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Abstract: Accurate reconstruction of the 3D morphology and spatial distribution of myelinated axons in 
mouse brains is very important for understanding the mechanism and dynamic behavior of long-distance 
information transmission between brain regions. However, it is difficult to segment and reconstruct 
myelinated axons automatically due to two reasons: the amount of it is huge and the morphology of it is 
different between brain regions. Traditional artificial labeling methods usually require a large amount of 
manpower to label each myelinated axon slice by slice, which greatly hinders the development of the mouse 
brain connectome. In order to solve this problem and improve the reconstruction efficiency, this paper 
proposes an annotation generation method that takes the myelinated axon as prior knowledge, which can 
greatly reduce the manual labeling time while reaching the level of manual labeling. This method consists of 
three steps. Firstly, the 3D axis equation of myelinated axons is established by sparse axon artificial center 
point labels on slices, and the region to be segmented is pre-extracted according to the 3D axis. Subsequently, 
the U-Net network was trained by a small number of artificially labeled myelinated axons and was used for 
precise segmentation of output by the last step, so as to obtain accurate axon 2D morphology. Finally, based 
on the segmentation results, the high-precision 3D reconstruction of axons was performed by imaris software, 
and the spatial distribution of myelinated axons in the mouse brain was reconstructed. In this paper, the 
effectiveness of this method was verified on the dataset of high-resolution X-ray microtomography of the 
mouse cortex. Experiments show that this method can achieve an average MIoU 81.57, and the efficiency can 
be improved by more than 1400x compared with the manual labeling method. 

1 INTRODUCTION 

The brain is the most complex organ in the human body, 
responsible for perception, thinking, memory and action. 
Until now, there is still a long way to go to truly 
understand brain function and effectively treat brain 
diseases [1]. Previous studies of information transfer 
patterns in the brain focused on dendrites and synapses, 
but the spatial distribution of dendrites could only explain 
the local information transfer patterns in the brain [2]. 
Recent research has found that long-distance transmission 
of information across brain regions may be the key to 
understanding the patterns of information transmission in 
the brain. [3] compared the effects of the presence and 
absence of long-distance transmission modes on 
information transmission in whole brain model, and 
concluded that the presence of long-distance transmission 
not only improves the brain's sensitivity to information 
but also reduces the error of information transmission. By 
analyzing fMRI data, [4] theorized that individual 
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differences between people may come from long-distance 
transmission across brain regions; [5] found that people 
with autism lack long-distance functional connections 
between brain regions. Modern anatomy has proved that 
myelinated axons are the material basis for information 
transmission between brain regions [6]. However, the 
spatial distribution of myelinated axons in the whole brain 
at the microscopic level is still unclear, and structural 
analysis of the differences in functional connections 
above cannot be conducted. 

Currently, the main techniques used to image the 3D 
microstructure of myelinated axons in the brain are 
microscopy based on fluorescence and electron 
microscopy based on conductive metal. However, the 
optical microscope has the visible light diffraction limit, 
so the resolution is not enough to analyze all myelinated 
axons. In addition, when using optical microscope (OM) 
for 3D imaging, physical section [7], [8], [9] or tissue 
transparency [10], [11], [12] of the sample is required; 
electron microscope (EM) can achieve the resolution of 
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nanometer level, but field of view of EM is very small. If 
three-dimensional imaging is to be carried out, continuous 
sectioning [13], [14], [15] or ion beam cutting [16], [17], 
[18] is needed. In addition, the above two technologies are 
difficult to achieve three-dimensional isotropy, which 
directly hinders the quantification of imaging results. 
Three-dimensional X-ray imaging based on heavy metal 
staining has become the most powerful tool for structural 
imaging of myelinated axons, because it can achieve a 
much larger filed of view than electron microscopy at a 
resolution of up to 100 nanometers [19]. And it can 
achieve three-dimensional isotropy without intruding [20]. 

Recently, deep learning-based methods for the 
semantic segmentation of myelinated axons in images 
have reached a state of art level [21]. However, due to the 
large number of myelinated axons in the brain and the 
large differences in the spatial distribution of axons 
among different regions, a large number of manually 
annotated images are needed as the training set to obtain 
a reliable segmentation network. But a large number of 
manually annotated images will generate huge labor time 
costs. Therefore, it is necessary to reduce the workload of 
manual labeling. 

In this paper, we propose a new data-set labeling 
method by taking full advantage of two structural features 
of myelinated axons in X-ray microtomography results to 
reduce the manual labeling workload:(1) myelinated 
axons show a continuous tubular structure in three 
dimensions; (2) The diameter variation range of the same 
medullated axon is small. 

The method consists of three steps: Firstly, an axon 
axis model is established, which takes full advantage of 
the three-dimensional continuous tubular structure of 
medullated axons. The axis model of the myelinated axon 
is generated by artificially marking a few center points of 
a myelinated axon. Then, the area determined by the axis 
model was segmented, and the U-Net [22] based 
segmentation was performed on the images within a 
certain range near the axis model based on the 
characteristics that the diameter of the same axon at 
different positions was small and the conditions around a 
single axon were similar, to obtain high-precision 
segmentation results of this myelinated axon. Finally, the 
result is reconstructed slice by slice in three dimensions. 
The proposed method was quantitatively analyzed on the 
European light source dataset [19]. 

2 METHODS 

The framework diagram of the proposed method is shown 
in Figure 1. There are three main steps: axis extraction of 
myelinated axons, segmentation area according to the axis, 
and reconstruction of the segmentation results. The first 
step is to determine the axis. With the help of machine 
learning, a small number of hand-marked central points 
were fitted to obtain the axis of myelinated axons. A 
square of fixed size centered on a fitting axis in two 
dimensions defines the area to be segmented. In the 
second step, the region around the axis is segmented based 
on U-Net [22]. A small number of two-dimensional intact 
myelinated axons were manually labeled and used as a 

training set to train the U-Net network. The results of the 
first step were input into the U-Net to obtain the two-
dimensional morpho-logical information of medullated 
axons. The third step is to reconstruct the three 
dimensions information of myelinated axons. The results 
obtained in the second step were reconstructed to obtain 
the spatial distribution of myelinated axons. 

 
Fig 1： The framework of proposed method. a. original X-ray 

3D data set; b. manual labeling of a few central points of 
myelinated axons; c. predicting axon axis based on machine 
learning method; d. extracting from the original image of the 
fixed size area near the axis; e. segmentation of myelinated 

axons based on U-Net from the extracted images in d; f. 
reconstruction of the segmentation results to obtain the 3D 
morphology and spatial information of myelinated axons. 

2.1 Axis Extraction of Myelinated Axon 

Many existing methods train segmentation networks 
using manually labeled myelinated axons slice by slice in 
two dimensions as annotation sets [21]. However, most 
approaches ignore the three-dimensional continuity of 
myelinated axons, and treat each 2D image of myelinated 
axons as a separate object, resulting in a huge amount of 
labeling work. Therefore, in the first step of the proposed 
method, the axis is automatically extracted by a very small 
amount of marked central points taking full advantage of 
the three-dimensional spatial continuity of myelinated 
axons. 

 

 
Fig 2: The axis of the myelinated axon was obtained by a small 

number of markers. a, manually mark individual points and 
record their spatial position information; b. a small number of 

markers were used to train the machine learning model to 
obtain information about the axis position of myelinated axons; 

c. extracting the original image in a fixed range according to 
the axis. 

 
The dimension of X-ray microscopic 3D imaging of 

mouse cerebral cortex is denoted as [x,y,z]∈N3 , where 
the x-y  plane is the tomographic plane of 3D 
reconstruction and z  is the rotation axis direction of the 
sample projection. Based on the spatial structure 
characteristics of myelinated axons, a polynomial 
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The dimension of X-ray microscopic 3D imaging of 

mouse cerebral cortex is denoted as [x,y,z]∈N3 , where 
the x-y  plane is the tomographic plane of 3D 
reconstruction and z  is the rotation axis direction of the 
sample projection. Based on the spatial structure 
characteristics of myelinated axons, a polynomial 

regression method was used to construct the axis model 
of myelinated axons with a small number of markers. 

The coordinate set of the center point of the artificially 
marked part of the axon was denoted as D, which was 
used as the training set of the axon axis extraction model. 

 

D={(xz, yz,z)} (1) 

( z = m × ⅈ, 0 ≤ ⅈ ≤ Floor( zmax ∕ m ) )  

Where (xz, yz)   is the position of the center of a 
myelinated axon on the z  layer; z  is the z  layer; m  is the 
number of layers between the two marks. 1 ≤ m ≤ zmax; 
zmax  is the maximum value of z ; i is serial number. 

Establish the n-order polynomial model with z as the 
independent variable: 

 

{x̂z = wx0 + wx1z + wx2z2 + … + wxnzn

ŷz = wy0 + wy1z + wy2z2 + … + wynzn 
(2) 

 
Where 𝑧𝑧 = 𝑚𝑚 × ⅈ, 0 ≤  ⅈ  ≤  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹( 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚 ⁄ ); 

(wx0,wx1,wx2,⋯,wxn), (wy0,wy1,wy2,⋯,wyn) are the model 
parameters. 𝑛𝑛 is the order of the model which depends on 
the root mean square error. The least square method is 
used to solve the parameter matrix of the axis model. 
When the model is determined, in the 𝑧𝑧 value into the 
model when m=1, get all (x̂z,ŷz), namely the axis of this 
myelinated axon is determined. According to the 
characteristic that the diameter of a myelinated axon 
changes little, the raw images within a fixed range near 
the axis of a myelinated axon are extracted to obtain a set 
of two-dimensional images containing this myelinated 
axon. 

2.2 Segmentation Based on U-Net 

There are a large number of myelinated axons in the 
mouse brain, and the direction of different axons is 
different. Therefore, when a cuboid is used to cut out an 
image containing a whole three-dimensional myelinated 
axon from the original image, other myelinated axons 
must be included. At this time, if only labeling the 
selected axon and using it as a training set to train the 
segmentation model, a large error will be generated 
(Table 1), and if all myelinated axons in the selected 
image are to be labeled, more labor costs will be spent. 
Therefore, in the second step, axis extraction is carried out 
on the labeled images, and the original images and 
annotations within a fixed range near the axis of the 
myelinated axon are extracted according to the diameter 
of a myelinated axon has little change and the cortex near 
myelinated axons are similar. A set of images and 
annotations containing a single myelinated axon are 
obtained. Mark Iz(x,y) as the label for one myelinated 
axon on the z  layer. Calculate gradient ∇Iz(x,y)  for the 
annotation data, and determine the myelinated axon 
boundary point parallel to the edge of the image according 
to the non-zero points on the gradient map. Calculate the 
center point according to the boundary point, and 

calculate the axis of the myelinated axon marked after 
calculation for each layer. 

The standard U-Net network was trained to obtain a 
model for segmentation near the axis of myelinated axons 
using the original images and annotations within a certain 
range near the axis. After segmenting the output of the 
first step, the holes are filled according to the spatial 
continuity of myelinated axons, and the isolated points are 
filtered out in three dimensions to obtain the final 
segmentation results. 

 

Fig 3: The architecture of U-Net. After the image is segmented 
by U-Net, the image is filled with holes and the isolated part in 

3D is filtered to get the segmentation result. 

2.3 Three-dimensional Reconstruction of 
Myelinated Axons 

In order to obtain information of a single myelinated axon 
in three-dimensional space, after obtaining its two-
dimensional segmentation results, it is necessary to return 
the segmentation results according to the location of its 
axis. After the homing of each segmented myelinated 
axon, the three-dimensional spatial information of 
multiple myelinated axons in a stack was obtained. 
 

 
Fig 4: Three-dimensional reconstruction of myelinated axons. a 
and b, restore the segmentation results according to the three-

dimensional axis information; c, 3D reconstruction results. 

3 EXPERIMENT AND RESULTS 

3.1 Setup 

3.1.1 Evaluation Dataset 

We evaluated the proposed method by dataset of high-
resolution X-ray microtomography of mouse cortex. The 
structures labeled by heavy metals formed contrast in the 
image including the structures of various cell membranes 
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and subcellular membrane structures in the cerebral 
cortex of mice. Myelinated axons were identified in this 
data set because their outer layers were covered with a 
large number of phospholipid membrane structures 
formed by oligodendrocytes. The annotations of 
myelinated axons were done by experienced neuroscience 
researchers. The pixel size of the original image is 30nm. 
We selected the image with the size of 512x512x800 
pixel³ in the original image as the data to generate the 
annotation set, without any additional processing. Manual 
labeling produced four myelinated axons, one of which 
was used as the training set of U-Net; the remaining three 
are marked by only part of the center points, and the 
image of the axis near the axis of the first phase of the 
proposed method is used as the test set. 

3.1.2 Implementation Details 

In the first step, building the axis model of myelinated 
axons used the sklearn library of python. 

In the second step, the U-Net network is deployed on a 
PyTorch-based library, trained and verified using the 
NVIDIA GeForce GTX 980 Ti. Standard data 
amplification methods (mirroring, flipping) were used to 
maximize the use of features in the training set. The loss 
function is defined as Sigmoid-BCELoss. We use the 
RMSProp optimizer to update the network parameters. 
The initial learning rate is set to 10−5 and the decay rate 
is set to 10−8. Use a batch size of 5. Set the epoch of 
training times to 40, and select the network with the least 
loss as the best network. 

The third step is to use imaris software for 3D 
reconstruction after the segmentation results are located 
according to the axis. 

 
 
 

3.1.3 Comparison Methods 

We compare the proposed method with (1) the method 
without extracting the region near the axis; (2) The 
manual labeling methods of different people. For 
quantitative evaluation, the comparison was made from 
four dimensions: MIoU, MRecall, MPrecision and 
manual participation time. The definitions of MIoU, 
MRecall and MPrecision are as follows: 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑎𝑎 + 1∑

𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑎𝑎

𝑗𝑗=0

 
 

(3) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀 = 1
𝑎𝑎 + 1∑

𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

𝑎𝑎

𝑗𝑗=0

 
 

(4) 

𝑀𝑀𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑎𝑎 + 1∑

𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑎𝑎

𝑗𝑗=0

 
 

(5) 

Where a is the number of categories except the 
background. In this paper,  a=1; TP is a true positive, FP 
is a false positive FN is a false negative. Manual 
participation time is defined as the manual time required 
to obtain the 3D reconstruction results of the myelinated 
axon. 

3.2 Results 

Table 1 shows the evaluation of the results using the three 
methods. The performance of the proposed method in 
MIoU, MRecall and MPrecision is higher than that of the 
conventional U-Net segmentation method, and is similar 
to that of manual marking but the time cost of human 
participation in our method is much lower than that of 
pure manual marking method. 

 
Table 1: results with different methods 

Method  MIoU MRecall MPrecission Manual time 
Proposed Axon 1 80.94 84.25 94.61 17s (1418x) 

 Axon 2 80.7 80.46 95.02 12s (1440x) 
 Axon 3 83.08 87.93 92.67 16s (1417x) 

General Axon 1 49.79 49.96 49.91 / 
 Axon 2 39.03 65.89 50.41 / 
 Axon 3 44.45 91.03 52.19 / 

Human Axon 1 88.67 89.66 93.21 6.7h 
label Axon 2 85.32 86.79 94.5 4.8h 

 Axon 3 89.87 88.32 93.56 6.3h 
 

Figure 5 shows the results of labeling time as a function 
of the number of myelinated axons labeled when using our 
proposed method compared to manual labeling. The 
horizontal axis represents the number of myelinated axons 
labeled (unit: number), and the vertical axis represents the 
total time of manual participation of myelinated axons 
labeled with this number (unit: hours). As can be seen 
from Figure 5, when the number of axons is greater than 

1, the proposed method will take much less time than pure 
manual labeling, and with the increase of the number of 
axons, the proposed method will take less time. 
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1, the proposed method will take much less time than pure 
manual labeling, and with the increase of the number of 
axons, the proposed method will take less time. 

 

Fig 5: Labeling time of our proposed method compared to 
manual labelling. The horizontal axis represents the number 
of myelinated axons labeled (unit: number), and the vertical 

axis represents the total time of manual participation of 
myelinated axons labeled with this number (unit: hours). 

4 CONCLUSIONS 

In this paper, we propose a method to generate a large 
amount of segmentation results using the spatial 
morphological information of myelinated axons in X-ray 
micro3D imaging with minimal manual intervention. We 
verified this method on the X-ray micro-three-
dimensional imaging data set of mouse cerebral cortex. 
The experimental results showed that the results obtained 
by this method almost reached the level of artificial 
labeling in common indicators, and reducing manual 
marking time from hours to tens of seconds and the 
greater the amounts of axons, the greater the reduction. 
This method can greatly save the time of artificial labeling 
in 3D reconstruction of mouse brain axons. 

In the future, the accuracy of axis prediction based on 
the number of markers should be further explored, and the 
minimum number of markers within the acceptable range 
should be found to further reduce the manual marking 
time. In addition, the basic U-Net network in this paper 
will be further improved to make the network better 
extract the information in the image by improving the 
network structure, or the results obtained by this method 
will be used as training data to get more accurate model. 
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