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We examined the neural signature of directed exploration by contrasting MEG 
beta (16–30 Hz) power changes between disadvantageous and advantageous 
choices in the two-choice probabilistic reward task. We  analyzed the choices 
made after the participants have learned the probabilistic contingency between 
choices and their outcomes, i.e., acquired the inner model of choice values. 
Therefore, rare disadvantageous choices might serve explorative, environment-
probing purposes. The study brought two main findings. Firstly, decision making 
leading to disadvantageous choices took more time and evidenced greater large-
scale suppression of beta oscillations than its advantageous alternative. Additional 
neural resources recruited during disadvantageous decisions strongly suggest 
their deliberately explorative nature. Secondly, an outcome of disadvantageous 
and advantageous choices had qualitatively different impact on feedback-related 
beta oscillations. After the disadvantageous choices, only losses—but not gains—
were followed by late beta synchronization in frontal cortex. Our results are 
consistent with the role of frontal beta oscillations in the stabilization of neural 
representations for selected behavioral rule when explorative strategy conflicts 
with value-based behavior. Punishment for explorative choice being congruent 
with its low value in the reward history is more likely to strengthen, through 
punishment-related beta oscillations, the representation of exploitative choices 
consistent with the inner utility model.
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1. Introduction

In professional and everyday life—for example, in search of a new job—people often face 
an exploration-exploitation dilemma. Searching for a new opportunity at the expense of the 
familiar ones can be costly, as tangible outcomes of exploration may only come in the distant 
future and no profits are warranted. On the other hand, sticking to the choices that proved 
valuable in the past discourages subjects from pursuing learning and development. A purposeful 
search for information at the expense of immediate reward is a characteristic feature of directed 
exploration, which became topic of considerable interest the last decade (Payzan-LeNestour and 
Bossaerts, 2012; Wilson et  al., 2014; Zajkowski et  al., 2017; Schulz and Gershman, 2019; 
Schwartenbeck et al., 2019; Dubois et al., 2021; Wilson et al., 2021). Although switching between 
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exploitative and deliberate explorative strategies constitutes a core 
foundation of human adaptive behavior, its neural underpinnings 
remain largely unknown (but see Zajkowski et al., 2017; Gottlieb and 
Oudeyer, 2018; Koechlin, 2020).

People actively interrogate their environment using “question-
and-answer” strategies (Gottlieb and Oudeyer, 2018). Yet this is not 
an easy challenge: choosing a risky and potentially non-rewarding 
option involves a conflict, since participants have to inhibit the 
tendency to choose a rewarded safe alternative (Daw et  al., 2006; 
Cogliati Dezza et al., 2017). This conflict arises between at least two 
simultaneously active competing internal models, or “task sets” 
(Domenech et al., 2020; Koechlin, 2020)—one being a predominant 
response tendency (exploitation), and the other—its conscious 
alternative (exploration). Our recent pupillometric study lends 
support to this assumption (Kozunova et al., 2022): we found that such 
explorative choices compared to exploitative ones are accompanied by 
larger pupil dilation and longer decision time. We speculated that this 
state of conflict supposedly entails an increase in the degree of 
processing required to make the deliberately explorative decisions. 
Given that such a selection was shown to carry greater load on 
information processing and/or attentional capacities (Gottlieb and 
Oudeyer, 2018), it should make a deliberately explorative decision 
more difficult than the exploitative decision. To validate this 
explanation, one needs to compare cortical activation accompanying 
the decision process that leads to either exploitative or to 
explorative choices.

Importantly, any action outcome—even a negative one—has 
epistemic value since it reduces internal uncertainty (Parr and Friston, 
2017). Since deliberate explorative choices are in fact quests for 
information, they likely involve altered evaluation of the outcome 
received after one’s choice. Indeed, for example, even modest 
variations in the context—such as changing the subject’s beliefs about 
the probability of rewards and punishments—can alter cortical 
responses to feedback signals [e.g., Marco-Pallares et al. (2008)].

Here, we sought to evaluate the impact of directed exploration on 
cortical signatures of decision-making and feedback evaluation 
processes. To this end, we  investigated the dynamics of 
magnetoencephalographic β-band oscillations (16–30 Hz) while 
contrasting directed explorative choices and exploitative ones in the 
probabilistic two-alternative task. Well-documented properties of β 
oscillations make them an informative and accessible measure 
allowing us to pursue the above goals.

Based on numerous findings on β power suppression (event-
related desynchronization, β-ERD) as a measure of cortical activation 
strength during decision-making (Scharinger et al., 2017; Pavlova 
et al., 2019; Tafuro et al., 2019), we predicted that decision-making 
leading to directed explorative choices of the apparently 
disadvantageous option would be accompanied by greater β-ERD 
than decision-making resulting in exploitative choice.

Concerning β-oscillations over the frontal cortex (frontal event-
related synchronization, frontal β-ERS) following action outcome 
evaluation, the previous literature offers two accounts. The first 
account relies on the evidence specifically linking this oscillatory 
activity with reward, especially with an unexpected reward in human 
subjects (Marco-Pallares et al., 2008; Mas-Herrero et al., 2015). This 
view is supported by the findings on greater frontal β-ERS for positive 
compared to negative feedback (Cohen et al., 2011; Weiss and Mueller, 
2012; Novikov et al., 2017) and for larger compared to smaller reward 

magnitudes (Marco-Pallares et  al., 2008). It was proposed that 
feedback-related frontal β-ERS reflects a signal involved in reward 
processing and underlying memory formation by signaling which 
events are better than expected [for review, see Marco-Pallares et al. 
(2015)]. Based on the “reward account” one can predict that in our 
study, a reward will be  followed by frontal β-ERS compared to 
punishment regardless of the type of the choice and will be relatively 
greater for explorative compared with exploitative choices—simply 
because for explorative choices a positive reward is less expected.

Still, the dependence of frontal β-oscillations on some specific task 
conditions is difficult to explain using the straightforward “reward 
account”. For example, there is evidence that in some tasks, a negative 
feedback signal (or omission of a positive one) contributes to the 
build-up of the inner state promoting the increase in frontal 
β-oscillations (Leicht et al., 2013; Yaple et al., 2018).

A complementary account, which accumulates numerous findings 
on frontal β-synchronization in both humans and animals, proposes 
that these oscillations play a role in re-activation and strengthening of 
the cognitive set, which is more likely to result in a favorable outcome 
and will be used in future actions (Engel and Fries, 2010; Brincat and 
Miller, 2016; Miller et al., 2018). The term “cognitive set” here is very 
similar to the term “internal model”, which, according to K. Friston’s 
predictive coding theory, accumulates experience-based knowledge 
and generates prior beliefs that are used to make inferences/
predictions regarding incoming external events (Friston and Kiebel, 
2009; Summerfield and de Lange, 2014). From a predictive coding 
perspective, for the selection of a to-be-strengthened cognitive set/
internal model, both positive and negative outcomes may be used as 
just pieces of evidence weighted against recent reward history that 
formed the inner utility model (Kennerley et al., 2006; Yon and Frith, 
2021). Depending on how reliable these different sources of 
information are, the selection process may lend the greatest weight to 
the inner model that ensures optimal guidance of future actions.

The “predictive coding” account produces predictions different 
from those expected on the basis of the “reward” account. In this case, 
appearance of frontal β-ERS will depend on how the two competing 
models, that were simultaneously active during decision-making 
regarding this choice, will be re-evaluated after receiving feedback. A 
reward for a rare, explorative, deliberately disadvantageous choice, 
which is discrepant with the previous reward history, hardly provides 
a piece of evidence reliable enough to ensure strengthening of the 
model governing this choice. Punishment for such a choice, on the 
other hand, being congruent with its low value in the reward history, 
is more likely to strengthen the representation of its competitor—the 
predominant utility model. This might result in the occurrence of 
frontal β-ERS after a punishment but not a reward for an explorative 
choice. In other words, directed explorative choices may be expected 
to differ from exploitative ones by a weak impact of a positive 
outcome, and a strong impact of a negative outcome.

Therefore, by evaluating the predictions of the two accounts 
regarding frontal β-ERS in deliberate explorative and exploitative 
choices, we  hoped to get a better insight into the nature of brain 
processes resulting from the appraisal of feedback information during 
switching from exploitation to exploration strategy.

To sum up, we here hypothesize that disadvantageous choices in 
the two-alternative probabilistic reward task represent a deliberate 
switching from the exploitative to the directed explorative strategy 
that triggers a conflict with a prepotent response tendency. 
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The modulation of brain activity in the β-range could exhibit specific 
features during both decision-making and feedback-related processes 
associated with such explorative choices. First, we sought to test the 
prediction that a putatively more effortful arrival to the explorative 
decision would involve greater cortical activation indexed by deeper 
β-ERD compared with exploitative decisions. Second, by contrasting 
post-feedback modulations of β-oscillations for the explorative and 
exploitative choices, we aimed to test the predictions made based on 
the two accounts of how prior knowledge about the probability of 
reward and punishment influences feedback processing in the brain.

2. Materials and methods

2.1. Participants

Sixty healthy participants (30 males, 30 females), aged 
25.6 ± 4.8 years (M ± SD) and having no neurological disorders or 
severe visual impairments were enrolled in the study. This study was 
conducted in accordance with the Declaration of Helsinki; the study 
protocol was approved by the Ethics Committee of Moscow State 
University of Psychology and Education. All participants signed 
written informed consent before the experiment.

2.2. Procedure

During the experiment, participants were seated in a comfortable 
armchair with a projection screen located in front of them at eye level. 
A modified probabilistic learning task (Frank et al., 2004; Kozunova 
et al., 2018) was rendered as a computer game consisting of six blocks.

Each pair of visual stimuli comprised two images of the same 
Hiragana hieroglyph (1.54 × 1.44°) rotated at two different angles 
(Figure 1A). We equalized the stimuli in size, brightness, perceptual 
complexity, and spatial position. The two stimuli were placed 
symmetrically on the left and on the right sides of the screen 1.5° from 
the screen center. In order to avoid any biases related to the side of the 
presentation, it was swapped quasirandomly over the course of trials. 
In order to minimize the amount of light falling into participants’ eyes 
and prevent visual fatigue, visual stimuli were rendered in narrow 
white outlines on black background. A short behavioral test given 
before the experiment confirmed that all participants could easily 
discriminate within novel pairs stimuli similar to those used in the 
experiment. Thus, it is unlikely that during the experiment participants 
made any substantial number of errors caused by perceptual difficulties.

Participants were instructed to make two-alternative choices 
between two stimuli presented on the screen simultaneously (a new 
pair was used in each block). Within each block, one of the stimuli was 
associated with greater probability of better outcomes (monetary gains 
on 70% of trials in blocks 1–5, and 60% of trials in block 6, with the 
rest of the trials leading to losses) resulting in higher average payoff—
we will refer to them as “advantageous stimuli”. The other stimulus was 
associated with greater probability of worse outcomes (monetary gains 
on 30% of trials in blocks 1–5, and 40% of trials in block 6, with the 
rest of the trials leading to losses) resulting in lower average payoff; 
we  will refer to them as “disadvantageous stimuli”. Outcome 
probabilities were constant within the blocks. The sequences of gains 
and losses assigned to the stimuli throughout the experiment were 

generated quasirandomly in an interleaved manner that prevented 
multiple successive repetitions of the same outcome.

Prior to the experiment, we informed participants that one of the 
stimuli was more advantageous than the other. However, no further 
information regarding the stimuli was provided: participants were 
supposed to acquire knowledge about contingencies between their 
choices and outcomes by trial and error learning.

Each trial began with presentation of the fixation cross for 150 ms 
(Figure  1A), and then stimuli were presented on the screen 
continuously until a button was pressed by the participant. We did not 
restrict the response time aiming to reduce the number of 
impulsive decisions.

Participants’ behavioral responses were recorded with the use of 
a handheld MEG-compatible fiber optic button response pad 
(CurrentDesigns, Philadelphia, PA, United States). In order to indicate 
the choice of one of the two stimuli presented on the screen, 
participants pressed one of the two buttons with the index and middle 
fingers of their right hand. Immediately following the button press, the 
screen was cleared. Visual feedback was presented for 500 ms on each 
trial, with a delay of 1,000 ms after the behavioral response; feedback 
informed participants about the number of points gained or lost on 
the current trial. The points were accumulated throughout the 
experiment. At the end of each block, current cumulative score was 
demonstrated. During the intertrial interval, the screen was empty 
(black). The intertrial interval varied from 700 to 1,400 ms in a quasi-
random order (flat distribution). By keeping the intertrial interval 
relatively short, we minimized the duration of the experiment in order 
to avoid fatigue and boredom in the participants.

The number of points associated with losses and gains was 
different across the blocks. In the first five blocks, which involved 70% 
and 30% reinforcement probabilities, we  used five reinforcement 
schemes with the following magnitudes of losses and gains: (I) 
−20/+20, (II) 0/+20, (III) −20/0, (IV) +20/+50, and (V) −50/−20, 
correspondingly. In the sixth block, which involved a lesser difference 
in reinforcement probabilities (60% and 40%), the reinforcement 
scheme was (VI) −20/+20. We  used non-identical reinforcement 
schemes in successive blocks in order to make the blocks appear 
different for participants and thereby to make the participants learn in 
each block. We counterbalanced the order of reinforcement schemes 
across participants and used three sequences: I-II-III-IV-V-VI, I-IV-
III-V-II-VI and I-IV-III-II-V-VI. We used only these three particular 
sequences for two reasons. First, in the initial block, we always used 
only mixed contingencies involving symmetrical magnitude of losses 
and gains (scheme I  with −20/+20 points) in order to let the 
participants learn the effective choice strategy in the easiest way by 
comparing their cumulative gain with zero. Second, in the next block, 
we used only positive reinforcement schemes involving no absolute 
losses (+20/+50 or 0/+20 points). Thus, we ensured that participants 
earned a sufficient number of points during the first blocks of the 
experiment, providing for a non-negative total score throughout the 
experiment. This was needed in order to avoid frustration and loss of 
interest in participants. We converted the total score into rubles at a 1:1 
ratio. On average, participants received 420 ± 250 rubles (mean ± SD).

Each of six experimental blocks comprised 40 trials with the 
overall duration of approximately 5 min per block. A short rest for 
approximately 1 min (or longer if participants requested) was 
introduced between blocks. In total, the experiment lasted 
approximately 35 min.
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The experiment was carried out using the Presentation 14.4 
software (Neurobehavioral systems, Inc., Albany, CA, United States).

2.3. MEG data acquisition

MEG was recorded in a magnetically shielded room (AK3b, 
Vacuumschmelze GmbH, Hanau, Germany). We used the dc-SQUID 
Neuromag VectorView system (Elekta-Neuromag, Helsinki, Finland) 
with 204 planar gradientometers and 102 magnetometers. Sampling 
rate was 1,000 Hz, and the passband was 0.03–330 Hz.

We measured participants’ head shapes by means of a 3Space 
Isotrack II System (Fastrak Polhemus, Colchester, VA, United States); 
we digitized three anatomical landmark points (nasion, and left and 
right preauricular points) as well as approximately 60 randomly 
distributed points on the scalp. Participants’ head position during 
MEG recording was continuously monitored by means of four head 
position indicator coils.

We used two pairs of electrodes placed above and below the left 
eye, and at the outer canthi of both in order to record vertical and 
horizontal electrooculogram, correspondingly. We  also recorded 

bipolar electromyogram from the right neck muscles in order to 
identify muscular artifacts. For all recorded signals, sampling rate was 
1,000 Hz.

2.4. MEG data preprocessing

We applied the temporal signal space separation method (tSSS) 
(Taulu et al., 2005) to the raw data using MaxFilter (Elekta Neuromag 
software). The tSSS method suppresses magnetic interference coming 
from distant sources regarding the sensor array and thus can be used 
to remove biological and environmental magnetic artifacts. Data were 
converted to a standard head position (x = 0 mm; y = 0 mm; z = 45 mm). 
Static bad channels were detected and excluded from further 
processing steps.

For further offline analysis, MNE-Python software was used 
(Gramfort et al., 2013). We removed cardiac artifacts and artifacts 
related to eye movements from continuous data using the ICA method 
implemented in MNE-Python software.

In order to reduce computational cost and time required for time-
frequency analysis, MEG data were resampled offline to 300 readings 

FIGURE 1

Probabilistic two-alternative gambling task: experimental design and behavioral statistics. (A) Experimental procedure. After a briefly presented fixation 
cross, a pair of visual stimuli was displayed on the screen. Participants learned by trial-and-error to select (by pressing one of the two buttons) the 
more advantageous of the two options, i.e., the one bringing monetary gains more often than the disadvantageous option, using the probabilistic 
feedback. After each choice, the number of points earned was displayed with a 1,000-ms delay. Duration of each event is indicated under respective 
screens. The trials were organized into six blocks with different stimuli and reward structures between blocks. In each block, we took into analysis only 
“after learning” periods, during which participants exhibited a stable behavioral preference for the advantageous stimulus. The table explains the further 
division of advantageous and disadvantageous choices into four choice types used in further analyses: high-payoff (HP)—advantageous/exploitative 
choices committed in a row of similar advantageous choices, low-payoff (LP)—rare disadvantageous/explorative choices, pre-LP and post LP—
advantageous choices that were committed immediately before and immediately after an explorative LP choice. See text for details. (B) Response time 
as a function of choice type. Points and error bars on graphs represent M ± SEM across single trials in all subjects. Asterisks denote the difference 
between the choice types, ** p < 0.01, *** p < 0.001 (Tukey HSD).
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per second; this was safely above the Nyquist frequency since we were 
interested in MEG oscillations at much lower frequencies not 
exceeding 30 Hz.

We extracted response-locked epochs from −1750 to 2,750 ms 
relative to the button press.

Correction of myogenic activity was performed using custom 
Python scripts with the use of MNE-Python functions. Specifically, 
we excluded contaminated epochs by thresholding the mean absolute 
signal values filtered above 70 Hz from each channel below 7 standard 
deviations of the across-channel average; such trials comprised 5.4% 
of the experimental data.

2.5. Trial selection

First, we  distinguished “advantageous” choices (choosing the 
option with greater probability of gains) and “disadvantageous” 
choices (choosing the option with lower probability of gains).

In the current study, we  primarily sought to address directed 
exploration, i.e., voluntary goal-directed commission of 
disadvantageous choices purposefully aimed at gaining information 
(Wilson et al., 2014, 2021). We assumed that directed exploration can 
be ascertained only if a subject has acquired a utility model of the task 
(i.e., has gained experience leading to effective usage of task 
contingencies), and acquisition of such a model would be expressed 
as a bias towards selecting the more advantageous option. Otherwise, 
exploration would likely be random rather than directed.

Thus, within each block, we extracted only those trials that met 
the learning criterion; this criterion required that trials taken into 
analysis met two conditions, in each participant and in each block 
independently. First, before the learning criterion was met in each 
block, four choices of the advantageous stimulus had to be made by a 
participant consecutively, i.e., without interruption by any 
disadvantageous choices. The probability of such an event as three 
advantageous choices immediately following one by chance is 
(½)3 = 1/8 = 12.5%. All trials from the start of the block until this 
moment (including those four choices of the advantageous stimulus) 
were excluded from any further analyses. Second, the percentage of 
advantageous choices within the trials that went after the moment 
indicated above until the end of the block had to be above 65%. This 
threshold was chosen because in a sequence of 30 trials (i.e., 
approximately the number of trials taken into consideration within an 
experimental block following the first step), 65% or greater is 
significantly above the random level (50%) (one-tailed one-sample 
binomial test, p < 0.05). If this second condition was met, these trails 
were included in the analyses; otherwise, the whole experimental 
block was excluded from the analysis.

A recent pupillometric study (Kozunova et al., 2022) revealed that 
advantageous choices that immediately preceded and immediately 
followed explorative choices significantly differed from the 
advantageous choices committed within the periods of continuous 
exploitation. This finding hints that the internal state related to 
exploration modulates brain activity on a scale longer than one trial. In 
the current study, we  used the same approach, and in addition to 
distinguishing between advantageous and disadvantageous choices, 
we  elaborated the trial classification that accounted for transitions 
between choice types in successive trials. Thus, for further analyses, 
we used the following four levels of Choice type factor (Figure 1; see 

also Supplementary Table S1): (1) the “high-payoff” choice (“HP”)—
the advantageous choice that was preceded and followed by 
advantageous choices (such sequences of uninterrupted advantageous 
choices were considered as a stable “exploitative” preference for the 
advantageous stimulus); (2) the trial preceding the “low-payoff” choice 
(“pre-LP”)—the advantageous choice preceding a disadvantageous 
decision and following an advantageous one; (3) the “low-payoff” 
choice (“LP”)—the disadvantageous “explorative” choice that was 
preceded and followed by advantageous choices; (4) the trial following 
the “low-payoff” choice (“post-LP”)—the advantageous choice that 
followed a disadvantageous decision and preceded an advantageous one.

In addition, we  classified trials depending upon the feedback 
received on the current trial (Feedback factor, two levels: “loss”, i.e., 
the worse of the two outcomes, and “gain” i.e., the better of the two 
outcomes). For an additional follow-up analysis, we similarly classified 
trials depending on the feedback received during the previous trial 
(Previous feedback factor, two levels: “previous loss” and 
“previous gain”).

Several participants were excluded from the analyses because of 
the lack of advantageous choices satisfying the learning criterion (2 
participants) and due to failures to observe the behavioral procedure 
during recording (2 participants). Additionally, in order to keep the 
design more balanced, we excluded participants that had no trials in 
at least one of the eight conditions Choice type × Feedback (16 
participants). Thus, statistical analyses reported below were done in 
40 participants.

Trials with extreme response time (RT) values (<300 ms 
and > 4,000 ms) were excluded from all analyses; such trials comprised 
1.4% of the experimental data.

After rejection of epochs with extreme RTs and artifact-
contaminated epochs, the number of epochs taken into analysis was 
2,908 in HP condition, 520 in pre-LP condition, 436 in LP condition, 
and 500 in post-LP condition.

We evaluated the dependence of RT upon choice type using the 
following LMM model, which included Choice type factor (four levels: 
“HP”, “pre-LP”, “LP”, “post-LP”), Previous feedback factor, i.e., 
outcome of the previous trial (two levels: “previous loss” and “previous 
gain”) and their interactions as the fixed effects, and Subject as a 
random factor:

 Response time Choice type Previous feedback | Subject~ � � � �1  (1)

where Response time is log-transformed RT (time from stimulus 
onset to button press originally measured in milliseconds). 
We  included the Previous feedback factor into the LMM model 
because it could affect the response time via interaction with Choice 
type in the same probability task (Kozunova et al., 2022).

2.6. Time-frequency analysis of the MEG 
data at the sensor level

We restricted our analyses of the β frequency range to 16–30 Hz 
(Engel and Fries, 2010; Kilavik et al., 2013). Frequencies below 16 Hz 
were not included into the analyses because the range of alpha-
oscillations in MEG data may extend up to 15 rather than 12–13 Hz 
(Mierau et al., 2017).
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We performed all the analyses using MNE Python open-source 
software (Gramfort et al., 2013) and custom scripts in Python. At 
sensor level, all time-frequency analyses were performed at single-trial 
level (unless stated otherwise), for each planar gradiometer 
independently. Discrete prolate spheroidal sequences (DPSS) 
multitaper analysis was applied to estimate spectra; this method is 
efficient for small numbers of trials (Thomson, 1982). This procedure 
increases signal to noise ratio at the cost of slightly diminished spectral 
resolution in a controlled manner. We  used multitaper spectral 
analysis, implemented in the “mne.time_frequency.tfr_multitaper” 
function (MNE-Python software, v. 0.21). The number of cycles was 
set as frequency divided by 2, thus the width of the sliding window 
was 500 ms at all frequencies, and it was shifted at steps of 25 ms. 
Time-bandwidth parameter was set to 4 (default value), resulting in 
frequency smoothing of 8 Hz.

Multitaper spectral analysis was applied at frequencies increasing 
in 2-Hz steps; we calculated β power within the 16–30 Hz range by 
summation of power data within the respective bands. After that, β 
power was log10-transformed and multiplied by 10 at each time point 
in each epoch and in each sensor. Log-transformation on single 
epochs has been demonstrated to render near-normally distributed 
EEG power across epochs and participants and thus to improve 
statistics performed on EEG power data (Smulders et al., 2018).

For baseline correction, we  extracted baseline values from 
stimulus-locked epochs in the HP condition; we calculated β power 
in the time window from −350 to −50 ms relative to fixation cross 
onset using the same procedure as described above. Particularly, the 
MEG power data (log-transformed and multiplied by 10) were 
averaged across time points within the baseline window and across all 
trials belonging to the HP condition (for each participant in each 
sensor separately). Then, the baseline value was subtracted from β 
power values at all time points, for each participant in each sensor in 
each epoch independently. Thus, we obtained β power values relative 
to baseline expressed in decibels (dB).

We derived the baseline level from one of the conditions and used 
it to correct data within all conditions; the rationale was as follows. 
First, the intertrial intervals in the current experiment were rather 
short: if a traditional baselining procedure were used, carryover of the 
effects into intertrial intervals was likely to bias the analyses (cf. 
Kozunova et al., 2022). Second, tonic effects were reported in relation 
to the exploration-exploitation dilemma (Gilzenrat et al., 2010; Jepma 
et  al., 2010; Jepma and Nieuwenhuis, 2011), and systematic tonic 
variations locked to explorative behavior could also bias a conventional 
pretrial baseline. Third, potentially, the decision to explore may 
be  taken by participants during the intertrial interval rather than 
during the trial itself (since such a decision to explore per se does not 
require the participant to see the stimuli). Thus, the potential 
likelihood that a corresponding brain activity would emerge before 
the stimulus onset on explorative trials also precluded us from using 
the conventional pretrial baselining procedure. By using one baseline 
for all conditions, we  were able to make unbiased comparisons 
between conditions. Such an approach is similar to a baseline-free 
approach, while it provides adjustment for spurious variability in the 
overall β power between subjects. We  chose specifically the HP 
condition for baseline calculation because this condition represented 
persistent exploitation and it was probably the most stationary 
condition, as it involved sequential advantageous choices that were 
made in accordance with the participants’ internal utility model.

In order to reduce the dimensionality of the data and thus to 
increase statistical power under multiple comparisons, we combined 
sensors by adding time-frequency data within pairs of orthogonal 
planar gradientometers. Thus, at sensor level, we  report power 
estimates for 102 such combined gradientometers; for brevity, we refer 
to them as sensors.

2.7. Statistical analysis

In order to estimate significant changes in the power of β 
oscillations over choice types and feedback valence, we applied linear 
mixed models (LMM) using the “lmer” function available in the lme4 
package for R (Bates et al., 2015). We checked the data for normality 
of the distribution of residuals with the normal quantile plot. To check 
the data for homoscedasticity we drew the residual plot.

We used linear mixed effects models (LMM) at a single-trial level 
rather than repeated measures ANOVA at the grand-average level for 
several reasons. The LMM method is robust to imbalanced designs—
thus, missing data can be handled without listwise deletion of cases; 
moreover, different numbers of trials per condition are less 
problematic than in traditional ANOVA applied at the grand-average 
level (e.g., Kliegl et al., 2011). LMM is suitable for large numbers of 
repeated measurements per participant, thus making LMM especially 
appropriate to analyze data from individual trials: such a statistical 
approach allows accounting for intertrial variability, while standard 
averaging approaches preclude from using this informative data 
variability (Vossen et al., 2011; Tibon and Levy, 2015).

We used a data-driven approach towards selection of time 
windows and locations. Thus, the analysis was performed in two steps, 
as described below. At the first step, we used a LMM model aiming to 
identify salient effects with their time windows and clusters of sensors 
(with application of corrections for multiple observations). At the 
second step, we averaged β power within time windows and within 
significant sensors, and performed an in-depth data analysis, also 
using LMM statistics.

2.8. Defining time windows and clusters of 
sensors for further analyses

At the first step of our data-driven study, we used the following 
procedures on response-locked epochs at a single-trial level:

 (1) We averaged power of β oscillations over consecutive 200-ms 
windows centered on time points starting from −800 ms and 
up to 2,400 ms relative to behavioral response onset (with 
feedback starting at 1000 ms), for each sensor independently. 
This procedure yielded 17 timeframes per epoch.

 (2) We applied a linear model with mixed effects (LMM) to single-
trial data at each of 17 time points within each of 102 sensors 
independently. The model included Choice type factor (four 
levels: “HP”, “pre-LP”, “LP”, “post-LP”), Feedback factor (two 
levels: “loss” and “gain”) and their interactions as fixed effects, 
and Subject as a random factor:

 Beta power Choice type Feedback | Subject~ � � � �1  (2)
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 (3) We applied correction for multiple comparisons using the false 
discovery rate (FDR) method (Benjamini and Yekutieli, 2001) 
to 1,734 observations (17 time points × 102 sensors). At this 
stage, we plotted significant sensors (q = 0.05) on sequences of 
topographical maps, for each factor and their interaction.

 (4) Next, guided by our hypotheses and by visual inspection of the 
topographical plots with significant sensors indicated, 
we selected time windows, during which spatial distribution of 
significant sensors comprised distinct yet relatively 
stationary patterns.

 (5) For further analyses, we considered only those sensors that 
were persistently significant throughout all timeframes within 
the selected time windows. Additionally, in order to obtain 
compact and comprehensible clusters of significant sensors, 
we removed from analysis any significant sensors that had less 
than two significant neighbors.

 (6) In order to make sure that the effects to be analyzed represented 
either ERD or ERS, we retained for further analyses only those 
sensors that were significant against baseline for all conditions 
pooled (t-test, p < 0.05, uncorrected). If within the given time 
window some sensors manifested ERD while other displayed 
ERS, we  assigned two separate clusters of sensors 
correspondingly, thus separating two functionally 
distinct effects.

Additionally, for illustrative purposes, we rendered topographical 
plots representing grand-averaged spatial distributions of band power 
for consecutive 200-ms time windows (see Supplementary Figure S1).

In all illustrations of β power, when we considered choice types 
irrespective of feedback (i.e., for the two feedback valences pooled), 
we used the following two-step averaging procedure, for each subject, 
within each choice type, for each sensor separately. First, we averaged 
the epochs within each feedback valence, and then we  averaged 
between the two feedback valences (in 1:1 ratio). Such a procedure 
was needed because the data matrix was not balanced: gains happened 
more often than losses after advantageous choices, while for 
disadvantageous choices losses predominated over gains. Thus, a 
simple flat averaging procedure across all trials within a particular 
choice type would lead to strong biases, while the two-step procedure 
allowed us to correct for the interdependence between Choice type 
and Feedback factors by equalizing the contribution of the Feedback 
factor. After that, the data were grand-averaged between participants.

2.9. Statistical analysis within the selected 
effects

After completing the first step that pinpointed plausible effects, 
we proceeded to the in-depth analysis of each effect separately, aiming 
to find out which particular pairwise contrasts created significant 
effects identified at the previous stage. At this step, for each selected 
effect separately, we collapsed MEG data across all timeframes within 
a corresponding time window and across sensors within the 
corresponding cluster, thus obtaining one value of β-band power per 
each trial.

For the analysis of effects preceding feedback onset, we applied to 
single-trial data the following LMM with the Choice type factor as the 
fixed effect, and Subject as a random factor:

 Beta power Choice type | Subject~ � � �1  (3)

For effects following feedback onset, we applied to single-trial data 
the LMM that included Choice type factor, Feedback factor and their 
interactions as fixed effects, and Subject as a random factor:

 Beta power Choice type Feedback | Subject~ � � � �1  (4)

At this stage, we  did not focus on the main effects and their 
interaction, which expectedly mirrored the findings obtained at the 
previous stage (see Supplementary Table S3). Instead, we aimed to 
find out which exactly statistical contrasts created the effects found 
at the previous stage. Thus, we complemented the basic LMM analysis 
with post-hoc pairwise comparisons using Tukey honestly significant 
difference (HSD) test (emmeans package version 1.6.0; Lenth 
et al., 2020).

For illustrative purposes, we complemented these analyses by 
topographical plots of β-band power representing the most 
prominent pairwise contrasts between conditions, with FDR 
correction for 102 sensors (using the procedure similar to that 
described above). Additionally, we plotted timecourses of grand-
averaged baseline-corrected β-band activity as well as event-related 
spectral perturbations for the β range and adjacent frequency ranges, 
for the data averaged over three most significant sensors within a 
particular cluster of sensors.

In order to ascertain whether the power of β oscillations preceding 
the behavioral response reflects greater cognitive load during decision-
making, we evaluated regressions at a single-trial level. We used the 
following LMM model:

 

Beta power Response time Choice type

Previous feedback |S

~ � �
� 1 uubject� �  (5)

where Beta power is the power of β oscillations averaged over the 
time window within corresponding significant sensors (see above), 
and Response time is log-transformed time from stimulus onset to 
button press (originally measured in milliseconds; logarithmic 
transformation was needed because the distribution of response times 
deviated from normality).

Finally, we aimed to evaluate how the immediate history of losses 
and gains on the previous trial affected the brain response to the 
feedback on the current trial. We  addressed the influence of the 
previous feedback because it was recently demonstrated that it affects 
behavioral and pupillometric measures on the next trial (Kozunova 
et al., 2022). Thus, for the time interval related to feedback processing, 
we evaluated joint effects of the feedback received on the current trial 
and the feedback received on the previous trial. This analysis was 
similar to the analyses described above, with the only exception that 
an additional factor Previous feedback corresponding to the outcome 
of the previous trial (two levels: “previous loss” and “previous gain”) 
was included into the LMM model:

 

Beta power Feedback Previous feedback

Choice type | Subjec

~ � �
� 1 tt� �  (6)
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We evaluated statistical significance of pairwise differences using 
the post hoc Tukey honestly significant difference (HSD) test.

2.10. Source level analysis

Participants underwent MRI scanning with a 1.5 T Philips Intera 
system (voxel size 1 mm × 1 mm × 1 mm, T1-weighted images). 
We reconstructed single-layer (inner skull) boundary-element models 
of cortical gray matter using individual structural MRIs, with a 
watershed segmentation algorithm (Ségonne et al., 2004) implemented 
in FreeSurfer 4.3 software (Martinos Center for Biomedical Imaging, 
Charlestown, MA, United States). To create individual anatomical 
surfaces, we  used the “recon-all” reconstruction algorithm 
implemented in FreeSurfer (Fischl et  al., 2002) with default 
parameters. We co-registered head shapes into mesh using fiducial 
points and approximately 60 additional points on the scalp surface.

We used the “mne.setup_source_space” function implemented in 
the MNE-Python open-source software (Gramfort et al., 2013) to 
create the source space, assuming that the sources are localized on the 
surface of the cortex. In order to compute the source space for the 
β-band power (16–30 Hz), we used “mne.minimum_norm.source_
band_induced_power” function (implemented in the MNE-Python 
open-source software), with Morlet wavelets (8 cycles per wavelet); the 
sliding window was shifted at steps of 25 ms. All epochs corresponding 
to each of the eight conditions (4 choice types × 2 feedback valences) 
were fed into this function within a single “mne.Epochs” instance 
(implemented in the MNE-Python open-source software): thus, the 
resulting power estimates referred to the conditions rather than to 
single-trials.

We used a standardized low-resolution brain electromagnetic 
tomography (sLORETA) localization method (Pascual-Marqui, 2002). 
We used a grid with a spacing of 5 mm for dipole placement, which 
yielded 10,242 vertices per hemisphere. A noise-covariance matrix 
was computed for each participant from −350 ms to − 50 ms relative 
to fixation cross onset in the HP condition. After that, β power was 
log10-transformed and multiplied by 10. Baseline correction was 
performed in the same way as at the sensor level: we used stimulus-
locked epochs in the HP condition (from −350 to −50 ms relative to 
fixation cross onset) to estimate β-band power using the procedure 
described above. Then the β-band power data were log10-transformed 
and multiplied by 10 within this time window at each time point in 
each sensor in each epoch. After that, we calculated the baseline value 
by averaging data across 12 time points within the baseline window 
and across all trials within the HP condition (for each participant in 
each sensor separately). Then, we subtracted the baseline value from 
β-band power values at all time points, in each sensor in each epoch. 
Thus, the resulting β power relative to baseline was expressed in dB.

Pre-computed data for individual participants’ surface source 
estimates were morphed to a common reference space using the “mne.
compute_source_morph” function (implemented in the MNE-Python 
software). We  used the “fsaverage” template brain provided by 
FreeSurfer as a common reference space (Fischl et al., 1999).

We illustrated the power of β oscillations at source level in two 
ways. First, to illustrate spatial cortical localization of β-ERD and 
β-ERS, we rendered baseline-corrected power of β oscillations for all 
conditions collapsed. For this, we averaged the data between all 8 
conditions, and then grand-averaged across participants, for each 

vertex separately. To render the data values on the inflated brain 
surface, we  used the “mne.viz.plot_source_estimates” function 
implemented in the MNE-Python software.

Second, we used the averaged data to illustrate spatial cortical 
localization of the pairwise contrasts. For contrasts between feedback 
valences the data were taken directly as obtained from the “mne.
minimum_norm.source_band_induced_power” function, while for 
contrasts between choice types (when considered irrespective of 
feedback valence), we averaged data between two feedback valences, 
within each choice type separately (for each participant within each 
vertex separately). After that, for each participant and within each 
vertex separately, we  subtracted data between the two conditions 
being contrasted (e.g., LP vs. HP, or losses vs. gains within the LP 
choice type). Next, we grand-averaged the resulting differential data 
across participants. Finally, we plotted the grand-averaged data on the 
inflated brain surface, representing only significant vertices. For this 
purpose, we assessed significance of the difference in the averaged 
β-band power, for each vertex independently (pairwise t-test, p < 0.05, 
uncorrected).

3. Results

3.1. Behavioral data

In the current study, we were interested in directed exploration. 
We argue that disadvantageous choices can be ascertained as directed 
exploration only on condition that participants had acquired an 
appropriate utility model of the task (otherwise, they probably made 
most of their choices randomly). Thus, only trials satisfying the 
learning criteria were included in the analyses (for behavioral 
statistics, see Supplementary Table S1).

Factor Choice type was significant for response time (RT) (LMM, 
F(3,3,519) = 17.09, p < 0.001; Supplementary Table S2). RT was 
significantly longer for the LP condition compared with all the other 
conditions, and RTs for pre-LP and post-LP conditions were 
significantly longer compared with the HP condition (Tukey HSD, all 
p’s < 0.01; Figure 1B).

3.2. Data-driven approach to choose time 
windows and areas of interest for the 
analysis of beta-band power modulations

We expected that (1) brain processes related to decision-making 
will be  different depending on the upcoming choice type (e.g., 
exploration vs. exploitation), and that (2) feedback valence will 
be processed differentially depending on the choice type that has been 
committed (contrasts of losses vs. gains will be different for explorative 
and exploitative trials).

In order to locate the expected effects in time and space, 
we combined a hypothesis-driven approach with a data-driven one. 
At the first step, we averaged response-locked β-band power data over 
consecutive 200-ms windows, in each sensor independently. 
We subjected these data to a single-trial statistical analysis using linear 
models with mixed effects (LMM), with Choice type, Feedback and 
their interaction included in the model as fixed effects. Significance 
was FDR-corrected for 102 sensors × 17 time windows. We visualized 
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significant sensors for each factor and their interaction on 
topographical maps represented in Figure 2.

In order to test our hypotheses, we focused on the three time 
intervals with corresponding sensor topography. A profound lasting 
effect of the Choice type factor was present before and during the 
behavioral response (Figure 2, upper row). Since we were interested 
in the brain processes related to decision-making leading to initiation 
of the behavioral response, we restricted the further analysis to the 
pre-response part of the effect within −900 to −300 ms relative to the 
response onset, thus aiming to avoid a possible overlap with effects 
related to stimulus processing and movement execution.

Feedback-related effects were not uniform, thus we selected two 
separate effects: (1) an early feedback-related effect of Choice type 
around the feedback onset at 100–500 ms after feedback onset 
(Figure 2, upper row); (2) a late feedback-related interaction of Choice 
type × Feedback at 500–900 ms after feedback onset (Figure 2, bottom 
row). The latter effect apparently evidenced differential feedback 
valence processing depending upon the choice type.

For additional data visualization on topographical maps, see 
Supplementary Figure S1.

3.3. Decision-making effect

To further analyze the dependence of β power upon the choice 
type, we  averaged β power across the cluster of sensors 

demonstrating the respective effect within the pre-response time 
window (Figure 2). Strong and highly significant suppression of β 
power relative to baseline was observed during the decision-making 
period (Figure  3A; Supplementary Figure S2). A source-level 
analysis revealed the widespread β-ERD originating from the left 
frontal, left pericentral areas, as well as from the parietal, occipital 
(both lateral and medial aspects), and medial temporal areas 
(Figure 3E).

At the sensor level, the effect of choice type 
(Supplementary Table S3) was due to deeper β-ERD in LP trials 
compared with all the other trial types (HP, pre-LP and post-LP) 
(Tukey HSD, all p’s < 0.001; Figure 3B, see also Figure 3C). At the 
source level, the significant difference between LP and HP conditions 
was localized to left pericentral, most of the parietal areas and large 
parts of the occipital cortex (both on lateral and medial aspects), as 
well as posterior cingulum (Figure 3F).

Thus, as we  expected, decision-making regarding explorative 
choices involved deeper suppression of β oscillations compared with 
exploitative decisions.

The dynamics of alpha band activity (8–12 Hz) in the posterior 
cortical areas during decision making resembled and/or paralleled 
modulations of beta activity, in that alpha power decreases in LP 
choices much more than in HP choices (Tukey HSD, all p’s < 0.001) 
(Supplementary Figures S2B, S3). Similar load-dependent suppression 
of beta and alpha activity in posterior cortical areas is in accord with 
the previous studies (e.g., Hanslmayr et al., 2012), and was interpreted 

FIGURE 2

Effects of choice type, feedback, and their interaction on β power change in the consecutive 200 msec time intervals throughout an entire trial. 
Timelines at the bottom relate to response onset (zero point on the upper timeline) and to feedback onset (zero point on the lower timeline). The 
onsets of each event (stimulus presentation, choice selection, and feedback) are marked by respective pictograms. Effect names are indicated at the 
right of the figure. The sequence of topographical maps corresponding to each effect demonstrates significant MEG sensors derived from LMM 
statistics (filled circles; p < 0.05, FDR-corrected for 17 time windows × 102 sensors). Blue frames mark time windows used in further analyses of the 
effects (decision-related, early feedback-related, and late feedback-related), with inserts at the top of each rectangle representing clusters of sensors 
taken for analysis. See Methods for details.
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as reflecting the richness of information that is encoded in the firing 
rate of neural assemblies of task-relevant brain regions.

In order to find out whether β suppression during decision-making 
is indeed related to greater cognitive load (which may explain delayed 
responding), we  estimated regression between response time and 

β-band power. We observed a highly significant negative regression 
slope (LMM statistics, β0 = 4.82, β1 = −2.33, p < 0.001, R2 = 0.41; 
Figure 3D). Negative slope indicates that the slower decision-making 
was, the more β power was suppressed during decision-making, thus 
suggesting greater cognitive load during slower decision-making.

FIGURE 3

Enhanced decision-related β power suppression (β-ERD) distinguishes explorative LP choice from exploitative choice types. (A) Topographic map 
representing β-band power change relative to baseline averaged over the time interval of −900 to −300 ms before a response onset, all choice types 
pooled. Small black open circles mark sensors, in which β power is significantly different from baseline (t-test, p < 0.05, uncorrected); sensors included 
in the cluster differentiating choice types according to LMM analysis (cf. Figure 2) are additionally marked by colored rings. Here and hereafter, blue 
and red colors denote β-ERD and β-ERS, respectively. (B) Decision-related β-band power change averaged over the cluster of significant sensors 
(colored rings in panel A), as a function of choice type. The β power change for each choice type show averages across sensors per significant cluster 
marked by the colored rings in panel A. Points and error bars on graphs represent M ± SEM in single trials in all subjects. *** p < 0.001 (LMM, Tukey HSD 
test). (C) Topographic maps of the pairwise difference in β power change between the LP and other choice types at the sensor level. Significant sensors 
(LMM, Tukey HSD test, p < 0.05, FDR-corrected) are indicated by small black open circles. (D) Linear regression of response time to decision-related 
β-band power change averaged across sensors of significant cluster (colored rings in panel A), all choice types pooled. The line represents linear 
regression; shaded areas depict 95% confidence interval. Dots on scatterplots correspond to β power change in individual trials in all participants. (E,F) 
Spatial distribution of cortical sources underlying decision-related β-ERD: (E) relative to baseline, all conditions pooled; and (F) increased β-ERD for LP 
as compared to HP choices. Only significant vertices are shown (t-test, p < 0.05, uncorrected). Here and hereafter, the lateral view of the left and right 
cerebral hemispheres is plotted in the upper row and the medial view—in the lower row. For event-related spectral perturbations and timecourses of β 
power of the LP vs. HP contrast, see Supplementary Figure S2.
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3.4. Early effect of choice type on the 
feedback processing

Starting around the time of the visual feedback onset and 
sustaining up to 500 ms, the effect of Choice type on β power was 
observed in the occipito-parietal cluster of sensors (Figures 2, 4A,D). 
For all choice types, early post-feedback β power in this cluster was 
suppressed relative to baseline (Figures  4A,B). Note that the 
concurrent rise of β power (β-ERS) in the anterior sensors (Figure 4A) 
was not influenced by Choice type and started long before the 
feedback onset (Supplementary Figure S1), thus hardly representing 
the early feedback-related response. The effect of Choice type 
(Supplementary Table S3) was mainly driven by stronger β-ERD on 
LP trials compared with all the other trial types (Tukey HSD, all 
p’s < 0.05; Figure 4B, see also Figure 4C; Supplementary Figure S4). 
Notably, the feedback valence (whether a participant gained or lost) 
did not influence β-ERD in any trial type (Supplementary Table S3). 
Source-level analysis of the LP vs. HP contrast revealed that the 
LP-related increase in the β-ERD mainly occupied cortical regions on 
the lateral and medial surface of the occipital and posterior part of 
parietal and occipital lobes (Figure 4E).

Thus, as we predicted, explorative choices boosted processing of 
the visual feedback signal, no matter whether their outcome was good 
or bad for a participant.

3.5. Late feedback-related effect

A significant Choice type × Feedback interaction distinguished the 
late feedback-related time interval (500–900 ms after feedback onset) 
(Figure 2). This implies that, as we expected, β power modulations by 
positive and negative feedback depended upon choice type. Yet, 
surprisingly, this dependency manifested itself relatively late 
throughout the course of feedback-related brain response. For all trial 
types pooled together, we observed a significant β-ERS in the anterior 
areas, while significant β-ERD persisted over the posterior regions 
(Figures  5A,D). Therefore, we  proceeded with analyses in sensor 
subclusters manifesting significant ERD and ERS separately.

3.5.1. Posterior subcluster
Similarly to the early post-feedback interval, a significant β-ERD 

relative to baseline was observed in the posterior sensors 
(Figures 5A,D; Supplementary Table S3). For the posterior subcluster, 
LMM analysis confirmed the significance of Choice type, Feedback, 
and Choice type × Feedback interaction (Figure  5A; 
Supplementary Table S3). The posterior β-ERD was deeper for LP 
trails compared to HP trials (Figure 5B), i.e., it manifested the same, 
although less pronounced, LP-related bias as we observed in the early 
post-feedback interval. Choice type × Feedback interaction was mainly 
explained by significantly greater posterior β-ERD after positive 
compared with negative feedback on LP trials (Tukey HSD, p < 0.001), 
but not for the other choice types (Figures 5B,C). On the contrary, on 
exploitative HP trials sensitivity of posterior β-ERD to positive and 
negative feedback was opposite—with β-ERD being slightly yet 
significantly larger after losses compared with gains (Tukey HSD, 
p = 0.03; Figure 5B).

Thus, selectively increased posterior β-ERD indexed greater 
neural activation after losses for serial exploitative HP choices and 

after wins in the explorative LP choices. Given the higher probability 
of wins after HP choices and losses after LP choices, these findings 
suggested that the activation strength depended on the outcome 
expectancy, with greater activation accompanying late processing of 
the less probable outcome.

3.5.2. Anterior subcluster
Sensors of the anterior subcluster exhibited significant β-ERS 

(Figures  5A,D). Factors Choice type, Feedback and interaction 
Choice type × Feedback were all highly significant 
(Supplementary Table S3). The effect of the Choice type can 
be  explained by the fact that anterior β-ERS was significantly 
greater for HP trials compared with pre-LP and LP trials 
(Figure 5B). Since a choice of the advantageous stimulus has been 
rewarded more frequently than its risky alternative, this finding 
seemed to be in line with the role of the reward in anterior β-ERS 
induction for the specific, possibly, advantageous choices.

However, examination of Choice type × Feedback interaction by 
splitting the data by feedback valence (Figure 5B, see also Figure 5C) 
ruled out this explanation. Negative and positive feedback in the HP 
trials equally contributed to the anterior β-ERS, while in explorative 
LP trials β-ERS was driven exclusively by negative feedback (Figure 5B, 
see also Figures 5C,E). Note that in the LP trials, positive feedback was 
even followed by β power suppression relatively to baseline—instead 
of its increase (Figure 5B).

Importantly, the post-feedback synchronization for losses in LP 
trials was specific for beta activity as it was absent in the alpha 
frequency band (Figure  6). There were no changes in the post-
feedback alpha power in the anterior sensors after both negative 
(t(39) = 0.58, p = 0.56) and positive feedback (t(39) = −1.16, p = 0.25). 
Thus, the relative increase in anterior beta power did not reflect a 
“bleed in” from the neighboring alpha frequencies.

In addition, trials immediately preceding explorative LP 
choices (pre-LP), despite their superficial similarity with the 
advantageous HP choices, showed a significantly reduced β-ERS to 
feedback (Tukey HSD, p < 0.001), regardless of the feedback valence 
(Figure  5B). Yet, the same advantageous choice in the post-LP 
trials, similarly to the LP trials themselves, induced greater anterior 
β-ERS to losses compared with gains (Tukey HSD, p < 0.001, 
Figure 5B).

The high sensitivity of anterior β-ERS to punishment in the 
explorative choices (and to a lesser degree in post-explorative choices) 
strongly suggests that this specific form of oscillations was not driven 
by the valence of the feedback signal itself, but rather depended on its 
context, which, in our task, varies between highly expected (serial HP 
trials) and that involving conflict with the accumulated reward history 
(LP trials).

These findings on β power sensitivity to feedback valence on 
explorative trials agree with the predictions made from the “predictive 
coding” account of anterior β-ERS outlined in the Introduction.

However, none of the predictions can account for the finding 
that increased sensitivity of anterior β-ERS to punishment would 
sustain in the post-LP advantageous choices when a participant 
came back to the non-conflicting exploitative strategy. This finding 
implied that in addition to the accumulated history of trials and 
errors, there could be a short-term impact of the previous trial 
outcome on the anterior β-ERS. We explored this possibility in the 
following section.
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3.6. The impact of the feedback presented 
on the previous trial

In order to evaluate the impact of the previous feedback (i.e., 
that was presented on the previous trial) on the late feedback-
related effect evoked by losses and gains on the current trial, we ran 
LMM analysis with Previous feedback fixed factor additionally 
included into the model (Figure 7). Specifically, we were interested 
only in ERS effects (i.e., the anterior subcluster) and two choice 
types—HP and LP.

Triple interaction Choice type × Previous feedback × Feedback 
was significant (F1, 3,304 = 6.0, p = 0.015). For exploitative HP 
choices (Figure  7, left panel), β-ERS induced by a current 

gain was slightly but significantly enhanced if the previous 
similarly advantageous choice was expectedly rewarded 
rather than punished (Tukey HSD, p = 0.02), whereas β-ERS 
induced by a current loss remained unaffected by the 
previous outcome.

On the contrary, for the explorative LP choices, the outcome 
of the previous advantageous choice significantly affected β-ERS 
in the case of a current loss (Tukey HSD, p = 0.04) but not a 
current gain (Tukey HSD, p ≫ 0.05; Figure  7, right panel). It 
should be  stressed that gains for LP choices produced no 
β-ERS at all.

A strong β-ERS bound to anticipated monetary losses ensuing 
from objectively disadvantageous choices compared with gains, was 

FIGURE 4

Enhanced early feedback-related β-ERD at posterior cortex distinguishes explorative LP choice from exploitative choice types. (A) Topographic map of 
feedback-related β-band power change relative to baseline averaged across the time interval 100–500 ms after feedback onset, all choice types 
pooled. Blue and red colors denote β-ERD and β-ERS, respectively. Small black open circles mark sensors, in which feedback-related β power is 
significantly different from baseline (t-test, p < 0.05, uncorrected); sensors included in the cluster differentiating feedback-related β power between 
choice types according to LMM analysis (cf. Figure 2) are additionally marked by colored rings. Note that β-ERD in the posterior cluster significantly 
varies between choice types, while β-ERS in the anterior sensors does not differentiate between choices. (B) Early feedback-related β-band power 
change averaged over the cluster of significant sensors (colored rings in panel A), as a function of choice type. Points and error bars on graphs 
represent M ± SEM across single trials in all subjects. * p < 0.05, ** p < 0.01, *** p < 0.001 (LMM, Tukey HSD test). (C) Topographic maps of the pairwise 
difference in early feedback-related β power change between the LP and other choice types at the sensor level. Significant sensors (LMM, Tukey HSD 
test, p < 0.05, FDR-corrected) are indicated by small black open circles. (D,E) Spatial distribution of cortical sources underlying feedback-related β power 
change: (E) relative to baseline, all choice types pooled; and (D) increased β-ERD for LP as compared to HP choices. Only significant vertices are 
shown (t-test, p < 0.05, uncorrected). For event-related spectral perturbations and timecourses of β power of the LP vs. HP contrast, see 
Supplementary Figure S4.
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highly significant if the previous advantageous choice was rightfully 
rewarded (Tukey HSD, p < 0.001), while after punishment it was at the 
margin of significance (Tukey HSD, p = 0.04).

In other words, for HP and LP choices similarly, anterior β-ERS 
was further enhanced if not only the outcome of the current choice 
but also the outcome of the previous one matched the prediction/

FIGURE 5

Heightened sensitivity to losses versus gains in late feedback-related anterior β-ERS and posterior β-ERD distinguishes explorative LP choices from 
exploitative choice types. (A) Topographic map of late feedback-related β-band power change relative to baseline averaged over the time interval 
500–900 ms after feedback onset, all choice types pooled. Small black open circles mark sensors, in which late feedback-related β power is 
significantly different from baseline (t-test, p < 0.05, uncorrected); sensors included in the cluster differentiating feedback-related β power following 
gains and losses between choice types according to LMM analysis (cf. Figure 2) are additionally marked by colored rings. (B) Late feedback-related 
β-band power change averaged over the clusters of sensors (colored rings in panel A): anterior cluster displaying β-ERS and posterior cluster displaying 
β-ERD, as a function of choice type (upper row) and its interaction with gain or loss (lower row). Points and error bars on graphs represent M ± SEM 
across single trials in all subjects. * p < 0.05, *** p < 0.001 (LMM, Tukey HSD test). (C) Topographic maps representing contrasts between losses and gains 
for each choice type separately. Significant sensors (LMM, Tukey HSD test, p < 0.05, FDR-corrected) are indicated by small black open circles. (D,E) 
Cortical distribution of sources demonstrating β power change: (D) relative to baseline, all conditions pooled, and (E) the contrast between losses and 
gains within the LP choices. Only significant vertices are shown (t-test, p < 0.05, uncorrected). For event-related spectral perturbations and timecourses 
of β power of the losses vs. wins contrast under LP condition, see Figure 6.
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expectation derived from the dominant utility model acquired from 
the previous experience.

From the standpoint of the anterior β-ERS as a reflection of 
strengthening the dominant utility model, post-feedback β-ERS might 
also possess a proactive facilitating effect on the decision-making in 
the next advantageous choice. In particular, greater anterior post-
feedback β-ERS after losses in LP choices might lead to lesser posterior 
β-ERD (indexing lesser efforts) during a decision to switch to the 
advantageous choice in the following post-LP trial. To check this 
possibility, we ran LMM regression analysis between the posterior 
beta power on post-LP trials vs. anterior beta power on LP trials after 
losses using following LMM:

 

Posterior beta power post LP Anterior beta power

LP after lo

_ ~

ssses |Subject� � �1  (7)

The results obtained confirmed the expected dependency 
(R2 = 0.33, p = 0.038).

4. Discussion

Using a simple two-choice probabilistic reinforcement learning 
task, which was learnt by participants through trial and error, 
we  investigated β-band power modulations related to rare 
disadvantageous choices conflicting with the acquired inner 
utility model.

The study brought two main findings. First, decision making 
leading to explorative choices took more time and evidenced 
greater large-scale suppression of β oscillations than its 
advantageous alternative. Crucially, the magnitude of a large-scale 
β suppression, when a subject formed his/her decision reliably, 
predicted decision costs (with response time taken as a measurable 
proxy of this internal variable) on a single trial basis. Given 
multiple evidence associating the strength of β suppression with 
greater cognitive and attentional efforts (Scharinger et al., 2017; 
Pavlova et  al., 2019; Tafuro et  al., 2019), this finding strongly 
suggests that such a choice requires additional resources to 
overcome the internal utility model favoring the advantageous 
alternative and strongly supports the hypothesis of its deliberately 

FIGURE 6

Time-frequency analysis of the heightened sensitivity to losses versus gains in late feedback-related anterior β-ERS after explorative LP choices. 
(A) Timecourses of β-band power averaged over three most significant sensors in the anterior cluster (shown in the inset at the top). Red, blue and 
black lines represent the β power timecourses related to losses, gains and the difference between them, respectively. Bar at the bottom of the graph 
indicates significance of the difference between losses and gains (t-test, p < 0.05; green: uncorrected; brown: FDR corrected over time points). 
(B) Time-frequency plots of event-related spectral perturbations of MEG power averaged within the same three sensors obtained in the main LMM 
analysis. “0” on the timeline corresponds to response onset, and “1000”—to feedback onset. “500–900 ms” denotes respective time window relative to 
feedback onset.
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explorative nature (Ellerby and Tunney, 2017; Kozunova 
et al., 2022).

Second, the most intriguing finding concerns β oscillations 
induced by feedback received after deliberately explorative choices. 
The main difference between directed explorative and exploitative 
choices was the impact of their negative versus positive outcome on β 
oscillations arising during post-evaluation processes (Figure 5). When 
a choice was made within a sequence of similarly advantageous 
choices (HP choice), both monetary gains and losses produced a late 
synchronization of frontal β oscillations. These feedback-related β 
oscillations were reduced to a baseline if a participant was going to 
switch from such an advantageous strategy toward the explorative one 
(pre-LP choice). Remarkably, only losses—but not gains—were 
accompanied by reliable frontal β synchronization after committing 
directed exploration (LP choice).

Therefore, in our task, there was no consistent relationship 
between the presence or absence of frontal β oscillations and the 
reward or punishment for a committed choice. Therefore, merely 
maintaining the “reward-induced” state, as the “reward” hypothesis 
implies (Marco-Pallares et  al., 2015), is not sufficient to generate 
enhanced β power. Although the context-dependency of punishment-
related frontal β was previously mentioned by some authors (e.g., 
Yaple et  al., 2018), this conclusion was derived from the findings 
obtained in different research paradigms. Here, for the first time, 
we directly contrasted frontal β resulting from the outcomes of two 
choice types committed by the same participants within the same task 
on the trial-by-trial basis. The solely punishment-related β 
synchronization observed for explorative choices cannot be explained 
or predicted by previously suggested contextual factors such as 
successful punishment avoidance (Hamel et al., 2018), task difficulty 
(Billeke et al., 2020), emotional salience of the feedback signal (Leicht 
et al., 2013), reward expectancy (Cohen et al., 2007; Donamayor et al., 
2012; HajiHosseini et  al., 2012; Mas-Herrero et  al., 2015; 
Ramakrishnan et al., 2017). It is possible that the bias of the literature 
toward a role of β oscillations in positive feedback processing derives 
in part from experimental biases, e.g., nonequivalence of the relevance 
of positive and negative outcomes for the future behavior [as in 
HajiHosseini and Holroyd (2015)] and/or a complete lack of 

response-feedback contingency, i.e., a random structure of rewards 
and punishments for either choice (HajiHosseini et  al., 2012; 
Mas-Herrero et al., 2015).

Being contradictory to the “pure reward” hypothesis, our results 
are instead consistent with the role of β oscillations in the brain state 
resulting from the matching processes between the outcome of a 
current choice and accumulated experience of gains and losses, i.e., 
the inner utility model.

Both positive and negative feedback signals used in our task could 
induce the increase in β power with a latency of five to nine hundred 
milliseconds. However, late β ERS clearly depended on the congruency 
between the feedback received and the prediction based on the 
previously acquired utility model. Specifically, when a participant’s 
choice complies with the inner utility model (i.e., if the advantageous 
stimulus with the higher objective reward probability was repeatedly 
chosen), late frontal β increases regardless of the actual feedback that 
a participant has received. Given the probabilistic nature of the model, 
the precision of its prediction is not very narrow (see, e.g., Yon and 
Frith, 2021), and a single loss resulting from the objectively 
advantageous choice does not lead to a tangible mismatch. By contrast, 
explorative choices committed against the predominant value-based 
response tendency trigger frontal β synchronization only after a 
monetary loss, which provides strong evidence for validity of the inner 
utility model. In this case, a reward rather than punishment for a 
preceding advantageous choice, being also congruent with an inner 
model’s prediction, increases β-ERS induced by a current loss 
(Figure  7). In other words, for both exploitative and explorative 
choices, maximal frontal β-ERS accompanies those feedback signals 
that reliably confirm the validity of the existing value-based model—
even if the current choice was driven by its explorative alternative. This 
type of β oscillations thus appears as a categorical information and not 
as a scalar measure of discrepancy between outcome and expectation.

The relatively long latency (500–900 ms) of the feedback-related 
frontal β-ERS places strong constraints on its potential functional 
significance. It is unlikely that the differential response of β-ERS to 
reward and punishment in our task is causally involved in the feedback 
valence evaluation, as it occurs substantially after the “feedback 
processing” time window, which is usually between 200 and 500 ms 

FIGURE 7

Different impact of the previous choice outcome on anterior β-ERS induced by losses and gains in the LP and HP choices. Late β band power change 
(500–900 ms after feedback onset) averaged across the anterior cluster (see Figure 5A) are shown for LP and HP choices as a function of two factors: a 
current feedback valence (“loss” and “gain”, red and blue rectangles respectively) and a previous feedback valence (“previous loss” or “previous gain” 
indicated by horizontal brackets). Boxes and error bars on graphs represent M ± SEM across single trials in all subjects. Asterisks denote Tukey HSD p-
values: *p < 0.05, ***p < 0.001.
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relative to feedback onset (Cohen et al., 2007; Marco-Pallares et al., 
2008); but see also Yaple et al. (2018) and Alicart et al. (2020), see also 
Leicht et al. (2013) for a later latency of differential effect of feedback 
valence on frontal β under specific task requirements.

We offer here that there is a more sophisticated account of feedback-
related frontal β, which is focused on the post-evaluative memory-based 
replay of “cognitive set” (Engel and Fries, 2010) or rule representation 
(Buschman et al., 2012; Brincat and Miller, 2015; Brincat and Miller, 2016) 
with its possible role in the strengthening of the re-activated cortical 
representation. In line with this idea, the cortical topography of the late 
frontal anterior β-ERS (Figure  5) reveals involvement of a widely 
distributed set of cortical areas that are mainly located on the dorsal and 
medial surface of the frontal cortex including anterior and dorsal 
cingulum, supplementary motor area, inferior frontal gyrus, anterior 
insula and ventromedial frontal cortex. All these structures constitute 
cortical nodes of the cingulate-basal ganglia-limbic circle, strongly 
implicated in the stabilization of neural representations for selected 
behavioral rule through reverberating activity in the β-range (Leventhal 
et al., 2012; Brincat and Miller, 2016).

Our proposal here is closely related to this idea, yet places it in a 
context of exploration-exploitation dilemma. We suggest that during 
outcome evaluation of a deliberately explorative choice, a 
representation of the previously rewarded choice strategy (utility 
model) is maintained in the memory buffer alongside with that for the 
voluntary decision, which shifts current choice priorities in favor of 
information seeking, i.e., testing the alternative model, or “task set” 
(Domenech et  al., 2020; Koechlin, 2020). Such competing 
representations are thought to be re-activated whenever the current 
task induces conflict in processing preceding response selection, but 
also in feedback evaluation (Botvinick et al., 2004). The evaluation 
process lends the greatest weight to the external feedback that is most 
reliable, i.e., matches the previously accumulated experience (see, e.g., 
Yon and Frith, 2021), aka the inner utility model in our experimental 
settings. The further stabilization of the winning utility model is 
reflected in the punishment-related β oscillations for alternative 
explorative choice, and it would compromise future repetitions of the 
explorative behavioral program in the unchanging environment. A 
rare gain for such choices does not provide sufficient evidence to 
strengthen either model; therefore, it does not induce β 
synchronization. This leaves a window of opportunity for “set shifting”, 
i.e., for adjustment of value-based model in the future, which is vital 
in case environment changes. We predict that using the same task in 
the “reversal learning” context will reveal selectively increased reward-
related β oscillations for a number of explorative choices made after 
the reversal of previously acquired stimulus–response associations.

To conclude, our results suggest that emergence of late 
punishment-related β-ERS for deliberately explorative choices reflects 
a replay of a value-based model representation that possesses greater 
predictive capacity in an unchanging environment and will 
be strengthened for future use.
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