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Abstract 
The upper northern Thailand suffers from air pollution due to open burning, 

which has been known for a long time. It was also found that different respiratory 
diseases were attributed to air pollution, especially particulate matter. This study 
estimated the health impacts attributed to PM10 between 2014 and 2016 using 
the burden of disease in terms of the disability adjusted life year (DALYs). The 
spatial correlation was evaluated based on applicable remote sensing data using 
the geographically weighted regression (GWR) model. The average measured 
PM10 concentrations for the summer and annual periods between 2014 and 2016 
were 73 and 89 µg m-3, respectively, exceeded the national standard (50 µg m-3). 
In the months of March and April, when PM10 concentrations were at their 
highest, the maximum values of the Multi-Angle Implementation of 
Atmospheric Correction (MAIAC-AOD), 2.70 and 3.48, were recorded.  There 
was a strong correlation between the MAIAC-AOD and the ground-based AOD 
measurements (AERONET stations), with R of 0.8468, 0.8396, and 0.8334 
between 2014–2016. The correlation coefficients for the 3,208 co-located gridded 
of PM10 emissions vs. measured PM10, measured PM10 vs. MAIAC-AOD, and 
MAIAC-AOD vs. PM10 emissions were 0.6656, 0.6446, and 0.5580, respectively. 
The spatial correlation between the interpolated measured PM10 and 1-km 
MAIAC-AOD was 0.5979, 0.3741, and 0.7584 as an outcome of GWR. The total 
DALYs of chronic obstructive pulmonary disease (COPD) attributable to PM10 
in 2014–2016 were 115,930 years per 100,000 population, with the relative risk 
of COPD related to PM10 at a 95% confidence interval of 1.2045–1.2107. 
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Introduction 
 Air pollution is a major environmental problem in 
the upper northern of Thailand, especially in the dry 
season (February–May) for over a decade. Recently, 
there are many studies that have been examined for the 
primary emission source and importance air pollutant 
in this area [1–2]. They found that the major air 
pollutants in the upper norther Thailand are PM10 
emitted from biomass burning which is usually caused 
by agriculture, forest fire, savanna and grass land, 
respectively [3]. Those phenomenal cause PM10 con- 
centration in this area exceed the national ambient air 

quality standard of 120 µg m-3 day-1, during summer 
period of every year, it can be exceeded the standard for 
nearly 50 days from 120 measured days [4]. Due to the 
rise in air pollution over the past ten years, satellite 
remote sensing data have been used in various studies 
to estimate ground-level particulate matters (PM: PM10, 
PM2.5). Most PM estimations are only presented at 
spatial resolutions of 3–10 km to monitor air quality in 
the impacted areas. Here, we propose a spatially 
continuous, high-resolution (1 km) AOD dataset for 
further PM estimates across northern Thailand to 
minimize spatiotemporal heterogeneities and enhance 
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the overall estimate accuracy of ground-level PM con-
centrations. The MODIS Multi-Angle Implementation 
of Atmospheric Correction (MAIAC) is a novel, 
cutting-edge technique that combines pixel- and 
image-based processing with time series analysis [5]. In 
comparison to MODIS AOD's 3 km resolution, MAIAC-
AOD's 1 km resolution might produce many more 
AOD-PM pairings, depict PM's comprehensive geo-
graphic distribution characteristics, and have a greater 
degree of accuracy [6]. By incorporating ground-based 
PM monitoring, meteorological data, land use, and a 
demographic, the MAIAC AOD examined the daily 
ground PM concentration at a spatial resolution of 1 km 
and demonstrated a good AOD-PM correlation [7–9], 
as well as forecasting emission inventories using satellite 
AOD data [10]. The MAIAC-AOD was validated using 
the Aerosol Robotic Network (AERONET), a ground-based 
AOD monitoring system. The results demonstrated a 
significant correlation between MAIAC-AOD and 
AERONET data of R = 0.83, RMSE = 0.04 [11], and R = 
0.867–0.929, RMSE = 0.130–0.287, MAE = 0.091–0.198 
[12]. 
 The relationship between hourly PM from the air 
monitoring station and MODIS-AOD was examined 
using relative humidity and temperature. It was dis-
covered that R for PM2.5 and PM10 was around 0.77 and 
0.71, respectively [13]. And the comparison of ground 
based PM10 and CO concentrations over northern 
Thailand for the years 2014 to 2017 using satellite data 
with a 10 km resolution revealed that the high levels of 
air pollutants during March and April and the temporal 
variability were in good accordance [14]. Additionally, 
the average correlation coefficients (R) between ground-
based PM10 observations and MODIS-AOD 10 km 
resolution in Bangkok Metropolitan Region were 0.46 
for Terra and 0.38 for Aqua AOD, respectively. 
However, it was noted that a MODIS-AOD resolution 
of 10 km might be too coarse to account for change in 
PM10 concentration if the monitoring stations were 
located closer to local sources in densely populated 
urban areas [15]. 
 In northern Thailand, liver cancer, ischemic heart 
disease, chronic obstructive pulmonary disease (COPD), 
and traffic accidents are the top five deaths of men (the 
mortality rate is adjusted at the base of 89, 75, 70, 53 
and 49 per 100,000 population, respectively). Women are 
more likely to suffer vascular disease, brain ischemia, 
heart disease, COPD, diabetes, nephritis, and renal 
impairment (the mortality rate is adjusted at the base 
of 88, 50, 46, 33 and 24 per 100,000 population, 
respectively) [16]. In 2014, there were 7,193 incidents 
of deaths attributed to the risk of air pollution. The 

number of years lost to illness, disability, or premature 
mortality is a measure of overall disease burden known 
as the Disability Adjusted Life Year (DALYs), through 
including comparable years of life lost even while 
healthy because of illness or disability, it broadens the 
definition of years of life lost leading to premature 
death. Smoking (46.0%), pollution from ambient 
particulate matter (20.7%), and occupational exposure 
to particulate matter, gases, and fumes (15.6%) were 
the factors most responsible for the DALYs rates for 
COPD. Thailand accounted for 645,448 DALYs, or 
3.3% of all DALYs, in 2018, that had a significant 
relation to ambient air pollution. In 1999 and 2004, 
COPD was one of top ten causes of death, while in 
2009, 2011, and 2014, it was in the top twenty. [17], 
[26] found contribution of PM10 and PM2.5 related to 
COPD exacerbations. The current study clarification 
the association between PM10 emission and measured 
PM10 using the MAIAC-AOD product with 1-km 
resolution. The disability adjusted life year for COPD 
caused by PM10 was then estimated. 
 
Material and methods  
1) PM10 data and MAIAC-AOD products 
 The nine northern Thai provinces which comprise 
the study area are Chiang Mai, Chiang Rai, Lampang, 
Lamphun, Phreae, Nan, Phayao, Mae Hong Son, and 
Tak as shown in Figure 1a. Comparing MAIAC-AOD 
with the emission rate from our prior work was carried 
out using hourly measured PM10 concentrations at 
eleven air monitoring stations from Pollution Control 
Department (PCD) [18]. The product of MAIAC-AOD 
at 1-km resolution with 550 nm in HDF4 format was 
obtained from the Level-1 and Atmosphere Archive & 
Distribution System (LAADS) Distributed Active Archive 
Center (DAAC) as shown in Figure 1b. It was discovered 
that there was a significant correlation between the 
Aerosol Robotic Network's (AERONET) surface-based 
monitoring and the MAIAC-AOD product [19–22]. In 
this study, the Chiang Mai Meteorology Station, 
Angkhang, and Omkoi district's AERONET Level 2.0 
were used to validate the MAIAC-AOD. While our 
MAIAC-AOD was at 550 nm, the closest AERONET-
AOD data was at a wavelength between 500 and 675 
nm. The 550 nm of AERONET-AOD was interpolated 
based on the 500 and 675 nm data employing the 
Angstrom Exponent to enable it to be compared with 
MAIAC-AOD at 550 nm, and the average daily 
correlation coefficient (R) between AERONET-AOD 
and MAIAC-AOD was determined. 
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Figure 1 (a) study domain and (b) MAIAC-AOD 1-km resolution and its grid value. 

 
2) Distribution and relationship between PM10 

emissions, measured PM10, and MAIAC-AOD 
 To assess the temporal trend, the average daily 
measured PM10 from PCD monitoring stations, the 
average daily estimated PM10 emission from our pre-
vious research [18], and the average daily of the 1-km 
resolution of MAIAC-AOD from the LAADS at the 
same site of PCD monitoring station between 2014 and 
2016 were all plotted on the same graph, and the 
average, maximum, and standard deviation of these 
variables were elaborated. The daily correlation between 
PM10 emission and measured PM10, measured PM10 
and MAIAC-AOD, as well as MAIAC-AOD and PM10 
emission in the same colocation of the monitoring 
station between 2014 and 2016 was investigated. 
Because the emission estimated from the VIIRS hot 
spot from our previous study was with high resolution 
product (375 m) and greater able to detect small fires 
than the other hot spot product, a significant correlation 
between PM10 emission and measured PM10 was 
determined. GIS software was used to carry out the 
spatial distribution of associated parameters; the cell 
statistics approach was employed to establish a 1 km 
grid cell for the MAIAC-AOD for the seasonal and 
annual. And the inverse distance weighted (IDW) 
technique was used to generate the measured PM10 
distribution of the non-monitoring station [23]. The 
Geographically Weighted Regression (GWR) tool was 
then applied to establish the spatial correlation between 
the measured PM10 and MAIAC-AOD [24–25]. In 
accordance with the sequential method depicted in 
Figure 2, the spatial predicted PM10 concentration in 
each grid cell of each subdistrict was averaged to 
continue assessing the disease burden. 
 
3) Quantifying of disease burden 
 The health endpoint for our investigation was 
chosen based on the DALYs value of the health 

endpoint attributable to air pollution, the availability of 

the exposure-response coefficient (β), and the baseline 
incidence rate of the health endpoint. Since COPD 
(J40–J44) was one of the twenty top causes of disability-
adjusted life years (DALYs) in the Thailand Burden of 
Disease Reports from 2009, 2011, and 2014, it was 
primary as the study's selected health endpoint. In 
northern Thailand during the seasonal haze, an increase 
in COPD was correlated with a rise in PM10 [26]. 
Additionally, an increase in PM10 was consistently 
related to mortality and the years of life lost (YLL) [27]. 

 An exposure–response coefficients (β) of COPD for 
PM10 was 2.7E-06 per 1 µg m-3 [28]. Population dis-
tribution of exposure (Pe) was assessed by divided number 
of populations in each subdistrict with total population 
in Thailand. The age group of burden of disease quan-
tification was classified as same as the Provincial Public 
Health Office with 15–39, 40–49, 50–59, and 60+ years 
for each subdistrict. Baseline number of death for 
COPD was gathered from Provincial Public Health 
Office. The standard life expectancy of each age group 
was obtained from the standard life of WHO.  
 The provincial public health office of the research 
area provided the CODP incidences. The number of 
years a person has suffered from a COPD symptom is 
used to calculate their disability year [29]. Relative risk 
(RR) was calculated using the following Eq. 1, which 
employs an exponential relationship between the 

exposure-response coefficient (β) and the varying con-
centrations of predicted and background PM10 in 
ambient air. The first step was subtraction of predicted 
PM10 by the background PM10, getting the change of 

PM10 concentration (∆C). The background concentration 
was to indicated degree of exposure to PM10 which 
contributed by the local emission sources that was 
added to the background concentration which could be 
affected to the local population [30]. 
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Figure 2 Quantification of disease burden. 

 

                 ( )0exp -aRR C Cβ =                                 (Eq. 1) 
 

where; β is the exposure–response coefficients of 

PM10 (per 1 μg m-3) of COPD, Ca is the average 
concentration of PM10 and C0 is the background level 

of PM10 (10 μg m-3) [31]. 

 

 The population distribution of exposure (Pe) and 
relative risk (RR) values as stated in Eq. 2 were used to 
calculate the fraction of disease burden attributable by 
PM10 (PAF). The population distribution of exposure 
(Pe) in a subdistrict level was determined using the 
population ratio of each subdistrict to the total 
population of Thailand. Information on the northern 
population was provided by Thailand's Department of 
Provincial Administration. We assume that the 
population in the same subdistrict was subjected to the 
same levels of pollution. 
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 Where; PAF is the proportion of disease burden 
caused by PM10, Pei is the proportion estimates of the 
population in exposure to PM10, including the 
unexposed and RRi is the relative risk in exposure to 
PM10. 
 

 Eq. 3 was used to estimate the expected number of 
fatalities attributed to PM10, and it was then used to 
determine the DALYs. 
 
                              E = PAF N                               (Eq. 3) 
 
 Where; E is the expected number of deaths due to 
PM10 and N is the baseline number of deaths for COPD. 
 
 Years lived with a disability (YLDs) were determined 
using a formula that multiplied the number of 
incidents, the disability year, and the disability weight, 
which ranged from 0 (perfect health) to 1 (worst health 
condition). For this study, the disability weight of COPD 
associated with PM10 was 0.284 [32].  
 
                         YLDs = IDDW                    (Eq. 4) 

 
 Where; I is the number of COPD incident (case), D 
is the disability year (year) and DW is the disability 
weight. 
 
 Eq. 5 was used to calculate the YLLs from the 
standard life expectancy YLLs to premature death. 
 
                              YLLs = EL                                (Eq. 5) 
 
 Where; E is the number of COPD premature 
mortalities attributed to PM10 and L is the standard life 
expectance. 
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 After combining YLLs and YLDs, the DALYs were 
determined using the Eq. 6. 
 

                        DALYs = YLLs+YLDs                      (Eq. 6) 
 
Results and discussions  
 First, the association between daily AERONET-
AOD and MAIAC-AOD at 550 nm was examined, and 
it was found that all three AERONET sites; the Chiang 
Mai Meteorology Station, Angkhang, and Omkoi district 
showed a strong correlation, with R values of 0.8468, 
0.8396, and 0.8334 for the years 2014–2016, 
respectively. The total derived MAIAC-AOD in upper-
northern Thailand from 2014 to 2016 was 3208. Summer 
was the season in which the MAIAC-AOD was found 
most frequently (62.5%), followed by the winter (34.8%) 
and the rainy season (2.7%). The optimum levels of the 
MAIAC-AOD, 2.70 and 3.48, were observed in the 
months of March and April, respectively, which was 
consistent with the highest measured PM10 con-
centration and emission. But in July and September, 
there were remarkably fewer observations of the 
MAIAC-AOD. The seasonal trends of PM10 emission, 
measured PM10, and MAIAC-AOD were highest in 
summer and lowest in rainy season as shown in Table 1. 

Nevertheless, the study found that the annual average 
PM10 concentration in northern Thailand was 73 µg m-3 
from 2014 to 2016, which is higher than national limit 
of 50 µg m-3. 
 
1) Relationship of PM10 emissions, measured PM10, 
MAIAC-AOD 
 Figure 3 displayed the 3,208 data that were available 
for each province and the entire northern area between 
2014 and 2016 in terms of emissions rate, measured 
PM10, and MAIAC-AOD. All three variables peaked in 
the summer months (Feb–May) [33], then started to 
decline in the rainy months (Jun-Sep), when there was 
a drop in PM10 emission and AOD detected. According 
to Pearson correlation statistics, the three pair variables; 
PM10 emission vs measured PM10, measured PM10 vs 
MAIAC-AOD, and PM10 emission vs MAIAC-AOD 
among northern region between 2014 and 2016 
exhibited average correlations of 0.6656, 0.6446, and 
0.5580, respectively. While the correlation coefficient for 
each season was determined according to the season's 
month, with summer from February to May, rainy 
from June to September, and winter from October to 
January, as shown in Table 2 and Figure 4.

 
Table 1 Average daily, seasonal, and annual MAIAC-AOD, measured PM10, and PM10 emission in northern Thailand 
from 2014 to 2016 

Month No. of days PM10 emission (ton ha-1) *[18] Measured PM10 (µg m-3) MAIAC-AOD 

Mean S.D. Max. Mean S.D. Max. Mean S.D. Max. 

Jan 470 1.36 0.81 7.10 56 54 142 0.37 0.21 1.60 

Feb 485 2.42 1.78 8.43 81 33 203 0.51 0.24 1.53 

Mar 600 4.14 2.20 8.43 127 62 449 1.03 0.47 2.70 

Apr 556 2.87 2.39 8.43 84 49 456 0.98 0.50 3.48 

May 364 0.56 0.30 3.00 47 24 163 0.55 0.27 1.35 

Jun 31 0.81 0.11 1.00 26 19 82 0.39 0.17 0.85 

Oct 55 0.93 0.09 1.04 35 11 56 0.47 0.19 0.82 

Nov 278 0.95 0.21 3.50 33 11 62 0.24 0.13 0.65 

Dec 369 0.99 0.29 4.30 44 15 90 0.28 0.16 1.10 

Summer  2005 2.87 2.23 8.43 89 54 456 0.80 0.47 3.48 

Rainy  86 0.89 0.11 1.04 32 15 82 0.44 0.18 0.85 

Winter  1117 1.13 0.59 7.10 46 20 142 0.30 0.18 1.60 

Annual  3208 2.21 1.99 8.43 73 50 456 0.62 0.45 3.48 
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Table 2 Average daily, seasonal, and annual MAIAC-AOD, measured PM10, and PM10 emission in northern Thailand 
from 2014 to 2016 

Season Days R between 
EI and measured PM10 

R between 
Measured PM10 and AOD 

R between 
EI and AOD 

Dry season  2,005 0.6084 0.5614 0.4652 

Rainy season 86 0.2696 0.3762 0.3048 

Winter season 1,117 0.2882 0.4101 0.1363 

Annual 3,208 0.6656 0.6446 0.5580 
 

 
Figure 3 Daily temporal distribution PM10 emissions, measured PM10, and MAIAC-AOD. 

 

       
Figure 4 The correlations of PM10 emission, measured PM10, and MAIAC-AOD in the northern Thailand during 

2014–2016 at the same co-location of air monitoring station. 
 

The high value of correlation between measured PM10 
and PM10 emission was consistent with our previous 
study and several other studies since the ground-based 
emissions data were matched by the VIIRS approach 
with a high correlation value because VIIRS has a 
remarkable ability to detect small fires and high 
resolution (375 m), which occur throughout summer 
months [34–35]. According to the missing of the AOD 
data on some days, which are typically brought on by 
cloud and high surface reflectance, the lower correlation 
value between the pair of measured PM10 vs. MAIAC-
AOD and PM10 emission vs. MAIAC-AOD could have 
been caused by meteorological variables such relative 
humidity, planetary boundary layer height, wind, and 
cloud interference [7, 10, 36]. However, the high 
correlation score was noticed in the summer months 
due to the availability of MAIAC-AOD, which was 

about 52–69%, corresponding with the high level of 
emissions and measured PM10 during the summer. 

 
2) Spatial distribution  
2.1) Spatial distribution of PM10 emissions 

The distribution of biomass emissions were 0.5 to 50 
tons of emissions per hectare in the study area. It was 
discovered that Mae Hong Son, Tak, and Chiang Mai, 
which were areas with a majority of forest, had a high 
distribution of PM10 emission (more than 30 tons per 
hectare). Throughout a three-year period, it was found 
that Mae Hong Son province produced significant 
average PM10 emissions, with emissions above 10 tons 
ha-1 in every subdistrict. Furthermore, it was found that 
provinces with most of the agricultural area, such 
Chiang Rai, Phare, and Nan, tended to have lower PM10 
emissions (10 tons ha-1) in the three years as shown in 
Figure 5. 
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Figure 5 Emission of PM10 2014–2015. 

2.2) Spatial distribution of MAIAC-AOD 
Figure 6 displays the spatial distribution of MAIAC-

AOD for each season and year from 2014 to 2016. The 
MAIAC-AOD was more prevalent in the summer (Feb-
May) and winter (Oct-Jan) compared to the rainy (Jun-
Sep), however the high AOD (>0.75) was only seen 
during the summer months, according to studies, mixed 
deciduous woods shed their leaves during the dry 
season, and fires in savannas and grasslands may have 
been ignited by trash accumulation in places where trees 
have been abnormally dense. Additionally, the time for 
harvesting and cleaning the field for the following 
planting was carried out during summertime [37]. The 
high value of MAIAC-AOD was observed in the east 
(Chiang Rai, Phayao, Nan, Phrae, and Lampang) as 
opposed to the west, which is consistent to our previous 
study's discovery of a high fire hot spot, and many maize 
residues burned in the field in these areas [38], which 
was associated to the emission of particulate matter that 
could be detected by the MAIAC-AOD instrument. 
 
3) Burden of disease 

According to the good temporal correlation between 
the emissions rate, measured PM10, and MAIAC-AOD 
at the eleven monitoring stations in northern Thailand 
between 2014 and 2016 was observed with the range 
between 0.5338–0.8101. Along with the good spatial 
correlation between MAIAC-AOD and PAF of COPD 
that was demonstrated by use of Geographic Weight 
Regression approach in GIS that was estimated from 
differences in background and measured PM10 con-
centrations, together with  and exposed population, the 
correlation between MAIAC-AOD and PAF for the years 
2014 to 2016 was 0.5979, 0.3741, and 0.7584, respectively. 
Based on the considerations, we decided to predict the 
disease burden in terms of DALYs for every province in 
the study area using the interpolated measured PM10 

concentration. The average PAF during 2014–2016 was 
3.01E-05, 2.42E-05, and 2.37E-05, respectively, the 
spatial distribution of PAF was shown in Figure 7. The 
relative risk of COPD during 2014–2016 was 1.2090, 
1.2062, and 1.2079 which was consistent with the PAF 
that was highest in the year 2014. 

The overall DALYs of COPD attributable to PM10 
between 2014 and 2016 were 115,930 years per 100,000 
populations, with 3,528 years for those between the 
ages of 15 and 39, 6,866 years for those between the ages 
of 40 and 49, 19,826 years for those between the ages of 
50 and 59, and 85,710 years for those over 60. Nan, 
Phayao, and Chiang Mai were the top three provinces 
with the highest DALYs of COPD, with 21,364 (18%), 
15,132 (13%), and 13,421 (12%) years per 100,000 popu-
lations, respectively, while Lamphun has the lowest with 
8,353 (7%) years as shown in Table 4. Since Phayao 
province had the largest agricultural areas in the north 
and produced a substantial portion of PM10 from such 
areas (927 tons between 2012 and 2016) [18]. The 2018 
Air Quality Assessments for Health and Environment 
Policies found that the DALYs of chronic lower 
respiratory diseases (J40–J47) caused by PM2.5, PM10, 
and O3 in Chiang Mai ranged from 3,283–17,612 years 
per 100,000 populations. Thailand reported 645,448 
DALYs from ambient (outdoor) air pollution per 
100,000 people in 2018 [39]. In comparison to other 
years, 2016 had the highest DALYs of COPD with 
46,317 years per 100,000 populations with an average 
PM10 concentration of 45 µg m-3. While in 2014, the 
DALYs of COPD was 26,039 years per 100,000 popu-
lations with an average PM10 concentration of 44.7 µg 
m-3. The DALYs from this study were compared to 
those from a study by Chulabhorn Research Institute 
that discovered the DALYs of cancer, eye diseases, 
cardiovascular diseases, and respiratory diseases asso-
ciated by PM2.5, PM10, and ozone during the period of 
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2012 to 2016 ranged from 3,283 to 16,612 years per 
100,000 people in the Chiang Mai area [40]. While our 
study which focused on COPD attributed to only PM10 

found that the DALYs were 13,421 years per 100,000 
population during 2014–2016.

 

         

                         Summer                   Rainy                 Winter  

          
                                                2014           2015                              2016 

Figure 6 Distribution of (a) average seasonal MAIAC-AOD (3 years), and (b) average annual MAIAC-AOD. 
 

                 
                                   2014                                2015                             2016 

Figure 7 PAF of COPD during 2014-2016. 

 
Table 3 Relative risk and proportion of disease burden caused by COPD based on monitored PM10 concentration, 
2014–2016 

Year Average PM10 

(μg m-3) 

Average AOD 
(per 1-km grid) 

RR PAF 

Mean 95% CI Mean 95% CI 

2014 44.7 0.60 1.2090 1.2073–1.2107 3.01E-05 2.69E-05-3.33E-05 

2015 42.4 0.58 1.2062 1.2045–1.2079 2.42E-05 2.31E-05-2.52E-05 

2016 45.0 0.68 1.2079 1.2068–1.2091 2.37E-05 2.27E-05-2.47E-05 

 

(b) 

(a) 
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Table 4 DALYs of COPD attributable to PM10 (per 100,0000) during 2014–2016 
Province Annual DALYs Total 3 years of DALYs for COPD  

(per 100,000) 
Total DALYs 
for 3 years 

% of all 
DALYs 

2014 2015 2016 15-39 
yrs. 

40-49 
yrs. 

50-59 
yrs. 

60+ yrs.   

Chiang Mai 3,785 4,174 5,462 555 853 2,514 9,499 13,421 12 

Lamphun 1,844 5,180 1,329 335 528 1,536 5,953 8,353 7 

Lampang 3,162 5,955 6,570 281 670 2,175 12,561 15,687 14 

Phrae 1,503 4,526 4,849 294 627 1,937 8,021 10,878 9 

Nan 3,851 8,414 9,100 330 863 2,958 17,213 21,364 18 

Phayao 4,583 4,833 5,716 420 803 2,429 11,480 15,132 13 

Chiang Rai 1,553 3,040 4,416 236 434 1,515 6,825 9,009 8 

Mae Hong Son 2,236 3,270 3,898 410 571 1,934 6,488 9,404 8 

Tak 3,522 4,183 4,977 667 1,518 2,828 7,669 12,682 11 

Total 26,039 43,574 46,317 3528 6,866 19,826 85,710 115,930 100 
 
Conclusion  

The concentration of PM10 along with the exposure-
response coefficient, population distribution, baseline 
mortalities, standard life expectancy, number of COPD 
incidence case, and disability weight were used to 
predict relative risk and proportion of disease burden 
to quantify the burden of disease attributable to PM10. 
By comparing the PM10 emission from our previous 
research with the measured PM10 from the PCD 
monitoring station and the 1-km of MAIAC-AOD, we 
examined the relationship between the quantity of PM10 
in the air and its emission. The total MAIAC-AOD was 
calculated for 3,208 in the study region between 2014 
and 2016, and the results showed that it was observed 
more frequently (62.5%) in summer, with the highest 
values of 2.70 and 3.48 being recorded in the months of 
March and April, respectively. The findings also revealed 
that there was a good temporal correlation between the 
emissions, measured PM10, and MAIAC-AOD at the 
eleven monitoring stations during 2014 to 2016. The 
maximum recorded PM10 concentration and emission 
were also consistent with those findings. Therefore, we 
estimate the disease burden in terms of DALYs attri-
butable to PM10 using the spatially measured PM10 
concentration. In the northern region, the overall 
number of DALYs attributable to PM10 for COPD was 
115,930 years per 100,000 populations, with Nan having 
the highest percentage (18%) and Lamphun having the 
lowest (7%), which is linked to the coverage of MAIAC-
AOD detected. Furthermore, during the years 2014–
2016, the correlation between MAIAC-AOD and PAF 
was 0.5979, 0.3741, and 0.7584, respectively. To enhance 
the precision of the prediction of PM10 concentration 
using the 1-km resolution of MAIAC-AOD, the future 
research must integrate meteorological parameters such 
as wind direction, wind speed, planetary boundary layer, 
and temperature. Adequate air quality management is 

currently required to reduce air pollution urgently and 
effectively, particularly for PM10 and PM2.5 pollutants. 
In the northern region, emissions from transportation, 
biomass burning, and agricultural activities make up 
the majority of the sources of PM10. The findings of the 
present study demonstrate the value of local evaluation 
and assessment of COPD related to air quality to 
protect population health. This study is based on the 
assumption that the entire population of northern 
Thailand is exposed to the high level of PM10 con-
centration at an average annual level of 73 µg m-3 which 
exceed the annual standard level (50 µg m-3). The finer 
resolution of MAIAC-AOD would be great for future 
research to achieve finer resolution when quantifying 
the burden of disease. 
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