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Cirsium arvense (Canada thistle) is a perennial weed that causes significant

economic losses in agriculture. An extensive rhizomatous root system makes

C. arvense difficult to manage, particularly in agricultural systems that use tillage

as a primary management tool. There is a need for the development of integrated

weed management toolsets that include C. arvense biological controls. Puccinia

punctiformis (thistle rust) is an autoecious fungal pathogen that systemically

infects C. arvense, with the potential to reduce host vigor over time. The goal of

this study was to integrate the P. punctiformis biocontrol with a simulated annual

cropping sequence in a greenhouse environment and evaluate C. arvense’s

above-and belowground biomass production, and its competitive ability.

Repeated P. punctiformis inoculations produced systemically infected C.

arvense stems in greenhouse pots over time. Cirsium arvense that was

inoculated with P. punctiformis had 1.6 grams/pot (p = 0.0019) less

aboveground biomass and 5.6 grams/pot (p< 0.001) less belowground

biomass, compared to the non-inoculated (control). Puccinia punctiformis and

crop competition interacted additively to lower aboveground (p<0.001) and

belowground (p<0.001) C. arvense biomass more than individual use of either

the biocontrol or competition alone. The aboveground competition intensity of

C. arvense in a mixed crop sequence, relative to non-inoculated C. arvense

grown in a monoculture, was moderately impacted by the P. punctiformis

biocontrol (p = 0.0987). These results indicate that systemic infection can

reduce biomass production and the competitive ability of C. arvense. Overall,

P. punctiformis can be integrated into competitive annual cropping sequences

with the potential to reduce C. arvense vigor over time.
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1 Introduction

Cirsium arvense (L.) Scop. (Canada thistle) is a problematic

weed that causes large economic losses in agriculture, driving the

need for integrated weed management tools that include biological

control agents (Orloff et al., 2018). Cirsium arvense can be found

throughout temperate climates of the world, where it exists as a

perennial herb that reproduces through an extensive rhizomatous

root system and wind dispersed seeds (Tiley, 2010). Clonal

rhizomes make C. arvense resilient to disturbance, particularly in

tilled organic cropping systems that do not use synthetic herbicides

for weed management (Moore, 1975). Organic producers in the

Northern Great Plains region of the United States generally depend

on tillage as a primary weed management tool, however this

practice increases soil erosion due to wind and water and depletes

soil organic matter over time (Lenhoff et al., 2017). Additionally,

tillage can disperse vigorous C. arvense rhizomes, causing a rapid

increase of the weed’s population (Tiley, 2010). As a result, C.

arvense has become a serious management problem within organic

cropping systems, where alternative management tools need to be

explored (Tautges et al., 2016; Orloff et al., 2018).

The use of competitive annual crops is another common

approach used to manage weeds in organic cropping systems

(Bullock, 1992; Liebman and Dyck, 1993). Competitive crops can

disrupt weed growth by reducing resource availability and niche

dominance of weed species (Liebman and Dyck, 1993). However,

the difficult nature of reducing C. arvense rhizomes, particularly in

organic agriculture (Tautges et al., 2016; Orloff et al., 2018), has led

to a search for alternative and integrated tactics, including

biocontrol agents that inhibit root development (Berner et al.,

2013; Cripps et al., 2014). The use of biocontrol agents can be

challenging due to a lack of host specificity, varied responses to

environmental conditions, and mismanagement. However,

continued exploration of biocontrols for C. arvense has the

potential to yield low-cost, long-term, host-specific options that

can be integrated into existing weed management toolsets (Berner

et al., 2013).

Puccinia punctiformis (F. Strauss) Rohl. (thistle rust) is a

heterotrophic fungal pathogen of C. arvense that acts as a long-

term systemic parasite (Buller, 1950; Menzies, 1953; Berner et al.,

2013; Kentjens et al., 2023). As a parasite that consumes resources

and weakens the root structure (Buller, 1950; Menzies, 1953), P.

punctiformis is specific to C. arvense (Berner et al., 2013; Kentjens

et al., 2023) and has been identified in temperate habitats around

the globe (Berner et al., 2013; Kentjens et al., 2023). Once

established in the roots, infected C. arvense can develop chlorotic

leaf tissue with lesions, elongated stems, and growth irregularities

which can reduce fitness and cause death (Buller, 1950; Berner et al.,

2013). Diseased stems act as aboveground carriers for P.

punctiformis spores, appearing as orange to dark-red pustules on

leaves, where the fungus completes most of its five-stage

heterothallic life cycle during summer months, eventually

producing transmissible teliospores (Buller, 1950; Menzies, 1953;

Kentjens et al., 2023). Teliospore-bearing thistle leaves senesce and

abscise as precipitation and temperatures decline, where they can

contact healthy C. arvense rosettes through wind or mechanical
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dispersion, leading to long-term systemic infection in new C.

arvense hosts under ideal environmental conditions (French and

Lightfield, 1990; Berner et al., 2013).

Puccinia punctiformis’ impact on C. arvense abundance has

been well documented (French, 1990; Thomas et al., 1994; Berner

et al., 2013; Cripps et al., 2014; Kentjens et al., 2023). However, to

our knowledge, the effects of integrating the P. punctiformis

biocontrol with a competitive crop sequence on C. arvense

growth have not been studied. We addressed this gap in

knowledge using greenhouse experiment, which assessed the

impact of P. puncti formis on C. arvense growth and

competitiveness. Specifically, our questions were: 1) What is the

probability of observing P. punctiformis infected C. arvense over

time, and does the percentage of infected C. arvense stems increase

over time? 2) How does P. punctiformis affect C. arvense above- and

belowground biomass, and does crop competition interact with the

effects? 3) Using a relative competition intensity index (RCI), is the

competitive ability of C. arvense reduced when P. punctiformis is

integrated into a sequence of competitive annual crops? We

hypothesized that the integration of P. punctiformis with a

competitive crop sequence would lead to a significant reduction

in above- and belowground C. arvense biomass, compared to

individual effects from P. punctiformis or crop competition when

used alone.
2 Materials and methods

2.1 Experimental design

A greenhouse study with three independent trials was conducted

at the Montana State University Plant Growth Center in Bozeman,

Montana, between 2020 and 2022. A nested full factorial (2 x 2)

design was used to assess the integration of P. punctiformis and crop

competition. The primary treatment was P. punctiformis inoculation,

with two levels: C. arvense inoculated with P. punctiformis (n = 20)

and non-inoculated C. arvense grown as a control (n = 20). Nested

within each level of the inoculation treatment was a competition

treatment, split into two levels: C. arvense grown in monoculture (n =

10) and C. arvense grown in competition with a common crop species

(n = 10; Supplementary Figure 1).

The competition treatment was a four-phase crop sequence that

incorporated common crops used by organic farmers in the dryland

areas of the Northern Great Plains. The sequence included the

following four phases, with seeding depths and seeding rates scaled

for greenhouse pots: 1) Fallow: 1-gram C. arvense rhizome planted

~ 10 cm deep; 2) spring wheat: 100 kg/hectare planted ~ 5 cm deep

(18 plants/pot); 3) forage pea: 89 kg/hectare planted ~ 5 cm deep (8

plants/pot); and 4) safflower: 33 kg/hectare planted ~ 3 cm deep (2

plants/pot). Cirsium arvense rhizomes were planted in the

approximate center of each pot during the first phase. Crops were

planted in a manner that provided approximately equal space

between individuals, with at least 5 cm of distance from pot edges.

Two separate greenhouse spaces were used to prevent

movement of P. punctiformis spores between the P. punctiformis

inoculated treatment and the non-inoculated (control) treatment.
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Internal greenhouse temperatures for both spaces were set at a

range of 18°C to 26.5°C during the day, and 10°C to 24°C at night.

To ensure consistent lighting, passive solar lighting with

supplemental 1000-watt metal halide lamps, set to 12 hour

intervals, were used throughout the course of the study.
2.2 Cirsium arvense and Puccinia
punctiformis establishment

Cirsium arvense rhizomes were acquired from naturally

occurring populations in Gallatin County and Hill County,

Montana during the summer of 2019. Rhizomes were maintained

in greenhouse pots and used as the source of rhizome transplants

for the study. Pots (25.4 cm diameter x 20.3 cm deep) were sown

with 1-gram cuttings of C. arvense rhizome and randomly assigned

to a treatment. Rhizomes were planted into a pasteurized soil

mixture consisting of equal parts (by volume) of loam soil,

washed sand, and Canadian sphagnum peat moss. Pots were

watered every two days or as needed, for ten seconds per pot

using the shower setting on a conventional garden hose wand. A

soluble all-purpose fertilizer (20-20-20 NPK) was added to pots bi-

weekly, by mixing 2.5 ml of fertilizer with 3.8 L of water in a

watering can, and hand watering for ten seconds per pot. Cirsium

arvense was grown for an average of 4.5 months during the first

phase (fallow) in all treatments, which was approximately timed

with the development of flower buds in all pots. In subsequent

phases of each trial, C. arvense was allowed to grow until harvest at

the maturity stage of the crop within each crop phase.

Puccinia punctiformis inoculum was collected from naturally

occurring populations of infected C. arvense in Gallatin County,

Montana and prepared as described by Berner et al. (2013).

Systemically infected C. arvense stems were harvested in the

autumns of 2020 and 2021, and dried in paper bags in a dark

room at ambient temperatures. From the dried stems, leaf tissue

containing signs of teliospores were gathered, and ground into a

coarse powder inoculum using a household blender. The ground

teliospore-bearing inoculum was immediately used or stored for

future use in a -80°C freezer. Inoculation methodology followed

Berner et al. (2013), where 5 ml of dry rust inoculum was dispersed

evenly on the crowns of C. arvense rosettes at the beginning of each

phase, for a total of four inoculations per pot in each trial. Cripps

et al. (2014) estimated that the concentration of teliospores, using

the same methodology, was 1.14x107 teliospores g-1. The inoculated

rosettes were misted with deionized water once a day for three days

post inoculation to maintain humidity for spore germination. This

method was repeated after the harvest of each phase and subsequent

regrowth of C. arvense, for a total of four inoculations per pot in

each trial.
2.3 Data collection

To address our first question, the density of C. arvense stems

with signs of systemic P. punctiformis infection was recorded from

each pot at the termination of each crop phase. Cirsium arvense
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stems were identified as systemically infected when spore structures

were observed on leaves and stems. To address our second and third

questions, C. arvense and crop stems were counted and cut at soil

level at the termination of each crop phase. To obtain dry weight,

the harvested biomass was oven dried for 72 hours at ~40.5°C and

weighed to the nearest 0.01-gram. After each harvest, pots

containing thistle rhizomes were left undisturbed and the next

crop phase was seeded into pots assigned to the mixed competition

treatment. After the aboveground harvest of final the crop phase

(safflower) of each trial, C. arvense rhizome biomass was removed

from the soil of each pot, cleaned of soil and residue with cool water,

dried for 72 hours at ~40.5°C, and weighed to the nearest 0.01-gram

Cirsium arvense pots assigned to the monoculture level of the

competition treatment were harvested using the same

methodology and at the same time as the mixed pots.
2.4 Data analysis

The probability of observing systemic P. punctiformis infection

in pots was calculated at each phase in the crop sequence and was

modeled using a generalized linear mixed effects model with a

binomial distribution (“glmer” function in the R-Package

“lmerTest”; Kuznetsova et al., 2017). The fixed effect in this

model was crop phase, and pot ID was included as a random

effect to account for repeated observations within each pot over the

three trials. Model selection followed a backwards selection from a

full model containing all potential explanatory variables using a

‘Drop in Deviance’ test (Ramsey and Schafer, 2012). Model

overdispersion was checked by calculating the sum of squared

Pearson residuals and comparing it to the residual degrees of

freedom, and assumptions homoscedasticity, normality, or

influential observations were visually assessed (Ramsey and

Schafer, 2012).

The percentage of C. arvense stems with signs of systemic P.

punctiformis infection within the inoculated treatment was

calculated out of the total density of C. arvense stems per pot and

was modeled using a linear mixed effects model (“lmer” function in

the R-Package “lmerTest”; Kuznetsova et al., 2017). The fixed effects

and random effects in this model were the same as previously

described. Explanatory variables were backwards selected from a

full model containing all potential explanatory variables (“step”

function in the R-Package “lmerTest”; Ramsey and Schafer, 2012).

Model assumptions of homoscedasticity, normality, and influential

observations were visually assessed (Ramsey and Schafer, 2012).

Differences in C arvense above- and belowground biomass was

evaluated using separate linear mixed effects models. In the model

for aboveground biomass, the fixed effects were inoculation

treatment, competition treatment, and crop phase, with pot ID as

a random effect. In the model for belowground biomass, the fixed

effects were inoculation treatment and competition treatment, with

trial as a random effect to account for repeated observations within

each trial. In both models, explanatory terms were selected, and

assumptions were checked using methods described previously.

To assess the competitive ability of C. arvense, a relative

competition intensity (RCI; Weigelt and Jolliffe, 2003) was used
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to evaluate the impacts of competition between the P. punctiformis

inoculated and non-inoculated (control) treatments was calculated

as:

RCI =
monoculture�mixed

monoculture
� 100

Where “monoculture” was the aboveground biomass of C.

arvense from the non-inoculated (control) monoculture

treatment, and “mixed” was the aboveground biomass of the

mixed pots for either the P. punctiformis inoculated or non-

inoculated (control) treatment. RCIcontrol was calculated using

aboveground biomass from the control monoculture and mixed

pots that were not inoculated with P. punctiformis. RCIinoculated was

calculated using aboveground biomass from the non-inoculated

(control) monoculture and the aboveground biomass from the

mixed pots in the P. punctiformis inoculated treatment. An RCI

value ≤ 0 indicates that C. arvense grown in mixed pots produced as

much or more aboveground biomass compared to C. arvense grown

in a monoculture. In contrast, RCI > 0 indicates that aboveground

biomass of C. arvense was reduced when grown in mixed pots, and

RCI = 100 indicates that no aboveground C. arvense biomass was

produced in the mixed treatment.

The relationship between RCIcontrol and RCIinoculated was

evaluated using a linear mixed effects model, with fixed effects of

inoculation treatment and crop phase, and pot ID included as a

random effect. Model selection was completed by comparing all

potential models with an Extra Sums of Squares F-Test. All model

assumptions were visually assessed.
3 Results

3.1 Puccinia punctiformis establishment

The overall frequency of P. punctiformis inoculated pots with

systemically infected C. arvense stems over the three trials was 52%

with no infection observed in the non-inoculated (control) treatment.

Systemically infected C. arvense stems were observed in 15% of pots

in the fallow phase, 65% of pots in the wheat phase, 60% of pots in the

pea phase, and 67% of pots in the safflower phase (F = 14.159;

p<0.001; Figure 1A). The percentage of P. punctiformis infected stems

in the inoculated treatment, out of all C. arvense stems produced per

pot, increased as the crop sequence progressed, with the largest

increase occurring after the fallow phase (F = 8.58; p<0.001). The

overall mean percentage of P. punctiformis infected stems per pot was

12%. Out of all stems produced per pot, 4% were systemically infected

in the fallow phase, 14% were systemically infected in the wheat

phase, 16% were systemically infected in the pea phase, and 14% were

systemically infected in the safflower phase (Figure 1B).
3.2 Cirsium arvense above-and
belowground biomass

Cirsium arvense that was inoculated with P. punctiformis had

(± SE) 1.6 (± 0.52) grams/pot less aboveground biomass compared
Frontiers in Agronomy 04
to non-inoculated (control) C. arvense (F = 9.965; p = 0.0020).

Cirsium arvense grown with crop competition produced ( ± SE) 3.1

± 0.52 grams/pot less aboveground biomass than C. arvense grown

in monoculture (F = 36.396; p< 0.001). Cirsium arvense biomass in

the integrated P. punctiformis inoculated and crop competition

treatment was ( ± SE) 4.8 ± 0.74 grams/pot less than C. arvense

biomass in the monoculture, non-inoculated treatment (t = 6.506;

p< 0.001; Figure 2, Table 1).

C. arvense rhizome biomass was 6.9 grams/pot in the P.

punctiformis inoculated treatment and 12.5 grams/pot in the non-

inoculated (control) treatment, after an average of 12.9 months of

growth. Rhizome biomass in the P. punctiformis inoculated

treatment was less than rhizome biomass in the non-inoculated

(control) treatment (F = 25.791; p< 0.001). The estimated biomass

of C. arvense rhizome in the inoculated treatment was ( ± SE) 5.6 ±

1.1 grams/pot less than in the control treatment. Cirsium arvense

grown with crop competition produced ( ± SE) 2.7 ± 1.1 grams/pot

less rhizome biomass than C. arvense grown in monoculture (F =

6.211; p-value = 0.0141). Rhizome biomass in the integrated P.

punctiformis inoculated and crop competition treatment was ( ± SE)

8.3 ± 1.6 grams/pot less than rhizome biomass in the monoculture,

non-inoculated (control) treatment (t = 5.353; p< 0.001;

Figure 3, Table 2).
A

B

FIGURE 1

(A) Model predicted percentage of greenhouse pots with signs of
systemically infected C arvense stems throughout the simulated
crop sequence in the P. punctiformis inoculated treatment. (B)
Model predicted percentage of systemically infected stems, out of
the total C arvense stems produced per pot, in the P. punctiformis
inoculated treatment throughout the simulated crop sequence.
Letters (a & b) are representative of the statistical differences in
percentage of infected stems/pot between crop phases, where
phases that share the same letter are not statistically different.
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3.3 Puccinia punctiformis impact on
Cirsium arvense competition

Crop competition reduced aboveground biomass, with ( ± SE)

49.2% ± 5.9 biomass loss in the inoculated treatment, and ( ± SE)

39.2% ± 5.9 biomass loss in the non-inoculated (control) treatment,

when compared against the monoculture index for growth in the

non-inoculated (control) treatment. There was some evidence for a

difference in RCI between the inoculated treatment and the non-

inoculated (control) (F = 2.816, p-value = 0.0987). The relative

competition of C. arvense varied between crop phases (wheat, pea,

and safflower) in both the inoculated and control treatments (F =

63.669; p< 0.001). Crop competition reduced aboveground biomass

by ( ± SE) 48% ± 5.9 in the wheat phase, ( ± SE) 71% ± 5.9 in the pea

phase, and ( ± SE) 14% ± 5.9 in the safflower phase, when compared

against the monoculture index for growth in the non-inoculated

(control) treatment. Additionally, there was an interaction between

the inoculation treatments and crop phases (F = 3.329; p = 0.0393).

The RCI between the inoculation treatments increasingly separated

as the crop sequence progressed, where the inoculated treatment

lost ( ± SE) 24% ± 8.3 more biomass than the non-inoculated

(control) treatment by the final safflower phase in the crop sequence

(Figure 4, Table 3).
4 Discussion

Sustainable C. arvense management in organic cropping

systems is a primary challenge in temperate regions around the
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globe. Integrated weed management strategies are needed to reduce

the abundance, slow the spread, and minimize the impact of C.

arvense in cropping systems over a long term (Liebman et al., 2001;

Liebman and Davis, 2009; Davis et al., 2018; Orloff et al., 2018). In

this study, we found that the integration of P. punctiformis and crop

competition interacted to impact C. arvense biomass and

competitive ability. Integrated weed management of C. arvense

that combines the P. punctiformis biocontrol with crop

competition can reduce C. arvense vigor but requires careful

consideration for effective use within complex cropping systems.

Repeated inoculations of C. arvense rosettes with P.

punctiformis yielded systemically infected C. arvense stems in all

phases of the crop sequence. Inoculation of rosettes resulted in few

systemically infected C. arvense stems in the first phase (3-4 months

of growth) of the crop sequence, but incidence of infection

increased over time. The slow development of systemically

infected stems is consistent with the general development of plant

pathogens, which often require an incubation period before infected

plants develop symptoms (Agrios, 2005). Our findings are also

consistent with literature that suggests that P. punctiformis mostly

resides asymptomatically within C. arvense rhizomes (Bailiss and

Wilson, 1969), especially during the initial stages of infection. In a

study testing asymptomatic C. arvense rosettes in proximity to P.

punctiformis inoculations, Berner et al. (2015) discovered that up to

60% of asymptomatic rosettes were positive hosts for P.

punctiformis. Therefore, the success of our inoculations was likely

greater than what was observed aboveground.

While systemically infected stems were observed in most

inoculated greenhouse pots, the majority of stems produced were
TABLE 1 ANOVA results for the C. arvense aboveground biomass response to P. punctiformis inoculation treatments (inoculated/non-inoculated) and
competition treatments (monoculture/mixed).

df SS MS F p

Inoculation treatment 117.2 218.03 218.03 9.965 0.0020

Competition treatment 117.2 796.35 796.35 36.396 <0.001
frontie
FIGURE 2

Model predicted aboveground C. arvense biomass (grams/pot)
between the inoculated and non-inoculated (control). Inoculated
and non-inoculated (control) C. arvense was either grown in a
monoculture or grown with interspecific competition where C.
arvense was mixed with a sequence of annual crops.
FIGURE 3

Model predicted belowground C. arvense biomass (grams/pot)
between the inoculated and non-inoculated (control). Inoculated
and non-inoculated (control) C. arvense was either grown in a
monoculture or grown with interspecific competition where C.
arvense was mixed with a sequence of annual crops.
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asymptomatic. This supports the conclusion that P. punctiformis is

primarily a root pathogen (Berner et al., 2015; Kentjens et al., 2023)

that remains latent until adequate resources are gathered from the

host and environmental conditions are suitable for the emergence of

spore bearing C. arvense stems (Mendgen and Hahn, 2002). The

stabilization of infected C. arvense stems after the fallow phase

reflects the host’s capacity to support P. punctiformis, given the

limitations of plant growth in greenhouse pots. Berner et al. (2015)

and Watson and Koegh (1980) suggested that the robustness of

infected C. arvense can be a factor that influences the development

of systemically infected C. arvense stems, where a robust host is

more likely to produce a relatively high abundance of infected

stems, and systemic infection in a weaker host could produce fewer

infected stems. It was concluded that systemic infection in a less

robust host remains mostly asymptomatic and caused death more

quickly than systemic infection in a robust host.

Cirsium arvense that was inoculated with the P. punctiformis

biocontrol produced less belowground biomass compared to C.

arvense that was not inoculated. Our results agree with the findings

of Thomas et al.’s (1994) greenhouse experiment, where P.

punctiformis inoculated C. arvense produced less root biomass

than non-inoculated C. arvense. A weakened root system can

directly impact aboveground biomass production, where root

resources that would otherwise promote stem growth, are instead

allocated to costly defense compounds, or become parasitized by P.

punctiformis (Herms and Mattson, 1992; Thomas et al., 1994;
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Monson et al., 2022). This was demonstrated in our findings,

where P. punctiformis inoculations yielded less aboveground

biomass compared to C. arvense that was not inoculated,

confirming that P. punctiformis inoculations can effectively

impact the overall growth of C. arvense.

Competition with annual crops affected C. arvense aboveground

growth, although the effects differed between crop species.

Unexpectedly, peas were the most competitive annual crop species

in the sequence, despite their relatively slow germination, shallow

rooting depth, and open canopy (McKay et al., 2003). It is possible

that wheat, a moderately competitive cereal species (Mason and

Spaner, 2006), had a lasting impact on C. arvense vigor that wasn’t

evident until the following pea phase. The weak competitive qualities

of peas may have facilitated a recovery in C. arvense vigor, becoming

evident in the following phase, where safflower had the lowest relative

competition intensity. However, safflower, known to be a weak

competitor in the early stages of growth (Emongor and Oagile,

2017), was disadvantaged as the last crop in the sequence. It is

possible that greenhouse pots with fully developed roots gave C.

arvense a strong competitive advantage by the final phase of the crop

sequence; seeding safflower directly into a dense and confined C.

arvense root network likely impacted optimal safflower development.

When inoculated C. arvense was grown in mixed pots with

interspecific crop competition, the biocontrol interacted additively

with crop competition to further reduce above-and belowground

biomass, more than individual impacts from the biocontrol or crop

competition alone. Although C. arvense was never eradicated by the

combination of P. punctiformis and crop competition, there was an

interaction between the crop phases and the inoculation treatments,

where the difference between the P. punctiformis inoculated and the

non-inoculated (control) relative competition intensities gradually

increased as the crop sequence progressed. As P. punctiformis

inoculations did not immediately affect C. arvense’s competitive

ability, but increased through time, the effects appear to be

associated with the establishment of infected C. arvense stems. The

greatest impact on C. arvense competition emerged after

aboveground disease incidence stabilized and persisted through time.

Although we didn’t evaluate physiological responses of C.

arvense, there is potential to accelerate disease establishment and

increase the severity of P. punctiformis infection by stimulating

hormonal responses (Clark et al., 2020), thus enhancing future

integrations of the biocontrol. Overall, these results support our

hypothesis and provide evidence in favor of integrated weed

management as an effective strategy for C. arvense control

(Demers et al., 2006; Liebman and Davis, 2009; Sciegienka et al.,

2011; Davis et al., 2018; Orloff et al., 2018).

While crop competition is already a common integrated weed

management practice (Pavlychenko and Harrington, 1934; Bullock,

1992; Liebman and Dyck, 1993; Liebman and Davis, 2009), there
TABLE 2 ANOVA results for the C. arvense root biomass response to P. punctiformis inoculation treatments (inoculated/non-inoculated) and
competition treatments (monoculture/mixed).

df SS MS F p

Inoculation treatment 115 932.98 932.98 25.791 <0.001

Competition treatment 115 224.68 796.35 6.211 0.0142
frontie
FIGURE 4

The relationship in aboveground C. arvense biomass loss in
competition (RCI%) between the P. punctiformis inoculated and
non-inoculated (control) treatments for the three crop phases for all
three trials. There was no difference in RCI between the treatments
or the crop phases. An RCI value ≤ 0 indicates that C. arvense
grown in mixed pots produced as much or more aboveground
biomass compared to C. arvense grown in a monoculture. In
contrast, RCI > 0 indicates that aboveground biomass of C. arvense
was reduced when grown in mixed pots, and RCI = 100 indicates
that no aboveground C. arvense biomass was produced in the
mixed treatment.
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remain practical challenges to the integration of the P. punctiformis

biocontrol in field settings. Inoculum sourcing and mass

production is limited by the inability to culture transmissible

teliospores (Kentjens et al., 2023), creating a reliance on the

harvest of teliospore bearing C. arvense. Limitations in inoculum

ultimately reduce the scalability of the biocontrol under current

sourcing methods. Most natural transmissions of P. punctiformis

are limited to 12 meters from the source plant, with no

transmissions occurring beyond 17 meters (Berner et al., 2015).

Insect vectors or mowing have shown potential to transmit P.

punctiformis and increase infection levels across fields (Demers

et al., 2006; Wandeler and Bacher, 2006), however, careful cropping

system management is required to facilitate effective spore

distributions. The greenhouse environment simplifies biocontrol

manipulations, but successful integration of P. punctiformis in a

field setting will be dependent on variable environmental

conditions and cropping system management that can influence

survivability and germination of the biocontrol (French and

Lightfield, 1990; Berner et al., 2013; Kentjens et al., 2023).

Additionally, Thomas et al. (1994) found that P. punctiformis

inoculations did not impact aboveground biomass production

compared to non-inoculated C. arvense, suggesting inconsistent

performance of the pathogen. Inconsistencies in the biocontrol’s

impact on C. arvense aboveground growth may be an indication of

genetic variability within the host and pathogen populations,

where disease severity can be determined by a range of resistance

mechanisms in C. arvense or virulence factors in P. punctiformis.

Despite inconsistencies and challenges, P. punctiformis has shown

potential to increase C. arvense’s vulnerability to integrated

weed management tactics, making the biocontrol a viable

management option.
5 Conclusion

The fungal biocontrol, P. punctiformis can be successfully

integrated with crop competition as a C. arvense management

tool. In this greenhouse study, inoculation of C. arvense rosettes

with P. punctiformis teliospores caused an increase of

symptomatically infected C. arvense stems over time, impacting

above- and belowground C. arvense biomass production.

Furthermore, P. punctiformis intensified the effects of crop

competition when the biocontrol was integrated into a simulated

crop sequence. While the use of P. punctiformis is possible in a
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greenhouse, successful integration of the biocontrol into a field

setting will be dependent on a combination of environmental

factors and deliberate cropping system management. Puccinia

punctiformis is not a singular management solution for C.

arvense, however it has potential to be integrated as a low-cost,

and low-input biocontrol agent that can improve sustainable

management of C. arvense.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

DC was the primary author, who conducted the data collection,

statistical analysis, and writing. CL assisted with experimental design,

statistical analysis, and editing. JE wrote the initial grant proposal and

edited the manuscript. FM guided the writing and edited the

manuscript. TS supervised data collection, assisted with statistical

analysis, guided the writing, and edited the manuscript. All authors

contributed to the article and approved the submitted version.
Funding

This work was funded by Western Sustainable Agriculture

Research and Agriculture (Grant ID: GW21-218), the USDA

National Institute of Food and Agriculture, Organic Agriculture

Research and Extension Initiative (Grant ID: 2018-51300-28432),

the United States Forest Service Biological Control of Invasive

Forest Pests (R1-2021-4), and the Montana Noxious Weed

TrustFund (2021-005).
Acknowledgments

We would like to acknowledge Dr Li Huang, professor of

genetics and plant pathology at Montana State University, for

offering expertise on rust pathogens and for reviewing

this manuscript.
TABLE 3 ANOVA results for the relative competition intensity (RCI) of C. arvense aboveground biomass response to P. punctiformis inoculation
treatments (inoculated/non-inoculated), competitive crop phases (wheat/pea/safflower), and the interaction between inoculation treatments and crop
phases.
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SUPPLEMENTARY FIGURE 1

Canada thistle growthwas assessedwithin three levels of a competition treatment
(crop monoculture, thistle monoculture, thistle & crop polyculture) that were

nested into two levels of an inoculation treatment (control & thistle rust
inoculated). Canada thistle was grown for 16 months in greenhouse pots, and

evaluated for density and biomass within a 4-phase diversified crop rotation.
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