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1  Introduction
Urban areas are characterised by a high population density and built 
infrastructure. According to a global, people-based definition, urban centres 
are places with at least 1500 inhabitants per square kilometre and a total 
population of at least 50 000 people (EC, 2022). For the first time in history, in 
2007, more people lived in urban than in rural areas with the urban population 
expected to reach 60.4% of the global population by 2030 (UN-Habitat, 2020). 
Urban soils are vital components of urban ecosystems (Li et al., 2018), although 
urbanisation also leads to soil loss following the construction of buildings and 
(grey) infrastructures.

Given continued urban growth, urban soils are becoming increasingly 
important for the ecosystem services they can deliver (O’Riordan et al., 2021). 
These range from potential roles in improving air quality, water quality and 
management, recreational services, through to organic carbon sequestration 
to combat climate change (Jansson, 2013). Promoting ecosystem services 
includes a diverse range of practices to improve soil structure and organic 
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matter content, for example, through bioremediation of degraded soils, 
adding compost or biosolids or planting vegetation (Logsdon et al., 2017). 
Enriching urban soils with organic matter requires putting the focus on 
recycling waste materials within urban areas under the framework of a circular 
economy rather than relying on importing organic matter from outside. 
Indeed, it has recently been suggested that locally available resources should 
be used to restore soils and to revitalize metropolitan areas for improving 
the overall quality of life for a rapidly growing urban population (Kumar and 
Hundal, 2016).

Urban soils may have substantial soil organic carbon (SOC) storage 
potential per unit area (Pouyat et al., 2006). Data from 116 cities worldwide 
showed that the total carbon (C) content of urban soils was 1.5–3 times higher 
and that SOC storage occurred at greater depth than in some rural mineral 
soils, particularly in residential areas (Mazurek et al., 2016; Vasenev and 
Kuzyakov, 2018). Urban soils also contain substantial amounts of inorganic C 
and have been identified as global hotspots in terms of soil C storage, partly 
because they may have the potential to gain or lose C rapidly (Riddle et al., 
2021). Some types of urban structures and carbon types, which may be found 
in urban environments, are shown in Fig. 1.

This chapter aims to present the urban soil and carbon types and 
the management of SOC sequestration in different urban infrastructures. 
We will analyse SOC sequestration in man-made and semi-natural (infra-)
structures. In the context of a circular economy, this chapter also addresses 
the use of recycling strategies of urban waste materials to foster SOC 
sequestration.

Grey infrastructures

• Water retention systems
• Roads
• Piplines

Green infrastructures

• Parks, gardens, lawns
• Urban forests
• Community gardens
• Green roofs
• Bioretention systems

Urban infrastructures

Carbon types

• Inorganic C (SIC)
• Organic C (SOC)
• Plant litter
• Compost
• Black C
• Plastic
• Organic contaminants

Figure 1 Infrastructures and carbon types, which may be found in an urban context.
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2  Characteristics of soils in urban environments
Urban soils created as part of the process of urbanisation are strongly affected 
by human activities and are typically heterogeneous in structure, composition 
and properties (Rossiter, 2007; Lorenz and Lal, 2015). They were defined as a 
continuum depending on the degree of anthropogenic alterations ( Pouyart and 
Treammell, 2019) and are included in soil classification systems as Technosols 
and Anthrosols (WRB, 2014). Human activity influences urban soils through 
material movement and redistribution, transport and deposition, introduction 
of man-made materials and accumulation of toxic compounds (Burghardt et al., 
2015). Urban soils include a wide range of different soil types. Relict ‘native’ soil 
is presently protected from urban development, in green, semi-natural spaces 
such as parks and urban forests. These areas may contain a mix of local and 
imported soils designed to support trees and other plants. Additionally, urban 
soils may be composed of highly heterogeneous combinations of materials 
resulting from building or industrial activity. These may be characterized by 
a high content of synthetic materials such as glass, metal, plastic and so on, 
frequently with high levels of chemical contamination (Craul, 1985; Li et al., 
2018; Sager, 2020; O’Riordan et al., 2021). The latter types of soil are usually 
characterised by disturbed structure, high compaction, reduced pore space, 
limited moisture, higher average temperature and pH, high levels of toxic 
pollutants, low organic matter content and limited vegetation cover (Craul, 
1985). In general, urban soilscape is complex and influenced by past and current 
human interventions, pre-urban geomorphology and hydrography (Delbecque 
et al., 2022). A recent study concluded that urban soils are global hotspots of 
soil C sequestration due to high stocks and accumulation rates (Vasenev and 
Kuzyakov, 2018). Different forms of C with contrasting stability and functions are 
present in urban soils. They include SOC derived from plant litter, soil inorganic 
carbon (SIC), black carbon derived from combustion processes and xenobiotic 
carbon – such as plastics – polycyclic aromatic hydrocarbons and other organic 
pollutants (Fig. 1). Management of soil C in these systems is thus complex but 
relates in many cases to best management practices recommended for soils in 
rural areas (refer to Chapters 15–23 of this book).

3  Fostering soil organic carbon sequestration in urban 
infrastructures

In urban areas, two types of infrastructures are present (Fig. 1): (1) grey 
infrastructures, which are engineered structures that use concrete and steel and 
generally seal floors; and (2) green infrastructures, which comprise natural, semi-
natural and artificial areas for vegetation with and without trees (such as parks, 
gardens and road-side verges) and also man-made systems such as bioretention 
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systems and green roofs (Tzoulas et al., 2007). Management activities to foster 
SOC sequestration need to be specific in each of these different infrastructures.

3.1  Grey infrastructures

Construction of buildings and infrastructure such as roads often leads to 
sealing of the soil surface with impervious materials such as concrete or tarmac 
(Scalenghe and Marsan, 2009). Such sealing largely influences biogeochemical 
cycling and soils under impervious surfaces are often depleted in SOC 
compared to open soils (Raciti et al., 2012; Wei et al., 2014). Soil organic 
carbon losses may occur following decomposition of organic matter beneath 
the impervious surface or through topsoil removal and erosion during the 
construction process (Wei et al., 2014). Sealing disrupts the complex interactions 
between the atmosphere, plants and soil, reducing the capacity of the soil to 
deliver ecosystem services such as reducing runoff, filtering pollutants and 
sequestering SOC.

Therefore, soil sealing should be avoided and wherever possible, semi-
pervious materials such as gravel, stone aggregates, porous asphalt or wood 
chip should be used to allow for water infiltration and potential plant growth 
(Scalenghe and Marsan, 2009). It has been shown that de-sealing can favour 
SOC storage and other soil ecosystem services by rapid recovery of physical, 
chemical and biological properties following the establishment of pioneer 
vegetation (Renella, 2020).

3.2  Gardens, parks, street trees and lawns

Urban parks, gardens and lawns are often established on natural soils, which 
had been present before urbanisation or had been imported from rural areas. 
These green infrastructures are usually managed by regular cutting (and 
disposal of cuttings), weed removal (often using herbicides), irrigation and 
application of synthetic fertilisers. These intensive management practices 
have environmental costs and trade-offs for SOC sequestration (Chapter 6 of 
this book). For example, an evaluation of SOC sequestration and greenhouse 
gas (GHG) emissions from turfgrass in athletic fields and ornamental lawns 
in urban parks found that GHG emissions through fuel use from machinery, 
fertilisation and irrigation outweighed SOC sequestration (Townsend-Small and 
Czimzik, 2010). In addition, taking organic matter out of the system, following 
management activities such as mowing and removal of grass clippings and/
or cleaning measures such as tree leave removal in autumn, was also found to 
reduce SOC contents (Yoon et al., 2016).

In order to manage SOC in parks, gardens and lawns sustainably, semi-
natural gardens and lawns requiring less intensive management should be 
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established. High tree density has been found to be related to SOC storage 
(Mexia et al., 2018). More sustainable practices include retention of plant 
litter such as tree leaves and grass cuttings to provide continuous soil cover, 
improving moisture retention and nutrient cycling which likely also reduces the 
need for irrigation and fertilisation. Soil organic carbon storage in park soils may 
be enhanced by appropriate management of plant litter. Where grass clippings 
and tree leaves are not contaminated (e.g. by pollutants from traffic emissions), 
organic waste treatments such as composting can be used. Increased SOC 
storage was, for example, achieved in the Seoul Forest Park, where litter was 
added back to soils after composting (Bae and Ryu, 2015).

3.3  Urban forests

Urban forests provide a variety of essential ecosystem services, including 
decreasing air, water and noise pollution, mitigating flood risk and providing 
recreational areas (Escobedo et al., 2011; Roy et al., 2012). Organic carbon 
sequestration is a climate change mitigation service of urban forests in addition 
to their function of reducing the urban heat island effect (Kleerekoper et al., 
2012). While some studies have shown that total SOC storage in urban forests 
is similar to those of rural ones (Pouyat et al., 2002), other studies found that 
SOC sequestration is depending on tree density (Lv et al., 2016). Moreover, 
more significant proportions of recalcitrant C have been found in urban forest 
soils than in rural ones due to poorer quality leaf litter, enhanced mineralisation 
of readily available SOC due to non-native earthworms and higher soil 
temperatures (Groffman et al., 1995). According to Pouyat et al. (2002), urban 
forests could potentially sequester and store more SOC than rural forests.

While relatively few studies exist that specifically address soil C management 
in urban forests, their higher SOC stocks compared to those of other urban sites 
may partly be explained by their age and a management legacy of wastewater 
irrigation, liming and charcoal application (Foti et al., 2021). Long-term studies 
of forest management strategies of rural forests recommend increasing 
productivity, for example, through afforestation and planting of fast-growing 
tree species, which have immediate effects on SOC sequestration (Jandl et al., 
2007, Chapter 19 of this book); however, in an urban context, environmental 
and political constraints may limit such practices. For example, the presence 
of construction materials leading to high carbonate contents, limited water 
storage capacity and/or presence of pollutants in urban soils may limit the 
species able to grow under such conditions. Sustainable forest management 
after their establishment should include minimal disturbance of stand structure 
and soils to promote SOC retention (Jandl et al., 2007, Chapter 19 of this book).

Application of compost and/or mulching could increase urban forest SOC 
storage (Brown et al., 2012; Beesley, 2012), as could biochar; however, it is not 
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known how management practices might impact inorganic C from carbonate 
reactions (Lorenz and Lal, 2015).

3.4  Green roofs

Green roofs, green walls and vertical gardens have been introduced into 
building environments because of their positive effects such as insulation, air 
quality, soundproofing and as a way of improving the ecological footprint of 
cities (Getter et al., 2009).

They can also be used to sequester SOC. It has been found that green roofs 
can potentially store about 375 g m2 SOC with substrate contributing to about 
one-third of the storage (Getter et al., 2009). This highlights the importance of 
the type and depth of the growth substrate as well as the proportion of inorganic 
and organic materials used when generating the substrate (Lata et al., 2018). 
A 10–20% organic component seems optimal for plant growth (Ondono et al., 
2016). Local waste materials such as compost and municipal sewage sludge 
have been used for green roof construction in the UK (Molineux et al., 2009) 
and China (Luo et al., 2015). The addition of sewage sludge to the substrate 
increased SOC sequestration up to 13 kg SOC per m2 (Luo et al., 2015).

It is important to take the impact of management intensity into account. 
Extensive green roofs are light weighted and typically support herbal vegetation 
on shallow substrates requiring minimal maintenance. Intensive green roofs are 
heavier with a deeper layer of growing substrate to support a wider variety of 
plant types, including shrubs and trees (Besir and Cuce, 2017). Soil organic 
carbon storage may thus be higher in intensively managed green roofs but 
may also require more external inputs in terms of irrigation, fertilisation and 
overall maintenance, thus also increasing the trade offs of SOC sequestration 
(Chapter 6 of this book).

Whilst green roofs have been widely used in temperate regions such 
as Northern Europe, their use in arid regions (such as the Mediterranean) is 
more challenging without potentially intensive irrigation (with its associated 
environmental costs). One potential solution is the use biocrusts, desert-based 
communities composed of a complex mosaic of cyanobacteria, green algae, 
lichens, mosses, microfungi and other bacteria. These are well adapted to 
survive drought conditions with minimal substrates and may be suited for SOC 
sequestration on green roofs in drier climates (Paço et al., 2014).

3.5  Bioretention systems

Bioretention systems are used to channel, retain and purify rainwater. They 
use vegetation to moderate water flow and act as a filter to improve water 
quality. Cities such as New York have invested significantly in these systems  



© Burleigh Dodds Science Publishing Limited, 2023. All rights reserved.

Management of soil carbon sequestration in urban areas 7

(The City of New York, 2010; Joyner et al., 2019). The type and amount of organic 
materials used to construct bioretention systems such as bioswales affect their 
water infiltration, filtration properties and also SOC sequestration potential. 
Biochar, for example, has a high adsorption potential for contaminants and 
may sequester SOC in the long term (Biswal et al., 2022). A potential problem 
to avoid in their construction and maintenance is nitrate leaching from use 
of nitrogen-rich vegetation supplemented by fertilisers (Shetty et al., 2018). 
Despite the role bioretention systems could play in SOC sequestration, their 
SOC sequestration potentials have not yet been studied in detail (Gill et al., 
2017).

4  Organic waste recycling to foster soil organic carbon 
storage in urban soils in the context of a circular urban 
economy

Organic matter is employed in many urban soils for restoration, construction 
purposes and also green infrastructure development. In particular, Technosols are 
man-made engineered structures with technic material. They contain artefacts or 
extracted unconsolidated material and bedrocks, and may have a sealing layer 
or a geo-membrane (Burghardt et al., 2015). Construction and demolition waste 
may be re-used together with organic waste for their construction. Technosols 
are an alternative to importing soil for restoring degraded urban areas (Deeb 
et al., 2017; Barredo et al., 2020; Fabbri et al., 2021). They have been used, for 
example, in urban community gardens in New York City (Egendorf et al., 2018). 
Moreover, Technosols are used for green infrastructure construction (Deeb 
et al., 2020) and also urban farming is often based on specific engineered 
systems, such as lasagne gardening (Lanza, 1998), consisting of different 
layers of materials. In many cities, rooftop farming is nowadays practised, and 
management of organic matter in soils or engineered growth substrates used 
for food production is thus of primary importance in urban agriculture. Organic 
materials used as growth substrates in urban agriculture may include bark, 
composted materials including green (yard) wastes, municipal solid wastes and 
even sewage sludge (Carlile et al., 2015).

The type of organic material determines the stability of SOC as well as other 
soil properties. High SOC concentrations lead to soil decompaction as well 
as increased drought resistance through greater water retention and rooting 
depth (Robin et al., 2018) but may also lead to groundwater contamination 
due to N and P leaching and production of greenhouse gases. In order to 
optimise the properties of Technosols, the presence of worms and plants is 
required (Deeb et al., 2017). It has been shown that the earthworm species 
Dendrobaena veneta was able to improve properties such as plant available 
water content in Technosols (Ulrich et al., 2021). Earthworm activity can also 
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promote SOC stabilisation (Le Mer et al., 2020). Optimising SOC sequestration 
in Technosols requires the right combination of organic, inorganic and 
biological components. Generally, the addition of more than 30% of organic 
matter should be avoided (Deeb et al., 2020). It is also important to consider 
the SIC content of construction material as active dissolution and redistribution 
processes of calcium carbonate are frequently observed in Technosols under 
humid climate conditions (Prokof’eva et al., 2021).

Materials for Technosol construction should ideally originate from inside 
the urban setting. Organic materials should be transformed by recycling 
organic wastes from urban areas into bio-fertilisers and soil amendments to 
create a circular local economy with minimal environmental impact (Tedesco 
et al., 2017; Moinard et al., 2021, Fig. 2).

This is all the more important given the scale of organic urban waste 
and the limited access of urban farmers to resources such as organic matter, 
fertilisers and water. Therefore, food production as well as soil restoration 
and SOC sequestration in urban agriculture may be favoured by recycling of 
bio-solids and bio-liquids produced by human settlements (Lal, 2017). Policy 

Figure 2 Material flows in an urban context (inspired by Vasenev and Kuzyakov, 2018).
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support and strategies for urban agricultural development are often missing 
(Crush et al., 2012) although they are extremely important in urban areas, where 
SOC sequestration should be integrated to reduce their C-footprint.

Organic urban waste can be categorised in various ways such as food 
waste, garden waste and animal waste. The volume and type of such waste vary 
widely. Organic waste forms more than 50% of the total municipal solid waste 
generated in low and middle-income countries of West Africa (Henry et al., 
2006; Couth and Trois, 2010) and 30% of municipal solid waste in developed 
countries (Hoornweg et al., 2013). The European Union, for example, generates 
around 88 million tonnes of food waste each year, coming mainly from homes 
and food retail outlets (Stenmarck et al., 2016), while around 17% of total global 
food production amounting to 931 million tonnes may be wasted (UNEP, 2021) 
and thus available for recycling.

Recycling this waste is a major challenge for municipal authorities (Pollans 
et al., 2017; Chen et al., 2020). Some European countries have schemes to 
separately collect and sort organic municipal waste, for example, Germany, 
Austria, Belgium and France. Some municipalities go further and encourage 
citizens to recycle organic waste themselves. The City of Paris, for example, 
distributes composting units and provides guidance on their use. However, in 
some parts of the world, such as Asia and the Pacific, a large amount of municipal 
waste still goes to landfills (Horrocks et al., 2016; Jara-Samaniego et al., 2017). 
This has significant negative environmental impacts in terms of odours, methane 
emissions, soil and groundwater contamination (Xiaoli et al., 2007; Prechthai 
et al., 2008) and also is a missed opportunity to increase SOC storage.

In the US, for example, recycling of food waste has doubled since 2010 
but is still at a very low level (5%). A pioneer in establishing a progressive food 
waste policy was the State of California, which introduced the Integrated Waste 
Management Act in 1989. This law has been put into practice by the City of San 
Francisco, which successfully reduced waste going to landfills by 50% by 2000 
and is currently aiming to achieve zero food waste (AzCentral, 2017). Other 
cities such as New York have announced new rules requiring restaurants and 
grocery stores to recycle food waste (Recycling Today, 2018). Another successful 
example is the green exchange programme (Cambio Verde) developed by the 
City of Curitiba (Brazil) in 1989, in which organic wastes are collected by people 
living in slums and exchanged for surplus food produced on smallholder farms. 
Korea has developed a zero food waste system, which allows onsite treatment 
of organic wastes in apartment complexes (Oh and Lee, 2018).

There are a range of techniques to transform organic waste into organic 
fertilisers (Chapter 9 of this book). Briefly, these include anaerobic digestion, 
composting, vermicomposting (using earthworms) and thermal treatment 
to create biochar. Composting has been widely used in many low-income 
countries in West Africa, Asia and South America to process organic waste 
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(Zurbrügg et al., 2005; Hoornweg and Bhada-Tata, 2012; Jara-Samaniego et al., 
2017). Advanced composting techniques can now transform organic waste into 
bio-fertiliser in as little as 12 days (Wei et al., 2021). A key challenge is removing 
chemical and biological contaminants from mixed wastes (Farrell and Jones, 
2009). Suitable composting strategies include separating the waste into pools 
with different compositions and co-composting with bulking agents, mineral, 
organic or microbiological compounds (Barthod et al., 2018). Vermicomposting 
has also been found to reduce contaminant levels in organic urban waste (Singh 
et al., 2011). Co-composting and co-vermicomposting also shorten processing 
times, help to stabilise mineral content (especially available N) and promote 
SOC sequestration (Vidal et al., 2020). Soil organic carbon residence time in the 
soil can be increased by mixing with recalcitrant compounds such as biochar 
before field application (Ngo et al., 2016).

5  Conclusion
In urban areas, the nature and distribution of soil C are highly heterogeneous, 
ranging from organic matter in soils of parks or lawns to carbon-rich artefacts 
and contaminants in man-made structures. Similar to rural areas, SOC 
sequestration in urban soils is influenced by land-use and management 
practices. Extensive management of urban infrastructures may counteract 
trade offs of SOC sequestration in form of greenhouse gas emissions, water 
use and pollution. Although many urban soils may contain substantial amounts 
of C, their SOC sequestration potential has been poorly quantified. Improving 
SOC sequestration may be necessary to secure the broad range of ecosystem 
services that urban soils can deliver. More generally, the challenge of fostering 
SOC sequestration in urban soils needs to be seen in the wider context of 
creating a more sustainable circular urban economy in which organic materials 
are recycled to reduce waste and at the same time improve the quality of 
urban soils. This requires skills in planning, governance, communication and 
education to develop and implement management practices and technologies 
aiming to protect and foster SOC storage without generating trade-offs.

6  Where to look for further information
FAO and ITPS. 2021. Recarbonizing global soils: A technical manual of 

recommended management practices. Volume 5 and 6. Rome, FAO. 
https://doi .org /10 .4060 /cb6606en.

Levin /Kim/ Morel /Burg hardt /Char zynsk i/Sha w (Eds.) 2017. Soils within cities. 
Global approaches to their sustainable management – composition, 
properties, and functions of soils of the urban environment. Schweizerbart 
Science Publishers, 253 pages.
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