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Abstract
Breast cancer is one of the most common malignancies in women, afflicting millions of lives each year. Our current study suggests 
that the development of the most promising 7-substituted -1-(4-(piperidine-1-yl methoxy)benzyl)-1H-indole-3-carboxamide de-
rivatives results in potent anticancer agents through in-silico investigations. The molecular docking was performed against estrogen 
receptor alpha (ER-α) positive (PDB ID: 3UUD) of breast cancer cells to anticipate the binding modes of the designed compounds 
and the likely mode of action. The interactions between the ligands and amino acid residues were thoroughly elucidated. The sta-
bility of the docked protein-ligand complexes was further confirmed by 100 ns molecular simulations methods. From in-silico stud-
ies, indole-based benzamides exhibited satisfactory physicochemical, drug-likeness and toxicity properties. To conclude, the most 
promising substituted benzamide analogs on the indole ring could serve as a possible modulator against ER-α positive breast cancer.
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Introduction
Breast cancer (BC) affects women globally at any age after 
puberty with increasing incidence in the future. Human 
breast cancer is the second largest cause of death in wom-
en. In 2020, there was 2.3 million women diagnosed with 
BC, with 685 000 deaths worldwide. As of the end of 2020, 
there were 7.8 million active instances of BC in women 
over the previous five years. Around 50% of BC develops 
in women due to BC risk factors other than gender, such 
as being female or being over the age of 40. Obesity, radi-
ation exposure, excessive alcohol and tobacco consump-
tion, reproductive disorders, and a family history of BC 
are all risk factors for BC (Ginsburg et al. 2020; Stolten-
berg et al. 2020). Estrogen and the estrogen receptor (ER) 
are known to be prominent drivers of breast carcinogen-
esis and progression. In the case of estrogen-sensitive BC, 
the first-line treatment was hormonal therapy (Ariazi et 
al. 2006; Stein et al. 2006; Yager and Davidson 2006; Stingl 
2011; Yue et al. 2013; Shoda et al. 2015; Ouellet et al. 2016). 
ER is in charge of managing the record of atomic DNA, 
which is thought to be a big part of breast malignant 
growth signal generation and provides a book biomark-
er of BC (Sotiriou et al. 2013). Selective estrogen receptor 
modulators (SERMs) that act on the ER, have been used in 
the clinical treatment of BC. SERMs are designed to com-
pete with endogenous estrogens in order to regulate the 
activation of eestrogen receptors (Huang et al. 2010). Li-
gand demonstrates an ER-mediated mechanism of action 
regulated by two distinct activation functions (AFs), AF-1 
at the N terminus and AF-2 in the ligand-based domain 
(LBD). Growth factors regulate AF-1 activity via the MAP 
kinase pathway, whereas AF-2 activity is regulated by li-
gand binding to ER. According to recent structural stud-
ies, ligands modulate AF-2 activity by directly changing 
the structure of the LBD. A conformational change involv-
ing the translocation of helix-12, which is located on the 
C-terminus of the LBD, is requisite for AF-2 action (Shi-
au et al. 1998). SERMs bind to the ER and can function 
as receptor agonists or antagonists by altering receptor 
conformation and modifying co-activators (Jordan 2007; 
Swaby 2007; Pinkerton and Thomas 2014). Tamoxifen and 
raloxifen are two examples of SERMs that have been used 
in first and second line clinical treatment for ER resistant 
BC (Egea et al. 2000; Miller et al. 2001; Lindsay et al. 2009; 
Singla et al. 2018; Hendy et al. 2019; Tsuji et al. 2022).

The work presented here is based on the structure-based 
drug design (Srinivasan et al. 2017; Pang et al. 2018) which 
has focused on the computational investigation of in-
dole-based benzamides targeting the AF-2 domain of ER 
(Brzozowski et al. 1997; Lavecchia and Di Giovanni 2013; 
Xiong et al. 2017). The entire ER protein consists of five 
different domains. Stimulation function 1 (AF-1) is found 
in domain A/B (N-terminal), and it participates in ER 
transcriptional activity by changing conformation in re-
sponse to oestrogen activation (Lionta et al. 2014; Alsayari 
et al. 2017). The crystal structure (PDB ID: 3UUD) of the 
homo dimer estrogen receptor alpha (ER-α) represents a 

human estrogen receptor-ligand-binding domain in com-
plex with estrogen. It provides a suitable guiding template 
for studying the binding interactions of designed ligands 
within the AF-2 cavity where interactions can be viewed 
up to the proximity of 0.02 Å (Martinkovich et al. 2014).

Bazedoxifene (BSD, 1H-indo-5-ol, 1-[[4-[2(hexahy-
dro-1H-azepin-1-yl)ethoxy]methyl] acetic acid, 2-(-4-hy-
droxyphenlyl)-3-methyl) is an indole derivative and 
third-generation SERM, which acts as an estrogen receptor 
antagonist in breast cancer (Huang et al. 2010; Sotiriou et al. 
2013). This novel indole derivative functioned as a first-hand 
scaffold to work on and prepare congeners that would have 
similar binding properties in AF2 domain and modulate the 
transcriptional effects of ER-α. The chemical structure of the 
bazedoxifene is given in Fig. 1 (Riggs and Hartmann 2003).

In designing, the scaffold of indole-based analogues in-
volves substitution at the 7th position with benzamide, 3rd 

position with amide group and 3՛ position with different 
alkyl group with ester and alkyl halide functional group 
and 1st position substituted with 1-((4ethylphenoxy)me-
thyl)piperidine and 1-((4ethylphenoxy)ethyl)piperidine is 
mentioned in Table 1. The important amino acid residues 
(3UUD) that have been comprehensively studied and re-
ported to constitute partly the AF-2 domain of ER-α, are 
His 524, Arg 394, Leu 428 (conventional hydrogen inter-
actions), Met 343, Met 421, Thr 347, Leu 349, Glu 353, 
Gly 521 (van der Waals force of attractions), and Phe 404 
(Pi –Pi stack interactions) have been reported between es-
trogen hormone and ER-α in 3UUD (Makar et al. 2020).

Materials and methods
Molecular docking

The molecular docking software, AutoDock Vina (Virtual 
screening tool) was employed for the docking study, and 
the Biovia Discovery Studio visualizer was used to study 
the 2D and 3D interactions of the ligand-receptor com-
plex after docking. Molecular docking analyses were per-
formed via the CB-Dock server (http://clab.labshare.cn/
cb-dock/php/) (Liu et al. 2020). CB-Dock automatically 

Figure 1. Chemical structure of  bazedoxifene.

http://clab.labshare.cn/cb-dock/php/
http://clab.labshare.cn/cb-dock/php/
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identifies binding sites, calculates center and size, custom-
izes docking box size based on query ligands, and then 
performs protein-ligand docking with AutoDock Vina 
1.1.2 version (Cao and Li 2014). For estrogen receptors 
(PDB ID: 3UUD) containing hERa-LBD (Y537S) served 
as co-crystal structure was obtained from the Protein Da-
tabank (https://www.rcsb.org/structure/3UUD) (Delfosse 
et al. 2012). The missing atoms and residuals in the estro-
gen receptor were modeled via AlphaFold Protein Struc-
ture Database on UCSF ChimeraX v1.5. Active site coor-
dinates were determined as x:22, y:4, z:5, and 27*27*27 Å3 
by CD-Dock curvature-based cavity detection approach 
(CurPocket) (Varadi et al. 2022). For molecular docking 
validation, the RMSD value between cocrystal ligand 
(EST) and docked estrogen was determined. The 3D and 
2D visualizations were performed with PyMOL v2.4 and 
BIOVIA Discovery Studio Visualizer v21.

Molecular dynamics simulation

The molecular dynamics (MD) simulation study was per-
formed with Gromacs v2021.2 (Abraham et al. 2015). MD 
input files were created via the CHARMM-GUI server 
solution builder (https://charmm-gui.org/) (Jo et al. 2008). 
Topology files of protein-ligand complexes were created 
with CHARMM36m force fields (Huang et al. 2017). Pro-
tein-ligand complexes were solvated with the TIP3 water 
model and neutralized by adding 0.15 M KCl. It was neu-
tralized in 5000 steps and equilibrated at 1 atm pressure 
and 300 K with 0.3 ns duration NVT/NPT ensemble. The 
150 ns MD simulation was performed, and 1500 frames 
were recorded. The root mean square deviation (RMSD), 
the root mean square fluctuation (RMSF) and radius of 
gyration (Rg), and solvent accessible surface area (SASA) 
analyzes were performed with gmx rms, gmx rmsf, gmx 
hbond and gmx sasa scripts. For RMSD, RMSF, H bond, 
and SASA trajectory analyses, graphics were made with 

QtGrace v0.2.6 tools, and MD animation videos were 
made with UCSF Chimera v1.15.

ADMET

The ADMET data of ligands were evaluated on pkCSM 
(http://biosig.unimelb.edu.au/pkcsm/prediction/) and Swis-
sADME (http://www.swissadme.ch/index.php/) software 
(Pires et al. 2015; Daina et al. 2017).

Results and discussion
Molecular docking

Molecular docking is a computational tool used to monitor 
the formation of a stable protein-ligand complex between 
the active site of the protein and ligand molecule (Celik 
and Tallei 2022). The docking process was done in Aut-
oDock Vina software (Trott and Olson 2010). The results 
of docking between the ER (PDB ID: 3UUD) and B73aIII, 
B73aV, and cocrystal ligand, estradiol (EST); vina score, 
cavity volume (Å3), center, docking size, H bond, and hy-
drophobic bond forming amino acids and bond distances 
are shown in Table 2. It was observed that between B73aIII 
and ER, H bonds with Trp393 amino acid at a distance of 
2.87 Å and Arg394 amino acid at a distance of 3.09 Å ex-
ist. The same amino acids make H-bond between the ER 
and the B73aV ligand. However, it was observed that their 
distance was different. It is seen that Trp398 forms a bond 
at a distance of 2.97 Å and Arg394 at a distance of 3.36 Å.

Fig. 2 presents the redocking poses of the cocrystal ligand 
EST, while the orange-colored ligand shows the EST’s natural 
pose, the magenta colored-ligand shows a self-docking pose.

Amino acids located in the active site of the ER interact 
with the ligand in different types of bonds. It has been shown 
that an amino acid can form different bonds with different 

Table 1. Chemical structure of designed indole-based benzamides.

Comp. R R1 R2

B73aIII

B73aV

https://www.rcsb.org/structure/3UUD
https://charmm-gui.org/
http://biosig.unimelb.edu.au/pkcsm/prediction/
http://www.swissadme.ch/index.php/
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parts of the ligand. Conventional hydrogen bond, van der 
Waals, carbon-hydrogen bond, π-anion, π-donor hydrogen 
bond, π-sigma, alkyl, π-alkyl bonds were observed. On the 
contrary, it was observed that an unfavorable hydrophobic 
bond was formed between the Ile356 amino acid of receptor 
molecule and the ligand B73aIII. In Fig. 3A, B, the binding 
poses and interaction diagrams between compound B73aI-
II and ER are given. This figure shows the bond types and 
related amino acids. Likewise in Fig. 3C, D, binding poses 
and interaction diagrams between the compound B73aV 
and the estrogen receptor, in which the types of bonds and 
related amino acids appeared, are given.

Molecular dynamics simulation

EST, B73aIII, and B73aV molecules were performed in 
MD simulations for examination of protein-ligand com-
plex stability (Celik et al. 2022). In MD simulations, the 
interaction energy and movements of the ligand-receptor 
complex have been studied (Yildirim and Celik 2022). 

The values of the RMSD, RMSF, Rg, and SASA are shown 
in graphic form in Fig. 4. RMSD and RMSF values are 
considered to review the stability of the complex during 
the simulation (Sohrab and Kamal 2022; Eşilçayır 2022). 
When examining the Rg value for the stability of the com-
plex, the SASA value was examined for the estimation of 
the conformation changes of the protein. From the analy-
sis of RMSD and RMSF trajectories, the formation of sta-
ble protein-ligand complexes was observed for both the 
compounds (B73aIII/EST and B73aV/EST) throughout 
the duration of 150 ns. Analyses of Rg and SASA trajecto-
ries also support the stability between the ligands (B73aIII 
and B73aV) and protein molecules, EST.

ADMET predictions

In ADMET studies, the molecular weights of ligands, 
LogP values, the characteristics of drug-likeness, the bio-
availability scores, absorption, distribution, metabolism, 
excretion, and toxicity properties were evaluated (Rudra-

Table 2. AutoDock Vina molecular docking interaction energies, parameters, and contact residues of the compounds B73aIII, 
B73aV, and cocrystal ligand estradiol (EST) with ER (PDB ID: 3UUD).

Compounds Vina score  Cavity 
volume (Å3)  Center (x, y, z) Docking size (x, 

y, z)
Contact residues

H Bonds Hydrophobic

B73aIII -8.7 1383 16, 5, 7 27, 27, 27 Trp393 (2.87 Å), 
Arg394 (3.09 Å)

Glu323, Pro324, Pro325, Ile326, Glu353, 
His356, Met357, Ile386, Leu387, Gly390, 

Leu391, Glu397, His398, Leu403, Phe445, 
Lys449

B73aV -8.0 322 -3, 14, -5 29, 29, 29 Trp393 (2.97 Å), 
Arg394 (3.36 Å)

Leu320, Glu323, Pro324, Pro325, Ile326, 
Glu353, His356, Met357, Trp360, Ile386, 

Leu387, Gly390, Leu391, Trp393, Arg394, 
Gly442, Glu443, Phe445, Lys449

EST -10.9 1383 16, 5, 7 27, 20, 20 Arg394 (3.19 Å), 
His524 (2.95Å)

Met343, Leu346, Thr347, Leu349, Ala350, 
Glu353, Leu384, Leu387, Met388, Gly390, 
Leu391, Phe404, Met421, Ile424, Leu428, 

Gly521, Leu525

Figure 2. Redocking poses of the cocrystal ligand EST (PDB ID: 3UUD). Natural pose (orange) and self-docking pose (magenta) 
of EST (RMSD: 0.078).
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Figure 3. (A, B) Binding poses and interaction diagrams compound B73aIII and ER, (C, D) B73aV and ER complex.

Figure 4. Molecular dynamic simulation results of receptor-ligand complexes monitored for 150 ns (A) RMSD value, (B) RMSF 
fluctuation, (C) Radius of gyration (Rg), (D) Solvent accessible surface area (SASA).

pal et al. 2022a; Rashid et al. 2022; Celik et al. 2022; Umar 
et al. 2022; Pasala et al. 2022a). The descriptive properties 
of B73aIII, B73aV, and EST ligands and the estimated val-
ues of drug-likeness are shown in Table 3. Drug-likeness 
is known as the 5 rules of Lipinski, and drug candidate 

ligands are required to follow these rules or the number of 
violations must be less than 4. The ligands exhibited satis-
tafctory drug-likeness properties in terms of Lipinski’s 
rule of 5 and other rules (Ghose, Veber, Egan, and Mueg-
ge rules) related to physicochemical/ pharmacokinetic 



Warude BJ et al.: Indole-based benzamide targeting estrogen receptor alfa for breast cancer 312

Table 4. ADMET data of ligands examined in pkCSM software.

Property Model name
Predicted Value

Unit
B73aIII B73aV EST

Absorption Water solubility -5.332 -5.065 -4.356 Numeric (log mol/L)
Absorption Caco-2 permeability 0.987 0.71 1.513 Numeric (log Papp in 10-6 cm/s)
Absorption Intestinal absorption (human) 89.409 87.114 97.263 Numeric (% Absorbed)
Absorption Skin permeability -2.785 -2.864 -3 Numeric (log Kp)
Absorption P-glycoprotein substrate Yes Yes No Categorical (Yes/No)
Absorption P-glycoprotein I inhibitor Yes Yes Yes Categorical (Yes/No)
Absorption P-glycoprotein II inhibitor Yes Yes No Categorical (Yes/No)
Distribution VDss (human) 0.108 -0.17 0.403 Numeric (log L/kg)
Distribution Fraction unbound (human) 0.01 0.059 0.185 Numeric (Fu)
Distribution BBB permeability -0.826 -1.024 0.128 Numeric (log BB)
Distribution CNS permeability -1.993 -2.413 -2.232 Numeric (log PS)
Metabolism CYP2D6 substrate No No No Categorical (Yes/No)
Metabolism CYP3A4 substrate Yes Yes Yes Categorical (Yes/No)
Metabolism CYP1A2 inhibitor No No No Categorical (Yes/No)
Metabolism CYP2C19 inhibitor No No Yes Categorical (Yes/No)
Metabolism CYP2C9 inhibitor Yes No No Categorical (Yes/No)
Metabolism CYP2D6 inhibitor No No No Categorical (Yes/No)
Metabolism CYP3A4 inhibitor Yes Yes No Categorical (Yes/No)
Excretion Total Clearance 1.172 0.991 1.025 Numeric (log ml/min/kg)
Excretion Renal OCT2 substrate No No Yes Categorical (Yes/No)
Toxicity AMES Toxicity No No No Categorical (Yes/No)
Toxicity Max. Tolerable dose (human) 0.467 0.313 -0.723 Numeric (log mg/kg/day)
Toxicity hERG I inhibitor No No No Categorical (Yes/No)
Toxicity hERG II inhibitor Yes Yes Yes Categorical (Yes/No)
Toxicity Oral Rat Acute Toxicity (LD50) 2.466 2.542 1.779 Numeric (mol/kg)

Toxicity Oral Rat Chronic Toxicity 
(LOAEL) 2.214 2.323 1.893 Numeric (log mg/kg_bw/day)

Toxicity Hepatotoxicity Yes Yes No Categorical (Yes/No)
Toxicity Skin sensitivity No No No Categorical (Yes/No)
Toxicity T. Pyriformis Toxicity 0.31 0.316 1.154 Numeric (log ug/L)
Toxicity Minnow toxicity -0.697 -0.165 0.583 Numeric (log mM)

Table 3. Descriptive properties of ligands examined in pkCSM and SwissADME software and estimated values of drug-likeness.

Descriptor
Value

B73aIII B73aV EST
Molecular weight 531.056 554.647 272.388
LogP 5.6018 4.6921 3.2651
Rotatable bonds 9 10 0
Acceptors 5 7 2
Donors 2 2 1
Surface area 226.679 238.381 120.496
Drug-likeness B73aIII B73aV EST
Lipinski Yes; 1 violation: MW>500 Yes; 1 violation: MW>500 Yes; 0 violation

Ghose No; 2 violations: MW>480, 
MR>130

No; 3 violations: MW>480, MR>130, 
#atoms>70 Yes

Veber Yes No; 1 violation: Rotors>10 Yes
Egan Yes Yes Yes
Muegge Yes Yes Yes
Bioavailability score 0.55 0.55 0.55

parameters. Only one violation was observed as per Lip-
inski’s rule of 5. The bioavailability score was also found to 
be satisfactory.

Table 4 shows the results obtained from the pkCSM 
software. Absorption properties such as solubility in water, 
the permeability of CaCO-2, distribution characteristics 
such as VDss value in man, BBB permeability, CNS per-
meability, which metabolic pathway they are metabolized 
with (CYP2D6 inhibitiory activity), excretion, and various 

toxicity characteristics are available from this table. All the 
pharmacokinetic and toxicity parameters were found to 
be within the accaeotbale limit for B73aIII and B73aV.

In Fig. 5, the chemical structures, bioavailability radars, 
and boiled-egg images of the examined ligands are given. 
In bioavailability radars, the ligand is expected to be in the 
pink area. The boiled egg image shows us BBB permeabil-
ity, HIA and PGP+, and PGP- properties. The molecule is 
defined as PGP+ or PGP- depending on whether it is cleared 
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from the central nervous system by P-glycoprotein (Ghosh 
et al. 2021; Junejo et al. 2021; Othman et al. 2021; An-
navarapu et al. 2022; Zothantluanga et al. 2022; Rudrapal et 
al. 2022b; Devasia et al. 2022; James et al. 2022; Pasala et al. 
2022b; Rudrapal et al. 2022c; Rudrapal et al. 2022d; Kumar 
et al. 2022; Rudrapal et al. 2022e; Archana et al. 2022).

Conclusion

In this study, novel estrogen receptor (ER) inhibitors 
based upon the indole-based benzamide scaffold were 
designed and developed by molecular modeling meth-
ods. The 7-substituted-1-(4-(piperidin-1-ylmethoxy)ben-
zyl)-1H-indole-3-carboxamide derivatives would have 
the potential to modulate ER-α in breast cancer. Molec-
ular docking, molecular dynamics and ADMET studies 

revealed the binding modes, protein-ligand stability and 
in-silico pharmacokinetic/toxicities of indole-based ben-
zamide derivatives. Finally, it is concluded that the newly 
designed indole-based benzamides can be used as selec-
tive estrogen receptor modulators (SERMs) against ER-α 
positive breast cancer.
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