and by adding the SCR module without
parallel atrous convolutions (SCR no-atrous in Table VI).
As shown in Table VI, the addition of the SCR module to
the baseline model has shown considerable improvements in
terms of all the performance metrics considered. And the
performance achieved by the SCR no-atrous model is poor
than the baseline with the SCR module. This shows that the
parallel atrous convolutions with variant atrous rates are more
advantageous for extracting global information.

3) Evaluating the effectiveness of the MSFEF module: To
evaluate the MSFEF module’s effectiveness, we conducted
several experiments by adding the MSFEF module to the
baseline, adding the MSFEF module without atrous con-

volution (MSFEF no-atrous in Table VI), adding MSFEF
without SA block (MSFEF no-SA), and adding the MSFEF
module without shared-weights (MSFEF no-weight sharing
in Table VI). Compared with the baseline, the addition of
the MSFEF module resulted in the enhancement of 5.23%
of REC, 14.72% of DC, and 14.66% of IoU, respectively.
This indicates that the proposed MSFEF module can fuse
multi-scale context information dynamically. While employing
MSFEF no-atrous in the baseline, there is a depreciation of
4.62% of REC, 4.86% of DC, and 2.58% of IoU, respectively,
when compared with the baseline with MSFEF. This shows the
necessity of extracting multi-scale information. The addition
of MSFEF no-SA in the baseline decreased the REC by
3.21%, DC by 4.73%, and IoU by 0.56%, respectively, when
compared with the baseline with MSFEF. In addition to these
experiments, we also evaluated the effect of weight-sharing
in the MSFEF module. As seen in Table VI, we observe that
the model with MSFEF module with weight-sharing enhanced
the REC, DC, and IoU by 2.73%, 3.21%, 0.52% respectively,
when compared with the baseline with MSFEF no-weight
sharing. This implies that the dynamic selection of multi-scale
context information, and weight-sharing between the layers
is advantageous for accurate breast lesion segmentation. In
addition to these experiments, we also evaluated the impact of
weight-sharing on the entire network. We observed that when
the entire network is trained without weight sharing in the
MSFEF module, it achieved an REC, DC, and IoU of 85.27%,
92.16%, and 87.38% respectively. After using weight sharing,
the network had an improvements of 4.38% of REC, 2.42%
of DC, and 4.09% of IoU. All these experiments indicate
that the proposed MSFEF module enhances the segmentation
performance by taking advantage of the scale-attention and
multi-scale information fusion.

F. Performance achieved for different BI-RADS scores of
mammograms.

Breast density plays an important role in mass segmenta-
tion [40]. In practice, a higher BI-RADS score indicates a
higher percentage of glandular tissue in the breast, making
the segmentation process more difficult [41]. For presenting
the efficiency of the proposed work, we compared the DC
achieved for each BI-RADS score with the SOTA models (see
Table VII). From Table VII, it can be noted that with the
increase in the BI-RADS score, there is a gradual decrease
in the DC. This indicates that the mass density significantly
affected the segmentation performance. But when compared
with SOTA models, the DC achieved by our EU-Net model
in all BI-RADS scores is higher on both datasets.

We also compared the DC evaluation with existing ap-
proaches. However, in the existing approaches, only the FS-
Unet [36] presented the BIRADS score specific to DC evalua-
tion, therefore we only employed this method for comparison.
This comparison is presented in Table VIII. The same pattern
of decrease in DC with increase in BI-RADS score is found in
DC achieved by the FS-Unet [36]. However, the DC achieved
by our model is higher than the ARF-Net. Especially, the
DC was enhanced by 9.65% for mammograms with BI-RADS
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TABLE VII
BI-RADS SCORE SPECIFIC DC (%) COMPARISON WITH SOTA MODELS.

Dataset BI-RADS score SENet [34] Attention
U-Net [33] FCN [32] CE-Net [31] UNet++ [30] UNet [28] DeepLabV3+ [29] Ours

INBreast
[19]

2 83.97 84.51 83.42 85.91 82.38 76.79 80.19 97.92
3 80.52 84.22 80.18 83.42 81.54 75.92 78.85 95.39
4 78.47 83.69 78.94 81.24 80.67 74.36 76.72 95.04
5 76.79 81.32 77.07 80.06 78.49 73.24 75.62 94.62
6 74.56 77.37 76.83 78.45 77.65 70.19 73.26 87.29

CBIS-DDSM
[20]

1 81.32 82.35 81.94 87.79 80.13 74.59 81.49 93.32
2 80.63 80.62 80.18 86.94 78.92 72.31 79.82 92.31
3 77.91 78.91 76.83 85.40 77.06 70.52 76.78 89.03
4 75.67 78.05 75.59 81.92 75.69 69.13 74.65 87.04

TABLE VIII
BI-RADS SCORE SPECIFIC DC (%) COMPARISON WITH EXISTING

APPROACHES.

Dataset BI-RADS FS-Unet [36] Ours

INBreast [19]

2 - 97.92
3 - 95.39
4 - 95.04
5 - 94.62
6 - 87.29

CBIS-DDSM [20]

1 84.65 93.32
2 86.61 92.31
3 81.82 89.03
4 77.39 87.04

score of 4, compared with FS-Unet. This shows the efficiency
of our model in segmenting breast masses from mammograms
than the other models, and existing approaches.

G. Statistical significance assessment

We further performed the paired t-test to understand the
performance enhancement by the proposed EU-Net over the
other SOTA models on the two datasets. The p− values are
presented in Table IX. In this work, we used the Bonferroni
correction [42] in our experiments to adjust the α value. The
orginal α was 0.05, but after performing 7 experiments, the
adjust α equals to 0.007, i.e., (≈ 0.05

7 ). Since all the p−values
of DC, and IoU on the two datasest are less that 0.007, the
improvements are statistically significant. These results show
the effectiveness of the proposed EU-Net.

TABLE IX
STATISTICAL SIGNIFICANCE ANALYSIS OF THE PROPOSED EU-NET

WITH SOTA MODELS.

Network CBIS-DDSM INBreast

DC IoU DC IoU

EU-Net-SENet 0.0004 0.0002 0.0005 0.0006
EU-Net-Attention U-Net 0.0014 0.0016 0.0019 0.0015
EU-Net-FCN 0.0010 0.0009 0.0014 0.0013
EU-Net-CE-Net 0.0023 0.0027 0.0037 0.0030
EU-Net-UNet++ 0.0017 0.0018 0.0025 0.0020
EU-Net-UNet 0.0001 0.00005 0.0002 0.0003
EU-Net-DeepLabV3+ 0.0009 0.0006 0.0005 0.0006

TABLE X
COMPUTATIONAL COMPLEXITY COMPARISON WITH SOTA MODELS.

Model FLOPS
(G)

Parameter
(M)

Inference time
(ms)

Memory
(MB)

SENet 35.8 23.4 190 301.5
Attention U-Net 45.3 32.3 372 406.1
FCN 27.6 18.6 166 217.7
CE-Net 41.6 29.0 259 385.8
UNet++ 38.4 26.2 231 341.6
UNet 33.7 21.4 185 274.6
DeepLabV3+ 56.0 40.9 462 486.5
Ours 94.0 62.1 521 566.4

H. Computational complexity
We computed the computational complexity of our model

in terms of floating-point operations per second (FLOPS), the
number of model parameters, and the average interface time
per input mammogram image. As we have re-trained, and eval-
uated the SOTA models, we have computed the computational
complexity of those models as well. And compared them with
the proposed model, this comparison is presented in Table X.
As seen in Table X, our model was more computationally
expensive compared to the SOTA models. Among the SOTA
models, FCN has the least computational complexity. We agree
that our model is computationally expensive compared to other
SOTA models, but in medical informatics, the performance of
the models is very important [43], [44] as they deal with the
lives of the patients. When compared with FCN, our model
achieved significant performance improvements in terms of
HD, MSD, PA, REC, IoU, and DC on both mammogram
datasets.

I. Generalization ability
To evaluate the proposed EU-Net’s generalization ability,

we performed two sets of experiments. The first one is cross-
dataset evaluation, where the model is trained on the training
set of dataset 1 and tested on the test of dataset 2 and vice-
versa. And the second one is training and testing the model on
the tertiary dataset with different modality without any hyper-
parameter tuning or structural modifications. The experimental
results are illustrated below:

1) Cross-dataset evaluation: As discussed above, the model
trained on the training set of CBIS-DDSM is tested on the
test set (i.e., 20% of the images) of the INBreast dataset. And
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the model trained on the train set of INbreast (70% of the
images) is tested on the test set of the CBIS-DDSM dataset.
To verify the proposed EU-Net’s effectiveness, we compared
its performance with SOTA models with the same train-test
setting. This comparison is tabulated in Tables XI, and XII.
Our model achieved better performance than the SOTA models
in both settings.

2) Tertiary dataset evaluation: We used breast ultrasound
UDIAT dataset [21] to evaluate our model on a different
modality as done in [36]. The UDIAT dataset didn’t have
any official data split, so we employed the standard 5-fold
cross-validation. We compared the quantitative performance of
the SOTA models on the UDIAT dataset employing the same
evaluation protocol. The quantitative comparison is presented
in Table XIII. The proposed EU-Net outperformed the SOTA
models in all four performance metrics.

TABLE XI
CROSS-DATASET EVALUATION ON INBREAST.

Model HD
(mm)

MSD
(mm)

PA
(%)

REC
(%)

IoU
(%)

DC
(%)

SENet [34] 18.48 4.93 97.11 83.66 78.94 83.35
Attention
U-Net [33] 27.04 6.32 96.29 82.39 77.35 81.46

FCN [32] 23.38 5.86 96.74 81.44 79.93 83.01
CE-Net [31] 13.24 3.56 97.15 84.56 79.54 83.42
UNet++ [30] 26.91 5.99 96.38 87.35 77.47 81.63
UNet [28] 27.81 6.93 96.15 85.36 74.69 79.55
DeepLabV3+ [29] 14.69 4.24 97.13 84.04 79.34 82.34
Ours 6.82 2.96 98.85 89.38 83.59 85.32

TABLE XII
CROSS-DATASET EVALUATION ON CBIS-DDSM.

Model HD
(mm)

MSD
(mm)

PA
(%)

REC
(%)

IoU
(%)

DC
(%)

SENet [34] 13.84 5.73 98.86 83.59 71.95 83.81
Attention
U-Net [33] 15.69 6.37 98.41 84.22 71.35 83.53

FCN [32] 20.48 7.03 97.69 85.15 71.33 81.16
CE-Net [31] 11.29 4.59 99.12 86.79 72.81 84.49
UNet++ [30] 23.57 7.41 97.55 83.46 70.49 80.14
UNet [28] 25.62 7.89 96.39 79.63 67.58 77.37
DeepLabV3+ [29] 17.41 6.94 98.25 85.98 70.49 82.46
Ours 5.37 3.51 99.84 89.41 74.51 87.38

TABLE XIII
QUANTITATIVE COMPARISON: SOTA MODELS ON UDIAT.

Model HD
(mm)

MSD
(mm)

PA
(%)

REC
(%)

IoU
(%)

DC
(%)

SENet [34] 15.47 3.59 97.81 86.69 77.29 84.23
Attention
U-Net [33] 13.27 3.21 98.78 88.42 80.44 88.18

FCN [32] 15.04 3.53 98.03 84.06 78.37 82.39
CE-Net [31] 18.29 3.69 97.35 82.46 76.81 80.63
UNet++ [30] 14.62 3.35 98.16 85.28 79.05 81.45
UNet [28] 20.59 4.91 98.31 85.66 79.36 82.51
DeepLabV3+ [29] 23.15 5.67 97.23 80.52 76.13 77.41
Ours 8.35 2.48 99.20 90.57 83.23 89.71

In addition to the quantitative comparison, the qualitative
comparison of tertiary dataset evaluation is presented in Fig.

TABLE XIV
QUANTITATIVE COMPARISON: EXISTING APPROACHES ON UDIAT.

Methods Evaluation protocol DC
(%)

REC
(%)

Singh et al. [45] 70:10:20 86.82 91.55
Haung et al. [46] 65:15:20 82.40 -
Lee et al. [47] 10 fold 76.58 80.41
ARF-Net [35] 5 fold 88.12 89.44

Ours

5 fold 89.71 90.57
10 fold 90.47 92.18
70:10:20 90.52 93.68
65:15:20 88.62 88.41

7. The red and green contours represent the ground truth and
the predicted masks. As seen in Fig. 7, the predicted masks
of the proposed EU-Net are close to the ground truths. In
contrast, all 7 SOTA models reported over-segmentation or
under-segmentation of breast masses. The Attention U-Net
[33] achieved the second-best qualitative performance of the
7 SOTA models. Major over-segmentation is produced by
SENet [34], CE-Net [31]. Among the 7 SOTA models, the
FCN [32], DeepLabV3+ [29], and UNet [28] produced under-
segmentation results. And the least performance was achieved
by the U-Net.

We also compared the performance achieved by our EU-Net
with the existing approaches. This comparison is tabulated in
Table XIV. For a fair comparison we re-evaluated our work
with the evaluation protocol used by the existing approaches.
As seen in Table XIV, the proposed EU-Net outperformed all
the existing approaches. This shows the powerful generaliza-
tion ability of our model.

J. Limitation of the proposed EU-Net

Even though the proposed EU-Net has achieved excellent
performance in mass segmentation on INBreast and CBIS-
DDSM datasets, it has achieved limited segmentation accuracy
on a few individual cases. For example, two cases are pre-
sented in Fig 8. In Fig 8(A), the breast mass occupies very little
space in the whole mammogram, in Fig 8(B), the brightness
of the surrounding fibroglandular tissue is the same as the
breast mass. These cases are very challenging not only for the
proposed EU-Net model but also for the other segmentation
models reported in the literature.

IV. CONCLUSION

In this work, we propose an efficient deep learning frame-
work, EU-Net, for the segmentation of masses from digital
mammograms. The proposed EU-Net is designed by embed-
ding dense-blocks and MSFEF, into the standard U-shaped
network to extract, and fuse rich multi-scale information about
the masses from the input mammograms. In addition, the SCR
module is embedded into EU-Net for redesigning the skip
connection for avoiding the ignorance of the global context
information which is efficient for accurate mass segmentation.
We have experimented EU-Net on 2 publicly available datasets
namely INBreast, and CBIS-DDSM. We have compared the
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Fig. 7. Qualitative comparison with SOTA models on UDIAT dataset.

Fig. 8. Limited segmentation performance of the proposed EU-Net; the
brown arrow shows the fibroglandular tissue.

performance achieved by EU-Net with 7 SOTA models in-
cluding CE-Net, FCN, Attention U-Net, UNet++, SENet,
DeepLabV3+, and UNet, and also with the existing works
reported in the literature. The experimental results indicate
that the EU-Net has outperformed the SOTA models and the
existing approaches on both datasets. It is to be noted that the
EU-Net outperformed the SOTA models with a huge difference
in DC by 11.83% on the INBreast, and 9.07% on the CBIS-
DDSM datasets.

In addition to this, we also evaluated the generalization abil-
ity of our model by performing the cross-dataset evaluation,
and tertiary dataset evaluation. For terinary dataset evaluation,
we used the UDIAT breast ultrasound dataset. Experimental
results indicates that the proposed model out-performed the
SOTA models, and existing approaches in ternary dataset eval-
uation, and SOTA models in cross-dataset evaluation. These
experiments collectively indicate the improved efficiency and
high generalization ability of the proposed EU-Net. In the
future, we will be extending our work to segment other organs
from different modalities.
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