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Abstract. The key task of computer vision is the
recognition of visual objects in the analysed image.
This paper proposes a method of searching for objects
in an image, based on the identification of a cluster
representation of the query descriptions and the cur-
rent image of the window with the calculation of the
relevance measure. The implementation of a cluster
representation significantly increases the speed of iden-
tification or classification of visual objects while main-
taining a sufficient level of accuracy. Based on the de-
velopment of models for the analysis and processing of
a set of descriptors of keypoints, we have obtained
an effective method for the identification of visual
objects. A comparative experiment with the traditional
method has been conducted, where a linear search for
the nearest descriptor was implemented for identifi-
cation without using a cluster representation of the
description. In the experiment, a speed gain for the
developed method has been obtained in comparison with
the traditional one by approximately 5.2 times with the
same level of accuracy. The method can be used in
applied tasks where the time of object identification is
critical. The developed method can be applied to search
for several objects of different classes. The effective-
ness of the method can be increased by varying the
values of its parameters and adapting to the charac-
teristics of the data.
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1. Introduction

Detection, identification, and classification of objects
are the key tasks of modern computer vision systems
that establish instances of visual objects of a certain
class (e.g., people, animals, or cars) on the digital
images [1], [2], [3] and [4]. Such intellectual tasks are
solved for general purposes of research of methods for
identification of different types of objects in accordance
with the unified framework for imitation of human
vision and cognition [5], [6], [7], [8] and [9] and for the
application purposes according with specific applica-
tion scenarios, such as detection of pedestrians, faces,
text, movements, etc. In recent years, the rapid devel-
opment of methods of deep learning has contributed
to the new achievements to the subject of detection,
which results in the breakthrough and progress, espe-
cially for applied implementations [10], [11], [12] and
[13]. Detection objects have been used now in many
real-world applications, such as autonomous driving,
robot vision, video surveillance of moving objects, and
more.
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Structural methods of image classification have
become popular because of their applied efficiency for
computer vision tasks, where identification or classifi-
cation of visual objects is carried out [1], [3] and [14].
Here, traditionally, the set of points of a recognized ob-
ject is formed by analyzing the part of the image that is
highlighted by a scanning frame, namely window that
allows to partially exclude background objects dur-
ing the analysis. For each position of the frame, the
decision is made about identification (two classes)
or classification (several classes as etalons) based on
the relevance value of the query and the image inside
the window.

When implementing structural classification meth-
ods, the function of image brightness is represented by
the set of keypoints, each of which is described by the
vector of features - the keypoints descriptor [2].

The formal statement of the classification task based
on the description as the set of keypoint descriptors is
given in the literature [1].

Identification of visual objects on the scene im-
age can be successfully implemented for method of
matching the description of the fragment of the object
image and the cluster representation of the etalon as
the query for search [2] and [3]. Only the cluster
representation due to the significant compression of the
description (as a rule, the volume of the analysed de-
scription is 500 keypoint descriptors and more) allows
to search for the object in real-time. Due to the tran-
sition from the set to multidimensional data centres,
computational costs, and decision-making time are
significantly reduced [3], [4], [5], [7], [15], [16], [17] and
[18].

The purpose of the article is to develop for a method
for searching visual objects in the image using the clus-
ter representation for the structural description of the
query image.

Research tasks are:

• Development of mathematical and software
models of data mining when determining the mea-
sure of relevance of structural descriptions of the
window and query.

• Study of the features of model use to determine
relevance with implementing clustering of query
data.

• Evaluation of the effectiveness of the developed
method in according with the results of the
analysis of specific images.

2. Related Works

The identification and classification of objects on the
image is the key task of intelligent computer vision
systems [1] and [13]. Now researchers mainly focus
on methods that are directly aimed at applied imple-
mentation. Due to the multi-dimensional and spatial
nature of the image signal, statistical approaches have
become the most popular for solving this task [1], [3],
[10], [11], [12], [13], [14], [19] and [20]. Recently, spe-
cialized software tools have been developed based on
prior training of the neural network within some fixed
image base [2], [4], [10], [11], [19], [20], [21], [22] and
[23]. For example, the You Only Look Once (YOLO)
network divides images into parts and provides con-
straints and confidence parameters for each part simul-
taneously [19] and [23]. The series of improvements
based on YOLO has been created, and new versions
have been proposed that further improve the parame-
ters of versatility, confidence, and accuracy while main-
taining the high identification rate [19], [21], [22], [23],
[24], [25] and [26]. However, the limitations of such sys-
tems are the need for prior long-term training and the
dependence of the application results on the specific
base on which the training is carried out.

Despite the existence of effective systems based on
machine training, the development and validation of
new methods of object search continue [1], [2], [3],
[4], [10], [11], [12], [14], [20], [27], [28], [29] and [30].
The new promising direction is the use of descriptions
of visual objects as the set of keypoint descriptors.
This apparatus provides high-speed data analysis and
allows for classification to determine in detail the char-
acteristics of the object detected in the image. It is
acceptable to combine different methods to increase
efficiency. Additional implementation of training for
such systems will further improve their characteristics
[2], [4] and [14].

It should be noted that the classification methods
based on a set of descriptors by their nature differ from
the YOLO apparatus [21], [22], [23] and [24] positively
by the simplicity of technical implementation, direct
application without prior long-term training, univer-
sality concerning the variability of the etalon base.

Note that the cluster representation of the structural
description of the image as a set of descriptors [14],
[15], [20], [33] and [36] improves the computing per-
formance of classifiers tenfold compared to traditional
methods [3], [14] and [15]. It is explained by the imple-
mentation of a two-stage search for optimal matching
of the components of the object as part of the etalon
(through the centres of the clusters) instead of a full-
fledged linear search. The method of comparing de-
scriptions in the form of vectors of quantitative cluster
composition [1], [3], [15] and [34] also has advantages
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in the computational sense due to the implementa-
tion of a granular presentation of the analysed data
in the form of a “bag of words” model [2], [20] and [34].
But the applied application of these methods requires
a deeper study since their effectiveness depends signif-
icantly on the influence of several factors: the way of
separating the background and objects from each other
in the image, the composition of the etalon base, the
chosen method of clustering, the number of descriptors
in the description, the value threshold for the equiva-
lence of descriptors, etc.

The proposed research contains the results of an
in-depth study of applied features for the technical
implementation of the cluster apparatus for identifying
a given object.

3. Mathematical Identification
Models Descriptions for
Query Image

Let us universally describe the recognizable visual ob-
ject (request, etalon) as a finite set Z = {zv}sv=1, where
zv ∈ Z are keypoints descriptors, s = cardZ is its car-
dinality [2]. For binary descriptors Oriented FAST and
Rotated BRIEF (ORB) Z ⊂ Bn, Bn - the space of
binary vectors of dimension [11] and [12]. We apply
the cluster partition of set Z through reflection Z → T .
As a result, the description of the input image of the
object will be represented by M disjoint clusters:

Z = T (Z) = {Tk (Z)}Mk=1 , Tk (Z) ∩ Tj (Z) = ϕ,
(1)

where Tk (Z) is a set of elements of a fixed cluster.

The choice of the number M of clusters is an exclu-
sively applied problem and depends on the content of
the analysed data. With an increase in M , the accu-
racy of the analysis of data groupings increases, but
the processing time also increases. In our research, the
value M ∈ {3, . . . , 10} is used for descriptions in the
form of a set of descriptors [1], [2], [3], [4] and [11].

Based on the clustering result for each cluster Tk (Z)
from the description of query Z, we will determine
the parameters of the centres Tk (Z) and capacities of
ck (Z) clusters:

ck (Z) = card Tk (Z) , k = 1,M. (2)

Now let us consider windows n fixed by the num-
ber W1, . . . ,Wu, Wi ⊂ Bn hich are separate fragments
of the image inside which the desired objects can be
located, represented by a set of keypoint descriptors.
Such fragments can be synthesized in the established
order of the image review, depending on the applied

problem [13]. The number of fragments affects the pro-
cessing time. To ensure the equivalence of the influence
of the analysed data on the analysis result, we will con-
sider the parameter value for each description from the
set of windows W1, . . . ,Wu to be the same:

card (Z) = card(W1) = · · · = card (Wu) = s. (3)

Condition (Eq. (3)) can always be practically
achieved by fixing the value s for query Z and selecting
s elements from sets W1, . . . ,Wu of larger size. Other-
wise, additional standardization of data by the number
of description elements is required.

We will reduce the identification to the establishment
of the relevance degree ρ (Wi, Z) of the object Wi and
query Z presented in the cluster form, followed by a de-
cision based on the value ρ (Wi, Z). For each descriptor
w ∈ Wi, we competitively determine the nearest clus-
ter centre in the set of vectors {bj (Z)} according to
the nearest neighbour procedure:

d = arg min
j=1,...,M

ρ (w, bj (Z)) , d ∈ {1, 2, . . . ,M} ,

(4)
where ρ is the distance between the object descriptor
and centre bj from the cluster system for the query.
The processing procedure Eq. (4) is sometimes referred
to as designing for multiple cluster centres [3] and [31].

By using binary descriptors and centres in Eq. (4),
the Hamming distance can be applied. For the most
common clustering procedures, where vector data with
non-integer components (k-means, hierarchical classi-
fication, etc. [20], [31], [32] and [33]) are used, the
Manhattan distance can be applied.

Based on the results of processing Eq. (4) ∀wa ∈
Wi, the number of h1, h2, . . . , hM elements of the
analysed description, assigned to one of the cluster
centres {bj}Mj=1, is calculated:

hj =

s∑
a=1

fa [wa → {bj}] , (5)

where fa is a logical function that determines the
assignment of the description element to the corre-
sponding centre j of the query cluster according to the
concurrency model Eq. (4).

The procedure for implementing function fa to en-
sure filtering of interference, which is certainly present
in the images, should be based on the value of thresh-
old δp for the minimum value in Eq. (4) [1]. Decision
wb → bj is made under condition ρ(wa, bj) ≤ δρ, where
δρ is determined experimentally, based on the compo-
sition of the etalon images of the analysed base.

Based on the calculation of the components of
the vector Eq. (5), we define the relevance mea-
sure as the distance γ between the integer vec-
tors h = {h1, h2, . . . , hM} for the request and the
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Note that in models (4), (5) descriptions i
W  are processed independently of each other, which makes 

it possible to make decisions about several search objects in the image [31], [32]. 

Consider a step-by-step implementation of the proposed method in the form of preprocessing and 

identification stages. 

The preprocessing stage does not affect the time for making an identification decision and contains 

the following steps: 

1. Calculate the keypoints descriptors of the etalon request. 

2. We carry out clustering of the structural description of the etalon. 

3. Determine the centers and powers of the clusters. 

The identification stage can be viewed as a sequence of actions (Figure 1): 

1. Define the set of keypoint descriptors of the recognized image fragment (window). 

2. We project the considered window description onto the structure of the cluster representation of 

the request (cluster centers). 

3. Determine the measure of relevance (distance, similarity) of the fragment views and cluster query 

centers. 

4. By the value of the relevance measure, we make a decision regarding the identification of the 

request and the window image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The object search scheme in the image 

 

4. SOFTWARE SIMULATION RESULTS 

 

For the research, the Jupyter Notebook software environment was used on the Google Colaboratory 

service. A program that simulates the search on-demand method written in the Python language using 

specialized libraries for working with images: Scikit-image and OpenCV [33]. 

The input image contains 4 objects (puppies), of which object No. 1 (puppy on the left) is used as a 

request. Figure 2 shows the input image, and Figure 3 contains its gray-scale representation, which is 

processed by the keypoints detector. Some visually noticeable difference between object No. 4 Figure 2 

(puppy on the right) from the rest, it turned out in the experiment too. It is clear that human vision easily 

perceives this object as a puppy since the image created by the human brain is turned on.  

An artificially intelligent system [25], [26] makes a decision solely based on a set of informative 

image points for which keypoint descriptors are calculated [27]. 
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Fig. 1: The object search scheme in the image.

current window γ (h [Z] , h [Wi]). Depending on the
obtained value; we determine the identification deci-
sion Wi. At γ, we can take the Manhattan distance in
a M -dimensional vector space. Also, in this case,
the similarity of vectors, for example, the correlation
coefficient, cans a measure of relevance [34].

Note that in models Eq. (4) and Eq. (5) descrip-
tions Wi are processed independently of each other,
which makes it possible to make decisions about
several search objects in the image [35], [36] and [37].

Consider a step-by-step implementation of the
proposed method in the form of pre-processing and
identification stages. The pre-processing stage does
not affect the time for making an identification
decision and contains the following steps:

• Calculate the keypoints descriptors of the etalon
request.

• We carry out clustering of the structural descrip-
tion of the etalon.

• Determine the centres and powers of the clusters.

The identification stage can be viewed as a sequence
of actions (see Fig. 1):

• Define the set of keypoint descriptors of the
recognized image fragment (window).

• We project the considered window description
onto the structure of the cluster representation of
the request (cluster centres).

• Determine the measure of relevance (distance,
similarity) of the fragment views and cluster query
centres.

• By the value of the relevance measure, we make
a decision regarding the identification of the
request and the window image.

Thus, the essence of identification is to establish
significance for the degree of relevance to the query
and the composition of the analysed window, projected
onto the centres of the clusters for the query.

4. Software Simulation Results

For the research, the Jupyter Notebook software
environment was used on the Google Colaboratory
service. A program that simulates the search
on-demand method written in the Python language
using specialized libraries for working with images:
Scikit-image and OpenCV [38]. The input image con-
tains 4 objects (puppies), of which object No. 1 (puppy
on the left) is used as a request. Fig. 2 shows the input
image, and Fig. 3 contains its gray-scale representation,
which is processed by the keypoints detector. Some
visually noticeable difference between object No. 4
Fig. 2 (puppy on the right) from the rest, it turned
out in the experiment too. Human vision easily per-
ceives this object as a puppy since the image cre-
ated by the human brain is turned on. An artificially
intelligent system [27] and [30] decides solely based on
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a set of informative image points for which keypoint
descriptors are calculated [29].

Fig. 2: Analysed image.

Fig. 3: Image of Fig. 2 gray-scale.

(a) (b)

Fig. 4: Request (etalon) and its coordinate’s keypoints.

The image size is 600×314 pixels. The search for
objects identical to the query was performed by scan-
ning with a frame 1/4 sizes relative to the input image.
Fragment No. 1 (the first puppy on the left) with a size
of 150×314 was taken as an etalon request (see Fig. 4).

The ORB detector is used, which forms a description
in the form of a set of about 500 binary descriptors
with a dimension of 256 bits [37]. Implementing the
method was carried out under conditions of the same
number of descriptors in the descriptions of the request
and the fragment under consideration.

The discussed method assumes a comparison of
an equal number of components. This condition is
achieved by changing the used number of keypoints
of the considered fragment. Clustering for the descrip-
tion of the request was performed using the k-means
method using the Manhattan metric and the number
of clusters k = 3.

Figure 4 shows the set of coordinates (centres of the
green rings) obtained by the ORB detector for the
query image. As you can see, the main visual infor-
mation is quite clearly highlighted by the detector.

First, a pilot experiment was carried out in which
the image fragments under consideration (the current
scanning window) were independently clustered during
the scanning and identification process. Thus, even
for object No. 1 (etalon), re-clustering was performed.
The centres of the clusters were different for the same
image. With such complicated processing, it is difficult
to count on success. But even in this case, objects
No. 1 and No. 3 of the scene were identified. They
showed a fairly small value of the Manhattan distance
between the data histograms in the range from 46–115
(the maximum value of the distance is 500).

The next experiment was to implement a method
where the cluster representation was performed at
a time for a request. The considered structural de-
scriptions of the current image were projected onto the
fixed centres of the query clusters by establishing the
closest one. The computational costs for this approach
are much less. Data clustering occurs only once per
query.

The histogram of the cluster representation of the
request (object No. 1) for the number of 500 key-
point descriptors is shown in Fig. 5. Columns of the
histogram contain the number of image descriptors
assigned to the corresponding cluster.

The results of the experiment showed that objects
No. 1–No. 3 Fig. 2 are identified accurately (distances
are 0, 80, 90), and object No. 4, according to the
results of the analysis, showed a significant difference
(distance 212 at a maximum of 500). One fragment
containing parts of two different objects showed a dis-
tance of 162, which is closer to the etalon than ob-
ject No. 4 (see Fig. 6). Experiments were also carried
out with a different number of keypoints, which were
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Fig. 5: Histogram of request projections with the number of
keypoints 500.

randomly selected from a description of 500 points.
With a decrease in the number of keypoints, the
computational efficiency improves, but the resolution
properties decrease [3].

The best-applied efficiency was shown by the pro-
cessing option, with the number of keypoint sequel to
200. It is for the request image in Fig. 4, the number
of descriptors in the clusters was a vector (60, 46, 94).
According to the simulation results, all puppy objects
No. 1–No. 4 were identified correctly (distances 0, 26,
30, 42 with a maximum of 200), while the other anal-
ysed windows showed significantly larger distances.

Fig. 6: Fragment with a distance of 162.

Figure 6 demonstrates general difficulties for artifi-
cial intelligence systems that may arise in the process
of identifying objects against a complex background.
We solved this problem by an experimental selection
of system parameters. In general, to improve perfor-
mance, the query image can be expanded by additional
training of the system. Due to this, information about

the characteristic composition of object No. 4 will be
included in the image.

For a fixed number of 200 keypoint descriptors, we
carried out a comparative experiment, where for identi-
fication we implemented the traditional voting method
based on a linear search for the nearest descriptor with-
out using the preliminary procedure of cluster pre-
sentation of the description. The experiment showed
a gain in speed for the developed method in compari-
son with the traditional 5.2 times. Here, the value of
the gain depends on the parameter of the number of
clusters and increases with an increase in the number
of clusters within 2–8.

As seen from the experiment, the effectiveness of the
method can be enhanced by changing the values of its
parameters and adapting to the properties of the data.

5. Conclusion

The proposed methods for searching for objects on the
image using the clustering apparatus are characterized
by the high speed of data processing and sufficient
efficiency. The experiment, conducted for the task of
identifying several objects in the image with the se-
lection of fixed parameters of the software model for
the studied method and the traditional approach, has
confirmed the effectiveness and showed a gain in pro-
cessing speed of more than 5 times. The effectiveness
of the developed method can be enhanced by training
and choosing such parameters as the size of the de-
scription, the compression ratio of the descriptor set,
the choice of the informative subset of the description,
and the choice of the clustering method. The devel-
oped method can be applied to the multiclass situa-
tion when instead of identifying “object - background”
in each window, classification into several classes is
carried out.

The novelty of the research consists of the develop-
ment and experimental development of the method for
searching for objects in the image of the visual scene
using clustering implementation for query description
data, which contributes to increasing the search perfor-
mance and provides sufficient efficiency. The practical
significance of the work is increasing the depth of anal-
ysis of visual data and the speed of classification, con-
firming the effectiveness of the proposed methods using
examples of images, creating applied software tools for
studying and implementing classification methods in
the latest computer vision systems. Further stages of
research can be the construction of hierarchical feature
systems according to the features of structural descrip-
tion, as well as considering, when calculating the rele-
vance, the weight characteristics of clusters, reflecting
the number of their elements.
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