Journal of Nephropathology

CrossMark

Genetic association of ACE gene I/D polymorphism with the risk of diabetic kidney disease; a meta-analysis

Bhaskar VKS Lakkakula¹⁰, Rajeev Lochan Khare²⁰, Henu Kumar Verma³⁰, Smaranika Pattnaik^{4*0}

¹Sickle Cell Institute Chhattisgarh, Raipur, India

²Department of Medicine, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India

³Stem Cell Laboratory, Institute of Endocrinology and Oncology, Naples, Italy

⁴Department of Biotechnology and Bioinformatics, Sambalpur University, India

ARTICLE INFO ABSTRACT

<i>Article type:</i> Review	<i>Introduction:</i> Diabetic nephropathy (DN) is a progressive renal disease characterized by persistent albuminuria that leads to end-stage renal disease in both type 1 diabetes (T1DM) and type 2
<i>Article history:</i> Received: 23 July 2018 Accepted: 1 October 2019 Published online: 12 October 2019	diabetes (12DM) patients. The renin-angiotensin-aldosterone system (RAAS) plays a major role in the onset and progression of DN. <i>Objectives:</i> The present meta-analysis is intended to synthesize evidence on the association between ACE gene insertion and deletion (ACE I/D) polymorphism and the risk of DN. <i>Methods:</i> PubMed, Scopus, Google Scholar and Embase were searched to retrieve relevant
<i>Keywords:</i> Diabetic nephropathy ACE gene I/D polymorphism Meta-analysis	publications. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the association between ACE I/D polymorphism and DN risk. The Cochrane Q test and I ² statistic were used to detect heterogeneity. To assess between-study heterogeneity, subgroup analysis and sensitivity analysis were performed. Funnel plots and Egger's test were used to estimate publication bias. <i>Results:</i> Around 45 articles (47 studies) with 6124 patients of DN and 2492 T2DM patients (controls) were ultimately considered for meta-analysis. Overall, the ACE I/D polymorphism was associated with DN under three different genetic models (allelic model: OR = 1.34; 95% CI: 1.20- 1.49; P <0.001; dominant model: OR= 1.54; 95% CI: 1.31- 1.81; P <0.001; and recessive model: OR= 1.39; 95% CI: 1.19- 1.63; P <0.001). Significant heterogeneity (I ² > 50%) was present in the analysis for all ethnic groups. Further, there is no evidence for publication bias in this meta-analysis. <i>Conclusion:</i> The current meta-analysis provided confirmation that the ACE I/D polymorphism is correlated with an increased risk of DN in patients with T2DM and the D allele of ACE I/D was a susceptible factor.

Implication for health policy/practice/research/medical education:

Diabetic nephropathy (DN) is one of the most common causes of renal impairment in patients with diabetes. Renin-angiotensin-aldosterone system (RAAS) that controls body's blood pressure is an independent risk factor of DN. Several studies have investigated ACE I/D as a risk factor in DN; however, the results are inconclusive. Our meta-analysis of ACE I/D studies indicated that this variant increases the risk of developing DN.

Please cite this paper as: Lakkakula BVSK, Khare RL, Verma HK, Pattnaik S. Genetic association of ACE gene I/D polymorphism with the risk of diabetic kidney disease; a meta-analysis. J Nephropathol. 2019;8(4):e44. DOI: 10.15171/jnp.2019.44.

Introduction

Diabetic nephropathy (DN) is one of the causes of renal impairment in type 1 diabetic (T1DM) or type 2 diabetic (T2DM) patients that leads to dialysis or kidney transplantation (1). About 40% of people with diabetes develop DN. DN is characterized by reduced glomerulus function, increased albumin excretion through urine and gradual loss of renal function (2). Chronic hyperglycemia linked with variations in blood pressure (BP) may adversely affect renal function. Hence maintaining blood sugar and controlling BP may delay the progression of DN (3). Clustering of DN in T2DM families indicates a strong genetic susceptibility for its development and progression (4). Therefore several genetic factors have been studied to unveil the predisposition to the development of DN in T2DM patients. Due to technical advances in DNA sequencing methods, several candidate susceptibility genes of DN have so far been identified and studied extensively (5).

Several lines of evidence indicated that the reninangiotensin-aldosterone system (RAAS) regulating body's blood pressure is an independent risk factor of chronic kidney disease (CKD) (6). Further, the use of angiotensinconverting enzyme (ACE) inhibitors prevents progression to CKD (7). Therefore the genes involved in this RAAS pathway were studied for their association with the development of DN. ACE transforms angiotensin I to angiotensin II and consequently regulates the activity of angiotensin (8). The expression of ACE was found in proximal tubule brush borders and glomerular endothelial cells of the kidney (9).

The gene coding for ACE is located at chromosome region 17q23.3. Intron 16 of ACE gene has an insertion (I allele) and deletion (D allele) (ACE I/D) functional polymorphism. The D allele has been shown to result in higher levels of circulating ACE (10). In recent years, the relationship between ACE I/D polymorphism and DN has been reported in many studies (11). However, the correlation between ACE I/D and DN remains controversial. In the present study, we performed a meta-analysis to investigate whether ACE I/D polymorphism is associated with DN risk or not.

Materials and Methods

Literature search and selection

To synthesize evidence on the association between ACE gene I/D polymorphism and the risk of DN, a metaanalysis was conducted. For this purpose, PubMed, Scopus, Embase and Google Scholar were searched, to retrieve association studies published as of August 20, 2019. The keywords used were "angiotensin converting enzyme", "ACE", "ACE I/D", "diabetic nephropathy", "T2DN", "diabetic kidney disease" and "insertiondeletion polymorphism". The search of articles is restricted to the English language. Inclusion criteria were as follows: (1) article should study the association between type 2 diabetic nephropathy (T2DN) and ACE I/D polymorphism; (2); the study should provide ACE genotype distribution; (3) case-control study design; and (4) a comparison between a T2DN group and a T2DM control group. Exclusion criteria were as follows: (1) the study did not meet the inclusion criteria; (2) studies with ACE I/D polymorphism and T1DM and (3) articles not written in English. From all eligible studies, lead author's name, publication year, country of origin, ethnicity, and

genotypes from T2DN and T2DM groups were collected.

Statistical analysis

The association between ACE gene I/D polymorphism and DN in T2DM were estimated for each study and pooled odds ratios (ORs) with a 95% confidence interval (CI) were calculated in allelic, dominant and recessive genetic models. The presence of heterogeneity between studies was assessed with the Q test and I² statistics. Randomeffects model (REM) or fixed-effects model (FEM) was used based on the presence or absence of heterogeneity. To test for robustness of the meta-analysis, we conducted a sensitivity analysis by excluding one study each time and estimating the pooled OR for the rest of the studies. The publication bias for comparisons was assessed by funnel plot and Egger's test. An ethnicity-based subgroup analysis was performed to assess the geographic-specific effects on the meta-analysis. Data for the meta-analysis were analyzed using a web tool MetaGenyo (12).

Results

Study characteristics

The search strategy adopted in the meta-analysis is depicted in Figure 1. Our systematic search identified 45 papers (47 studies) that analyzing the association between ACE gene I/D polymorphism nephropathy in T2DM patients. The study by Jayapalan et al included Malaysian, Chinese and Indian patients and hence it was considered as three independent studies (13). The basic characteristics of each study along with their genotype frequencies of ACE gene I/D polymorphism were documented in Table 1. The years of publication spanned from 1994 and 2018. The ACE I/D polymorphism deviated from Hardy–Weinberg

Figure 1. Study selection flow chart of meta-analysis.

	Ethnicity	Country	DN+ ACE genotypes			DN-ACE genotypes		otypes		HW P	D.C
Author, year			II	ID	DD	II	ID	DD	DN criteria	value	Ref.
Powrie et al	Caucasian	Australia	4	8	7	24	37	24	ACR >3 mg/mmol	0.233	(14)
Doria et al	Caucasian	USA	15	35	24	20	41	16	UAE >30 μg/min	0.552	(15)
Fujisawa et al	Asian	Japan	24	23	7	17	12	6	Proteinuria/hemodialysis	0.157	(16)
Mizuiri et al	Asian	Japan	11	50	19	11	11	9	UAE >20 μg/min	0.110	(17)
Panagiotopoulos et al	Caucasian	Australia	10	25	15	29	44	42	UAE >20 μg/min	0.016	(18)
Schmidt et al	Caucasian	Germany	41	105	101	34	91	83	UAE >20 μg/min	0.289	(19)
Yoshida et al	Asian	Japan	43	46	7	25	28	19	SCr >2 mg/dL	0.066	(20)
Ringel et al	Caucasian	Germany	33	84	44	36	69	35	UAE >30 mg/d	0.866	(21)
Schmidt et al	Caucasian	Germany	61	129	121	62	154	131	UAE >30 mg/d	0.158	(22)
Grzeszczak et al	Caucasian	Poland	103	230	129	63	118	73	ACR (men >1.9 mg/mol & women >2.8 mg/mol)	0.269	(23)
Hanyu et al	Asian	Japan	7	13	4	14	5	2	UAE >20 μg/min	0.180	(24)
Wong et al	Asian	China	20	17	4	49	46	13	UAE >30 mg/d	0.665	(25)
Tomino et al	Asian	Japan	310	337	98	163	189	55	UAE >20 μg/min	0.986	(26)
Taniwaki et al	Asian	Japan	32	40	14	31	26	12	UAE >30 mg/d	0.125	(11)
Gohda et al	Asian	Japan	47	55	25	271	259	91	UAE >30 mg/d	0.026	(27)
Viswanathan et al	Asian	India	17	45	24	10	8	5	Proteinuria >500 mg/dL	0.196	(28)
Ha et al	Asian	Korea	35	62	43	33	57	9	Creatinine >2 mg/dL	0.026	(29)
Arzu Ergen et al	Caucasian	Turkey	5	11	9	5	21	24	UAE >300 mg/d	0.897	(30)
Prasad et al	Asian	India	67	74	55	76	97	52	UAE rate > 200 mg/L	0.055	(31)
Nikzamir et al	Caucasian	Iran	12	47	26	16	52	17	UAE >30 mg/d	0.039	(32)
Uddin et al	Asian	Bangladesh	13	22	24	24	28	14	UAE >500 mg/d	0.285	(33)
Arfa et al	Caucasian	Tunisia	9	41	40	6	24	21	UAE >30 mg/d	0.829	(34)
Ezzidi et al	Caucasian	Tunisia	88	260	167	156	192	54	ACR > 30 mg/d UAE > 200 μ g/min and	0.674	(35)
Ahluwalia et al	Asian	India	44	64	132	49	117	89	ACR >300 mg/g	0.345	(36)
Palomo-Pinon et al	Caucasian	Mexico	87	105	43	85	91	24	ACR >30 mg/g	0.962	(37)
Naresh et al	Asian	India	4	15	11	12	7	11	UAE >500 mg/d	0.004	(38)
Jayapalan et al	Asian	Malaysia	35	26	8	22	18	3	ACR >30 mg/g	0.792	(13)
Jayapalan et al	Asian	China	7	16	1	14	12	7	ACR >30 mg/g	0.171	(13)
Jayapalan et al	Asian	India	11	15	8	19	21	13	ACR >30 mg/g	0.151	(13)
Al-Harbi et al	Caucasian	Bahrain	12	39	59	79	75	96	Not mentioned	< 0.001	(39)
Felehgari et al	Caucasian	Iran	6	30	32	14	32	26	ACR >300 mg/g	0.467	(40)
Patel et al	Asian	India	10	24	27	58	66	42	UAE >20 mg/d	0.011	(41)
Paz-Pacheco et al	Asian	Philippines	6	11	4	13	5	3	UAE >20 mg/L	0.078	(42)
El-Baz et al	Caucasian	Arabia	4	58	40	5	72	23	ACR >30 mg/g	< 0.001	(43)
Shaikh et al	Asian	Pakistan	18	98	52	123	148	25	UAE >300 mg/d	0.034	(44)
Rahimi et al	Caucasian	Iran	19	66	55	14	32	26	ACR >30 mg/g	0.467	(45)
Bhaskar et al	Asian	India	14	29	11	24	30	13	UAE >300 mg/d	0.514	(46)
Shaker et al	Caucasian	Egypt	7	13	25	10	20	10	ACR > 30 mg/g	1.000	(47)
Shaikh et al	Asian	Pakistan	27	45	38	33	41	41	GFR (mL/min)	0.002	(48)
Hussein et al	Asian	Iraq	16	56	25	20	18	13	UAE >300 mg,day	0.045	(49)
Seruga et al	Caucasian	Solvenia	43	143	90	91	169	115	GFR (mL/min)	0.066	(50)
Wang et al	Asian	China	8	26	20	26	33	15	ACR > 30 mg/g	0.449	(51)
Fawwaz et al	Caucasian	Lebanon Saudi	6	20	24	14	29	21	Not mentioned	0.508	(52)
Alharbi	Caucasian	Arabia	5	21	35	10	27	24	UAE >300 mg/d	0.609	(53)
Mansouri et al	Caucasian	Morocco	12	42	76	6	32	47	ACR >30 mg/g	0.863	(54)
Wyawahare et al	Asian	India	52	56	21	18	26	6	ACR >30 mg/g	0.464	(55)
Abuaisha et al	Caucasian	Palestine	1	28	14	0	28	13	Not mentioned	0.001	(56)

Table 1. The distribution of ACE I/D polymorphism genotypes in T2DM patients with or without diabetic nephropathy

equilibrium (HWE) in control group of 11 studies (Table 1). As the comparison group (T2DM) is already having selection, deviation from HWE is not a serious concern in this meta-analysis.

Association of ACE gene I/D polymorphism with susceptibility to DN

The forest plot depicts the relationship of ACE I/D polymorphism with DN in independent studies, as well as an overall pooled estimate in dominant model (Figure 2). As there is a significant between-study heterogeneity, the REM was used to estimate OR. Values related to the association between DN and ACE I/D polymorphism in three genetic models (allele contrast (D versus I), dominant model (DD+ID versus II) and recessive model (DD vs ID+II) were documented in Table 2. Patients with DD/ID genotype were 1.54 times higher to develop DN compared with those who carry the II genotype (OR=1.54, 95% CI 1.31-1.81; I²: 65%). Similarly, increased risk of DN was found in allelic (OR=1.34; 95% CI: 1.20- 1.49; I²: 72%) and recessive models (OR=1.39; 95% CI 1.19- 1.63; I2: 64%). On stratification, both Asian populations and Caucasian populations showed a significant association between ACE I/D polymorphism and DN risk under any genetic models tested (Table 2).

Sensitivity analysis and publication bias

In sensitivity analysis, pooled effect estimates by omitting

	-				Odda Patio			
Study	Experim	Total	Evente	Total	Odds Hallo	OP	95%-01	W(random)
Study	Events	Total	Events	Total	13	Un	95%-01	w(random)
Powrie et al. 1994	15	19	61	85		1.48	[0.44: 4.90]	1.3%
Doria et al. 1994	59	74	57	77		1.38	[0.64: 2.96]	2.1%
Fujisawa et al. 1995	30	54	18	35		1.18	[0.50: 2.77]	1.9%
Mizuiri et al. 1995	69	80	20	31		3.45	[1.30: 9.13]	1.7%
Panagiotopoulos et al. 1995	40	50	86	115	i	1.35	[0.60: 3.03]	2.0%
Schmidt et al. 1995	206	247	174	208		0.98	[0.60: 1.61]	2.9%
Yoshida et al. 1996	53	96	47	72		0.66	[0.35: 1.23]	2.5%
Ringel et al. 1997	128	161	104	140		1.34	[0.78: 2.30]	2.8%
Schmidt et al. 1997	250	311	285	347	+	0.89	[0.60: 1.32]	3.2%
Grzeszczak et al. 1998	359	462	191	254		1.15	[0.80: 1.65]	3.3%
Hanyu et al. 1998	17	24	7	21	∏ 	4.86	[1.37; 17.19]	1.2%
Wong et al. 1999	21	41	59	108		0.87	[0.42; 1.79]	2.2%
Tomino et al. 1999	435	745	244	407		0.94	[0.73; 1.20]	3.6%
Taniwaki et al. 2001	54	86	38	69		1.38	10.72: 2.621	2.4%
Gohda et al. 2001	80	127	350	621	불	1.32	[0.89; 1.95]	3.2%
Viswanathan et al. 2001	69	86	13	23		3.12	[1.17; 8.32]	1.6%
Ha et al. 2003	105	140	66	99		1.50	[0.85; 2.64]	2.7%
Arzu Ergen et al. 2004	20	25	45	50		0.44	[0.12; 1.71]	1.1%
Prasad et al. 2006	129	196	149	225	*	0.98	[0.66; 1.47]	3.2%
Nikzamir et al. 2006	73	85	69	85		1.41	[0.62; 3.20]	2.0%
Uddin et al. 2007	46	59	42	66	- 1	2.02	[0.91; 4.47]	2.0%
Arfa et al. 2008	81	90	45	51		1.20	[0.40; 3.59]	1.4%
Ezzidi et al. 2009	427	515	246	402	-	3.08	[2.27; 4.17]	3.5%
Ahluwalia et al. 2009	196	240	206	255		1.06	[0.67; 1.66]	3.0%
Palomo-Pinon et al. 2009	148	235	115	200		1.26	[0.86; 1.85]	3.2%
Naresh et al. 2009	26	30	18	30		4.33	[1.20; 15.61]	1.2%
Jayapalan et al. 2010_1	34	69	21	43		1.02	[0.48; 2.18]	2.1%
Jayapalan et al. 2010_2	17	24	19	33		1.79	[0.58; 5.48]	1.4%
Jayapalan et al. 2010_3	23	34	34	53		1.17	[0.47; 2.91]	1.8%
Al-Harbi et al. 2011	98	110	171	250		3.77	[1.96; 7.27]	2.4%
Felehgari et al. 2011	62	68	58	72		2.49	[0.90; 6.93]	1.6%
Patel et al. 2011	51	61	108	166	+	2.74	[1.29; 5.79]	2.2%
Paz-Pacheco et al. 2012	15	21	8	21		4.06	[1.11; 14.80]	1.1%
El-Baz et al. 2012	98	102	95	100		1.29	[0.34; 4.95]	1.1%
Shaikh et al. 2012	150	168	173	296		5.92	[3.45; 10.18]	2.8%
Rahimi et al. 2012	121	140	58	72		1.54	[0.72; 3.28]	2.1%
Bhaskar et al. 2013	40	54	43	67	- 18 -	1.59	[0.73; 3.50]	2.1%
Shaker et al. 2014	38	45	30	40		1.81	[0.62; 5.32]	1.5%
Shaikh et al. 2014	83	110	82	115		1.24	[0.68; 2.24]	2.6%
Hussein et al. 2015	81	97	31	51		3.27	[1.50; 7.10]	2.1%
Seruga et al. 2016	233	276	284	375		1.74	[1.16; 2.60]	3.2%
Wang et al. 2016	46	54	48	74		3.11	[1.28; 7.58]	1.8%
Fawwaz et al. 2017	44	50	50	64		2.05	[0.73; 5.80]	1.5%
Alharbi 2017	56	61	51	61		2.20	[0.70; 6.86]	1.4%
Mansouri et al. 2017	118	130	79	85		0.75	[0.27; 2.07]	1.6%
Wyawahare et al. 2017	77	129	32	50		0.83	[0.42; 1.64]	2.4%
Abuaisha et al. 2018	42	43	41	41		0.34	[U.01; 8.62]	0.2%
Random effects model		6124		6205	\$	1.54	[1.31; 1.81]	100%
neterogeneity: I-squared=65%, t	au-square	a=0.17	⊳ı, p<0.00					
					0.1 0.51 2 10			

Figure 2. Forest Plot of meta-analysis on ACE I/D polymorphism and diabetic nephropathy.

one study each time were depicted in Figure 3. In the present meta-analysis, there was no substantial deviation in the levels of significance and OR when we omitted one study at a time. There is no evidence of asymmetry in the shape of the funnel's plot (Figure 4). Further, Egger's test (Table 2) also revealed no publication bias (D versus I: Egger's test P = 0.764; DD+ID versus II: Egger's test P =0.157; DD versus ID+II: Egger's test P = 0.594).

Discussion

Based on 47 independent case-control studies, including 6124 patients of DN and 2492 T2DM patients (controls), we investigated the association between the ACE I/D polymorphism and DN risk. An significant association between the ACE gene I/D variant and DN risk was found in all genetic models. Sub-group analysis in Asian and Caucasian ethnic backgrounds also revealed a significant association between ACE I/D polymorphism and DN. Meta-analysis of studies on ACE I/D reveals significant heterogeneity between studies. Further, there is no evidence for publication bias on association between ACE gene I/D polymorphism and DN.

DN is one of the most common complications of longstanding T1DM and T2DM. Diabetic kidney disease is

Table 2. Association of ACE I/D polymorphisms and DN in different genetic models

	DN vs. DM patients								
ACE ID	By ethnicity								
	Overall	Asian	Caucasian						
No. of studies	47	25	22						
Allele contrast (D vs. I)									
I ² %	72	74	71						
Heterogeneity P value	< 0.001	< 0.001	< 0.001						
OR	1.34	1.37	1.31						
95% CI	(1.20-1.49)	(1.15-1.62)	(1.13-1.52)						
Association P value	< 0.001	< 0.001	< 0.001						
Egger's test P value	0.764	0.483	0.711						
Dominant model (ID+DD vs. II)									
I ² %	65	70	58						
Heterogeneity P value	< 0.001	< 0.001	< 0.001						
OR	1.54	1.63	1.47						
95% CI	(1.31-1.81)	(1.28-2.07)	(1.17-1.84)						
Association P value	< 0.001	< 0.001	< 0.001						
Egger's test P value	0.157	0.005	0.425						
Recessive model (DD vs. II+ID)									
I ² %	64	68	60						
Heterogeneity P value	< 0.001	< 0.001	< 0.001						
OR	1.39	1.35	1.40						
95% CI	(1.19- 1.63)	(1.03- 1.77)	(1.16- 1.69)						
Association P value	< 0.001	0.029	< 0.001						
Egger's test <i>P</i> value	0.594	0.233	0.598						

ACE gene I/D variant in DN

a significant cause of CKD and end-stage renal disease. Almost double the prevalence of hypertension was found in diabetes patients as compared to the general population (57). Although hypertension co-occurs with microalbuminuria or overt nephropathy in T1DM patients, it can be seen prior to kidney disease in T2DM patients (58). Some studies suggested that hypertension is already occurred in newly diagnosed T2DM (59). The development of hypertension in diabetics can partly be explained by the presence of increased inflammation and vascular dysfunction associated with the imbalance between angiotensin II-angiotensin1-7 (60). Hence hypertension is one of the extremely important factors that influence the onset of nephropathy in T1DM or T2DM patients. It is widely recognized that the ACE inhibitor therapy could able to reduce the advancement of DN in patients with T1DM and T2DM (61). Hence ACE is suspected to play a key role as antiproteinuric or renal protective agent. Further, reduced expression of ACE in kidneys of diabetic rats and human diseases suggests its involvement in DN (62).

Diabetes Control and Complications Trial (DCCT) and the Epidemiology of Diabetes Interventions and Complications (EDIC) cohort study on T1DM patients suggested that the ACE II genotype conferred a lower risk for persistent microalbuminuria and severe nephropathy (63). In contrast to this, carriers of ID or DD genotype showed lower incidence of end-stage renal failure in T2DM patients (64). However, the correlation between ACE I/D and DN remains controversial. Our findings from the present meta-analysis are consistent with the findings of the previous meta-analyses, in which significant association between the ACE gene I/D and DN risk was inferred (65-67). In support of this higher ACE activity level was documented in DD and ID+DD carriers (40).

Some limitations should be taken into consideration

Study	Odds Ratio	OR	95%-Cl
Omitting Powrie et al. 1994		- 1.54	[1.31; 1.82]
Omitting Doria et al. 1994		- 1.54	[1.31; 1.83]
Omitting Fujisawa et al. 1995		- 1.55	[1.31; 1.83]
Omitting Mizuiri et al. 1995		1.52	[1.29; 1.79]
Omitting Panagiotopoulos et al. 1995		- 1.54	[1.31; 1.83]
Omitting Schmidt et al. 1995		- 1.56	[1.32; 1.85]
Omitting Yoshida et al. 1996		- 1.57	[1.33; 1.85]
Omitting Ringel et al. 1997	<u> </u>	- 1.55	[1.31; 1.83]
Omitting Schmidt et al. 1997		- 1.57	[1.33; 1.85]
Omitting Grzeszczak et al. 1998		- 1.56	[1.31; 1.85]
Omitting Hanyu et al. 1998		1.52	[1.29; 1.79]
Omitting Wong et al. 1999		- 1.56	[1.32; 1.84]
Omitting Tomino et al. 1999		- 1.57	[1.33; 1.85]
Omitting Cabda at al. 2001		1.55	[1.31; 1.83]
Omitting Viewapathan at al. 2001		1.55	[1.31, 1.04]
Omitting Viswanathan et al. 2001		- 1 54	[1.29, 1.79]
Omitting Arzu Ergen et al. 2004		- 1.54	[1.30, 1.02]
Omitting Presed et al. 2006		- 1 56	[1.32, 1.84]
Omitting Nikzamir et al. 2006		- 1 54	[1.02, 1.00]
Omitting I Iddin et al. 2007		1.54	[1.30: 1.81]
Omitting Arfa et al. 2008	- i-	- 1.55	[1.31:1.83]
Omitting Ezzidi et al. 2009	-	1.49	[1.28: 1.74]
Omitting Ahluwalia et al. 2009		- 1.56	[1.32; 1.84]
Omitting Palomo-Pinon et al. 2009		- 1.55	[1.31; 1.84]
Omitting Naresh et al. 2009	- i -	1.52	[1.29; 1.79]
Omitting Jayapalan et al. 2010_1	- i-	- 1.55	[1.32; 1.84]
Omitting Jayapalan et al. 2010_2		- 1.54	[1.30; 1.81]
Omitting Jayapalan et al. 2010_3		- 1.55	[1.31; 1.83]
Omitting Al-Harbi et al. 2011		1.50	[1.28; 1.77]
Omitting Felehgari et al. 2011		1.53	[1.29; 1.80]
Omitting Patel et al. 2011		1.52	[1.29; 1.79]
Omitting Paz-Pacheco et al. 2012		1.52	[1.29; 1.79]
Omitting El-Baz et al. 2012		- 1.54	[1.31; 1.82]
Omitting Shaikh et al. 2012		1.47	[1.26; 1.71]
Omitting Ranimi et al. 2012		- 1.54	[1.30; 1.82]
Omitting Bhaskar et al. 2013		- 1.54	[1.30; 1.82]
Omitting Snaker et al. 2014		1.54	[1.30; 1.81]
Omitting Shaikh et al. 2014		- 1.55	[1.31; 1.03]
Omitting Seruga et al. 2016		- 1.51	[1.20, 1.79]
Omitting Wang et al. 2016		1.54	[1.30, 1.32]
Omitting Fawwaz et al. 2017	-	- 1.52	[1.20, 1.70]
Omitting Albarbi 2017		- 1.53	[1.30: 1.81]
Omitting Mansouri et al. 2017	- i - i - i - i - i - i - i - i - i - i	- 1.56	[1.32: 1.84]
Omitting Wyawahare et al. 2017	- <u>-</u>	- 1.56	[1.32; 1.84]
Omitting Abuaisha et al. 2018		1.55	[1.31; 1.82]
Random effects model		1.54	[1.31; 1.81]
г			
0.7	75 1 1.5		

Figure 4. Forest plot in the sensitivity analysis of the ACE I/D polymorphism and diabetic nephropathy risk.

while interpreting our results. Although there is no difference in the ACE I/D genotyping methodology, there were still other existing heterogeneities, such as the diagnostic criteria of DN, selection of controls and race. Further, it should be noted that no access to the diet of subjects (salt and fat consumption) might modulate the effects of ACE I/D polymorphism in DN.

Conclusion

In conclusion, this meta-analysis demonstrated that ACE gene I/D is a risk factor for DN. Further research should be performed to investigate the interactions between hypertension, diabetes duration, RAAS pathway polymorphisms and the risk of DN.

Authors' contribution

BVKSL conceived the study. BVKSL, RLK , HKV and SP performed data collection. BVKSL, RLK, HKV and SP analyzed the data. BVKSL, RLK, HKV and SP wrote

the manuscript. All authors have seen and approved the manuscript.

Conflicts of interest

There is not conflict of interest in this met-analysis.

Ethical considerations

Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the authors.

Funding/Support

None.

References

- Fineberg D, Jandeleit-Dahm KA, Cooper ME. Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol. 2013;9(12):713-23.
- 2. Lim AK. Diabetic nephropathy complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361-81.
- Xue R, Gui D, Zheng L, Zhai R, Wang F, Wang N. Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective. J Diabetes Res. 2017;2017:1839809-.
- Arar NH, Hazuda HP, Plaetke R, Sartorio V, Arar MY, Abboud HE. Familial Clustering of Diabetic Nephropathy: Perceptions and Risk Recognition Among Mexican-American Patients With a Family History of Diabetes. Diabetes Spectr. 2003;16(3):136-42.
- Lakkakula S, Gupta P, Kumar Verma H, Lakkakula BVKS. Association between PPARG Pro12Ala polymorphism and diabetic nephropathy risk; an updated metaanalysis of 27 studies. J Renal Endocrinol. 2018;4(1):11-.
- Ramanathan G, Elumalai R, Periyasamy S, Lakkakula B. Role of renin-angiotensin-aldosterone system gene polymorphisms and hypertension-induced end-stage renal disease in autosomal dominant polycystic kidney disease. Iran J Kidney Dis. 2014;8(4):265-77.
- Xie X, Liu Y, Perkovic V, Li X, Ninomiya T, Hou W, et al. Renin-Angiotensin System Inhibitors and Kidney and Cardiovascular Outcomes in Patients With CKD: A Bayesian Network Meta-analysis of Randomized Clinical Trials. Am J Kidney Dis. 2016;67(5):728-41.
- Ramanathan G, Ghosh S, Elumalai R, Periyasamy S, Lakkakula BV. Influence of angiotensin converting enzyme (ACE) gene rs4362 polymorphism on the progression of kidney failure in patients with autosomal dominant polycystic kidney disease (ADPKD). Indian J Med Res. 2016;143(6):748-55.
- Alhenc-Gelas F, Baussant T, Hubert C, Soubrier F, Corvol P. The angiotensin converting enzyme in the kidney. J Hypertens Suppl. 1989;7(7):S9-13; discussion S4.
- Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest.

1990;86(4):1343-6.

- Taniwaki H, Ishimura E, Matsumoto N, Emoto M, Inaba M, Nishizawa Y. Relations between ACE gene and ecNOS gene polymorphisms and resistive index in type 2 diabetic patients with nephropathy. Diabetes Care. 2001;24(9):1653-60.
- Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, Carmona-Saez P. MetaGenyo: a web tool for meta-analysis of genetic association studies. BMC Bioinformatics. 2017;18(1):563.
- Jayapalan JJ, Muniandy S, Chan SP. Null association between ACE gene I/D polymorphism and diabetic nephropathy among multiethnic Malaysian subjects. Indian J Hum Genet. 2010;16(2):78-86.
- Powrie JK, Watts GF, Ingham JN, Taub NA, Talmud PJ, Shaw KM. Role of glycaemic control in development of microalbuminuria in patients with insulin dependent diabetes. Brit Med J. 1994;309(6969):1608-12.
- Doria A, Warram JH, Krolewski AS. Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I--converting enzyme gene. Diabetes. 1994;43(5):690-5.
- Fujisawa T, Ikegami H, Shen GQ, Yamato E, Takekawa K, Nakagawa Y, et al. Angiotensin I-converting enzyme gene polymorphism is associated with myocardial infarction, but not with retinopathy or nephropathy, in NIDDM. Diabetes Care. 1995;18(7):983-5.
- Mizuiri S, Hemmi H, Inoue A, Yoshikawa H, Tanegashima M, Fushimi T, et al. Angiotensin-converting enzyme polymorphism and development of diabetic nephropathy in non-insulin-dependent diabetes mellitus. Nephron. 1995;70(4):455-9.
- Panagiotopoulos S, Smith TJ, Aldred GP, Baker EJ, Jacklin CJ, Jerums G. Angiotensin-converting enzyme (ACE) gene polymorphism in type II diabetic patients with increased albumin excretion rate. J Diabet Complications. 1995;9(4):272-6.
- Schmidt S, Schöne N, Ritz E, The Diabetic Nephropathy Study G. Association of ACE gene polymorphism and diabetic nephropathy? Kidney Int. 1995;47(4):1176-81.
- Yoshida H, Kuriyama S, Atsumi Y, Tomonari H, Mitarai T, Hamaguchi A, et al. Angiotensin I converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus. Kidney Int. 1996;50(2):657-64.
- 21. Ringel J, Beige J, Kunz R, Distler A, Sharma AM. Genetic variants of the renin-angiotensin system, diabetic nephropathy and hypertension. Diabetologia. 1997;40(2):193-9.
- 22. Schmidt S, Strojek K, Grzeszczak W, Bergis K, Ritz E. Excess of DD homozygotes in haemodialysed patients with type II diabetes. The Diabetic Nephropathy Study Group. Nephrol Dial Transplant. 1997;12(3):427-9.
- 23. Grzeszczak W, Zychma MJ, Lacka B, Zukowska-Szczechowska E. Angiotensin I-converting enzyme gene polymorphisms: relationship to nephropathy in patients with non-insulin dependent diabetes mellitus. J Am Soc Nephrol. 1998;9(9):1664-9.
- 24. Hanyu O, Hanawa H, Nakagawa O, Tani N, Andou N, Aizawa Y, et al. Polymorphism of the angiotensin I-converting enzyme gene in diabetic nephropathy in type

II diabetic patients with proliferative retinopathy. Ren Fail. 1998;20(1):125-33.

- Wong TYH, Chan JCN, Poon E, Li PKT. Lack of association of angiotensin-converting enzyme (Dd/II) and angiotensinogen M235T gene polymorphism with renal function among Chinese patients with type II diabetes. Am J Kidney Dis. 1999;33(6):1064-70.
- 26. Tomino Y, Makita Y, Shike T, Gohda T, Haneda M, Kikkawa R, et al. Relationship between polymorphism in the angiotensinogen, angiotensin-converting enzyme or angiotensin II receptor and renal progression in Japanese NIDDM patients. Nephron. 1999;82(2):139-44.
- Gohda T, Makita Y, Shike T, Kobayashi M, Funabiki K, Haneda M, et al. Association of the DD genotype and development of Japanese type 2 diabetic nephropathy. Clin Nephrol. 2001;56(6):475-80.
- Viswanathan V, Zhu Y, Bala K, Dunn S, Snehalatha C, Ramachandran A, et al. Association between ACE gene polymorphism and diabetic nephropathy in South Indian patients. JOP. 2001;2(2):83-7.
- 29. Ha SK, Park HC, Park HS, Kang BS, Lee TH, Hwang HJ, et al. ACE gene polymorphism and progression of diabetic nephropathy in Korean type 2 diabetic patients: effect of ACE gene DD on the progression of diabetic nephropathy. Am J Kidney Dis. 2003;41(5):943-9.
- Arzu Ergen H, Hatemi H, Agachan B, Camlica H, Isbir T. Angiotensin-I converting enzyme gene polymorphism in Turkish type 2 diabetic patients. Exp Mol Med. 2004;36(4):345-50.
- Prasad P, Tiwari AK, Kumar KM, Ammini AC, Gupta A, Gupta R, et al. Chronic renal insufficiency among Asian Indians with type 2 diabetes: I. Role of RAAS gene polymorphisms. BMC Med Genet. 2006;7:42.
- 32. Nikzamir AR, Golmohammadi T, Nakhjavani M, Zahraei M, Amirzargar AA. Angiotensin converting enzyme gene polymorphism in Iranian patients with type 2 diabetes. Iran J Immunol. 2006;3(1):23-9.
- Uddin M, Azam M, Chowdhury N, Akhteruzzaman S. Angiotensin I-converting enzyme gene polymorphism in type 2 diabetic patients with nephropathy. J Med Sci. 2007;7(4):682-5.
- 34. Arfa I, Abid A, Nouira S, Elloumi-Zghal H, Malouche D, Mannai I, et al. Lack of association between the angiotensinconverting enzyme gene (I/D) polymorphism and diabetic nephropathy in Tunisian type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst. 2008;9(1):32-6.
- 35. Ezzidi I, Mtiraoui N, Kacem M, Chaieb M, Mahjoub T, Almawi WY. Identification of specific angiotensinconverting enzyme variants and haplotypes that confer risk and protection against type 2 diabetic nephropathy. Diabetes Metab Res Rev. 2009;25(8):717-24.
- 36. Ahluwalia TS, Ahuja M, Rai TS, Kohli HS, Bhansali A, Sud K, et al. ACE variants interact with the RAS pathway to confer risk and protection against type 2 diabetic nephropathy. DNA Cell Biol. 2009;28(3):141-50.
- 37. Palomo-Pinon S, Gutierrez-Rodriguez ME, Diaz-Flores M, Sanchez-Barrera R, Valladares-Salgado A, Utrera-Barillas D,

et al. DD genotype of angiotensin-converting enzyme in type 2 diabetes mellitus with renal disease in Mexican Mestizos. Nephrology (Carlton). 2009;14(2):235-9.

- Naresh VVS, Reddy ALK, Sivaramakrishna G, Sharma PVGK, Vardhan RV, Kumar VS. Angiotensin converting enzyme gene polymorphism in type II diabetics with nephropathy. Indian J Nephrol. 2009;19(4):145-8.
- Al-Harbi EM, Farid EM, Gumaa KA, Masuadi EM, Singh J. Angiotensin-converting enzyme gene polymorphisms and T2DM in a case-control association study of the Bahraini population. Mol Cell Biochem. 2011;350(1-2):119-25.
- Felehgari V, Rahimi Z, Mozafari H, Vaisi-Raygani A. ACE gene polymorphism and serum ACE activity in Iranians type II diabetic patients with macroalbuminuria. Mol Cell Biochem. 2011;346(1-2):23-30.
- Patel HV, Kalia K, Mannari J. Angiotensin converting enzyme (ACE) gene polymorphism increases the susceptibility of diabetic nephropathy in Western Indian Type 2 diabetic patients. Int J Diabetes Dev Ctries. 2011;31(4):223-8.
- Paz-Pacheco E, Cutiongco-de la Paz EM, Jasul JGV, S. Añonuevo-Cruz MC, Montemayor RL. Angiotensin I-Converting Enzyme Gene Polymorphism and Diabetic Nephropathy in Filipino Type 2 Diabetes Mellitus Patients. J ASEAN Fed Endocrin Soc. 2012;27(1-9).
- 43. El-Baz R, Settin A, Ismaeel A, Khaleel AA, Abbas T, Tolba W, et al. MTHFR C677T, A1298C and ACE I/D polymorphisms as risk factors for diabetic nephropathy among type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst. 2012;13(4):472-7.
- 44. Shaikh R, Shahid SM, Nawab SN, Mansoor Q, Javaid A, Ismail M, et al. Distribution of ACE I/D polymorphism in the patients of diabetes and nephropathy in Pakistan. Int J Hum Genet. 2012;12(3):133-8.
- 45. Rahimi Z, Vaisi-Raygani A, Rahimi Z, Parsian A. Concomitant presence of endothelial nitric oxide 894T and angiotensin II-converting enzyme D alleles are associated with diabetic nephropathy in a Kurdish population from Western Iran. Nephrology (Carlton). 2012;17(2):175-81.
- Bhaskar LV, Mahin S, Ginila RT, Soundararajan P. Role of the ACE ID and PPARG P12A Polymorphisms in Genetic Susceptibility of Diabetic Nephropathy in a South Indian Population. Nephrourol Mon. 2013;5(3):813-7.
- 47. Shaker OG, Ismail MF, Ashour E, Yousif HM, Afify M, Gouda W. ACE gene polymorphism and serum ACE level with Progression of Nephropathy in Type 2 Diabetic Patients. J Adv Chem. 2014;9(3).
- Shaikh R, Shahid SM, Mansoor Q, Ismail M, Azhar A. Genetic variants of ACE (insertion/deletion) and AGT (M268T) genes in patients with diabetes and nephropathy. J Renin Angiotensin Aldosterone Syst. 2014;15(2):124-30.
- Hussein MA, Al-Janabi LM, Algenabi AHA. Angiotensin Converting Enzyme (ACE) Gene Polymorphism And The Risk Of Diabetic Nephropathy In Type 2 Diabetes. J Dent Med Sci. 2015;14(2):62-7.
- 50. Seruga M, Makuc J, Zavrsnik M, Cilensek I, Ekart R, Petrovic D. Polymorphism of angiotensin-converting enzyme (rs4340) and diabetic nephropathy in Caucasians with type

2 diabetes mellitus. Balkan J Med Genet. 2016;19(2):29-34.

- Wang Y, Peng W, Zhang X, Qiao H, Wang L, Xu Z, et al. The association of ACE gene polymorphism with diabetic kidney disease and renoprotective efficacy of valsartan. J Renin Angiotensin Aldosterone Syst. 2016;17(3):1470320316666749.
- 52. Fawwaz S, Balbaa M, Fakhoury H, Borjac J, Fakhoury R. Association between angiotensin-converting enzyme insertion/deletion gene polymorphism and end-stage renal disease in lebanese patients with diabetic nephropathy. Saudi J Kidney Dis Transpl. 2017;28(2):325-9.
- Alharbi SA. Angiotensin I Converting Enzyme Gene Polymorphism in Type 2 Diabetes Mellitus with Nephropathy in Saudi Population. Int J Med Res Health Sci. 2017;6(10):12-20.
- 54. Mansouri M, Zniber A, Boualla L, El Badaoui G, Benkacem M, Rifai K, et al. Associations between clinical characteristics and angiotensin-converting enzyme gene insertion/deletion polymorphism in Moroccan population with Type-2 diabetic nephropathy. Saudi J Kidney Dis Transpl. 2017;28(2):261-7.
- 55. Wyawahare M, Neelamegam R, Vilvanathan S, Soundravally R, Das AK, Adithan C. Association of Angiotensin-Converting Enzyme Gene Polymorphisms and Nephropathy in Diabetic Patients at a Tertiary Care Centre in South India. Clin Med Insights Endocrinol Diabetes. 2017;10:1-5.
- Abuaisha AM, Marzoq LFA, Fayyad ES, Eljbour MS, Baraka AK. Association of Angiotensin Converting Enzyme Gene Insertion/Deletion Polymorphism with Type 2 Diabetic Nephropathy in Gaza Strip-Palestine. Asian J Health Sci. 2018;4(2):1-10.
- Berraho M, El Achhab Y, Benslimane A, El Rhazi K, Chikri M, Nejjari C. Hypertension and type 2 diabetes: a crosssectional study in Morocco (EPIDIAM Study). Pan Afr Med J. 2012;11:52-.
- de Boer IH, Bangalore S, Benetos A, Davis AM, Michos ED, Muntner P, et al. Diabetes and Hypertension: A Position Statement by the American Diabetes Association. Diabetes Care. 2017;40(9):1273-84.
- Muddu M, Mutebi E, Ssinabulya I, Kizito S, Mondo CK. Hypertension among newly diagnosed diabetic patients at Mulago National Referral Hospital in Uganda: a cross sectional study. Cardiovasc J Afr. 2018;29(4):218-24.

- 60. Srivastava P, Badhwar S, Chandran DS, Jaryal AK, Jyotsna VP, Deepak KK. Imbalance between Angiotensin II - Angiotensin (1-7) system is associated with vascular endothelial dysfunction and inflammation in type 2 diabetes with newly diagnosed hypertension. Diabetes Metab Syndr. 2019;13(3):2061-8.
- Amann B, Tinzmann R, Angelkort B. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care. 2003;26(8):2421-5.
- Hsu FY, Lin FJ, Ou HT, Huang SH, Wang CC. Renoprotective Effect of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers in Diabetic Patients with Proteinuria. Kidney Blood Press Res. 2017;42(2):358-68.
- 63. Boright AP, Paterson AD, Mirea L, Bull SB, Mowjoodi A, Scherer SW, et al. Genetic variation at the ACE gene is associated with persistent microalbuminuria and severe nephropathy in type 1 diabetes: the DCCT/EDIC Genetics Study. Diabetes. 2005;54(4):1238-44.
- 64. Hadjadj S, Fumeron F, Roussel R, Saulnier PJ, Gallois Y, Ankotche A, et al. Prognostic value of the insertion/ deletion polymorphism of the ACE gene in type 2 diabetic subjects: results from the Non-insulin-dependent Diabetes, Hypertension, Microalbuminuria or Proteinuria, Cardiovascular Events, and Ramipril (DIABHYCAR), Diabete de type 2, Nephropathie et Genetique (DIAB2NEPHROGENE), and Survie, Diabete de type 2 et Genetique (SURDIAGENE) studies. Diabetes Care. 2008;31(9):1847-52.
- Ahmad N, Jamal R, Shah SA, Gafor AHA, Murad NAA. Renin-Angiotensin-Aldosterone System Gene Polymorphisms and Type 2 Diabetic Nephropathy in Asian Populations: An Updated Meta-analysis. Curr Diabetes Rev. 2019;15(4):263-76.
- Xu HY, Liu MM, Wang X, He XY. Association of angiotensinconverting enzyme insertion/deletion polymorphism with type 1 diabetic nephropathy: a meta-analysis. Ren Fail. 2016;38(9):1320-7.
- 67. Wang F, Fang Q, Yu N, Zhao D, Zhang Y, Wang J, et al. Association between genetic polymorphism of the angiotensin-converting enzyme and diabetic nephropathy: a meta-analysis comprising 26,580 subjects. J Renin Angiotensin Aldosterone Syst. 2012;13(1):161-74.

Copyright © 2019 The Author(s); Published by Society of Diabetic Nephropathy Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.