
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1997

New Approaches to Column Compatibility Checking New Approaches to Column Compatibility Checking

and Column-Based Input/Output Encoding for Curtis and Column-Based Input/Output Encoding for Curtis

Decompositions of Completely or Incompletely Decompositions of Completely or Incompletely

Specified Switching Functions Specified Switching Functions

Michael A. Burns
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Burns, Michael A., "New Approaches to Column Compatibility Checking and Column-Based Input/Output
Encoding for Curtis Decompositions of Completely or Incompletely Specified Switching Functions"
(1997). Dissertations and Theses. Paper 6318.
https://doi.org/10.15760/etd.8173

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6318
https://doi.org/10.15760/etd.8173
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Qihong Chen for the Master of Science in Electrical and

Computer Engineering were presented June 25, 1998, and accepted by the thesis

committee and the department.

COMMITTEE APPROVALS:
Marek jl Perkowski, Chair

Sarah Mocas
Represent;io/ of the Office of Graduate Studies

DEPARTMENT APPROVAL:
Rolf Schaumann, Chair
Department of Electrical Engineering

ABSTRACT

An abstract of the thesis of Qihong Chen for the Master of Science in Electrical

and Computer Engineering presented June 25, 1998.

Title: The Design of Cube Calculus Machine Using SRAM-based FPGA Reconfig

urable Hardware DEC's PeRLe-1 Board

Cube calculus is an algebraic model used to process boolean functions. Cube

calculus operations are widely used in logic optimization, logic synthesis, image

processing and recognition, machine learning, and other applications which require

massive logic operations.

The cube calculus operations can be carried out on general-purpose computers.

Since these operations can involve several levels of nested loops, this approach has

poor performance.

A cube calculus machine which has a special data path designed to speed up

cube calculus operations is presented in this thesis. This c-qbe calculus machine can

execute cube calculus operations 10 to 25 times faster than the software approach

on a general-purpose computer.

This thesis proposes a complete design of the Cube Calculus Machine Version

II (CCM2). In this design, the CCM acts as a coprocessor of the host computer; it

accepts a set of instructions that let the CCM carry out cube calculus operations.

This design is mapped on a reconfigurable hardware DEC PeRLe-1 board.

THE DESIGN OF CUBE CALCULUS MACHINE USING SRAM-BASED
FPGA RECONFIGURABLE HARDWARE DEC,S PERLE-1 BOARD

by

QIHONG CHEN

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
m

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1998

ACKNOWLEDGEMENTS

I would like to thank Dr. Marek A. Perkowski, my advisor, who patiently guided

and encouraged me through this master program.

I also would like to thank Dr. Douglas V. Hall and Dr. Sarah Mocas for their

valuable comments, suggestions on my thesis and their willingness to be in my

thesis defense committee.

Finally, I would like to thank Laura Riddell and Shirley Clark for their contin

uous support and help throughout my studies at Portland State University.

CONTENTS

LIST OF TABLES IV

LIST OF FIGURES V

1 Introduction 1

2 A Review of Cube Calculus 7
2.1 Sets 7
2.2 The Concept of A Cube . 8
2.3 Cube Calculus Operations 10

2.3.1 Simple combinational cube operations . 11
2.3.2 Complex combinational cube operations 12
2.3.3 Sequential cube operations 16
2.3.4 Summary of cube calculus operations 21

2.4 Positional Notation and Cube
Operations in Positional Notation 22
2.4.1 Positional notation 22
2.4.2 Set operations in positional notation 23
2.4.3 Set relations in positional notation . 25
2.4.4 Summary of cube operations in positional notation 26

3 Cube Calculus Machine 29
3.1 Formalism for main algorithm for cube

calculus operation 29
3.2 The general programmable patterns . 31
3.3 The data path of CCM 33

3.3.1 Iterative network 33
3.3.2 The algorithm of the CCM . 36
3.3.3 The signal ready. 42

3.4 Iterative Logic Unit and Iterative Cell 43
3.4.1 Handling multi-valued variables 44
3.4.2 The design of an iterative cell 49

3.5 The architecture of the CCM 55
3.6 The Operation Control Unit (OCU) . 55
3.7 Pre-relation/Pre-operation 58

11

4 PAM and DECPeRLe-1 62
4.1 PAM 63
4.2 PeRLe-1 Board 65

4.2.1 Computational matrix 67
4.2.2 Switches and I/0 buses 69
4.2.3 Control resource 70
4.2.4 Memory subsystem 72
4.2.5 Clock subsystem 74
4.2.6 Host interface . . . 76
4.2. 7 Performance 80
4.2.8 The runtime library . 80

4.3 Programming 82

5 The Design of Cube Calculus Machine Co-processor 85
5.1 Executing Patterns . . . 86
5.2 The Design of the CCM 88

5.2.1 Data Bus 89
5.2.2 Memory and Address Units 90
5.2.3 Registers 90
5.2.4 Data:flow mode 92

5.3 Instructions and Their Encoding . 94
5.3.1 Set Accumulator . . 94
5.3.2 Set Tri-state Buffers 95
5.3.3 Set Registers 97
5.3.4 Execute . . 99
5.3.5 Loop 101

5.4 Global Control Unit 102
5.5 Mapping CCM onto PeRLe-1 board . 107

6 CCM Assembly 111
6.1 CCM Assembly 111
6.2 Examples of Using CCM Assembly 114

7 Simulation 122
7.1 Design Capture 122
7.2 Functional Verification 123

7.2.1 Simple combinational cube operation 124
7.2.2 Complex combinational operation without pre-relation 126
7.2.3 Complex combinational operation with pre-relation 126
7.2.4 Test sequential cube operation without pre-relation 127
7.2.5 Test sequential cube operation with pre-relation 127
7.2.6 Test two complex cases 128

111

8 Design Evaluation

9 Applications of Cube Calculus Machine
9.1 Satisfiability Problem .
9.2 Tautology Problem

10 Conclusions and Future Work

REFERENCES

APPENDICES

A Test Programs

B VHDL Codes
itident.vhd
it_oper.vhd.
it..state.vhd
it_count.vhd
it_empty.vhd .
it_cell.vhd ..
pcountd.vhd .
ilu_cu. vhd .
ilu.vhd ...
biu_cu.vhd .
biu.vhd ..
ccm.vhd ..
testccm.vhd

C The C program to perform disjoint-sharp operation

130

135
136
137

139

141

146

147

150
150
151
152
153
154
155
158
159
162
166
174
180
186

198

lV

LIST OF TABLES

1.1 Notation : 6

2.1 Cube Calculus Operations 22
2.2 Positional Notation for binary literals . 23
2.3 The partial relation of sharp operation 26
2.4 Cube Calculus Operations in bitwise function and relation type 27

3.1 The Output Values of Bitwise Functions Used in Cube Operations 33
3.2 Pre-relation and Pre-relation of the Cube Calculus Operations . . 58
3.3 Decomposed Pre-relation and Pre-operation of the Cube Operations 59
3A Encoded Pre-relation and Pre-operation of the Cube Operations 60

4.1 PeRLe-1 Timing Characteristics 81

8.1 Compare CCM (1.33 MHz) with software approach 132
8.2 Compare CCM (4MHz) with software approach . . 133

V

LIST OF FIGURES

2.1 Intersection operation example. 11
2.2 Supercube operation example 12
2.3 Prime operation example . . 13
2.4 Prime operation example . . 14
2.5 Cofactor operation example 16
2.6 Crosslink example 18
2.7 A complex crosslink example . 18
2.8 Sharp example 20
2.9 Disjoint sharp example 21

3.1 Realizing an arbitrary function of two binary variables 32
3.2 A Simple Iterative Network 34
3.3 Parity Checker 35
3.4 Ripple-Carry Binary Adder 35
3.5 An simplified iterative cell of the CCM 37
3.6 The SM chart of the FSM 38
3.7 The iterative network of the CCM . 39
3.8 Timing diagram of Example 3.3 . . 40
3.9 The rule of naming signals 44
3.10 Three iterative cells combined together to process a 6-valued variable 46
3.11 The block diagram of a Iterative Cell (IT) 49
3.12 Block OPERATION of IT 50
3.13 counter . 53
3.14 Iterative network used to generate empty signal 54
3.15 The simplified block diagram of the CCM . . . 55
3.16 The communication between the GCU and the OCU 56
3.17 The state diagram of the OCU 56
3.18 Realization of Pre-relation/Pre-operation 60

4.1 A simple PAM 63
4.2 PAMs as virtual machines 64
4.3 PeRLe-1 architecture . . . 65
4.4 PeRLe-1 matrix 66
4.5 PeRLe-1 Direct connection 67
4.6 PeRLe-1 Matrix data buses 68
4.7 PeRLe-1 Matrix rings 69

VI

4.8 PeRLe-1 control wires 71
4.9 The input FIFO operation . 77
4.10 The output FIFO operation 78

5.1 Communication between the host and the CCM 85
5.2 Cube operation patterns 86
5.3 The Block Diagram of Our Design . 88
5.4 The content of instruction register . 91
5.5 The content of prpo register 91
5.6 The dataflow modes of the CCM . 93
5.7 A voiding contention which would result from multiple drivers . 95
5.8 Timing diagram of special circuit for avoiding bus contention . 96
5.9 the format of config register . . 98
5.10 The state diagram of the GCU . . . 103
5.11 The outline of mapping 108

7.1 Hierarchical structure of the CCM . 123
7.2 The simulation of Test! 125

1

CHAPTER 1

Introduction

Cube Calculus is an algebraic model used to process boolean functions [26, 27,

28, 29, 30, 34, 37, 16, 32, 43). Cube calculus operations are widely used in logic

optimization, logic synthesis, image processing and recognition, machine learning,

and other applications which require massive logic operations.

The cube calculus operations can be implemented on general-purpose computers

at the cost of control overhead. Almost all general-purpose computers are of tradi

tional Von Neumann computer architecture. In traditional Von Neumann computer

architecture, the control is located in the program that is stored in the memory.

This results in a considerable control overhead. Since the instructions have to be

fetched from the memory, if an algorithm contains loops, the same instruction will

be read many times. This makes the memory interface the bottleneck of these

architectures, especially when the memory bus is not as fast as the internal proces

sor bus. Also, in many commonly used computer architectures, there is very little

parallel processing, even in modern RISC or Pentium processors. The cube cal

culus operations involve several-level nested loops, that leads to poor performance

on conventional computer architectures. The slow processing speed of the cube

calculus operations is the bottleneck of many application such as logic synthesis,

machine learning, and others.

This thesis presents a variant design of Cube Calculus Machine version II (CCM2

for short), a special hardware which has an innovative data path designed to execute

cube operations efficiently. This design is mapped onto a DEC PeRLe-1 board, one

of the earliest platforms for Reconfigurable Computing (RC). In our design, the

CCM acts as a co-processor to the host computer. The host computer needs only

2

to issue the commands (CCM instructions) to the CCM and obtain the result from

the CCM.

The first version of the CCM was introduced in 1989 by Luis S. Kida and

Dr. Marek Perkowski as a general purpose logic computer with a data path de

signed specifically to execute cube calculus operations. The second version of CCM

(CCM2) was designed by a group of students in Dr. Perkowski's EE510 Computer

Architecture for Robotics and Artificial Intelligence course during the 1991-1992

school year.

The CCM architecture is based on an observation that many cube calculus

operations can be described in a general equation of certain logic/set equation (see

Chapter 2 and Chapter 3). In this general format, the literals of the operand

cubes are divided into three types of literals, according to a relation of literals of

operand cubes. This relation is defined by the type of cube calculus operation. As

the resultant cubes are generated, the literals of the operand cubes go through a

sequence of literal types. The value of a literal in the resultant cube depends not

only on the corresponding literals in the operand cubes, but also on the current

types of these literals.

This general format of an equation is implemented in 'the Iterative Logic Unit

(ILU for short) of the CCM architecture. The ILU consists of an array of Iterative

Cells (ITs). Each IT can process two bits, either as a binary variable or a portion

of a multi-valued variable in positional notation. Each IT contains a Finite State

Machine (FSM) to keep track of the current type of literal that is being processed.

The value of a resultant literal is not only calculated from the operand literals, but

also from the current state of the FSM of the given IT.

A considerable part of the control of the CCM is implemented in its data path,

which is the ILU. Once the ILU has received a cube calculus operation, the only

control that is needed from the Control Unit of the ILU (called Operation Control

Unit in our design) is the clock signal for the output of the resultant cubes.

One version of the ILU with 8 ITs of the CCM2 has been implemented by

David W. Foote on 2 Xilinx XC3090 FPGAs [17]. Simulation and experimental

3

results have shown that cube calculus operations executed on the FPGA Cube

Calculus Machine are 10 to 25 times faster than those executed by using the software

approach on a conventional computer. The larger the input cube, the more speed

gain can be obtained by using the CCM.

Since our design is targeted for DEC PeRLe-1 , a pioneer of Reconfigurable

Computing (RC), let us take a look at Reconfigurable Computing. Reconfigurable

Computing [1, 2) is a relatively new term that describes computer and controller

systems that can be configured "on-the-fly" to meet the needs of the target appli

cation.

FPGAs contain a large number of diverse logic gates and registers, which can be

connected together in widely different ways to achieve a desired function. SRAM

based variants extend the capabilities of standard FPGA by allowing new configu

ration data to be downloaded into the device by the main system in a fraction of a

second. Therefore, SRAM-based FPGAs are reconfigurable computing elements.

Computing circuits built from SRAM-based FPGAs can meet the true goal of

parallel processing, executing algorithms in circuitry with inherent parallelism of

hardware, while avoiding the instruction fetch and load/store bottlenecks of tradi

tional Von Neumann architectures. There are many computationally intensive al

gorithms that can benefit from being partially or wholly implemented in hardware.

Typically, these algorithms are too specialized to justify the expense of manufac

turing custom IC devices. Just as often, the "algorithm space" is very large, and

it may be impractical to perform enough simulations to find the optimal approach

before committing to custom hardware.

With an FPGA-based "configurable co-processor" the user can design exactly

the special hardware required for a given task without having to construct new

hardware for each application. Different tasks can be time-multiplexed into the

same FPGAs. Errors can be corrected and different algorithmic approaches ex

plored, with no further hardware expense.

Several universities and research laboratories have been exploring the use of

SRAM-based FPGAs to implement multi-purpose, high-speed co-processors for ac-

4

celerating operations in computer systems. Using these systems, desktop worksta

tions have delivered the performance of supercomputers for specific applications.

In particular, two projects have gained considerable attention: the PeRLe systems

from DEC's Paris Research Lab, and the SPLASH machines from the Supercom

puter Research Center. These systems consist of FPGA-based attached processors

in engineering workstations, complete with programming tools and run-time envi

ronments, and have been the target for a variety of "real world" applications.

DEC's Paris Research Laboratory has designed and implemented four gener

ations of FPGA-based reconfigurable co-processors called Programmable Active

Memories (PAMs) [5, 6, 7, 8, 9). The most-widely used version, the PeRLe-1 , is

based on a 4 x 4 array of XC3090 FPGAs. Developed applications include long

multiplication, RSA cryptography, heat and LaPlace equations, a sound synthesizer

and many others [9).

The Supercomputer Research Center (SRC) has designed two generations of

the SPLASH processor based on a linear array of FPGAs [2, 4). The SPLASH-I

includes a 32-stage linear logic array with a VME interface to a Sun workstation.

Each stage consists of an XC3090 FPGA and a 128 Kbyte static memory buffer. The

first application of the SPLASH-I was to implement a systolic algorithm for one

dimensional pattern matching during DNA research, where it out-performed a Cray-

2 by a factor of 325 and a custom-built nMOS device by a factor of 45. The SPASH-

2 system is based on XC4010 FPGA devices, and has been used to implement a

number of applications, including string searches and image processing[4).

The successes of these and other early projects have fueled the interest of the

research community. The IEEE now devotes an entire annual workshop to FPGA

based computing, IEEE workshop on FPGAs for Custom Computing Machines

(FCCM)[3).

FPGA-based reconfigurable processors are available for a broad range of appli

cations, including scientific computing, database manipulation, design automation,

cryptography, image processing and real-time digital signal processing. FPGA

based processors can exploit the fact that most of the processing time for a compute-

5

intensive tasks is spent in a relatively small portion of the code, and hardware

acceleration of that portion can significantly improve the overall performance.

In the long term, expected advances in FPGA density, performance and architec

ture may offer more significant advances than single processor solutions can promise.

While many important hardware and software challenges remain, it is conceivable

that reconfigurable processors constructed from SRAM-based programmable logic

eventually will replace today's general-purpose processors, providing the basis for

systems that automatically will alter their own hardware to best solve the problem

at hand.

The CCM2 of PSU was originally meant to be fit into silicon, and the design of

the CCM2 chip had been layed out and simulated from the extracted circuit. Due

to the lack of VLSI fabrication funding, the attempt to fabricate CCM2 chip failed.

As of Spring 1992, the "old" Xilinx tools and two Xilinx XC3090 chips were

available to the EE department at PSU, and the core of the CCM2, the ILU with

8 ITs, was mapped onto these two chips by David W. Foote [17].

As of 94/95, a DEC PeRLe-1 board was available to the EE department at PSU.

Unfortunately, there was no documentation and development tools available. As of

July 97, the documentation of the board became available. As of this writing, the

development tools for DEC PeRLe-1 board are still not usable because a special

C++ compiler that can collaborate with this board is needed. We expect the

complete development tools to be available in the near future.

The design of the CCM presented in this thesis is a variant of CCM2, and is

targeted at the PeRLe-1 board. Therefore, this design tightly depends on the archi

tecture of the PeRLe-1 board. For the first time it is a complete design, including

Global Control (GCU), ILU with 15 ITs, and Operation Control Unit (OCU). My

design accepts a set of instructions that are optimized for practical applications.

The CCM communicates with the host computer through the input and output

FIFOs. The host issues the commands to the CCM through the input FIFO, and

gets the results from the output FIFO. The instructions do not limit the CCM to

execute only the cube calculus operations introduced in this thesis, actually, the

6

CCM can execute all cube calculus operations that can be described in the general

format of equations (see Chapter 2 and Chapter 3 for detail).

Once the development tools for the PeRLe-1 board become available, this design

will be realized on the PeRLe-1 board, and the corresponding C/C++ based cube

operation library (see section section 6.1) will be implemented on the host computer.

The following chapters are organized as follows: Chapter 2 presents a subset

of cube calculus operations. Chapter 3 introduces the Iterative Logic Unit of the

CCM2. This section gives a detailed description of the design and functionality of

the ILU. Chapter 4 introduces the DEC PeRLe-1 board in detail, the programming

method is also given in this chapter. Chapter 5 presents our design of the CCM2,

including the design of Global Control Unit, and mapping on the PeRLe-1 board.

Chapter 6 presents CCM assembly language. Chapter 7 present the simulation re

sult of our design described in VHDL. Chapter 8 evaluates our design of the CCM.

Chapter 9 shows some possible applications of the CCM. Chapter 10 gives a con

clusion of the tasks that were accomplished in this thesis and a list of further work

that is necessary to be performed to complete a ready-to-be-used Cube Calculus

Machine.

In this thesis, the notations shown in Table 1.1 are used to represent different

type of objects.

Table 1.1: Notation

Type Font Example

variable lower case letter a, b, x, Xi

literal lower case letter - 0,1,3a, xi

cube upper case letter A,B

array of cubes upper case letter with arrow on head 1, jj

set curly braces {0,1, ... ,n}

the name of set upper case letter P, S

7

CHAPTER 2

A Review of Cube Calculus

Most of the efficient modern logic synthesis programs use the so-called cu.be

calcu.lu.s to represent and process Boolean functions. This representation is used in

U .C.Berkeley programs, including the well-known Espresso (371, MIS II and SIS, and

many others [29, 30, 16, 32]. This calculus has been used for Boolean minimizers,

tautology and satisfiability checkers, verifiers and other software tools[31].

In this chapter, the concept of a set is presented first because it is used as a

fundament of cube calculus; then the concept of cube and the cube calculus are

presented. The last part of this chapter presents positional notation of cubes and

how to carry out the cube calculus in positional notation.

2.1 Sets

A set is a collection of objects called elements or members. As listed in Table

1.1, we use curly braces to indicate sets.

For instance, the set of all integer between 0 and 5 is written as:

{0,1,2,3,4,5}

the infinite set of all positive, odd integers can be describe by:

{1,3,5,7, ... }

The membership of a element a in a set A is denoted by a E A to mean "a is

an element of A". A set which has no element is called an empty set (denoted by

!21). The empty set is a subset of all sets. The elements contained in a set are either

listed explicitly or described by their properties.

The following relations between two sets are used in cube calculus:

8

• Two sets A and B are equal, or identical, if they contain precisely the same

elements. It is denoted by A = B.

• A set A is said to be a subset of B if every element of A is also an element of

B. It it denoted by A~ B.

• If A~ B, and B contains at least one element which is not contained in A,

then A is said to be proper subset of B. It is denoted by AC B.

The elements of the sets are taken from universal set (U). The following basic

set operations are used in cube calculus:

• The complement of A in universal set U (denoted by -,A) is the set of all

elements of U that are not elements of A.

• The intersection of A and B (denoted by A n B) is the set containing the

elements that are in both A and B.

• The union of A and B (denoted by AU B) is the set containing the elements

that are in either A or B.

Example 2.1. Assuming that the universal set U is {0,1,2,3,4,5}, a set A is

{0,1,2,3} and another set B is {2,3,4}. Then ..,A = {4, 5}, An B = {2, 3}, and

AUB = {0,1,2,3,4}.

The universal set U of possible values of a binary variable is {0,1 }. For a binary

variable a, literal ii means that literal is true when variable a is 0, and can be

described by a{0}, where {O} is the true set of literal a. More detailed discussion

on sets can be found in [35, 36].

2.2 The Concept of A Cube

The basic concepts of cube calculus are a cube and an array of cubes. A cube

is a product of literals. For example, product abed is a cube. An array of cubes

is a sum of cubes. A logic function can be represented by a cube or an array of

9

cubes. For instance, a simple 2-input binary logic function AND can be described

by a cube as: fAND(a, b) = ab; another simple 2-input binary logic function XOR

(exclusive OR) can be described by an array of cubes as: fxoR(a,b) = ab+ ab.
In a binary logic, a literal is a binary variable with negation or without negation

(x or x). In a multi-valued logic a literal (xf') is a variable (x,.) with its set of values

(Si) for which the variable is true.

A multi-valued input, two-valued output, incompletely specified switching func

tion (multi-valued function for short) is a mapping:

f(x1, X2, • .. , Xn) : Pi X P2 X · · · X Pn i-+ B (2.1)

where Xi is a multi-valued (Pi-valued) variable, P.. = {O, 1, 2, · · · , p,;. 1} is the set of

values that variable x,;. may assume, B = {O, 1, x} (x denotes a don't care value). n

denotes the number of variables (positions). For any subset S,. E P.., xf• is a literal

of Xi representing the function such that:

if Xi Es,.
xf' -{ ~ (2.2)

Si is called true values set (true set for short) of literal xf•. For example, a four

valued input logic of x{1,2,3} 1 if x E {1, 2, 3}, which means x{1,2,3} = 1 if x 1 or

x = 2 or x = 3; otherwise, x{1,2,3} = 0. We always assume that the set of possible

values of an-valued logic variable is {O, 1, 2, ... , n - 1}.

A product of literals, xf1 xf2
• • • x!", is refereed to as a product term (also called

product or term for short), and can be represented by a cube. A product term that

includes literals for all function variables x 1 , x 2 , ••• , Xn is called a full term. Any

literal of the form xf• is always equal to 1 since the literal is true for all possible
P, S· S·values of Xi, t hus X,;. 'x/ can be written as x/.

A sum of products is denoted as a Sum-Of-Products Expression (SOPE) while

a product of sums is called a Product-Of-Sums Expression (POSE). An EXOR of

products will be called a Exclusive Sum Of Products form (ESOP). A product of

EXORs will be called a Product Of Exclusive Sums expression (POES). SOPE,

POSE, ESOP and POES are all represented as an arrays of cubes. Products of

10

SOPEs (PSOPEs) are also used for the Generalized Propositional Formulas form.

They are represented as arrays of arrays of cubes.

The degree of a cube is the number of literals in the cube that are not equal to

one (in other word, Pi # S.).

Example 2.2. Th~ degree of cube a{0}b{1}c{1}d{o,i} is 3 (assuming a,b,c and dare

binary variables).

The difference of two cubes is the number of variables for which the correspond

ing literals have different true sets. The distance of two cubes is the number of

variables for which the corresponding literals have disjoint true sets.

Example 2.3. Given two cubes A = a{O,l}b{0}c{0}, B = a{1,2}b{1}c{o}. The differ

ence of cubes A and B is 2 because they have different true sets on variables a

and b. The distance of cubes A and B is 1 because they have disjoint true sets on

variable b.

2.3 Cube Calculus Operations

The cube calculus operations presented in this thesis can be categorized into

three groups: simple combinational operations, complex combinational operations

and sequential operations.

Each cube operation has one or two operand cube(s). Cubes A and Bare used

to represent these arguments and they can be described by:

st 5.A s!< sA
A=x1 xl ···Xi' ···Xn" (2.3)

sf s: s~ 5sB=x1 X2 ···X;' ···Xn" (2.4)

where Sf and Sf are the true sets of literal x? and xff, respectively. n is the

number of variables. In this chapter, S represents the true set of a literal, the

subscript of S represents the index of the variable, the superscript of S represents

the operand cube (A or B).

11

2.3.1 Simple combinational cube operations

Simple combinational cube operations are defined as single set operations. Such

a set operation is applied on all pairs of true sets Sf and Sf of corresponding

literals of operand cubes. A simple combinational cube operation produces one

resultant cube. The intersection and the supercube are simple combinational cube

operations presented in this section.

Intersection

The intersection of two cubes A and B is the cube that is included in both A

and B. The intersection operation of cubes A and Bis defined as follows:

if there is no such i that Sf n Sf =.¢

otherwise
(2.5)

Where Sf n Sf is a set intersection operation. ¢ denotes an empty set, and 0
denotes a contradiction.

Example 2.4. Assuming two cubes A = ab and B = be, where a, b and c are

binary variables. The intersection of two cubes A and B is the following:

A= ab abx = a{1}b{1}c{O,l}

B = b~ = xbc = a{0 ,1}b{1} c{o}

An B = a{1}n{o,1}b{1}n{1}c{o,1}n{o} = a{1}b{1}c{o} = abc

a be 00 01 11 10 B a bcoo 01 11 10

0Or--+---t-:::=-+~r A
1 1

----le---+-,......-!

(a) Operand cubes (b) Resultant cube

Figure 2.1: Intersection operation example

Example 2.4 is illustrated in Figure 2.1 by Karnaugh map. The intersection

operation can be used in function decomposition [40, 41 J.

12

Supercube

The supercube of two cubes A and B is the smallest cube that includes cubes

A and B. The supercube operation of cubes A and Bis defined as follows:

(2.6)

Where Stu Sf is a set union.

Example 2.5. The supercube on two cubes A and B used in Example 2.4 follows:

AU B = a{1}u{o,1}b{1}u{1}c{o,1}u{o} = a{o,1}b{1}c{o,1} = b

a be 00 01 11 10 B a bcoo 01 11 10

00 t---+--+-::::-t-....:-:i11r A I---+--+-+--!
1 1

(a) Operand cubes (b) Resultant cube

Figure 2.2: Supercube operation example

Example 2.5 is illustrated in Figure 2.2 by Karnaugh map. The supercube

operation can be used in graph coloring problem [42].

2.3.2 Complex combinational cube operations

Complex combinational cube operations are defined as two set operations and

one set relation. These two set operations are called before (bef for short) and

active (act for short). All variables whose pair of true sets St and Sf satisfy

relation are said to be special variables. The Active set operation is applied on

all pairs of true sets Sf and Sf of special variables. The before set operation

is applied on the others. A complex combinational cube operation produces one

resultant cube like simple combinational cube operation. Prime is an example of

complex combinational cube operation presented in this section.

13

Prime

The prime operation of two cubes A a.nd Bis defined as:

A 'B st s:_1 s:usf s:+i st1 sfusf s4 1 sA= X1 ···Xk-1 Xk Xk+l ···Xl-1 X1 X1+1 .• ·Xnn (2.7)

Where the relation for the prime operation is St n~{ i:_~· The active set operation

is st u sf' a.nd the before set operation is st. In the above equation, variables Xk

a.nd x, a.re the special variables.

Example 2.6. Assuming two cubes A = £ 1x2X3x4 and B =x1£3, where x1, x2, X3

and x 4 are binary variables. The prime of A I B is defined as follows:

x- X X X - x{0}x{l}x{l}x{l}A --1234-1 2 3 4

0 1 0 0 1B = x1£3 = x1x£3x = xP}x~ • }x! }xi • }

Because:

s: n sf ={1} n {o, 1} = {1} # ¢

s: n sf = {1} n {o, 1} ={1} # ¢

variable x 2 a.nd x 4 are special variables. Therefore,

A 'B st Sfusf Sf SfuSf {o} {0,1} {1} {0,1}= X1 X2 X3 X4 = X1 X2 X3 X4

:;X
4
00 01 11 10

X1X2 l---"T---.-..,,....,.....,..-,
A 00

t---+-+----+---1

01
l-----+o--l-=-.i....r;;..--1

11

10

(a) Operand cubes (b) Resultant cube

Figure 2.3: Prime operation example

Example 2.6 is illustrated in Figure 2.3 by Karna.ugh map. The prime oper

ation is used in the ESOP minimization program EXORCISM, developed by Dr.

Perkowski and his former students [29, 30).

14

Consensus

The consensus operation on cubes A and B is defined as follows:

AnB when distance(A, B) = 0

A* B= Ill when distance(A, B) > 1 (2.8)

A *ba.aic B when distance(A, B) = 1!
where A *ba.aic B is defined as follows:

sfnsf Sf_1 ns!._1 sf us: Sf+i ns:+i sAns:A *ba.aic B = X1 •• • a;A:-1 a;k Xk+l ' •• Xn.,. (2.9)

where Sf n Sf = !IS. For basic consensus operation, the before set operation is

S(' n Sf, the active set operation is S(' U Sf, and the relation is always true.

Example 2.7. Assuming two cubes A= x 1x2£a and B = x1£2, where x1, a:2, xa

and a:4 are binary variables. Because the distance of cubes A and Bis 1, then cubes

A and B have consensus as follows:

...,. ...,. ,.;;- _ ...,.{1}...,.{1},,.{o},.,.{0,1}A w}w2w3 - "'1 "'2 ""3 "'4

B x1i"2 = x1i"2xx = xP}x~0>xi0
•
1}xt•1

}

Because:

sf n sf ={1} n {O} = !1l

variable x2 is a special variable. Therefore,

_ st,nsf st,usf sfnsf stnsf _ {1}n{1} {o}u{1} {o}n{o,1} {o,1}n{o,1} _ _A * B - X1 X2 X3 X4 - X1 X2 X3 X4 - X1X3

~
4
00 01 11 10

X1X2---,---.-----.---.

00

01
--+--t---+----1

(a) Operand cubes (b) Resultant cube

Figure 2.4: Prime operation example

15

Example 2. 7 is illustrated in Figure 2.4 by Karnaugh map. The consensus

operation is used for finding prime implicants, and finding prime implicant is a

basic step of the well-known Quine-McCluskey algorithm that is used for two-level

logic minimization and its variants [23], as well as many other basic algorithms for

two-level, three-level and multi-level logic minimization and machine learning [33).

Cofactor

The cofactor operation of two cubes A and B is defined as:

A I B =

A I B {~ 1...,, B when An BI, (2.10)
,,,. otherwise

where A lbaaic B is defined as follows:

stnsf.1 s:_1 ns:_1 u s:+1 ns:+i st_1 nsf_1 u S1! 1nsf! 1 sAnss
baaic X1 • · • Xk-1 Xk Xk+l · · · Xt-1 Xt Xl+l • • • Xn" "

(2.11)

Where the relation for cofactor operation is Sf 2 Sf. The result of the active set

operation is always U (universal set), and the before set operation is Sf n Sf. In

the above equation, variables Xk and x, are special variables.

Example 2.8. Assuming two cubes A= x1x 2x3 and B = x1, where xi, x2, x 3 and

X4 are binary variables. The cofactor of AIB is defined as follows:

1 1A= x1x2x3 x1x2x3x = x?}x! }x! }:z:!°•1}

1B = x = x1xxx = xP}xt·1}x1°•1}:z:j0• }1

Because:

sf= {1}, sf= {1} ➔ sf 2 sf
st {1} ,sf= {0,1} ➔ s: 1 sf
s: = {1} ,s: {0,1} ➔ s: £ s:
st= {0,1} ,sf= {0,1} ➔ st 2 sf

variable x 1 and :z:4 are special variables. Therefore,

,,.uxstnsf ,..sfns: u _ {0,1} {1}n{o,1} {1}n{o,1} {0,1} _AIB ""l 2 ""3 X4 - X1 X2 X3 X4 - X2X3

16

aX4
00 01 11 10X ,xz

B 00

A 01

11

10

,r

'"
....,
.,,;

aX•oo 01 11 10
X1X2 '>---.--..---.----.

00
l---+----ti---..-.--1

01
l---+----t,---+---1

11
1---+---+--"""+-'---l

10

(a) Operand cubes (b) Intersection (c) Result cube

Figure 2.5: Cofactor operation example

This example is illustrated in Figure 2.5 by a Karnaugh map. In the Karnaugh

map, first we calculate the intersection of cubes A and B, the intersection result

is shown in Figure 2.5(b), then we remove variable x 1 which means in the result

cube, variable x 1 can be either 1 or O (don't care); the result cube is shown in

Figure 2.5(c). If there is no intersection of two operand cubes, then the cofactor is

an empty cube. The cofactor operation is an important operation used in function

decomposition [40, 41].

2.3.3 Sequential cube operations

All sequential cube operations are defined as a single formula that has three set

operations and one set relation. These three set operations are called before (be/

for short), active (act for short) and after(aft for short), respectively. All variables

whose pair of true sets Sf and Sf satisfy relation are said to be special variables.

The sequential cube operations produces m resultant cubes, where m is the

number of special variables for a given operation. The sequential cube operations

can be generally described by the following fundamental equation:

{ aft(Sf,Sf') aft(St_1 ,Sf'_1) act(Sf,Sf) bef(S41 ,S/!1) bef(SA sB)A(op)B -
_

Xi · · · xi-1 x. Xi+1 · · · xn "• "

Ifor such i = 1, ... 1 n, that relation(Sf, Sf3) is true}

(2.12)

where Xi is a special variable, be/, act and aft are set operations. Every spe-

17

cial variable produces a resultant cube according to Equation 2.12. This equation

is a general pattern of all cube calculus operations and it was mentioned in the

introduction.

Crosslink

The crosslink operation on cubes A and B produces an array of cubes defined

as:

sf sf_1 s~us!l s41 sAA □ B = { X1 ... x.--1 x, I ' x.-+1 ... xn"

Ifor such i = 1, ... , n, that st n sf= !!S} (2.13)

For crosslink operation, the before set OP,eration is bef(St, Sf) = St, the active set

operation is act(St,Sf) = St U Sf, the after set operation is aft(St,Sf) = Sf,

and the relation is Sf n Sf = ¢. The crosslink operation can only be applied to

two cu bes when the two operand cubes a.re of the,.same~degree, and x (don't care)

must be in same position(s).

Example 2.9. Assuming variables x 1, x 2, x 3 and x 4 a.re binary, two cubes A= x 1x 3

and B = x 1x3 , the crosslink operation A B follows:

0 0 1 0 1A= X1X3 = X1XX3X = xi }x~ • }x1°}xi • }

0 1 1 0 1B = X1X3 = x 1xx3x = xf}x! • }x! }x! • }

Because:

sf n s~ = {O} n {1} = ¢

s: n sf {O} n {1} = ¢

the variable x1 and x3 are special variables. And two resultant cubes are:

s:,usf s: s: st {O}u{l} {O,l} {O} {0,1} {0,l} {0,1} {O} {O,l} _
X1 X2 X3 X4 = X1 X2 X3 X4 = X1 X2 X3 X4 = X3

sf sf sfus: sf _ {1} {O,l} {O}u{l} {O,l} _ {1} {O,l} {0,1} {0,l} _
X1 X2 X3 X4 - X1 X2 X3 X4 - X1 X2 X3 X4 - X1

Therefore,

18

(a) Operand cubes (b) Resultant cube

Figure 2.6: Crosslink example

The Example 2.9 is illustrated in Figure 2.6 by Karnaugh map. The crosslink

operation can be used in the minimization of logic functions in some canonical

forms based on EXOR logic, for instance, the Generalized Reed Muller form (29],

as well as the general-purpose AND/EXOR form called ESOPs. The function

f = x1x3 + x 1x3 can be realized using EXOR gates as:

f = X1X3 + X1X3 = X3 EB X1

4 4xx~
4
00 01 11 10

1 2 r-----r--.........r-T"""--, xx yY 00 01 11 10 X xyY 00 01 11 10
t 2-~-~~~ t 2-~-~~~

00 00 00-~--11-1-C.-P----I
1---+--+-++-+---I -------I

01 01 01
t-::::::--t---=:::-1r-"""t?""'""1 t-:::::,,,-t-o::::+~+-:::-t t-:::=.--+-'4=:::::---1

11 11
J-::::.-+-..::::..-ii-,.....~.....q i--:::,.-4--o:::+..::::::.....-i--,o:::...i i--;::==t,....--A--11='--l

10 10 10

11

(a) Operand cubes (b) intermediate result (c) Result cubes

Figure 2. 7: A complex crosslink example

Another more complex example is shown in Figure 2.7. As shown in Figure

2.7(a), we have a function f = A EBB EB C EB D, where A, B, C and D are four

cubes. First, we calculate C □ D and obtain cubes E and F, and the function

becomes f = A EBB EBE EB F as shown in Figure 2.7(b). Second we calculate

A □ E and B □ F, and obtain cubes G and H; therefore, the function is simplified

as f = G EB H.

19

The crosslink operation is used in ESOP minimization program EXORCISM, de

veloped by Dr. Perkowski and his former student Martin Helliwell in 1988/89

[29, 30]. A more powerful cube operation, called ezorlink, and a new ESOP min

imization program EXORCISM-MV-2 based on ezorlink operation was developed

by Dr. Perkowski and his former student Ning Song in 1993 [16, 32, 43].

Sharp

The (non-disjoint) sharp operation on cubes A and B is defined as follows:

A when A n B = 111

A# B = 111 when A~ B (2.14)

A#ba.sicB otherwise!
where A #be.sic B is defined as follows:

_B _ { sf sA,i-1 sfn(-.Sf) sA,i+i 5AA # be.sic - X1 · · 'Xi-1 Xt----- Xi+l • • • X71n

Ifor such i = 1, ... , n, t~~:_~~!(.§ ?f)} (2.15)

For __s]::t~p J>peration, the before set operation is Sf, the active set operation is

SAi n (-,Sf), the after set operation is Sf, and the relation is ..,(Sf ~ Sf).
~ .

Example 2.10. Assuming variables xi, x 2, x 3 and x4 are binary, two cubes A= £3

and B = x 2x 4 , the sharp operation A# B follows:

A= :i3 = xx:i3x = Xio,1}x!o,1}:z:io}:z:!o,1}

- ,,..2,,..4 {0,1} {1} {0,1} {1}B - .., .., X:Z:2XX4 :Z:1 X2 X3 X4

Because:

..,(St~ Sf)= ..,({O, 1} ~ {1}) = true

..,(SA,4 ~ SB,4) = ..,({O, 1} ~ {1}) = true

variables :z:2 and x4 are special variables. Thus, 2 resultant cubes are:
S-f ,,..Sfn(-.S:),,..Sf ,,.sf_ ,,,{0,1}..,.{0,l}n(-.{l}) {0} {0,1} _ {0,1} {0} {0} {0,1} __ _

X1 "'2 "'3 ..,4 - "'1 "'2 X3 :Z:4 - X1 :Z:2 :Z:3 X4 - X2:Z:3

xs-f xsf xst xsfn(-.Sf) _ ..,.{o,1},,,{o,1},,,{o},,.{o,1}n(-.{1}) _ {0,1} {0,1} {o} {o} __
1 2 3 4 - "'l "'2 ...,3 ..,4 - :Z:1 X2 X3 X4 = :Z:3X4

Therefore,

https://xsfn(-.Sf
https://sfn(-.Sf

20

(a) Operand cubes (b) Resultant cube A# B

Figure 2.8: Sharp example

Remember, universal set U of possible values of a binary variable is {0,1}, therefore,

,{1} = {0}. This example is also illustrated in Figure 2.8 by a Karnaugh map.

The sharp operation can be used in the tautology problem [33].

Disjoint sharp

The disjoint sharp operation on cubes A and B is defined as follows:

when An B = !11

when A~ B (2.16)A #dB= 1:
A#d&a,,icB otherwise

where A #d&a,,ic Bis defined as follows:

. B _ { sfns{l . . . ~f-1 nst1 stn(~sf) ~ft1 . . . s:A #d0011,c - x 1 x,_ 1 x, x,+ 1 xn

I for such i = 1, ... ,n, that ,(Sf~ sf)}
(2.17)

For disjoint sharp operation, the before set operation is Sf, the active set operation

is SAi n (,Sf), the after set operation is st n sf' and the relation is ,(St ~ sf).

Example 2.11. The disjoint sharp operation A #dB, where A and Bare used in

Example 2:5, is calculated as follows:

Since the relation of disjoint sharp is the same as sharp, therefore variables x2

21

and :c4 are still special variables. Thus, two resultant cubes are:
sAnsB sAn(-.S8) 5A 5A {O,l}n{0,1} {O,l}n(-.{1}) {O} {0,1}

X11 l :Z:22 2 X3' :C4" = X1 X2 :C3 :C4

{O,l} {O} {O} {O,l} - _= :Z:1 X2 :C3 X4 = X2:C3

stnsf' sfnsf Sfnsf sfn(-.Sf) _ {o,1}n{o,1} {o,1}n{1} {o}n{o,1} {o,1}n(-.{1})
X1 :Z:2 X3 X4 - X1 X2 X3 X4

_ ..,.{0,1}.,.{1}..,.{0}..,.{0} _ .., ,; ,;
- "'l ..,2 ..,3 "'4 ,- "'2"'3"'4

Therefore,

A #d B = £3 #d X2X4 = £2£3 + :C2X3X4

The Example 2.11 is also illustrated in Figure 2.9 by a Karnaugh map. The

disjoint sharp operation can be used in tautology problem [33] and in conversions

between SOP and ESOP representations.

2.3.4 Summary of cube calculus operations

From the above formulas (2.3 to 2.15), it is can be seen that sequential cube

operations are the most complex operations in three groups of cube operations. The

sequential cube operations are defined by three set operations and one set relation.

For the consistency of description, all cube operations in these three groups can

be generally described by three set operations and one set relation. For simple

combinational cube operations, only one set operation is used (called before)i For

complex combinational cube operations, two set operations and one set relation are

used.

1"7~.---~==r-A
tt---t-~-.:::--t=--+- B

11 10

(a) Operand cubes (b) Resultant cube A #dB

Figure 2.9: Disjoint sharp example

https://sfn(-.Sf
https://sAn(-.S8

22

All cu be operations (some of them are basic operations) described in this chapter

are summarized in Table 2.1. Every row describes one cube operation. For each

operation, its name, notation, set relation and three set operations (called output

functions in the table) are listed from left to right, respectively.

Table 2.1: Cube Calculus Operations

Operation
',

Notation Relation
Output Functions

before active after

cros1link l
,,,,,-- •-T•"-••,,,;

A □ B s~ n S13 = 11SI 1
s~

I
S~ u S13• • S!3

I

v-~ sharp A #rxuic B -.(S~ C S13). - . s~
1 st n (-.Sf) Sli

1

\~isjoint sharp A #t4a.11ic B -.(S~ C Sf:1)
• - 1

SI<• Sf n (-.Sf) SA n sf:1
• 1

consensus A *oonc B 1 Sli (1 S!J
1 1 Sf u Sf. Sli n Sfl

1 1

intersection A n B 1 sAnsB• • - -
supercube A u B 1 SAusB

1 • - -
prime A 1B Sf. n SB# 11S1 1

SA• Sf. u Sfl• •
cofactor A loo.sic B Sli :J S!J

• - 1
SA n S!l

1 • u -

2.4 Positional Notation and Cube

Operations in Positional Notation

From the above section, it can be seen that all cube operations are broken down

into several set relations and set operations, and it is easy to carry out these set

relations and set operations by hand. Now, the problem is how to represent sets in

some way that they can be processed most efficiently by computers. Our answer

to this problem is the positional notation.

2.4.1 Positional notation

In Positional notation, every possible value of a variable (binary or multi-valued)

is represented by one bit, 0 or 1. Thus, a p-valued variable is represented by a

23

string of 1rbit; The i-th possible value is represented by the i-th bit. If the literal

of this variable is true for a specific possible value (say the i-th possible value), the

corresponding bit (the i-th bit) is set to 1, otherwise, it is set to 0.

For example, a four-valued variable xis represented by a string of 4-bit. Literal

:z:{0 ,2} is represented by 1010 because the first and third possible values let the literal

be true.

The positional notation for binary literals is shown in table 2.2. The don't care

means the variable can be either Oor 1, so both bits are set to 1. The contradiction

means that the literal is not true for any possible value of variable, so both bits

are set to 0. The last two cases, don't care and contradiction, can be extended to

multi-valued variables. For 1rvalued variable, the string of l's (the number of 1 's

is p) presents a don't care, and the string of O's (the number of O is p) presents a

contradiction.

2.4.2 Set operations in positional notation

As listed in Table 2.1, all set operations used in cube operations are based on

three basic set operations: intersection, union and complement. These three set

operations can be executed using bitwise operations in positional notation:

• The set intersection operation can be executed using bitwise AND on two

strings of bits that represent two true sets of literals in positional notation.

Example 2.12. Assume two literals :z:{0 ,1,2} and :z:{0 ,2,3}, where xis a 4-valued

variable. Thus two true sets of these two literals are {0,1,2} and {0,2,3},

Table 2.2: Positional Notation for binary literals

Binary literals Positional Notation
x 0 10 ➔ 10X = x = :z:

X 1 01
X = :z: = :z: -t 01

x (don't care) X = :z:0,1 = :z:11 ➔ 11

e (contradiction) 00 ➔ 00e = x• = x

24

respectively. The intersection of these two true sets is {0, 1, 2} n {0, 2, 3} =
{0, 2}. In positional notation, set {0,1,2} is represented by 1110, and set

{0,2,3} is represented by 1011. The bitwise AND of 1110 and 1011 is 1010,

which means set {0,2}, and this is just what we want. Therefore, the set

intersection operation is executed by bitwise AND in positional notation.

• The set union operation can be executed using bitwise OR on two string of

bits that represent two true sets of literals in positional notation.

Example 2.13. Assume two literals x{0 ,2} and x{3}, where x is a 4-valued

variable. Thus two true sets of these two literals are {0,2} and {3}, respec

tively. The union of these two true sets is {0, 2}U{3} = {0, 2, 3}. In positional

notation, set {0,2} is represented by 1010, and set {3} is represented by 0001.

The bitwise OR of 1010 and 0001 is 1011, which means set {0,2,3}, and this is

just what we want. Therefore, the set union operation is executed by bitwise

OR in positional notation.

• The set complement operation can be executed using bitwise NOT on the

string of bits that represents the true set of literal in positional notation.

Example 2.14. Assume a literal x{0 ,2}, where xis a 4-valued variables. Thus

the true sets of the literal is {0,2}. The complement of the true set is ,{0, 2} =
{1, 3} (the U = {0, 1, 2, 3} for 4-valued variable). In positional notation, set

{0,2} is represented by 1010. The bitwise NOT of 1010 is 0101, which means

set {1,3}, and this is just what we want. Therefore, the set complement

operation is executed by bitwise NOT in positional notation.

All other set operations can be done by combining these three basic set opera

tions.

Example 2.15. Assume two literals SA = x{0 ,2} and SB = x{2,3}, where x is a

4-valued variables. Thus two true sets of these two literals are SA = {0, 2} and

SB = {2, 3}, respectively. The set operation is:

25

SA n (,SB)= 1010 AND (NOT 0011) = 1010 AND 1100 = 1000

where AND and OR are bitwise operations. The result 1000 represents set {0},

which is correct result. This kind of set operation is called set difference, and is

used in sharp and disjoint sharp cube operations.

2.4.3 Set relations in positional notation

The result of set relation is true or false and can be represented by one bit,

1 presents true and 0 presents false. The set relation can not be done by bitwise

function because it is the function of all bits of two operand sets in positional

notation.

Set relation is broken down into two parts in positional notation, partial relation

and relation type. The partial relation determines whether or not a pair of the

same possible value of two literals satisfy the relation "locally". The relation type

determines the method of combining partial relations.

Assuming there are two literals xA and xB, where x is p-valued variable x, A

is positional notation of true set of literal xA, and A = [a0 , a 2 , .•. , ap_1], where ai

presents the (i +1)-th possible value of the literal (Note: the possible value starts

with 0, ends with p - 1), and ai E {0, l}. Similarly, B = [bo, b1, ... , bp_1], where

bi E {0, l}.

For the crosslink operation, the set relation is SA nSB = !11. Thus partial relation

is ai · bi = 0, or ai + bi = 1 (from De Morgan's theorem). If and only if all pairs of

possible values satisfy this partial relation, then the set relation is satisfied. This

can be written as:

relation(A, B) = (ao + bo) · (a1 +b1) · · · (ap-1 + bp-1)

Therefore, the partial relation is ai + bi = 1, and the relation type of crosslink

operation is AND type because AND function is used to combining all partial

relations.

An example of OR type relation is the one used in the sharp operation, where

the relation is ,(SA ~ SB). Thus partial relation is ,(Ai ~ Bi), where Ai is the

subset of the true set SA. If the set SA includes the possible value i - 1, then

26

the set A has one element that is the possible value i - 1 and is represented by

ai = 1; otherwise, the set A is an empty set and is represented by ai = 0. It can be

seen that ai is the i-th bit of the bit string that represents the set SA in positional

notation. The same thing is with Bi and bi.

Table 2.3: The partial relation of sharp operation

ai bi A-CB·.- . ,(A-.C B·)- . a·.• b-•
0 0 1 0 0

0 1 1 0 0

1 0 0 1 1

1 1 1 0 0

Table 2.3 shows how to find the partial relation function for the sharp operation.

The first column shows two bits ai and bi. The next two columns show the value

of the negated partial relation and the partial relation itself, the last column shows

the bitwise function used to determine the partial relation. In the first two rows,

ai = 0 means that the set Ai is an empty set, and it is subset of all sets, thus

Ai ~ Bi are 1 's (true). In the third row, ai = 1 means that the set Ai includes one

element that is possible value i - 1, and bi = 0 means that the set Bi is an empty

set, thus Ai ~ Bi is O (false). In the fourth row, ai = bi = 1 means that the sets Ai

and Bi include one same element that is possible value i - 1, thus sets Ai and Bi

are equal, and Ai ~ Bi is 1 (true). Therefore, the set relation of sharp operation

can be determined by:

relation(A, B) = (ao · bo) + (a1 · b1) +... + (ap-t · bp-1)

where the partial relation function is ai · bi, and the relation type is OR.

2.4.4 Summary of cube operations in positional notation

From the above discussion, before, active, after set operations and partial (set)

relation can be defined by bitwise functions on bits. Therefore, all cube operations

27

(some of them are basic operations) can be completely specified by 4 bitwise func

tions and relation type. Table 2.4 summarizes all cube operations described in this

chapter in bitwise functions and relation type.

Table 2.4: Cube Calculus Operations in bitwise function and relation type

Operation Notation

Relation Output Function

partial

relation

relation

type
before active after

crosslink A □ B lli + bi and ai ai + bi bi

sharp A #baaic B ai · bi or ai ai · bi ai

disjoint sharp A #dbaaic B ai · bi or ai a-. b-I I ai · bi

consensus A *basic B 1 and ai · bi ai + bi ai · bi

intersection A n B - - ai · bi - -

super cube A u B - - ai + bi - -

prime A'B ai · bi or ai ai + bi -

cofactor AlbasicB ai + bi and ai · bi 1 -

The following examples show the entire procedure to carry out cube calculus

operations in positional notation.

Example 2.16. Variables x1 , x2 and x3 all have 3 possible values, thus the sets
0 1 2 0 1 2of possible values are Pi = P2 = P3 = {O, 1, 2}. A cube of xf • }x! }xi • • } is

10 10denoted as x~ xg x½11 in positional notation; and it is written as [110-010-111] for

simplifying.

Example 2.17. Assuming cubes A = x 1x 2 and B = x 2x 3x4 , where variables xi,

x2 , x 3 and x 4 are binary, the intersection of cubes A and B follows:

An B =x1x2 n x2x3x4

{l} {l} {0,1} {0,1} n {0,1} {l} {l} {0}_
-X1 X2 X3 X4 X1 X2 X3 X4

_ [011 [011 [11J [111 n [11J [011 [011 [101
-X1 X2 X3 X4 X1 X2 X3 X4

28

_ (01)·[11) [01)·[01) [11)·[01) (11)•(10)
-X1 X2 X3 X4

_ [01I (01l 101I (10)
-X1 X2 X3 X4

=X1X2X3X4

where'·' is bitwise AND operation.

When two opposite literals are multiplied, if the contradiction is generated from

the bitwise operation, then there is no resultant cube, which means that there is

no intersection between two operand cubes.

Example 2.18. Assuming cubes A = ab and 8 = ab, where a and bare binary

variables. Then the intersection of cubes A and 8 is:

ab · ab = [01 - 01] • [01 - 10] = [01 - ~
fl

where 00 is a contradiction symbol for a binary variable, and the contradiction is

denoted by e (see Table 2.2).

Example 2.19. Redo the crosslink operation shown in Example 2,.-8 in positional

notation as follows:
a.1 oa1 1 02foa2,1 c:s:,00.s,1 a4,oc4 11{0} { 0 1} { 0} { 0 1}- - - • • - [1· o· 1 1 - 1 o - 1 1 lA -- X1X3 - X1 X2 X3 X4 -

{l} {0 l} {l} {0,l} b1,ob1,1 b:i,ob:i,1 b3,ob3,1 b4 0ob4,1
8 = X1X3 = X1 X2 ' X3 X4 = [0 1 - 1 1 - 0 1 - 1 1]

where the header of bit is the name of the bit. The subscript of bit name has two

parts separated by comma (' ,'), the first part represents the index of the variable,

and the second part represents the possible value. This notation will also be used

in the next chapter. Because:

relation(Ai, 81) = (a1,o + b1,o) · (a1,1 + b1,1) =(I+ 0) · (0 +I)= 1

relation(A2, 82) = (a2,o + b2,o) · (a2,1 + b2,1) =(I+ I)· (I+ I) = 0

relation(Aa, 83) = (a3,o + b3,o) · (aa,1 + b3,i) =(I+ 0) · (0 +I)= 1

relation(A4, 84) = (a4,o + b4,o) · (a4,1 + b4,i) =(I+ I)· (I+ I)= 0

the variables x1 and X3 are special variables. The two resultant cubes are:
A1 +B1 A2 A3 A 4 _ [10]+[01) [11) [10) [11) _ (11) [11) [10] [11) _ -

X1 X2 X3 X4 - X1 X2 X3 X4 - X1 X2 X3 X4 - X3

,..B1 ,..B2,..Aa+B3 ,..A4 [01] [11) ·(10)+[01] [11) _ (01) [11) [11) [11) _
"'l "'2 "'3 "'4 X1 X2 X3 X4 - X1 X2 X3 X4 - X1

where '+' is the bitwise OR operation.

29

CHAPTER3

Cube Calculus Machine

The software-based approach is the simplest and cheapest way to realize cube

calculus operations. Since the algorithm of a sequential cube calculus operation

involves several-level nested loops, it leads to poor performance on general purpose

computers. In some applications, such as logic minimization systems, or logic-based

machine learning systems, there are so many cube calculus operations, that the

software-based approach makes those applications unacceptable for practical sized

problems due to poor performance. For speeding up the cube calculus operations,

the cube calculus machine was invented.

3.1 Formalism for main algorithm for cube

calculus operation

The architecture of the Cube Calculus Machine (CCM) results from an attempt

to optimize the execution of the most complex cube operation, sequential cube

calculus operations, like crosslink and sharp. Almost all cube calculus operations

have two operand cubes described in Formulas 2.3 and 2.4. Re-write these two

operand cubes in positional notation as:

A (3.1)

where Ai = (ai,1, ai,2, · · · , ai,m, · · · , ai,pJ, which is the true set of literal xf; in posi

tion notation. For each bit ai,m from Ai, ai,m E {O, 1}. The bit ai,m represents the

m-th possible value of the i-th variable. Similarly, Bi = (bi,1, bi,2, · · · , bi,m, · · · , bi,pJ

30

and for each bit bi,m from Bi, bi,m E {O, 1 }. Example 2.18 shows how to use this

notation.

The sequential cube operations are generally described by Equation 2.12. Re

write the equation in positional notation as:

A(op)B=C (3.2)

where resultant array of cubes C is:

6 ={xaft(A1,Bi) ... x~ft(A,-1,B,_i)x~(A,,B,)x~f(A,+i,Bi+d ... Xbef(An,Bn)
l 1-l t t+l n

Ifor such i = 1, 2, ... , n, that relation(Ai, Bi) is true} (3.3)

where bef, act and aft are bitwise function used to calculate set operations before,

active and after. As discussed in section 2.4, an important property of output

functions bef, act and aft is that they are bitwise functions.

As discussed in section 2.4.3, the relation function is broken down into two parts:

partial relation and relation type. There are only two possible relation types: AND

and OR. The relation can be described by:

relation(Ai, Bi) = (3.4)

rel(ai,1, bi,1) +rel(ai,2, bi,2) +· · · + rel(ai,p;, bi,p;) For OR relation type

{ rel(ai,1, bi,1) · rel(ai,2, bi,2) · · · rel(ai,p;, bi,p;) For AND relation type

where rel is the partial relation and it is bitwise function.

All simple combinational cube operations can be defined as a single set op

eration (see section 2.3.1), so there is no need to define before, active and after

functions. For consistency of description, however, all variables in the case of the

combinational cube calculus operations are of before type. So the same computa

tional mechanism can be used to calculate combinational cube calculus operations.

Therefore, combinational operations can be described by:

(3.5)

All complex combinational cube operations are defined by two set operations

and one set relation (see section 2.3.2). For consistency of description, the complex

31

combinational cube operations can be described by:

) B -Xbef(A1 ,Bi) Xbef(Ai.-1,B1e-dxact(A1,,Bi.)xbef(A1e+1 ,B1e+1)A (op - I . . . k-1 k k+I .••

bef(A1-1 ,B1-1)Xact(A1,B1)xbef(A1+1 ,B1+1) Xbef(A.,.,B.,.)
'.' X l-I l l+I . . . n

(3.6)

where variables with indices k and l are special variables, and are actived at the

same time, the values of other variables are calculated according to the before

function. The function after is not used.

The variables whose pairs of literals (xAi, x8i) satisfy relation(Ai., B,) are said

to be specific variables, and their positions are said to be specific positions. The

variable Xi. whose output function is active function is said to be an active variable.

In the case of sequential cube operations, there is only one active variable at a

time. In the case of complex combinational cube operations, it is possible to have

multiple active variables at the same time.

From the above discussion, we can see that these cube operations can be de

scribed by functions relation, before, active and after, and have similar formulas.

3.2 The general programmable patterns

The bitwise function (of length k) is the k-time repetition of the same two

input, one-output Boolean function on argument vectors. For instance, the bitwise

function C AND(A, B) is defined as follows:

(c1,c2,••· ,ck)= (AND(a1,b1),AND(a2,b2), ... ,AND(ak,bk))

where (a1,a2, ... ,ak), (b1,b2, ... ,bk) and (c1,c2 1 ... ,ck) are the vectors A, Band

C, respectively. In the cube operations, there are four bitwise functions: before,

active, after and rel (partial relation).

We can use a truth table to specify the output values for a Boolean function in

terms of the values of input variables. For a bitwise function, there are 2 x 2 = 4

combinations of values of the variables. Therefore, the bitwise function can be

completely specified by its four output values. This is shown in Figure 3.l(a).

32

a b

0 0

0 1

1 0

1 1

f(a,b) f(0,0)

f(0, 1)f(0,0) f(a,b)
f(1,0)f(0, 1)
f(1, 1)f(1,0)

f(1, 1) a b

(a.) (b)

Figure 3.1: Realizing an arbitrary function of two binary variables

An arbitrary Boolean function of two binary variables a and b can be realized

by a 4-to-1 multiplexer as shown in Figure 3.l(b). The variables a and bare control

inputs of the multiplexer, the output values of the function are the data inputs of

the multiplexer. The values of a and b will select the valid output values from the

data inputs.

This general structure can be programmed to realize an arbitrary bitwise func

tion. For example, the output values of function f(a, b) = a+ b are 0111. Set

/ 0 /i/2 / 3 = 0111, the output of multiplexer is the function of f(a, b) =a+ b.

We derived all output values of the bitwise functions of the cube operations

listed in Table 2.4, the results are listed in Table 3.1. This calculation is very

simple. For example, suppose the function is f(ai, bi) = ai · bi, then

f(0, 0) = 0 · 0 = 0

f(0, 1) = O - I= O

f(l, 0) = 1 · 0 = 1

/(1,1)=1·1=0

Therefore, the output values of function f(ai, bi) = ai · bi are 0010.

Each row of Table 3.1 describes one cube operation. The operation name,

notation, the output value of rel (partial relation) function, and_or (relation type),

the output values of before, active and after functions are listed from left to right.

The value of and_or equals to 1 means that the relation type is of AND type;

otherwise, the relation type is of OR type.

33

Table 3.1: The Output Values of Bitwise Functions Used in Cube Operations

Operation Notation
Relation Output Function

rel and/or before active after

crosslink A □ B 1110 1 0011 0111 0101

sharp A #ba.nc B 0010 0 0011 0010 0011

disjoint sharp A #dba.nc B 0010 0 0011 0010 000)

consensus A *ba.•ic B 1111 1 0001: 0111 ~.

intersection AnB - - 0001 - -
super cube AUB - 0111 - -

prime A 1 B 0001 0 0011 0111

cofactor A jba..,ic B 1011 1 0001 1111 ' '. -1
j

3.3 The data path of CCM

Since the data path of CCM results from an attempt to optimize the execution

of cube calculus operations, especially the sequential cube calculus operations, the

CCM has been designed to directly implement Formulas 3.2 and 3.3.

From Formula 3.3, it can be seen that one relation function and one of three

output functions (be!, act and aft) are applied on every pair of literals (xf', xfi) in

the same manner, which means we can use one combinational logic block to process

every pair of literals in series, or use n identical logic blocks to process all pairs of

literals in parallel (one pair of literals per logic block). The later is the so-called

iterative network, and it has better performance than the former because of its

parallelism. The COM is realized using an iterative network. Before we describe

the architecture of the CCM, let us take a look at the general concept of iterative

networks.

3.3.1 Iterative network

An iterative network consists of a number of identical cells interconnected in a

regular manner. Some operations, like binary addition, are naturally realized with

an iterative network because the same operation is performed on each pair of input

34

bits.

The simplest form of iterative network consists of a linear array of combinational

cells with signals between cells traveling in only one direction.

x{1] x{2] x{i] x(n]

i i i i
Cell1~1 T1~,1 a[n]

n~1T1~1-~ --
z{1] z/2] z(i] z{n]

Figure 3.2: A Simple Iterative Network

As shown in Figure 3.2, each cell is a combinational network with one or more

primary input(s) (x[i]) and possibly one or more primary output(s) (z[i]). In addi

tion, each cell has one or more secondary input(s) (a[i]) and one or more secondary

output(s) (a[i + l]). The a[i] leads carry information about the "state" of the

previous cell. The primary inputs to the cells (x[l], x[2], ... , x[n]) are applied in

parallel, that is, they are applied at the same time. The a[i] signals then propagate

down the line of cells. Since the network is combinational, the time required for the

network to reach a stable state condition is determined only by the delay times of

the gates in the cells. As soon as stable state is reached, the output may be read.

Therefore, the iterative network can function as a parallel input, parallel-output

device, in contrast with the sequential network in which the input and output are

provided in a serial manner.

Example 3.1. The Parity Checker determines whether the number or l's in an

bit word is even or odd. The Figure 3.3 shows the complete iterative network for

n = 4. The output of it will be 1 if an odd number of x inputs are 1. The logic of

a cell can be described by

a[i + 1] = a[i] EB x[i]

Assuming the delay of a cell (an EXOR gate in this example) is tcell· The a[l] input

to the first cell must be Osince no ones are received to the left of the first cell and

35

0 is an even number. The delay of the output of the last cell a[5] is 4tcell in this

example.

Figure 3.3: Parity Checker

Example 3.2. The Ripple-carry binary adder is used to perform addition on two

binary numbers. A 4 bits adder can be constructed by cascading 4 full-adder circuit

in series as shown in Figure 3.4. The logic of a full-adder can be described by

c[i + 1] = g[i] +p[i]c[i]

s[i] = p[i] EB c[i]

where c[i], c[i + 1] and s are carry input, carry output and sum output of cell i,

respectively. g (generate) and p (propagate) are two intermediate signals and can

be described by

g[i] = a[i] · b[i]

p[i] = a[i] EB b[i]

s{O) s{1) s{2} s{3}

Figure 3.4: Ripple-Carry Binary Adder

Assuming the delay from inputs (a[i] and b[i]) to intermediate signals (g and p)

is t 1 , and from intermediate signals and carry input (c[i]) to the outputs (c[i + 1]

and s[i]) is t 2 , and the input c[O] is O (constant). It can be seen that the carry

36

signal is propagated from left to right along the carry chain, and the carry chain is

the worst-case delay path of the adder. Thus, the delay of this adder is t 1 + 4t2.

For the design cases where an iterative network can be used, it offers several

advantages over an ordinary combinational network:

• It is easier to design

• It is easily expanded to accommodate more inputs simply by adding more

cells.

The principal disadvantage of the iterative network is that the signal must be

propagated through a large number of cells, so the response time will be longer

than in a corresponding combinational network with few levels.

3.3.2 The algorithm of the CCM

As mentioned above, the CCM is realized with an iterative network. The cell

of this iterative network is more complex than those in the two examples given in

section 3.3.1. The cell of the iterative network consists of a sequential logic block

and several combinational logic blocks as shown in Figure 3.5. The inputs A[i] and

B[i] are the pair of input literals. C[i] is the output literal. Relation, bef, act

and aft are binary bits used to specify these function. elk and reset are the clock

and reset inputs of the D flip-fl.ops used in sequential logic block. The signal next

(next[i] and next[i + 1] in the figure) is the propagation signal (it will be discussed

later). The signal var[i] is generated by combinational logic block A, and represents

whether the variable (xi) is a special variable (var[i] = 1) or not (var[i] = 0).

For a sequential cube operation (section 2.2.3) we know that every special vari

able produces one resultant cube. For a given special variable (say xi), the resultant

cube is generated in the following manner: the output literal Ci is calculated by

act(Ai, Bi)- The output literal Ck (l :S k < i) is calculated by aft(Ak, Bk)- The

output literal C, (i < l :S n) is calculated by bef(At, B,). An output literal is

37

elk reset A[i] B[i] Relation bef aft act A[i] B[i]

t t t t t t t t
-:.·..· - -... -. ::!

Combinational state{i} . . - .
r-'i-- : .

Logic Block A . . .·------•·/•-·-·· -.
:

I
l I'--

............ ,
var[i] :

: Combinational
-

[
Sequential i- Logic Block B

Logic Block : :
...........................

'
Combinational

31
Logic Block C

'

- next[i+1}next[i]

C[i]

Figure 3.5: An simplified iterative cell of the CCM

calculated by combinational logic block B in Figure 3.5, and all output literals can

be calculated in parallel with an iterative network.

A variable is to be called the active variable when it is in active state. Now

we need to find a way to activate special variables in series, which means only one

variable is in active state at a time, and all special variables become active one after

another. All other variables should know their relative position with respect to the

current active variable, left or right. Our solution to this problem is as follows:

• The propagation signal next activates the first special variable that it encoun

ters. The signal next is propagated through combinational logic block C in

Figure 3.5. The logic of the combinational logic block C can be described by:

next[i + 1] = act[i] +next[i] •var[i] (3.7)

where signal act[i] is 1 when current state of the FSM is active (current state

is represented by the signal state[i]).

• Every variable (cell) has a simple Finite State Machine (FSM) (the sequential

logic block in the Figure 3.5) to memorize its relative position with respect to

the active variable. This FSM has three states: after, active and before, which

38

corresponds to the variables being on the left side of the active variable, the

active variable itself, and the variables being on the right side of the active

variable, respectively.

1~0j.--------<~------1
o,, I ® cm

1

Figure 3.6: The SM chart of the FSM

The state machine flowchart[22] (or SM chart for short) of the FSM is shown

in Figure 3.6. The states bef, act and aft are the short name of states before,

active and after, respectively. The numbers under the state names are state

assignments (encoding vectors). This state machine is realized by using D

flip-flops witl-.&,synchronous resej, thus the reset inputs of the D flip-flops can

be used to reset the FSM to before state. This reset logic is not shown in the

SM chart. The output of the FSM is_~] signal which represents the state

of the FSM (the index indicates the index number of the cell).

The signal state[i] is used as the select inputs of the multiplexer to select

corresponding output function for combinational logic block B (see Figure

3.5).

The whole iterative network is shown in Figure 3.7. The inputs A[i], B[i],

Relation, bef, act, aft come from register file which is not shown in the figure,

and the output C[i] is not shown either. The signal request is connected to the elk

input of the iterative cell. The signals request and reset are generated by Operation

39

Operation Control Unit (OCU)

request, reset

next{1} Cell next{2} Cell next[n+ 1)Cell next{3) next{n]

2 n1

Figure 3.7: The iterative network of the CCM

Control Unit (OCU). The following example describes the procedure of executing a

sequential cube operation by the core of the CCM, the sequential iterative network

(also called one-dimensional cellular automaton).

Example 3.3. An example of a sequential cube operation is illustrated in Figure

3.8. In this example, there are two operand cubes that have 4 variables: x 1 , x2, X3

and x 4 , and variables x2 and x 4 are special variables.

Assume we have a CCM that has 4 iterative cells. In Figure 3.8, "cell[i] state"

is the state signal of the cell i; "cell[i] state+" is the next state signal of the cell

i. "var[i]" is the var signal of cell i, where i = 1, 2, 3, 4. With 4 iterative cells,

the CCM has 5 propagation signals next, next[l] to next[5]. This sequential cube

operation takes 5 periods. Now let us take a close look at how the CCM works.

1. In period T1 :

The inputs relation, bef, act, aft and the operand cubes are applied in parallel

and keep stable during the whole cube operation.

After the operand cubes are applied, the combinational logic block A in each

cell begins to evaluate signal var[i]. Assuming that the worst-case delay of

logic block A is tA, after the delay of tA, all signals var[i] (i = 1,2,3,4)

become stable and will keep stable if and only if the inputs of operand cubes

and the function relation keep stable. In this example, var[l] = var[3] = 0,

and var[2] = var[4] = 1. The final states of var signals are shown in Figure

3.8; the delay of tA is not shown in the figure.

40

T1 T2 Ta T4 Ts

reset :7
request

ce/1{1Jstate ~ before i after

ce/1{1] state+ ~ after >-
:

var[1]

ce/1{2] state before after
:

ce/1{2] state+ ~ before after:~ >:
var{2]

ce/1(3] state i(before after >-
ce/1{3} state+ ~ before * after * >-
var{3]

ce/1{4] state before : after

ce/1{4] state+~ before : after~ I • >-
var{4]

next[1]

next[2]

next[3}

next[4]

next[5]

Figure 3.8: Timing diagram of Example 3.3

All FSMs are reset to before state by setting signal reset to 1 (see Figure 3.8).

The signal next[l] is set to 0. The signals next[2] to next[5] became O's (see

Equation 3.7). Since the states of FSMs are reset to the before state and all

next signals are O's, the next states of all FSMs become the before state (see

Figure 3.6).

2. In period T2 :

The signal next[l] is set to 1.

For the cell 1, substitution act[l] = 0, next[l] = 1 and var[l] = 0 into Equa-

41

tion (3. 7) gives: next[2] = act[l] +next[l] · var[l] = 0 + 1 ·IT= 1.

There is a delay of value 1 propagating from nex[l] to next[2], and the delay

is shown in Figure 3.8. This delay comes from combinational logic that is

described by Equation (3. 7).

The next state of the cell 1 is after (see Figure 3.6).

For the cell 2, substitution act[2] = 0, next[2] = 1 and var[2] = 1 into Equa-

tion (3.7) gives: next[3] = act[2] +next[2] · var[2] = 0 + 1 · I = 0.

The next state of the cell 2 is active (see Figure 3.6).

For the cells 3 and 4, since there is no change on signal next (next[3] and

next[4] keep 0), the next state of cells 3 and 4 are before.

There is a rising edge of signal request, then all cells change to the next state

determined at previous period T2 • As shown in Figure 3.8, the cell 1 goes to

after state, the cell 2 goes to active state, and the cell 3 and 4 keep before

state.

At this time, 4 state[i] (i = 1, 2, 3, 4) signals are used to select the corre

sponding output function. After that, the combinational logic block B in all

cells begin to evaluate output literals C[i] in parallel. Assume the clock-to-Q

delay of the D flip-flops is tFF, and the worse-case delay of the combinational

logic blocks B is tB. Thus, after the delay of tFF + tB, all output literals C[i]

become stable, which means the first resultant cube is generated and can be

read.

For the cell 1, the current state is after. From the SM chart of the FSM we

know that the cell 1 will keep after state during the left time of the cube

operation.

For the cell 2, the current state is active, then act[2] = 1. Using Equation

(3. 7) gives: next[3] = act[2] +next[2] · var = 1 +0 · I = 1.

42

The next state of the cell 2 is after state (see Figure 3.6).

For the cell 3, because the signal next[3] = 1 and var[3] = 0, using Equation

(3. 7) gives: next[4] = act[3] + next[3] · var = 0 + 1 · 0 = 1.

Because next[3] = 1 and var[3] = 0, the next state of the cell 3 is after (see

Figure 3.6).

For the cell 4, because next[4] = 1 and var[4] = 1, using Equation (3.7) gives:

next[5] = act[4] + next[4] · var = 0 + 1 ·I= 0.

The next state of the cell 4 is active because next[3] = 1 and var[3] = 1 (see

Figure 3.6).

There is a rising edge of signal request, then all cells change to the next state

determined at previous period T3 • The cell 1 keeps after state, the cells 2 and

3 goes to after state, and the cell 4 goes to active state.

At this time, 4 state[i] (i = 1, 2, 3, 4) signals are used to select the correspond

ing output function, and the second resultant cube is generated and can be

read.

Because the cell 4 goes to active state, the signal next[5] becomes 1 (Equation

3.7).

5. In period Ts:

Since the value 1 reaches the last point of the propagation signal next (next[5]

in this example), the cube operation is completed.

3.3.3 The signal ready

As mentioned in section 3.3.1, the disadvantage of the iterative network is that

the propagation signal must propagate through a large number of cells, so the

response time will be longer. The delay of propagational signal next reaching the

43

first special variable it encountered is:

Tpropagation = tFF + k. tc (3.8)

where tc is the worse-case delay of the combinational logic block C, and k is the

number of cells the propagation signal going through. It can be seen that the larger

the k, the longer the propagation delay.

When k is increased, the delay becomes longer. For the CCM working properly,

we have two choices: one is to slow the clock signal which would slow down the

entire CCM. The other is using a ready signal to tell the CU whether the ILU is

ready or not, the CU generate request signal only when the ILU is ready. The

ready signal is as follows:

subready[i] = request · next[i] · var[i] (3.9)

ready= subready[l] + subready[2] + · · · + subready[n]

(3.10)

The subready[i] signal is generated at the cell that represents a special variable

(var = 1) and receives the next signal. Any of subready[i] signals becoming 1

means that the CCM is ready to output the result cube. Since we don't want to

slow down the entire CCM, the second solution is used.

3.4 Iterative Logic Unit and Iterative Cell

The iterative network and the iterative cell described in section 3.3 are called

Iterative Logic Unit (ILU) and ITerative cell (IT), respectively. The IT enumerated

from left to right: IT[l], IT[2], ... , IT[n]. The number of ITs is denoted by n.

Logic signals within each IT[i] have the index of i (as a subscript). Horizontal

signals running from left IT (say IT[i]) to its right neighbor IT[i+l] have the index

of i + 1; Horizontal signals running from right IT (say IT[i]) to its left neighbor

IT[i-1] have the index of i - 1; Vertical signals both coming into or leaving from

IT[i] have index of i. These principles of naming signals are shown in Figure 3.9.

44

i+1

IT[i]
i-1

Figure 3.9: The rule of naming signals

3.4.1 Handling multi-valued variables

In the previous section, we just stated that one cell processes a single variable.

Since one cell processing one variable with arbitrary number of possible values would

be not practical, so in our design, one cell (IT) can process one binary variable.

However, in addition, for processing variables with more than two possible values

(multi-valued variables), multiple !Ts are combined together to process a multi

valued variable.

Because the CCM is a hardware, when it has been realized, it has a fixed number

of iterative cells. When we use the CCM to solve a problem, we can not always use

all its iterative cells, sometimes, we just use part of it. Therefore, we need a signal

vector to tell whether a given iterative cell is used by an operation or not. This

signal vector is called water[i] where i = 1,2, ... ,n (w[i] for short). The signal

w[i] = 1 means that IT[i] is not used, and it should be transparent to all signals

running horizontally (Signals running horizontally are the signals running between

cells, like the signal next).

Example 3.4. Assume a CCM with 4 iterative cells. For a given cube operation,

only two iterative cells are needed. The corresponding signal water should be
w[l] w[2] [w[3] w[4],.,,..__ ,.,,..__ ,.,,..__ ,.,,..__
0 0 1 1 .

We use multiple iterative cells to handle a multi-valued variable. We need a

signal vector to tell where is the boundary of a multi-valued variable. This signal

vector is righLedge[i] (re[i] for short), where i = 1,2, ... ,n. The signal re[i] = 1

means that IT[i] is the right edge of a variable. If all variables are binary, then all

45

bits of righLedge are 1 's. Since one iterative cell processes two possible values of

a variable, we can process a multi-valued variable with an even number of possible

values.

Example 3.5. Assume a CCM with 6 iterative cells. For a given cube operation,

there are 3 variables with 2, 4 and 6 possible values, respectively. Therefore the
re[l] re[2] [re[J] re[4] re[S] [re[6],..,.__ ,..,.__ ,..,.__ ,..,.__ ,..,.__ ,..,.__

signal righLedge is 1 0 1 0 0 1 . Since all iterative cells are used,
~ ~ _____.,

variable! 11ariable2 11ariable3
so the signal water is 000000.

Take w[i) and re[i) into account, for handing multi-valued variables, the next

signal is described now as:

next[i + 1) = w[i) · (act[i) +next[i] · re[i) · var[i]) +w[i] · next[i]

(3.11)

which means that when the IT[i) is not used (w[i) = 1), the iterative cell is trans

parent to the signal next. Otherwise, the next signal will propagate till the right

edge of the first special variable that it will encounter.

Two more propagation signals carry and conj are used to combine multiple

iterative cells to process multi-valued variables. Let us discuss a simplified example

that shows how to use these two signals first, then the general equations for these

two signals will be derived after the example.

Example 3.6. Three iterative cells are combined together to process a pair of

operand literals of a 6-valued variable as shown in Figure 3.10. The water and

righLedge signals are also shown in the figure.

Now the problem is that no iterative cell receives all bits of operand cubes,

then no single iterative cell can determine signal var of the variable by itself (the

signal var represents whether the variable is a special variable or not). For a given

OR_type cube operation, the signal var should be (Equation 3.5):

var= rel(a1 , b1) + rel(a2 , b2) + rel(a3 , b3) + rel(a4, b4) + rel(as, bs) +rel(as, bs)

(3.12)

Since a single iterative cell processes just two possible values, then we can let them

46

be:

carry[2] = rel(a1,b1) +rel(a2,b2) {3.13)

carry[3] = carry[2] + rel(a3 , b3) + rel(a4 , b4) {3.14)

carry[4] = carry[3] + rel(as,bs) + rel(as,bs) {3.15)

Substituting Equations {3.13), {3.14) into {3.15) gives:

carry[4] = rel(a1, b1) + rel(a2, b2) + rel(a3 , b3) + rel(a4 , b4) + rel(a5 , b5) +rel(a6 , b6)

{3.16)

Comparing Equations {3.12) and {3.16), we know that the signal var is generated,

and var = carry[4]. Please note that the signal var is always finally generated at

the last cell of a variable.

All three cells that process the variable should know the signal var. For the last

cell of the variable (IT[3] in this example), var[3] = carry[4]. All other cells that

process the same variable receive the signal var through the propagation signal

conj from its successive cell. In other words, the signal var is propagated back to

the_ preceding cells through the iterative signal conj. This can be described by:

con/[2] = carry[4] var[2] = con/[2] con/[1] = var[2] var[l] = con/[1]

{3.17)

w[1]=0 re[1]=0 w[2]=0 re[2]=0 w[3]=0 re[3]=1

re[0]=1~,'I next[1]

carry[1 l

conf[O]

IT[1]
next[3] ,...........~~~!_, next[4]

1------=--=--.1 IT[3]

Figure 3.10: Three iterative cells combined together to process a 6-valued variable

It can be seen that the signal carry propagates from left to right until the right

edge of the variable in order to generate signal var of the variable. Then signal var

is propagated back (from right to left) through signal con/ (Equation 3.17). This

propagation path is shown in Figure 3.10 by shadow big arrow.

47

For the AND_type cube operation, we only need to change "+" to "·" in the

Equation (3.12) to (3.16).

Now we are ready to derive general formula for signals carry[i], conf[i] and

var[i]. The IT[i] processes two possible values of a variable, then there are two

partial relations in one iterative cell:

relO[i] = rel(aO[i], bO[i]) (3.18)

rell[i] = rel(al[i], bl[i]) (3.19)

where aO[i] and al [i] are two input bits from operand literal A, bO[i] and bl [i] are

two input bits from operand literal B. For AND type relation, signal carry_and

(signal carry for AND type relation) can be described as:

. {relO[i] · rell[i] if IT[i] is the first IT of a variable
carry_and[i + 1] =

relO[i] · rell [i] · carry[i] otherwise ()
3.20

For OR type relation, signal carry_or (signal carry for OR type relation) can be

described as:

. {relO[i] + rell[i] if IT[i] is the first IT of a variable
carry_or[i + 1] =

relO[i] + rell[i] + carry[i] otherwise ()
3.21

Signal righLedge can be used to determine whether or not a given IT[i] is the

first /last IT of a variable:

re[i] = 1 if IT[i] is the last IT of a variable (3.22)

re[i-1] = 1 if IT[i] is the first IT of a variable (3.23)

Because IT[l] is always the first IT of a variable, then

re[O] = 1 (3.24)

Combining Equations (3.20) and (3.23), we obtain

carry_and[i + 1] = relO[i] · rell[i] · re[i - 1] (3.25)

+ carry[i] · relO[i] · rell[i] · re[i - 1]

= relO[i] · rell [i] · (re[i - 1] + carry[i] · re[i - 1])

= relO[i] · rell [i] · (re[i - 1] + carry[i])

= relO[i] · rell[i] · re[i - 1] + relO[i] · rell[i] · carry[i]

48

Combining Equation (3.21) and (3.23), we obtain

carry_or[i + 1] = (relO[i] + rell[i]) · re[i - 1] (3.26)

+ (carry[i] + relO[i] +rell [i]) · re[i - 1]

= (relO[i] + rell[i]) · re[i - 1] + carry[i] · re[i - 1]

+ (relO[i] + rell[i]) · re[i - 1]

= relO[i] + rell[i] + carry[i] · re[i - 1]

The signal carry[i + 1] is obtained by combining carry_and and carry_or as:

carry[i + 1] = carry_and[i + 1] · and_or (3.27)

+ carry_or[i + 1] · and_or

where signal and_or represents the relation type of the cube operation. and_or = l
means that the cube operation is of AND type, otherwise, the cube operation is

of OR type. Because carry_or always equals 1 whenever carry_and equals 1, by

combining Equation (3.25) and (3.26), we obtain:

carry[i + 1] = carry_and[i + 1] · and_or (3.28)

+ carry_or [i + 1] · and_or

= carry_and[i + 1] + carry_or[i + 1] · and_or

= relO[i] · rell[i] · re[i - 1] + relO[i] · rell[i] · carry[i]

+ (relO[i] + rell[i]) · and_or + carry[i] · re[i - 1] · and_or

As shown in Example 3.6, signal canf can be generally described as:

carry [i + 1] if IT [i] is the last IT of a variable
canf[i -1] =

{ canf[i] otherwise
(3.29)

Combining Equation (3.29) and (3.22), we obtain:

canf[i - 1] = canf[i] · re[i] + carry[i + 1] · re[i] (3.30)

The signal var always comes from signal canf, which is:

var[i] = canf[i - 1] (3.31)

49

If we also take the signal water into account, we obtain:

carry[i + 1] = w[i] · (relO[i] · rell[i] · re[i - 1] (3.32)

+ relO[i] · rell[i] · carry[i] + (relO[i] + rell[i]) · and_or

+ carry[i] · re[i - 1] · and_or) +w[i] • carry[i]

conf[i - 1] = w[i] · (conf[i] · re[i] + carry[i + 1] · re[i]) (3.33)

+w[i] · conf[i]

3.4.2 The design of an iterative cell

Now we know how iterative network works and how to combine multiple iterative

cells to handle a multi-valued variable. This section will describe the details of

the iterative cell that have not been discussed so far. The block diagram of one

A[i) B[i) rep-1] wp] re[i]

rel--------+---+---------......._
and_or _.--t-t----t-_.,..-t--+--+---------

______4 carry[i+1)

-------- conf[i)
carry[i) ----+--+-!~

,..___.___.____.___,_-,_

IDENTIFY count[i
conf[i-1] -......+-+---t........,_____,

5 ar[i)
cnt[i] __,,,,__--+-1r----+-------~ cnt[i+1)
clear --!-t-t---+------------......._

request---+-+---+--+--<----------
prime ---'--+--+---+---+--........,________......._

next[i) ---+-+-!~

be! _4-...---------+------
act ---+-----4-+--<----i------
aft

OPERATION

empty_carryp]-....._----+-----+---_.. empty_carryp+1)

C[i) subready[i] subemptyp]

Figure 3.11: The block diagram of a Iterative Cell (IT)

50

iterative cell is shown in Figure 3.11. As shown in the figure, one iterative cell can

be divided into five blocks according to the function that they perform: IDENTIFY,

STATE, OPERATION, COUNTER and EMPTY. All signals except the signals of

COUNTER block in the figure were already discussed in the previous sections. The

COUNTER block will be discussed in this section.

OPERATION block

The operation block is the combinational logic block B in Figure 3.5. This block

creates bits of resultant cubes by performing the operation on bits of the argument

cubes according to the state of IT. It takes the following inputs:

1. Two bits from operand literal A[i] (aOi, ali)-

2. Two bits from operand literal B[i] (bO, and bli)-

3. Two bits signal state[i] from block STATE.

4. 12 bits programmable inputs: 12 bits for functions be/ore, active and after

(4 bits each function).

Figure 3.12: Block OPERATION of IT

51

It has two-bit output C[i] (cOi and cli). The realization of OPERATION block

follows the general programmable pattern (section 3.2) and is shown in Figure 3.12.

This design takes one 4-bit 4-to-1 multiplexer and two 1-bit 4-to-1 multiplexers.

The signal state[i] selects one function from three possible programmable func

tions by using one 4-bit 4-to-1 multiplexer, then realizes this function by using two

1-bit 4-to-1 multiplexers. Since there are only three possible output functions, so

the last data input of the 4-bit 4-to-1 multiplexer is not used and is connected to a

constant (0000 in the figure).

This is a general circuit for all kinds of cube calculus operations which can be

described by Equations 3.2 and 3.3. The output values of functions befare, adive

and after of the cube operations described in Chapter 2 are listed in Table 3.1.

Block STATE

The STATE block is the combination of the sequential logic block and combi-

national logic block C in Figure 3.5. It has the following inputs:

1. signal var[i] from IDENTIFY block.

2. signal next[i] from preceding iterative cell.

3. global signals reset, request and prime.

The signal prime is used in complex combinational cube operations. As we

discussed in section 3.3.2, there is a FSM in this block and the SM chart of the

FSM was shown in Figure 3.6.

Since there are three states, this FSM can be realized by using two D flip-flops.

The current state of the FSM is represented by the Q outputs of these two flip-flops,

denoted by state0[iJ and statel[i]. The next state of the FSM is represented by D

inputs of these two flip-flops, denoted by ex0 and exl. This state machine can be

described using the following formulas:

bef[i] = state I [i] · state0[i] (3.34)

act[i] = statel[i] •state0[i] (3.35)

52

aft[i] = state! · stateO[i] (3.36)

ex0[i] = bef[i] · next[i] · var[i] (3.37)

exl[i] = act[i] + aft[i] + bef[i] · next[i] · var[i] (3.38)
~

The signal seltl [i] and seltO[i] can be described by:

seltl[i] = statel[i] · prime (3.39)

seltO[i] = stateO[i] + var[i] · prime (3.40)

These two equations indicate that signal selt[i] (selt0[i] and seltl[i]) is set to 01 to

select active function for the ITs that are specific positions when ILU executes the

complex combinational cube operation (like prime). The signal next[i+l] generated

in this block is described by Equation (3.11).

IDENTIFY block

The IDENTIFY block is the combinational logic block A in Figure 3.5. The

details of this block are fully discussed in section 3.4.1. The counter signal count

generated in this block will be discussed in the next section, COUNTER block.

COUNTER block

The paper [31] shows that in addition to cube calculus operations presented

in this thesis, the operation which take cubes as argument and return a number

as a result is necessary. The simplest of such operation is calculating Hamming

distance of two binary vector. All such operation require counting. In this simplified

machine, we introduce counting, but it is restricted only to very simple operation

used in pre-processing cubes. This counting is done by COUNTER block.

The COUNTER block counts the number of s~fic variables which is used in . - <;"

pre-relation/pre-operation (see section@)). The ~ig~~l~~n;~]~~uals 1 in the last
,....

IT of the specific variables. It can be described by:

count[i] = re[i] · var[i] (3.41)

The count[i] signal is generated in block IDENTIFY.

53

cnt2[i) cnt1 [i) cntO[i)

0

2

3

4x[i)
5

6

0cnt2[i+1) cnt1[i+1) cnt1[i+1)

(a) cell

x{1} x{2}

' ' cnt[1} ~
:!.!..i_ Cfll cntf2J ~~

cnt2 cnt1 cntO

0

0 0
0 0

0 0
0

0

(b) sequence

x{6)

~ '
.....~~7J

(c) counter

Figure 3.13: counter

The counter is realized by an iterative network. A 3-bit counter is shown in

Figure 3.13. The COUNT block is just a cell of the iterative network of the counter.

To minimize the necessary logic for the cell, the cell of the counter is based on

pseudo-random sequence generator. Figure 3.13 (a) shows a cell; and Figure 3.13

(c) shows the whole picture of the counter. This iterative counter can generate a

fixed sequence of 7 numbers which is shown in Figure 3.13(b) (number 000 is not

used). Therefore, this counter can be used to count the number of l's in signal

vector x.

The count begins with all bits are l's. As the bits are shifted, a series of unique

numbers will be generated and they are shown in Figure 3.13 (b). Since there must

always be at least one bit equal to one in the pseudo-random counter, a k bits

counter can count from 0 to 2k - 2. Therefore, a 3 bits counter can count from 0

to 6.

3 bits counter is sufficient for an IL U with 6 ITs. If all variables are binary,

there are 6 specific positions at most. The counter must be able to signal 7 different

54

numbers, to include the case where there are no specific positions. A decoder is~

needed to convert the output of the last cell of counter to a binary number.

EMPTY block

One of the main design objectives idea of the CCM design was not to generate

empty cubes. In order to do this, my idea is to simplify the design in past texts

[15, 17, 18] which leads to design EMPTY block presented here. The role of this

block is to generate signal empty to the control unit of the CCM informing whether

the current resultant cube is a contradiction (empty cube) or not. This signal is

used by the control unit of the CCM to remove empty cubes in the results, and

makes the CCM not to generate empty cubes (see section section 5.4).

Cell
1

empty_carry{2] Gill ,mply_carry/3} emply_ ca"Y(n} Icf I
subemptyf 1] subempty{2] subempty{n]

Figure 3.14: Iterative network used to generate empty signal

The empty signal is generated by a iterative network shown in Figure 3.14. The

signal empty_carry[i] and subempty[i] are as follows:

empty_carry[i + 1] =re[i - 1] · cOi · cli + (3.42)

re[i - 1] · empty_carry[i] · cOi · cli

subempty[i] =empty_carry[i + 1] · re[i] · w[i] (3.43)

The empty signal is as follows:

empty= subempty[l] + subempty[2] + · · · + subempty[n] (3.44)

By comparing empty signal to carry signal, these equations are not hard to under

stand.

55

3.5 The architecture of the CCM

In our design, the cube calculus machine is a coprocessor to the host computer.

The simplified block diagram of the CCM is shown in Figure 3.15; the thick arrow

stands for data buses, and the thin arrow stand for control buses. As shown in

the figure, the CCM communicates with the host computer through the input and

the output FIFO. The ILU can take the input from register file and memory, and

can write output to the register file1, the memory, and the output FIFO. The ILU

executes the cube operation under the control of Operation Control Unit (OCU).

The Global Control Unit (GCU) controls all parts of the CCM and let them work

together.

From host computer

Input Register
1 FIFO

1
FIie

ocu

Global Control Unit (GCU)

To host computer

~ O~ut !
f----v1 FlFO I

Figure 3.15: The simplified block diagram of the CCM

Since the design of the GCU depends on the design of the entire CCM, we will

discuss the GCU in section 5.4 after the design of the CCM has been discussed in

detail. In the next section, we will discuss the function of the OCU.

3.6 The Operation Control Unit (OCU)

The ILU executes cube operations under the control of the operation control

unit (OCU) in our design; and the OCU is under the control of the GCU. The

communication between the GCU and OCU is very simple: when the CCM is ready

1Actually, the ILU can write output to only one register of the register file, see Chapter 5 for
detail.

56

Figure 3.16: The communication between the GCU and the OCU

to execute the cube operation, the GCU set the signal ilu_enable to 1 to tell the

OCU to execute the cube operation; then the OCU controls the ILU to execute the

cube operation; after the cube operation is done, the OCU set the signal ilu_done

to 1 to tell the GCU that the cube operation is done. This is illustrated in Figure

3.16.

The algorithm of the CCM has been discussed in section 3.3.2. The state dia

gram of OCU is shown in Figure 3.17. Now let us take a look at these states.

not ilu enable ~

~-~
~ =---i"iu_done(not term)(not read_y) clear!

- init~ ~ ®
~I

1mt ♦

w- ~!!\
~/4te •~utput

@~ -~
/4e_output (not term)(not reagy}

Figure 3.17: The state diagram of the OCU

• State SO: This is the initial state of the OCU. The clear signal (see Figure 3.f7)

is set to 1. The clear signal is connected to all synchronous reset inputs of the

D flip-flops that are used to realize the state machines inside ITs, therefore,

all ITs are reset to state before.

57

If the signal ilu_enable is 1, then the OCU goes to state Sl; otherwise, the

OCU keeps in state SO.

When the CCM is used to calculate combinational cube operations (including

complex combinational cube operations), the OCU keeps in state SO because

the GCU will keep the signal ilu_enable to be 0.

• State Sl: The OCU let the ILU begin to execute the sequential cube operation

by setting the signal init (the first next signal) to 1 in this state. After that,

the OCU will wait for signals term (the last next signal) and ready. If signal

term becomes 1, which means the cube operation is done, then the OCU goes

to state S5. If signal ready becomes 1 and signal term--keeps 0, then the OCU

goes to state S2; otherwise (both signals keep 0), the OCU will keep in state

Sl.

• State S2: The OCU generates the first resultant cube by setting signal request

to 1; and it also generates signals write_output to write the result out. The

OCU will always go to state S3 from state S2.

• State S3: The OCU will wait for signals term and ready again. If signal

term becomes 1, then the OCU goes to state S5; if signal ready becomes 1

and signal term kee~ 0), then the OCU goes to state S4; otherwise (both

signals keep 0), the OCU will keep in state S3,

• State S4: The OCU generates one resultant cube by setting signal request

to 1; and it also generates signals write_output to write the result out. The

OCU will always go to state S3 from this state.

• State S5: The OCU informs the GCU that the cube operation is done by

setting the signal ilu_done to 1. The OCU will always go to state SO from

this state.

58

3.7 Pre-relation/Pre-operation

To explain the concept of pre-relation/pre-operation, let us take a look at the

sharp operation again. The sharp operation is defined by Equations (2.12) and 2,'

(2.13). It can be seen that we can not use Equation (2.13) to carry out the operation

unless two operand cubes satisfy An B =/:- !11 and A ~ B. When An B = !11, the

operation A#B = A; when A~ B, the operation A#B = !11. AnB = !11 and A~ B

are called pre-relation of the sharp operation; A#B = A and A#B = !11 are called

pre-operation of the sharp operation. It can be seen that the pre-operation is the

output function when pre-relation is satisfied.

Table 3.2: Pre-relation and Pre-relation of the Cube Calculus Operations

Operation Pre-relation Pre-operation

sharp/disjoint sharp
AnB=!II A

A~B !11

consensus
distance(A, B) = 0 AnB

distance(A, B) > 1 !11

crosslink degree(A) =/:- degree(B) !11

Some cube operations which have pre-relation and pre-operation are listed in

Table 3.2. The name, pre-relation and pre-operation of the operations are listed

from left to right in the table, respectively. It can be seen that some cube opera

tions have two pre-relations and pre-operations, such as the sharp and consensus

operations.

As we discussed in section section 3.4.2, the COUNT block can count the number

of ipecific variables. In another words, it can count the number of the pairs of

literals Ai and Bi that satisfy the relation. If the relation (rel and and_ar) are

substituted by the pre-relation, the COUNT block can be used to count the number

of the pairs of literals Ai and Bi that satisfy the pre-relation.

Example 3.7. For the pre-relation An B = !11, we can count the number (denoted

by k) of the pairs of literals Ai and Bi that satisfy Ai n Bi = !11- If k > 0, then

59

An B =~,otherwise (k = 0), An B =j: ~-

The pre-relation can be represented by partial pre-relation (pre~, partial pre

relation type (pand_or), pre-relation compare type (pcmp) and pre-relation compare

value (pva~.

Example 3.8. For the pre-relation shown in Example 3.7, prel is ai + ~; pand_or

is and; pcmp is ">"; and pval is O (An B ~ is the relation of the crosslink

operation, so prel and pand_or are the same as rel and and_or of the crosslink

operation, respectively).

The pre-operations listed in Table 3.2 are bitwise functions. The decomposed

pre-relations and pre-operations of the sharp/disjoint sharp and consensus opera

tions are listed in table 3.3. The crosslink operation can not be decomposed in this

way (It needs two carry signals to compare the degrees of two operand cubes; but

this simplified design of the CCM has only one carry signal, see [15]). Each row of

the table describes one pair of pre-relation and pre-operation.

Table 3.3: Decomposed Pre-relation and Pre-operation of the Cube Operations

Operation
Pre-relation Pre-operation

(poper)prel pand_or pcmp pval

sharp/disjoint sharp
ii;.+ bi and > 0 ai

aibi or 0 ~

ii,.+ b;. and 0 a;.· bi
consensus

ii;.+ b;. and > 1 ~

The encoded pre-relations and pre-operations of the sharp/disjoint sharp and

consensus operations are listed in table 3.4. The prel and pre-operation (poper) are

decoded by their output values. The encoding of pand_or is the same as and_or.

The encoding of pcmp is as follows: "<'' - 00, "=" - 01 and ">" - 10. Each

row of the table describes one pair of pre-relation and pre-operation.

For realizing pre-relation/pre-operation, the ILU is modified as shown in Figure

3.18. Please note that only the modified part is shown in the figure. This design

is very straightforward. In this design, a cube operation can have at most two

60

Table 3.4: Encoded Pre-relation and Pre-operation of the Cube Operations

Operation
Pre-relation Pre-operation

(poper)prel pand_or pcrnp pval

sharp/disjoint sharp
1110 1 10 oc 0101

0010 0 ·-01 o: 0000

1110 1 01 0 ·..• 0001
consensus

1110 1 10 ·1 0000

pairs of pre-relation/pre-operation2 , and all pre-operations should be combinational

operations, which means that the operation can be described as a bitwise function.

Thus the signals prel, pand_or, pcrnp, pval and poper shown in the figure have a

suffix 1 or 2, which corresponds to the first or the second pair of the pre-relation/pre-

operation, respectively. All input signals come from the registers (see section 5.2.3).

: · new·,iii · :
pre/1
pre/2 rel

rel count

pand_ort
pand_or2 and_or

and_or
orginal IL

poper1
poper2

bet

4

:prel_res

pva/1

pva/2

prel_sel[OJ

Figure 3.18: Realization of Pre-relation/Pre-operation

The signal preLsel (having 2 bits) is generated by the GCU (see section 5.4).

When the CCM executes the first pre-relation/pre-operation, the signal preLsel =
2 All cube operations presented in this thesis have at most two pairs of pre-relation/pre

operation. It is easy to extend this design to handle more than two pairs of pre-relation/pre
operation.

61

00; when the CCM executes the second pre-relation/pre-operation, the signal prel.....sel =
01; otherwise, the signal prel.....sel = 10.

The only output signal preLres is the result of pre-rel?,tion. When preLres = 1,

the pre-relation is satisfied, otherwise, the pre-relation is not satisfied. This signal

is used by the GCU (see section 5.4).

If preLsel = 00 or 01, and all ITs of the ILU are in before state, then the cube

operation is evaluated according to the function poperl or poper2, respectively.

Let us observe that among combinational cube operations that have pre/relation/pre

operation, there exists certain subset operations, like intersection and cofactor op

erations, can be characterized by the following:

• These operations only have one pair of pre-relation/pre-operation, and the

result of pre-operation is always an empty cube:

• These operations can be always carried out by following the basic equation

of the operation without checking the pre-relation. After that the EMPTY

blocks will check whether the result is an empty cube or not.

• These operations can be carried out using pre-relation/pre-operation, but it

will take more time to execute this kind of operations because the GCU will

go through more states to check the pre-relation (see section 5.4).

Based on these observations, this kind of operations will be carried out without

using pre-relation/pre-operation in this thesis.

62

CHAPTER 4

PAM and DECPeRLe-1

There are two ways to implement a specific digital processing task: software

approach and hardware approach.

In software approach, a general purpose computer is programmed to perform a

processing task. The structure of any general purpose computer has been highly

optimized to process arbitrary codes. In many cases, however, it is poorly suited

to the specific algorithm, so the performance does not meet the requirement.

In the hardware approach, a specific circuitry/machine for the specific processing

task is designed. The machine's structure, processors, storage and interconnect, are

tailored to the application. The result is more efficient, with less actual circuitry

than what general purpose computers would require.

The drawback of the hardware approach is that a specific architecture is usually

limited to processing a small number of algorithms, often a single one. Attaching

special purpose hardware to a general purpose computer, say for video compression,

speeds up the system when the system is actually compressing video. It contributes

nothing when the system is required to perform some different task, say machine

learning.

An alternative way is a reconfigurable hardware, which combines software ver

satility and hardware performance. DEC PRL's Programmable Active Memory

(PAM) was one of the earliest pioneers in this so-called reconfigurable computing

field. PAM is a novel form of universal reconfigurable hardware co-processor based

on SRAM-based FPGA technology.

This chapter presents the concept of PAM and the detail of one realization of

PAM - PeRLe-1 board which is available in the Department of Electrical Engi-

63

neering at Portland State University. For more complete description about PAM

and PeRLe-1 board, please see references [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

4.1 PAM

A PAM concept is a uniform array of identical cells all connected in the same

repetitive fashion. Each cell, called a PAM for Programmable Active Bit, must be

general enough so that the following holds true: Any synchronous digital circuit

can be realized, through suitable programming, on a large enough PAM, for a slow

enough clock.

' n ' ' n N ' s ' E ' w w w '
w

elk
s ---

Figure 4.1: A simple PAM

Figure 4.1 shows a simple PAM implementation as a regular matrix of Manhat

tan connected identical PABs. Each PAB has:

• 4 inputs< n,s,e,w >

• 4 outputs< N,S,E, W >

• 1 register (flip-flop) with input Rand output r, synchronous with the PAM's

global clock elk

• 1 combinatorial gate F (5 inputs, 5 outputs) connected so that:

g(n,s,e,w,r) =< N,S,E, W,R >

64

• 160 = 5 x 25 control bits which specify the truth table of function F.

A program for such a PAM with m active bits is a sequence of 160m control

bits (bitstream) representing the truth tables for each PAM. This program can be

downloaded into the configuration memory of the PAM. From this instant, and

until the program.is changed again, the PAM behaves as the particular finite state

machine specified by the bitstream.

I ; I
-T""'-

in
_l__ L

I I' . ' in' ____,,.. ExternalI FRGA I
-~-1-

. art;ay ::;----- devices
out'

Figure 4.2: PAMs as virtual machines

The PAM is used to implement a virtual machine which can be dynamically

configured as a large number of specific hardware devices. As shown in Figure 4.2,

the PAM is connected to a host computer through the in and out links. The host

can download configuration bitstreams into the PAM. After configuration, the PAM

behaves, electrically and logically, like the ASIC (Application Specific Integrated

circuit) defined by the specific bitstream. The PAM may operate in stand-alone

mode, hooked to some external system through the in' and out' links. It may

operate as a co-processor under host control, this co-processor is specialized to

speed-up some crucial computations. It may operate in both modes simultaneously,

connecting the host to some external system, like an audio or video device, or some

other PAM.

The PAM as presented above is only a theoretical concept and has been not

realized in practice. Digital's Paris Research Laboratory developed several boards

based on the PAM concept, but realized with the existing FPGA chips, thus the

actual cell structure and connections are different from the cell and connection

https://program.is

65

model shown in Figure 4.1. DECPeRLe-1 is the third generation PAM board, and

it was built at DigitaPs Paris Research Laboratory in 1992.

4.2 PeRLe-1 Board

The overall structure of PeRLe-1 is shown in Figure 4.3. The PeRLe-1 board

is organized around a central computational matrix made up of 16 Xilinx XC3O9O

LCAs1 (MOO to M15 in the figure), surrounded by a 4 1MB RAM bank, and 7 other

LCAs to implement switching and controlling functions. The data buses and their

width are also shown in the figure (everything shown in the figure will be explained

later in this section). All control wires are shown in Figure 4.8 and will be discussed

m related sections. This section describes all programmable resources and the way

FIFOs

Host >>
Adapter <<

32 DBusNE

Figure 4.3: PeRLe-1 architecture

1LCA stands for Logic Cell Arrays

66

MBusN DCN MBusN DCN MBusN DCN MBusN OCN

00• 15
oo: 15 ______1_6-+:-31___16_'jt-3-1-+-----3-2-+:-•_1__32_lt-4-7-+-----•-a-;:-6_3__4a_lt-6-3_,..___1t,usE

I I I oo:1s1 1
MON MBEMON MBE MDN MBE._ MBN MDN MBE ,_ MBN ,- MBN,- MBN

DC01-02H DCE
MOE

MOE ,__o_co_2_-_03~H'-r'-, MDW)l)W MDE 1-~D~C~OO~-~O=l=H-t---t MDWDCW -1-- MOEMOW
oo, 15 00: 1500: 15 00: 1500: 15

e- M03 MBS -

=w MDS MRM

MOO MBS MOI MBS - M02 MBS -

MBW > S MRM MBW MOS MRM

llbus."'W_._;::::~!:::::::;:,:::::<;;1::::::-t::::::::::::::::::::'j:::::::~l::::::+:::~,;:l::::::.f::::::::::::::::::-t:::::::::~l:::::!j::::,Jl;:::::::+::::::::::::::::::-f:::::::::_l---t-~
00: 15

MbusE1--1------+---+---<lo----,----+---t----<11>----+-----,-----,--.i---r--l6:ll

-MDN MBE MON MBE
-

MDN MBE..._ MBN MON MBE >-- MBNMBN

OCli _ OC04-05H DC06-01H DCE
MDW MDE

MDE 1--.-=o_co_s_-_06_H-+--< MOE ,_,_____,__,
MOWMDW MOW MOE --

1.6 :31 16 :31

M04 MBS -

16:31 16:3116 :31 :

M06 MBS - M07 MBS ~
MBW MOS MRM

MOS MBS -

MBli MOS MRM MBW MOS MRM MBW MOS MRM

:~:·"~'-+t==~l==.:t==j';::===t-:t-_-_-_-_-_-_-_-.,.+_-_-_-_,.'==:;==:;;::l===t=======+===~l==:;;::=:;~l===+=======:+===.:::'.l_-i--_l
~ ~ ~
! ~ .b ~
§ ~ g ~

~-+-----r,----;---.--+----1-----+-+----+-----+----+--1>---t-MbusE
I I I I 32,41

MON MBEMON MBE MDN MBE
MBN

MON MBE ,• ,_ MBN MBN- MBN
ocw _ DC08-09H OC09-10H MDE t-- t-- OCE
32 :4 7

MDW MOE 1-+--"!=~=-t---t MDW MOE ,
32: 47 32:41

32:47 M09 MBS H32:47iMOS MBS M MIO MBS i-. Mll MBS t--

1·=w MOS MRM ""'W MOS MR>' Msw MOS MR>'·' i MBW MOS MRM

1llbu,.-"w-+t==~!==.::t==jl;::===t:=======.t===-◄l·==~==:;;::l===t=======.t1'===~==~;::=:;;::===t=======.::ti==="'-I__!....•_i
32:47 ;,, i;; I ~ I

~~ ,M ,...r-

~g §i ~Ii;

I:

~-+-----r,---+--.--+----1-----+-+----+------+---+--+-----+-MbusE
I L~---.......' I 48:63l

ocw_ ---- --- OCH-15H DCEMOE l--+-'D~C=1~2-~1~3=H---, MOE l--+-'D~C~l~3-~1~4~H---t MOWMDW MOW MOE t---t--'=~=---t MOW MOE t--t--
48:63 48: 63 48: 63 48 :63 48:63

MU MBS - MI3 MBS ,- MI4 MBS ,- MIS MBS 1-

MBw MOS MRM MBW MOS MRM MBW MOS MRM MBW MOS MRM

llbus,,_W--+.,_-_-_":_l-::_+-::..-=.tl-::_-::_+-::_-::_-::_-::_-::_-::_-::_-::_-::_-::'._j":_-::_t-::..-=.tl-::_-::_t-::_-::_-::_-::_-::_-::_-::_-::_-::_~l':._-::_t-::_-::_f:._1-::_-::_t-::_-::_-::_-::_-::_-::_-::_-::_-::_-'_l-t---'I
48: 63 I I I l I I

R.lngl<at DCS MBusS DCS MBusS DCS MBusS OCS MBusS

32 ,.10:9 00:15 DO: 15 16,31 16: 31 32:47 48: 63 48:63

DCN, DCE, DCS and DCW: North/East/South/West matrix side to connectors

MDN, MDE, MDS and MDW: Matrix North/East/South/West direct connections

MBN, MBE, MBS and MBW: North/East/South/West matrix buses

Figure 4.4: PeRLe-1 matrix

67

they are interconnected with each other.

4.2.1 Computational matrix

The central computational matrix is a 4 x 4 matrix of Xilinx 3090 LCAs. These

LCAs are interconnected with each other. The internal structure of the matrix is

shown in Figure 4.4. The LCAs are named LCA_MOO to LCA_Ml5 (MOO to M15 in

the figure). This matrix can be used to develop any kind of digital circuitry: data

path, control unit and others. But it is typically used to develop the data path of

the application. The interconnection resource between them can be classified into

the following three categories.

Direct Connections

As shown in Figure 4.5, these wires connect the adjacent sides of adjacent LCAs.

The main purpose of direct connections is to extent the internal regularity of the

LCA to the matrix level. The matrix can be seen as a large FPGA with 64 x 80

PABs (one XC3090 FPGA has 16 x 20 PABs). Each LCA has 16 such wires on

DCN (0015) DCN (16 31) DCN (32:47) DCN (48:63)

DCW DCE
(0015) (0015)

DCW DCE
(16:31) (16:31)

DCW DCE
(32:47) (32:47)

DCW DCE
(48:63) (48:63)

DCS (00:15) DCS (16:31) DCN (3247) DCS (4863) ~

Figure 4.5: PeRLe-1 Direct connection

68

each side.

As shown in Figure 4.4, the horizontal and vertical direct connections are named

DCmm.nnH and DCmm.nnV, respectively, where mm and nn are the numbers of

the connected LCAs. For instance, DC00_04V represents vertical direct connections

between LCA..M00 and LCA_M04.

The direct connections at the edges of the FPGA matrix are called DCN, DCE,

DCS and DCW as shown in Figure 4.5. These four 64-bit-wide connections are

connected to external connectors, which can be used to connect other devices, for

example, another PeRLe-1 board.

Buses

As shown in Figure 4.6, the horizontal or vertical wires connect the correspond

ing side of all 4 LCAs in the same row or column. They can thus efficiently distribute

global data in one direction, and are comparable to the longline interconnections

resources in Xilinx internal architecture. Each LCA has 16 such wires on each

Figure 4.6: PeRLe-1 Matrix data buses

69

side. According to their directions, these buses are named matrix North, East,

South and West bus, respectively, and represented by MBusN, MBusE, MBusS and

MBusW for short. Each bus has 64 wires which are connected to switches on the

corresponding side of matrix FPGAs.

Rings

As shown in Figure 4. 7, the wires connect all the matrix LCAs and two control

LCAs. These connections are very useful for global control signals distribution since

they connect to all the matrix LCAs. There are 10 such wires. Note that because

of their electrical loading (they are used to connect 18 LCAs, 16 matrix LCAs and

two control LCAs), these wires are slower than the buses and should be used with

care in high performance designs.

Figure 4. 7: PeRLe-1 Matrix rings

4.2.2 Switches and 1/0 buses

Figure 4.3 shows the way that FIFOs, RAM banks and the central matrix are

connected through two 32-bit data buses and five programmable switches (FPGAs).

70

As shown in Figure 4.3, there is one matrix switch on each side of the matrix,

respectively called North Switch (SWN), East Switch (SWE), South Switch (SWW)

and West Switch (SWW), which connect the corresponding matrix data buses and

corresponding RAM banks. These 4 switches (SWN, SWE, SWS, SWW) also

connect to two 32 bits I/O buses, called North-East Bus (DBusNE) and South

West Bus (DBusSW) after the names of the switches they respectively connect.

Two I/O buses (DBusNE, DBusSW) connect to the input and output FIFOs

through the fifth switch called Fifo Switch (FSW), and also connect to correspond

ing controllers, called North-East Controller (CNE) and South- West Controller

(CSW).

As their names imply, the FPGAs CNE and CSW are typically used to develop

the _controller of the application because they connect to all other parts of the

PeRLe-1 , FIFOs, Memory banks and other FPGAs.

4.2.3 Control resource

The control resource is the programmable resource that can be used to develop

the control part of the application other than data path part. As shown in Figure

4.8, the data path resource (matrix, RAM banks, FIFOs and switches) need the

following set of control wires:

MATRIX RINGS: There are 10 matrix global wires (see section 4.2.1). These

wires are not used in our CCM design.

RAM ADDRESS: Each RAM bank has a 18-bit-wide address, that specify the

word address of the current read or write operation. Since our CCM design

uses two of four memory banks, two addresses are used in our CCM design.

RAM CONTROLS: Each RAM bank has 4 control signals (see section 4.2.4).

Since our CCM design uses two memory banks, the corresponding controls

are used in our CCM design,

71

North-East

Controller
F1fo Switch Lca-22

Lca-20 North Switch Lca-16

FSW

FswCntr
FFC

6

FAO FAl

FD! FDS

Taa

4

Fifo In

Loadec
LCBus

24

l
I

R~noMat !
MATRIX !lC

~

I

' '

RAN

CFC
_RRN

_RWN

_RLN

CAO
_RHN

CAl
CSN

CDT
CRS

CDS
CSE

CNE
RAE

_RRE

LC!l - RWE

_RLE

_RHE

CRM

I
I
I

i
I

CRM
RAS

CFC
_RRS

RWS-
_RLS

RHS
CAO -
CAl

CDT css

CDS CRS

csw
csw

RAW

_RRW
:.ca

_RWW

_RLW

RHW-

South-West

Cont.roller

Lca-21

RamAddrN 18

Ra.mReadN

RamWriteN RAM N SWN
RamD1sLowN

PJ:tmr'l"l sH1ahN

SSC "'"
SwCntrN 2 I
RtnaSwNE 10

swcntrE 2

I
RamAddrE 18 - SSC SRS

Ram.Read..E

Ra.mWriteE RAM E SWE
0 ::.""n1sLowE

RamDlSHiohE

East Switch Lca-1

South Sw1 tch Lca-1

Raml\ddrS 18 -
Ram.Reacts -
RamWr1teS - RAMS sws
RamD 1 s Lows

Ra.m.D1sH1qtJS -
SSC SRS

SwCntrS 2 i
Rinaswsw 10

swcnt.rw 2

I
RamAddrW 18 SSC SRS

Ra.mReadW

RamWriteW RAM W sww
.Ram.D1sLowW

RamD1sH1ahW -

West Switch Lca-19

(see section sections 4.2.3, 4.2.4 and 4.2.6 for more detail)

Figure 4.8: PeRLe-1 control wires

72

SWITCH CONTROLS: Each pair of matrix switches (North and East/ South and

West) has 10 control wires that are the equivalent of the matrix rings, and

are called switch ring. The Fifo Switch has 6 control wires. In addition, each

of the matrix switches has 2 dedicated control wires (see Figure 4.8). These

wries are used in our CCM design.

FIFO CONTROLS: Each of the two FIFOs has one status wire: empty flag for

input FIFO / full flag for output FIFO; and one control wire: write for output

FIFO / read for input FIFO (see Figure 4.8). These wires are used in our

CCM design.

TAGS: Four "tag" wires along the input data wires on the input FIFO (see section

4.2.6). These wires are not used in our CCM design.

CLOCK CONTROL: The clock generator has two control wires that can be driven

by the application design (see section 4.2.5). These wires are not used in our

CCM design.

LCBus: There is a 24-bit-wide communication path between the board and the

host, called LCBus (see section 4.2.6). These wires are not used in our CCM

design.

As shown in Figure 4.8, all these control wires are connected to one of two

controller LCAs (CNE, CSW) or both of them. These two controllers are identical

except that each of them controls two of the four switches and memory banks.

These two controllers also connect to corresponding I/O bus in order for it to be

able to communicate with the main datapath.

4.2.4 Memory subsystem

PeRLe-1 contains 4MB of high-speed static RAM organized in 4 banks of 256K

32-bit words (4 bytes a word). These banks are named North, South, East and

West after the matrix switch to which they are connected. Each bank is completely

independent of the others and has its own data, address and control signals:

73

DATA BUS: 32 data wires connect to the corresponding matrix switch. They are

represented by RamdataX, where Xis one of N1 S1 E1 W to respectively specify

the North, South, East or West RAM bank.

220 218ADDRESS BUS: 18 address wires (lMB = = x 22
) connect to the corre

sponding controller. They are represented by RamAddrX.

CONTROL BUS: 4 active-low control signals to specify the read/write operation,

connect to the corresponding controller.

• RamReadX: read command.

• RamWriteX: write command.

• RamDisLowX: disable lower half-word (bits O to 15).

• RamDisHighX: disable upper half-word (bits 16 to 31).

In our CCM design, we always read/write memory by a 32-bit word a time.

Therefore, the signal RamDisLowX and RamDisHighX are always set to

1 (not actived).

The basic read and write transactions both last one clock cycle, and either may

be performed at every cycle.

Read memory

To read a particular word of memory, the word address (RamAddrX) must be

presented and the read command (RamReadX) must be asserted at the beginning

of a cycle; the data word read from memory will be available on the data wires at

the end of the same cycle and may be latched on the next clock tick. A RAM bank

can be seen as a combinational device when read.

Write memory

To write a particular word of memory, the word address (RamAddrX), the data

(RamDataX) and the write command (RamWriteX) must be asserted during the

74

same cycle; the word will have been written by the end of the same cycle, and the

address and the data may be removed after the next clock tick.

The reading or writing of either half of the data word may be independently

disabled by asserting the corresponding disabled command (RamDisLowX or

RamDisHighX) during the transaction cycle. The memory system is clocked by

clockl signal (see section 4.2.5).

4.2.5 Clock subsystem

Two global synchronous clock signals, clockO and clockl, are available to all

PeRLe-1 LCAs for proper synchronous operation. These clock signals are generated

by a phase-locked-loop oscillator synchronized to the host bus master clock. When

PeRLe-1 is connected to a DEC 5000/24 workstation (25MHz TURBOchannel), its

frequency can be programmed under software control to be any value from 360 KHz

to 120 MHz, with an average resolution of 0.01 %.

4.2.5.1 Clock modes

Under software (the program running on the host) control, the clock generator

may be put in the following operation modes:

STOP MODE: No clock is generated in this mode.

FREE-RUN MODE: This is the normal operating mode, where the clock contin

uously runs at the prescribed frequency. Our CCM design will run in this

mode.

BURST MODE: This is a mode where, under software control, the clock generator

will generate a burst of 1 to 31 clock ticks at the prescribed frequency, then

stop. This is useful to implement step and double-step debugging modes. We

will use this clock mode to debug our CCM design.

75

AUTOSTOP MODE: There are two autostop modes: Fifoln-Autostop and FifoOut

Autostop. In the Fifoln-Autostop mode, clock0 will automatically stop when

ever the design attempts to read an empty input FIFO. Similarly, in the

FifoOut-Autostop mode, clock0 will automatically stop whenever the design

attempts to write a full output FIFO. These two modes can be enabled at

the same time. Our CCM design will always run in this mode.

CLOCK1-DIV2: This mode is useful for very high performance designs. clockl

runs at half the speed of clcok0. This allows the RAM and FIFOs to be

operated on half the speed of the matrix. This clock mode is not used in our

CCM design.

4.2.5.2 clock0 stop

The clock0 may stop under control of the application on the board. This is

usually used to implement flow-control, where the entire datapath is stopped waiting

for input data (when the input FIFO is empty) or output space (when the output

FIFO is full). It is much more efficiently and easily implemented this way than

through the global distribution of a clock enable signal. In effect, when application

runs entirely on clock0 and both autostop modes are enabled, the application can

be seen as a perfect synchronous system without fl.ow-control concern.

The clock0 signal will stop under one or more of the following conditions:

• The active-low ClkStop signal is asserted from one of the controllers.

• In the Fifoln-autostop mode, the input FIFO is empty and the active-low

FifolnRead signal is asserted from one of the controllers.

• In the FifoOut-autostop mode, the output FIFO is full and the active-low

FifoOutWrite signal is asserted from one of the controllers.

The memory subsystem and the FIFOs are clocked by clockl. This means that

it is still possible to perform memory and/or FIFO operations even when clock0 is

stopped. This feature is not used in our CCM design.

76

4.2.5.3 Slow mode

Under control of an application on the board, it is possible to slow down the

clock (divide its frequency by 4) by asserting the active-low ClkSlow signal from one

of the controllers. This is useful when an application can run at a very high speed,

but must infrequently perform an operation that is impossible to be performed at

the high speed (like stopping the clock, or accessing the FIFOs). The ClkSlow can

be asserted at any speed, but its operation is asynchronous, that is, it will take an

unpredictable number of cycles for it to be effective. If the operation frequency is

less than 80 MHz, this number of cycles is however guaranteed to be less than or

equal to 6. This feature is not used in our CCM design.

4.2~6 Host interface

The PeRLe-1 application is running under the control of the software program

executed on the host computer. The communication between PeRLe-1 application

and its driving software program can be done through FIFOs or LCBus.

4.2.6.1 FIFOs

There is a 32-bit-wide, 512-word-deep FIFO in each direction (see Figure 5.1).

These FIFOs are called input FIFO for the Host-to-PAM direction and output

FIFO for the PAM-to-Host direction, respectively. On the application side, their

data wires are connected to the Fifo Switch LCA and their control wires to the two

Controller LCAs. Both FIFOs are purely synchronous devices when operated from

the application side. They appear to be always available for reading or writing in

autostop mode.

The input FIFO and output FIFO are synchronous devices that offer two active

low status signals FifoinEmpty and FifoOutFull and two active-low command

signals FifoinRead and FifoOutWrite. These four signals are connected to the

two Controller LCAs CNE and CSW (see Figure 4.8). The Input FIFO is operated

as follows:

77

Clock-1

Clock-0

I I I I

1______1r-~ I /_FifolnRead I''---------------·

_ F1.folnEmpt.y

I I
Dl x___D_2___x_______D3 ~

FifolnDat.a DOmwwox X

(a) the input FIFO read operation (no autostop)

Clock-1

Clock-0

FifoinRead

I I I I
!_______________,/,--------.,,_______,,r-

_F1.folnEmpt.y

FifolnDat.a zozoozox DO X Dl X D2 X D3

(b) the input FIFO read operation (autostop)

Figure 4.9: The input FIFO operation

• When the design is in Fifoln-autostop mode, if on one cycle FifolnRead is

asserted and FifolnEmpty is inactive, the FIFO is read and the data word

shows on the FifolnData wires in the next cycle (see Figure 4.9 (a)).

• In any other situation except in the Fifoln-autostop mode, no operation is

performed in this cycle and the current value of FifolnData is held to the

next cycle.

• When the design is in Fifoln-autostop mode and the design is entirely clocked

by clock0, if FifolnRead is asserted, the data word is available on the next

cycle (see Figure 4.9 (b)).

The output FIFO is operated as follows:

• When the design is not FifoOut-autostop mode, if on one cycle FifoOutWrite

is asserted and FifoOutFull is inactive, the FIFO is written and the data

78

word present on the FifoOutData wires in this cycle is pushed into the output

FIFO (see Figure 4.10 (a)).

• In any other situation except in FifoOut-autostop mode, no operation is per

formed in this cycle and the data present on the FifoOutData is ignored.

• When the design is put in Fifoln-autostop mode and the design is entirely

clocked off clock0, if FifoOutWrite is asserted, the data present on the Fi

foOutData is pushed into the output FIFO (see Figure 4.10 (b)).

Clock-1

Clock-0

_F1foOutWr1te

FifoOut.Full

FifoOutData

I

0,______________~I/

I I I
I I I I I I I

ozx ·x ·x ·x ---D,__..,.XlWOWZ0711X,____o~•__• 'll1IlllDO Dl D2

(a) the output FIFO write operation (no autostop)

Clock-1

Clock-C

I I I
_FifoOutWrHe 0,_______________1 /r------,1______1r--

FifoOutFull I I I I

F1foOut.Data ozx DO

I

·x Dl

I

·x D2

I I I I I

·x ---D3__..,.X1omzmzzozx D, • m---~--
(b) the output FIFO write operation (autostop)

Figure 4.10: The output FIFO operation

As shown in Figure 4.9 and 4.10, all operations of the input and output FIFOs

occur at the raising edge of the clockl signal.

The input FIFO can be written and the output FIFO can be read by the driving

software through the runtime library. The program running on the host computer

can access the input and output FIFOs through the following FIFO operations:

79

WriteFifo: this operation pushes 32-bit data word into the input FIFO. The cor

responding runtime library is P 1 WriteFifo(}.

WriteFifoTagged: this operation pushes one 32-bit data word into the input FIFO

and sets the tag bits. The corresponding runtime library P 1 WriteFifo Tagged(}.

ReadFifo: this operation reads one 32-bit data word from output FIFO. The

corresponding runtime library is P 1 ReadFifo ().

WritePAM: this operation successively pushes a 19-bit address word and a 32-bit

data word in the input FIFO; the address word is present on bits 5 to 23.

The corresponding runtime library is Pl WritePAM(}.

ReadPAM: this operation successively pushes a 19-bit address word in the input

FIFO and reads a 32-bit data word form the output FIFO; the address word is

present on bits 5 to 23. The corresponding runtime library is PJReadPAM(}.

4.2.6.2 LCBus

The LCBus is a 24-bit-wide general purpose register that can be read and writ

ten by both the software and the application design. The LCBus can be used

for asynchronous communication between the Controller LCAs and the software

program. Under the software control, the direction of each bit can be set indepen

dently of the others. Initially (after download), all bits are set for PAM-to-Host

communication. This feature is not used in our CCM design.

4.2.6.3 Tags

Every word that the software (the program running on the host) pushes into the

input FIFO is "tagged" with 4-bit value. These tag bits are read from the input

FIFO at the same time as the data word, and are available on both Controller

LCAs and on the Fifo Switch. The meaning of these bits is as follows:

80

TagDataSource (TDS): When set, the word was pushed by a DMA2 transfer op

eration.

TagDataType (TDT): This bit is only valid when TagDataSource is O (not set) .

When valid and set, the word is a 19-bit address pushed by a WritePAM or

ReadPAM transaction.

TagAddrO, TagAddrl (TAO, TAI): these two bits can be defined by the user.

These tags are not used in our CCM design.

4.2.7 Performance

The main timing characteristics of the PeRLe-1 is shown in table 4.1. For a

given design, the worst-case propagation delay can be determined by combining

these timing characteristics and Xilinx chip time characteristics.

The goal of this table is to provide the further designers with data allowing the

understanding of delays of different kinds of connections, so that they can make

reasonable trade-off decisions for their designs. For instance, as shown in the table,

the delay of matrix rings is 43ns, and the delay of matrix direct connection is 24ns.

For a given signal, if we can use either matrix rings or matrix direct connection,

the matrix direct connection should be a better choice.

4.2.8 The runtime library

The runtime library of PeRLe-1 is essential to the developer who develops

the driving program which runs on the host computer and controls the PeRLe-

1 hardware for the application. The runtime library is the only way to access

PeRLe-1 hardware for the driving program. The runtime library developed by Dig

ital Paris Research Laboratory provided a few essential controls to the application

driving program:

2 DMA stands for Direct Memory Access. The DMA is a fast way of transferring data between
memory and other devices (not CPU) in a computer system. For example, the DMA operation
can be used to transfer data between memory and hard disk in a PC system.

81

Table 4.1: PeRLe-1 Timing Characteristics

Connection Name Delay

Matrix direct connection DCnn-mmX 24 ns

Matrix bus

I/O bus

Switch ring

Switch control

Fifo switch control

MBusX

DBusXX

RingSwXX

SwCntrX

FswCntr

28 ns

Matrix ring RingMat 43ns

Memory read, address to data RamAddrX to RamDataX 46ns

Memory read, control to data RamReadX to RamDataX 35ns

Memory write, from any source 33ns

Fifo data

Tags

FifolnData

FifoOutData

TagAddr

TagDataType

TagDataSource

23 ns

Fifo Status FifolnEmpty

FifoOutFull

27 ns

Fifo Command FifolnRead

FifoOutWrite

30 ns

• A UNIX I/O interface, with open, close, read and write.

• Download the configuration bitstreams from host to PeRLe-1 , and/or read

back the values of all the flip-flops of all the LCAs.

• Read/write static RAM on PeRLe-1 by the software program.

• Control the mode and speed of PeRLe-1 clock by the software program.

82

4.3 Programming

For using PeRLe-1 board, we must run an application-specific program on the

host computer which connects to the PeRLe-1 board. On the other hand, the 23

FPGA chips of the PeRLe-1 must be programmed to realize an application-specific

hardware. Therefore, A PeRLe-1 program consists of two parts:

• the driving program which runs on the host and controls the PeRLe-1 hardware.

• A 1.5 MB bitstream which programs the 23 XC3090 FPGAs of the PeRLe-1 to

realize an application-specific hardware.

The driving program is written in C or C++ and is linked to the runtime library

encapsulating a device driver. The requirement for developing the driving program

is the C or C++ programming environment and the PeRLe-1 runtime library.

For generating 1.5MB bitstream that programs the XC3090 FPGAs to realize

application-specific hardware, the following steps are involved:

1. Design Partition

In this step, you map your design onto 23 FPGA chips according to your

design and the constraint of PeRLe-1 board. Some of FPGA chips may be

not used in your design. For example, our CCM design uses only 17 FGPA

chips of all 23 chips. The steps 2 and 3 should be carried out separately for

each FPGA chip that is used in your design.

2. Design Entry

In this step, you create your design using a Xilinx-supported schematic editor

or hardware description language (like VHDL) for each FPGA used in your

design separately. This step produces a Xilinx netlist file (XNF file) for the

next step. There are three kinds of design entry methods:

(a) Schematic editor: you can use schematic editor to create your design,

then your schematic editor should be able to generate the XNF file.

83

(b) Hardware description language: you can use VHDL or other hardware

description language to create your design, then you need a synthesis

software to synthesize and optimize your design and produce the XNF

file.

(c) Another possible way is to use a C++ program and the PerleDC li

brary to describe your design. Individual configuration of each FPGAs

involved in your design are described by this C++ program. Compiling

and running this C++ program generates the XNF file of your design

[9, 13, 14].

There are two sets of tools available at EE of PSU as of this writing: Xilinx

Foundation Series and OrCAD Express 7.0. Both of them support schematic

editor and hardware description language. Due to the lack of license, the

Xilinx Foundation Series only supports schematic editor. Xilinx Foundation

Series was used to capture our COM design. For more information about this

software, please see [52] and online reference. I do not have experience with

OrCAD Express 7.0. For more information about this software, please see

the documentation shipped with the software and online reference.

3. Design Implementation

Map, place and route your design, and finally generate the bitstream file by

using Xilinx development tools.

Since all FPGAs used on DEC PeRLe-1 board are XC3090 FPGAs, we need a

Xilinx development tools that support XC3090 FPGA. As of this writing, the

latest Xilinx development tool, Xilinx 1s Alliance Series Release Version 1.4
(also known as Ml software), is available at EE of PSU. Unfortunately, Ml

software does not support XC3090 FPGA anymore since XC3090 FPGA is

obsolete. Ml software does support two families of Xilinx 3000 series FPGA,

XC3000A and XC3000L. XC3090 belongs to XC3000 family. Therefore, our

COM design are mapped to XC3090A chips. For more information about Ml

software, please see [49, 50] and online reference.

84

4. Design Verification

At this step, the bitstream generated at previous step is downloaded into

the PeRLe--1 board and the design is tested. If something goes wrong, you

may need to modify your design at design entry step, then regenerate the

bitstream file, download it to PeRLe-1 board and test your design again.

85

CHAPTER 5

The Design of Cube Calculus Machine

Co-processor

In our design, the cube calculus machine acts as a co-processor to the host

computer, and it will be realized on the PeRLe-1 board. Therefore, the architecture

of PeRLe-1 is our only design constraint.

The input FIFO and the output FIFO on PeRLe-1 allowed us to significantly

simplify the communication between the host and the PeRLe-1 board. This feature

lets the host and the PeRLe-1 board work asynchronously. Therefore, we use these

two FIFOs as the way of communicating between the host and the CCM.

By using the input and output FIFOs, the communication between the host

and the CCM is as follows. The host just puts instructions into the input FIFO,

and receives the results from the output FIFO. On the other side, the CCM takes

an instruction from the input FIFO, executes this instruction and puts the results

back into the output FIFO. This is shown in Figure 5.1.

- I input Fifa I ,..
Host CCM

I I- output Fifa I I

Figure 5.1: Communication between the host and the CCM

l/As described in Chapter 4, the width of FIFOs is 32 bits, which means the data

transferred between the host and the CCM is 32-bit-wide. At this time, we want to

keep the CCM as simple as possible, so we just use fixed-length instructions, and

86

the width of all instructions will be 32 bits. ~his means that the opcode and the

actual data of a CCM instruction are both included in one 32-bit-wide wor~

5.1 Executing Patterns

Before we design the CCM instructions, we need to know what kind of execution

patterns happen often in practical applications of the CCM, and how can our design

be able to execute cube operations efficiently for these execution patterns.

(a)
(b)

array
of array cubes

cubes
of

array
I cube I of

cubes
(c)

(d)

Figure 5.2: Cube operation patterns

We found four patterns based on the analysis of many algorithms in logic syn

thesis, such as satisfiability, tautology, complementation, solving of equations and

others that must be speeded-up. These four basic patterns are shown in Figure 5.2.

Many practical complex patterns can be created by repeating or combining these

basic patterns.

Pattern (a) (Figure 5.2 (a)) is the general form of combinational cube operations.

A combinational cube operation produces one resultant cube.

Pattern (b) (Figure 5.2 (b)) is the general form of sequential cube operations.

A sequential cube operation produces as many as n resultant cubes, where n is the

number of variables in the operand cubes. ~o
-'"- ' ,

87

Pattern (c) (Figure 5.2 (c)) is used in some combinational cube operations on

an array of cubes, for example, the result of intersection operation on an array of

cubes (A1 • A2 ·••An) is a single cube or an empty cube.

Pattern (d) (Figure 5.2 (d)) can be used both in combinational and sequential

cube operations. A combinational operation example is a cofactor operation on an

array of cubes:

CIA= (CilA C2IA • • ,CnlA)

A sequential operation example is a sharp operation on two arrays of cubes, and

this is the most complicated case:

C A#B =(A1 A2 ... Am)#(B1 B2 ... Bn)

=(((A1#B1 A2#B1 .. , Am#B1)#B2) · · •#Bn)

=((C;#B2 C;#B2 ... Cl#B2) · · · #Bn)

where (CJ CJ ... Cl) is the result of operation {A1 #B1 A2#B1... Am#B1)- As we

can see from the equation, the basic step for sharp operation on two arrays of cubes

is the sharp operation on one array of cubes and one cube. This is what Pattern (d)

describes. Therefore, the pattern of sharp operation on two arrays of cubes repeats

pattern (d) as many times as the number of cubes in the array of cubes B.
It can be seen from these execution patterns that the same cube operation is

executed very many times before another kind of cube operation is executed in

a practical application. Also, sometimes one operand cube does not change in

subsequent operations or comes from the result of the previous cube operation.

Thus, we have the following design considerations:
9

• We need an accumulator register for pattern (c), this accumv.l(!~<tr....~an be

set by the user or it receives the data being the result of a previous cube

operation. As discussed in Chapter 2, most cube operations have two operand
---···-····~·➔·~ --•-,, ••• ~ • ' '

cubes. Thus, we need another general data register to store another o~rand Y

cube.

88

• The CCM can execute cube operations by just accepting operand cube(s)

without re-setting the instruction register.

5.2 The Design of the CCM

The block diagram of our design is shown in Figure 5.3. In this design, there

are 5 data buses, 2 banks of memories, Global Control Unit (GCU), ILU and it's

. Host Computer .
······· .. t·--······--··········--··

Input Flfo Output Flfo

f,....B_us-'a-....,..._____ Global Control Unit ------

ABus 18.

EnlFifoA
AddrA

addr

MEM_A

(GCU)

EnAddrA AddrB

18
18

Accu

Data

addr

MEM_B
data

Water

Right

Inst

PRPO

CmpSrc

DBusA 30
DBusB

l-d:i

ILU

AddrR

AddrEO
(to BIU)

ocu

30

Figure 5.3: The Block Diagram of Our Design

89

controller Operation Control Unit (OCU), two address units, registers, tri-state

buffers and three multiplexers. The following section will discuss them in detail.

The control signals are not shown in the figure, and they are all generated by GCU,

which means that all components of the CCM work together under the control of

the GCU.

5.2.1 Data Bus

Five data buses are used in the CCM. They are described as follows:

I Bus is the short name of input FIFO data bus. The CCM receives the instruction

from the input FIFO through this data bus. Only input. FIFO can write this

data bus.

OBus is the short form of output FIFO data bus. The CCM puts the results into

output FIFO through this data bus. Only the ILU can write this data Bus.

ABus is the short name of Address data bus. The CCM sets the contents of two

address units AddrA and AddrB and one address register AddrR through this

data bus. The input FIFO and two address units can write this data bus,

and they are controlled by three control signals: EnlFifoA, EnAddrA and

EnAddrB, which control the corresponding tri-state buffers1
.

DBusA is the short name of Data B'I.I.S A. This data bus connects to the input

FIFO, memory bank A (MEM..A) and the input and output of the ILU. The

input FIFO, MEM..A and the ILU can write this data bus, and they are

controlled by three control signals: EnIFifoD, MemARW, and EnfluA, which

control the corresponding tri-state buffers.

DBusB is the short name of Data Bus B. This data bus connects to the memory

bank B (MEM-8), the input and output of the ILU. The MEM_B and the

ILU can write this data bus, and they are controlled by two control signals:

MemBRW and EnlluB, which control the corresponding tri-state buffers.

1There are programmable tri-state buffer resources in Xilinx XC3090 FPGA

90

The examples that show how to use these buses will be given in section 6.2.

5.2.2 Memory and Address Units

In this design, we use two banks of memory, MEM...A and MEM...B, to store

intermediate results. Each bank of memory connects to one data bus: MEM...A

connects to the DBusA and MEM.J3 connects to the DBusB.

The address signals of MEM...A come from Address Unit A (AddrA for short).

The address signals of MEM...B come from Address Unit B (AddrB for short). The,.

contents of these two address units can be set or incremented under the control(

of GCU. These two address units are realized by 18-bit-wide loadable-up-counters.\

A Address Register (AddrR for short) is used to store an address data shown orJ ,

ABus. As we mentioned before, ABus can be written by !Bus, AddrA or AddrB, so

the address data could be one of these three sources. The example of using AddrR

is shown in section 6.2.

The control signal MemARW controls the MEM...A in read mode or write mode,

which means the MemARW can read from or write to the data bus DBusA. When

the MemARWis set, the MEM...A is in read mode, otherwise, the MEM...A is in write

mode. The control signal MemBRW controls the MEM...B in the same manner.

5.2.3 Registers

There are six registers used by ILU in our design (AddrR register is mentioned

in the above section). They are described as follows:

Accu is an accumulator register used to store one operand cube for the cube oper.::

ation. It is 30 bits wide. . . '

Data is a general data register used to store one operand cube for the cube oper

ation. It is 30 bits wide.

Water is a 15 bits wide register used to store water signals.

Rightedge is a 15 bits wide register used to store right_edge signals.

! I ,pr~l1 •
23 0

91

Inst is a 21 bit wide register used to store cube operation instruction. The content

of the inst register is shown in Figure 5.4. The meaning of these nine fields

are as follows:

rel bet act aft
! I

20 • ' 0

Figure 5.4: The content of instruction register

pl field represents whether the first pre-relation/pre-operation is valid or not.

p2 field represents whether the second pre-relation/pre-operation is valid or

not when pl= 1.

sc is sequential/combinational bit. When it is 1, the operation is a sequential

operation, otherwise, the operation is combinational operation.

pm is prime bit. When it is 1, the operation is a complex combinational

operation, otherwise,. u;:;~p~ration is a si~ple combinatiorutl operati~~l · ·

ao is and_or bit. When it is 1, the relation type of the operation is "AND",

otherwise, the relation type is "OR".

rel, bef, act and aft are the four bitwise functions used to describe the operation

(see Chapter 2 and 3).

PRPO is a 24 bits wide register used to store two pairs of pre-relation/pre-operation.

The content of the prpo register is shown in Figure 5.5. The meaning of these

eight fields are as follows:

£pand or1 £pand or2£pval1 £pval2

Figure 5.5: The content of prpo register

pand_orl, prell, pcmpl, pvall and poperl are the partial pre-relation type,

partial pre-relation, pre-relation compare type, pre-relation compare value

and pre-operation for the first pair of pre-relation/pre-operation, respectively.

92

pand_or2, prel2, pcmp2, pval2 and poper2 are the partial pre-relation type, par

tial pre-relation, pre-relation compare type, pre-relation compare value and

pre-operation for the second pair of pre-relation/pre-operation, respectively.

For the more information about pre-relation/pre-operation, please see section

3.7.

As shown in Figure 5.3, the input of these six registers is connected to either

DB'USA or DBusB. The signal ASrc controls to which bus the Accu is connected.

The signal OSrc controls to which bus the data register is connected. Every register

has a load signal used to load data from its inputs, and all load signals are generated

by GCU (they are not shown in Figure 5.3).

There is one more register called config register (not shown in Figure 5.3), and

it will be discussed in section 5.3.

5.2.4 Dataflow mode

A simplified block diagram of the CCM is shown in Figure 5.2.3 _(a)'.' It can

be seen that the CCM has two data buses that connect the input/output FIFOs,

memory and data path (ILU in the CCM) together.

This two-bus structure has better performance than the single bus structure.

Suppose we use single bus structure, which means that the input/output FIFOs,

memory and ILU are connected together by one data bus. For a sequence of cube

operations that read data from memory and write the results back to the memory,

the algorithm would be:

1. for (i=O; i++; i<n)
2. { set MEM be the writer and ILU be the reader of the data bus
3. read data from MEH to ILU
4. execute cube operation
6. set MEH be the reader and ILU be the writer of the data bus
6. write data from ILU to MEM

7. }

It is easy to observe that the lines 2 through 6 are executed n times. With our two

data buses structure, the algorithm is now changed to:

93

lnputFifo MEM A MEM B lnputFifo MEM A MEM B

(a) Simplified block diagram (b) InputFifo -+ data path -+ OutputFifo

lnputFifo MEM A MEM B lnputFifo MEM A MEM B

(c) lnputFifo-+ datapath-+ DataA (d) InputFifo-+ data path -+ MEM...B

lnputFifo MEM A MEM B lnputFifo MEM A MEM B

~f6~,,!mwk'l!,illiii=:~OutputFifo

(e) MEM..A-+ data path-+ MEM...B (f) MEM...B-+ data path-+ MEM..A

Figure 5.6: The dataflow modes of the CCM

94

1. set MEM be the writer and ILU be the reader of the data bus A
2. set MEM be the reader and ILU be the writer of the data bus B
3. for (i=O; i++; i<n)
4. { read data from MEM to ILU through data bus A
6. execute cube operation
6. write data from ILU to MEM through data bus B
7. }

This time, the lines 1 and 2 are outside of loop and are only executed one time in

our architecture. Therefore, we improve the performance by using two data buses.

Some of useful dataflow modes are shown in Figure §-.2.3 {h) to (f). The examples
~ , b b +.-, S~ _/:, ~ of using these modes are given in Chapter 6. J

5.3 Instructions and Their Encoding

The CCM has t~categories of instructions called "CCM instructions", config

instructions and execute instructions. The config instructions set the CCM to be

ready to execute a specified cube operation. The e:i:ecute instructions let the CCM

executes cube operation(s) currently set in the instruction register.

There are three config instructions: Set Accumulator, Set Tri-state Buffers and

Set Registers. And there are two execute instructions: Execute and Loop. This

section will discuss these instructions and their encoding in detail (the examples

are given in section 6.2).

5.3.1 Set Accumulator

The "set accumulator" instruction loads the data into the accumulator (Accu)

from its input. The encoding of the instruction is as follows:

31 30 29

30-bitdata

The first two bits "Oln is the opcode of this CCM instruction. The 90-bit data in

the instruction will be shown on the bus /Bus. For loading the correct data into

Accu, the control bits En/FifoD and Asrc (see Figure 5.3) must be set properly

0

95

(by issuing set tri-state buffers and set register instructions) before issuing this

instruction. For example, when En/FifoD is 1 and Asrc is 0, this instruction will

loa.d the da.ta. shown on bits 29 to Oof the instruction word into the Accumulator.

5.3.2 Set Tri-state Buffers

The "set tri-sta.te buffers" instruction sets the control bits of tri-sta.te buffers

tha.t control the da.ta. flow. Some useful data.flow modes a.re discussed in section

5.2.4. There a.re 8 bits of this kind in our design.

These 8 bits a.re registered by an 8 bits register in the CCM, and this register

can be set by one CCM instruction. As we discussed in section 5.2.1, the three

da.ta. buses (ABus, DBusA and DBusB) ha.ve more than one possible driver, but a.t

any given time, there is only one driver for each data. bus. If there were more than

one driver for a. given bus at a given time, then the FPGA chip would be destroyed

permanently.

For protecting the ha.rdwa.re from destroying by a "ba.d program", in our design,

the set tri-state buffers instruction can only set one control bit a. time, and a. special

circuit is used to check potential contention (multiple drivers). The idea. of this

special circuit is shown in Figure 5.7.

Figure 5.7: Avoiding contention which would result from multiple drivers

As shown in Figure 5.7, two control bits (cntrbitl a.nd cntrbit2) control two

tri-state buffers tha.t drive one da.ta. bus (the tri-state buffer and data bus a.re not

shown in the figure). At any given time, at most one control bit ca.n be set to 1.

https://ha.rdwa.re
https://tri-sta.te
https://tri-sta.te

96

databit ~

lcl_bit1

ld_bit2

cntrbit1

cntrbit2

Ons 50ns 1 oons 150ns 200ns 250ns 300ns 350ns 400ns

Figure 5.8: Timing diagram of special circuit for avoiding bus contention

For understanding how this circuit works, let's see a timing diagram shown in

Figure 5.8. At time point 0ns, all signals are 0. For setting cntrbitl to 1, the signal

databit is set to 1 first at 25ns, then there is a raising edge on the signal ld_bitl at

50ns. As shown in the figure, after a little delay, the signal cntrbitl is set to 1.

Now let us try to set cntrbit2 to 1 to create a bus contention. The signal databit

is set to 1 at 125ns, then there is a raising edge on the signal ld_bit2 at 150ns. Since

one of two control bits (cntrbitl) is 1, then both inputs of gate 2 (NAND gate) are

1 's, thus, the output of gate 2 is 0. Then the raising edge on the signal ld_bit2 can

not go through the gate 4 (AND gate), which means that the raising edge can not

reach the clock input of DFF2 (D flip-flop), thus Q output of the DFF2 does not

change. Therefore, this circuit ensures that at most one control bit can be set to 1.

For setting cntrbit2 to 1 at this time, two steps are needed. First step is to set

cntrbitl to 0 at 250ns (please note that the signal databit is set to O before the

raising edge on the signal ld_bitl), then second step is to set cntrbit2 to 1 at 350ns.

By using this kind of circuit, nothing happens when the CCM encounters a "bad

instruction" that tries to create multiple drivers. This circuit can be described by

the following VHD L code:

signal databit, ld_bit1, ld_bit2, cntrbit1, cntrbit2 std_logic;
signal dff1clk, dff2clk, gate2output: std_logic;

begin

DFF1: dff port map (d=>databit, clk=>dff1clk, q=>cntrbit1);

97

DFF2: dff port map (d=>databit, clk=>dff2clk, q=>cntrbit2);

gate2output <= not ((cntrbit1 or cntrbit2) and databit);
dff1clk <= ld_bit1 and gate2output;
dff2clk <= ld_bit2 and gate2output;

end;

The encoding of the "set tri-state buffers" instruction is as follows:

31 30 29 28 0

o o O m unused

1: Enable, O: disable

The first three bits "000" is the opcode of this CCM instruction. The bit 25 is

the databit signal in Figure 5.7. The bits 28 to 26 (mmm in the encoding format) is

the "address" of these eight control bits of tri-state buffers. The address of these

control bits is as follows: 000 is EnAddrA, 001 is EnAddrB, 010 is EnIFifoA, 011

is MemARW, 100 is EniluA, 101 is EnIFifoD, 110 is MemBRW, and 111 is EniluB

(all these eight control bits are shown in Figure 5,3).

5.3.3 Set Registers .

The "set registers" instruction loads the data into registers (except Accu and

Data) from their inputs. For loading the correct data into registers, the tri-state

buffers must be set properly before issuing this instruction. The encoding of the

instruction is as follows:

31 30 29 28 27 26 25 0

data

The first three bits "001" is the opcode of this CCM instruction. The bits 28 to 26

(mmm in the encoding format) is the "address" of the target register. The addresses

of these registers are as follows: 000 is AddrA, 001 is AddrB, 010 is AddrR, 011 is

WATER, 100 is RightEdge, 101 is INST, 110 is CONF, and 111 is PRPO.

98

enFinish

Figure 5.9: the format of config register

AddrA and AddrB are the Address Uni-ts (see section 5.2.2). Since they can be

set in the same way we set registers, the same instruction is used to set Address

Uni-ts and registers. AddrA, AddrB and AddrR are 18-bit wide, so bits 17 to Oare

used when the target register is one of them. WATER and RightEdge registers are

15-bit wide, so bits 14 to 0 are used when the target register is one of them.

When the target register is the instruction register, 21-bit data is needed. The

bits 25 to 23 represent the highest 3 bits of the instruction register. The bits 17 to 0

represents the lowest 18 bi ts of the instruction register (see the format of instruction

register discussed in section 5.2.3). When the target register is the PRPO register,

the bits 23 to 0 are used (see the format of prpo register discussed in section 5.2.3).

When the target register is config register (CONF), tp.e bits 8 to 0 of the in

struction are used. The config register is the collection of eight configuration bits

of the CCM. The content of config register is shown in Figure 5.9. The meaning of

these eight bits is as follows:

• enFinish determine whether the instructions Execute and Loop will generate

"finish word" or not. The "finish word" will be discussed in section 5.3.4.

• enMemA and enMemB determine whether the memory banks are used in

cube operation or not. Do not confuse with tri-state buffer control signals

memARW and memBRW; the signals memARW and memBRW determine

the operation mode (read or write) of memory banks (see section 5.2.2). If

enMemA is set to 1, then the MEM_A is used in the following cube operation,

otherwise MEM_A is not used. The bit enMemB controls MEM_B in the

same manner. Only Loop instruction will use memory banks, and it will be

99

discussed later in this section.

• CmpSrc, ASrc and Osrc are three "select" signals of the multiplexers (see

Figure 5.3).

• toOFifo,toAccu and toMem are three output control signals. These three

signals tell the GCU just whether or not to generate the corresponding control

signals to load data into the output FIFO, and/or Accu, and/or the memory

from their inputs after a resultant cube is generated. The GCU doesn't care

about where these inputs come from. For using proper datafl.ow mode, the

tri-state buffers must be set properly before executing the operation. It is

possible to write the resultant cube to all these three targets at the same

time.

A cube operation is completely described by functions relation, before, active,

after and pre-relation/pre-operation. As it can be seen from this instruction, all

these functions can be programmed by users through setting registers inst and prpo

instead of "hard-code" values. This is similar to microprogramming and makes it

easy to execute a "new" cube operation that is not discussed in this thesis and can

be classified into one of three classes of cube operations without re-designing of

the entire CCM. For example, the cofactor operation is a "new" operation to the

CCM. I was asked by Dr. Perkowski to implement the cofactor operation on the

CCM, which did not exist there yet. Therefore, I described the cofactor operation

using Equation 3.6, and I derived before, active and relation functions. The final

equation used to describe cofactor operation is shown in Equation 2.11. Now we

can perform cofactor operation without changing the design of the CCM. This is a

powerful feature of our design and it is hoped that it will find many applications

in CCM assembly programs.

5.3.4 Execute

The "execute" instruction is used to execute only one cube operation. It is the

realization of the executing patterns (a) and (b) (see section 5.1). When the CCM

https://datafl.ow

100

receives this instruction, the CCM loads data into Data register from its input,

then executes cube operation on two operand cubes currently stored in Accu and

Data registers. The resultant cubes being written to Accu, and/or memory, and/or

the output FIFO depending on three output control bits (The address of memory

will be automatically increased by one after every memory write operation). The

encoding of the instruction is as follows:

31 30 29 0

30-bitdata

The first two bits "10" is the opcode of this CCM instruction. The 90-bit data in

the instruction will be shown on the bus !Bus after the instruction is read from

the input FIFO. For loading the correct data into Data register, the control bits

EnIPifoD and Osrc must be set properly before issuing this instruction.

The last step of executing execute instruction is that a "finish word" is pushed

into the output FIFO if the bit enFinish is 1. The finish word is a special 32-bit

word whose highest two bits are set to 10. On the other hand, the highest two bits

of the general data word (represents cubes) are always 00. The finish word is used

to separate two arrays of (resultant) cubes of two set of cube operations.

The finish word is necessary for our CCM co-processor. For example, we calcu

late a sharp operations on two arrays of cubes. The sharp operation is carried out

by a set of CCM instructions, and produces an array of cubes. Without the finish

word, the host computer would never know where is the end of the resultant cubes

even if the host computer fetches all words in the output FIFO. The question is how

the host computer could determine whether a operation (or a set of operations) is

completed or not. Therefore, we introduce here the concept of finish word to solve

this problem. We can let the CCM generate a finish word after the operation is

completed. With the finish word, the host computer can tell whether a operation

is already completed or not. Anther example of use of the finish word is when we

calculate two sharp operations, each of them produces an array of cubes as the

result. Without the finish word, the two resultant cubes would be concatenated

together, so the host computer would be not not able to separate these two arrays

101

of cubes. With the finish word, the host computer has a way to separate these two

arrays of cubes.

5.3.5 Loop

The "loop" instruction is used to execute multiple cube operations continuously

without fetching the input FIFO. It is the realization of the executing patterns (c)

and (d) (see section 5.1). When the CCM receives LOOP instruction, the CCM

loads the data from memory into Data register (The control signals MemARW,

MemBRW, EnlluA, En/luB, OSrc and ASrc must be set properly before issuing

LOOP instruction). Then the CCM executes cube operation on two operand cubes

currently stored in Accu and Data registers. The resultant cubes are written to

Accu, and/or memory, and/or the output FIFO determined by three output con

trol signals. After that, the CCM loads the next data from memory into Data

register and executes the same cube operation again (The address of memory will

be automatically increased by one after every memory read/write operation). This

procedure is repeated until the signal ~~~rEQ (see Figure 5.3) becomes 1, which

means that the memory address (the signal Cmpsrc determines which memory ad

dress is used, see Figure 5.3) is equal to the content of the 4~JR register. The

encoding of the instruction is as follows:

31 30 29 0

30-bitdata

The first two bits "11" is the opcode of this CCM instruction. The 90-bit data in

the instruction will be shown on the bus /Bus, but typically it is not used.

Similarly as in the ezecute instruction, the last step of executing the loop instruc

tion is also that a finish word is pushed into the output FIFO if the bit enFinish is

1.

102

5.4 Global Control Unit

The Global Control Unit (GCU) handles the communication between the host

computer and the CCM, and it is also the controller of the whole CCM. As men

tioned in section 3.5, another controller OCU is used to control the datapath of

the CCM. Certainly, we can design a single controller to control all of them. The

reason why we design two controllers in our CCM is that it is easier to design and

test two simple controllers than one complex controller.

The algorithm of the CCM is very simple: under the control of GCU, the CCM

fetches an instruction from the input FIFO; then the CCM executes the instruction:

set the contents of registers, or tri-state buffers, or executes cube operation(s). After

that, the CCM is ready to process next instruction from the input FIFO. The GCU

will remove an empty cube by using signal empty (see section 3.4.2). The state

diagram of the GCU is shown in Figure 5.10. The signals crpc in the state diagram

is the opcode the CCM instruction, and it occupies the highest 3 bits of the CCM

instruction. The other signals will be discussed when we will discuss the related

states. Now let us take a look at these states.

• State SO: This is the initial state of the GCU. In this state, the GCU checks

if there are CCM instruction(s) in the input FIFO by asserting signal Fi

JolnEmpty (see section 4.2.6). If there are CCM instruction(s) in the input

FIFO, then the GCU goes to state Sl, otherwise, the GCU stays in state SO.

• State Sl: In this state, the GCU generates signal FifolnRead (see section

4.2.6) to fetch a CCM instruction from the input FIFO. This state has three

exits, states S2, S3 and S4. If the instruction is one of instructions "set

accumulator", "set tri-state buffers" or "set registers" (the highest bit of

opcodes of these three instructions all are O's), then the GCU goes to state S2;

if the instruction is the instruction "exec" (the corresponding opcode is lOx),

then the GCU goes to state S4; if the instruction is the "loop" instruction

(the corresponding opcode is llx), the GCU goes to state S3.

103

FifolnEm_E!y

opc=10x

%
ld_reg..1 if op<:=001 -=---=

ld_lbul=1 if op<:=000
d_accU=1 if opc:=01

.:--_yRead
/ Instructions

setAccu
set Regs 1@ ~ A""~-pc=-10...~~◄Ad1-d-r§_-9--+---o--=_pc=___~-x~setTbufs

Pre-relations
and

Pre-operations @~
!/pre1_se1..oo

prel res - a
-pr~~~

✓... (prel_res) p21 ~(nono~t ;

Q ~-6 li
\!:Y ~!

/~--1
-/prel sel=OO prel_sel=01
/write:output j

~@~~x

@
1~ld_data

(not prel_res)(

prel_

---l---

~ · · ·ii~ enable
preCse1-10

1_pr_el_res...;,__~~

~

Figure 5.10: The state diagram of the GCU

104

• State S2: In this state, the GCU generates the load signals to load data into

the corresponding register, or the accumulator, or the 1-bit register that store

the control bit of the corresponding tri-state buffer. For example, if the in

struction is "set instruction register", then the GCU generates signal ld_reg,

and the signal ld_inst that is used to load data into the instruction register is

generated as follows:

ld_inst = ld.:reg · b2s · b21 • b2s

(please note that the instruction register is encoded as 101, see section 5.3.3).

where b 28 , b 27 and b 26 are the 28th to 26th bit of the CCM instruction. Load

signals for other registers and 8 1-bits registers for 8 tri-state buffers' control

bits are generated similarly. When the instruction is "set accumulator", the

GCU generates signal ld_accu.

After that, the GCU always goes back to state SO and becomes ready to

process the next CCM instruction .

•:,, State S3: In this state, the GCU checks if the loop operation is completed

by asserting signal AddrEQ (see Figure 5.3 and section 5.3.5). If the loop

operation is completed, then the GCU goes back to state SO and becomes

ready to process the next CCM instruction; otherwise, the GCU goes to state

S4.

• State S4: In this state, the GCU generates signal ld_data to loads the data into~..-.~
t.~~.!~..,!~SJE~r from its input. If the CCM is executing "exec" instruction,

the input of the data register should come from the /B'IJ,S, otherwise (the

CCM is executing "loop" instruction), the input of the data register should

come from one of the two memory banks. This state has two exits, states

P2 and .Pl. If the first pre-relation/pre-operation is used in the operation

(represented by pl field of the instruction register, see section 5.2.3), then the

GCU goes to state P2, otherwise, the GCU goes to state Pl.

• State P2: In this state, the GCU sets the signal preLsel to 00. After that, the

pre-relation/pre-operation circuitry begins to evaluate the first pre-relation

105

(see section 3.7). The GCU always goes to state P3 from state P2.

• State P3: In this state, the GCU still keeps the signal preLsel to be 00,

and checks if the first pre-relation is satisfied by asserting signal preLres (see

section 3.7). If the first pre-relation is satisfied (the signal prel_res is _U,
then the GCU goes to state P4; otherwise, the GCU will check if the second

pre-relation/pre-operation is used in the operation (represented by p2 field

of the instruction register, see section 5.2.3). If the second pre-relation/pre

operation is used, then the GCU goes to state P5; otherwise, the GCU goes

to state Pl.

• State P4: Achieving this state means that the first pre-relation is satisfied.

The GCU calculates the cube operation by using the first pre-operation

function (the signal pre_sel keeps 00), and the GCU will generate signal

write_output. By using signal write_output, the proper write signals can be

generated to write the resultant cube to Accu, and/or memory, and/or the

output FIFO depending on three output control bits if the empty signal is 0

in this state. For example, the signal write-fi.fo that writes the result to the

output FIFO is generated as follows:

write_fifo = write_output · toOFifo · empty

where the signal toOfifo is discussed in section 5.3.3, and the signal empty is

discussed in section 3.4. The GCU always goes to state S7 from state P4.

• State P5: This state is similar to state P2, and the difference is that the GCU

will check the second pre-relation rather than check the first pre-relation. The

signal preLsel is set to 01 in this state. The GCU always goes to state P6

from this state.

• State P6: In this state, the GCU still keeps the signal preLsel to be 01, and

checks if the second pre-relation is satisfied by asserting signal prel_res (see

section 3.5). If the second pre-relation is satisfied, then the GCU goes to state

P7; otherwise, the GCU will go to state Pl.

https://write-fi.fo

106

• State P7: Achieving this state means that the second pre-relation has been

satisfied. The GCU calculates the cube operation by using the second pre

operation function (the signal pre_sel keeps 01), and the GCU will generate

proper write signals (in the same way with state P4) to write the resultant

cube to Accu, and/or memory, and/or the output FIFO depending on three

output control bits if the empty signal is 0 in this state. The GCU always

goes to state S7 from state P7.

• State Pl: This state means that the cube operation that is executed on the

CCM does not have the pre-relation/pre-operation or these pre-relations are

not satisfied. In the state Pl, state S5, and state S6, the signal preLsel

is set to 10, which means the cube operation will be carried out by using

relation/operation specified by the instruction register. State Pl has two

exits, states S5 and S6. If the cube operation is a sequential operation (The

sc field of the instruction register represents whether a operation is sequential

or combinational, see section 5.2.3), then the GCU goes to state S5; otherwise

(combinational operation), the GCU goes to state S6.

• State S5: This state means that the operation is a sequential cube operation.

In this state, the GCU will generate signal ilv._enable which enables the ILU

to execute sequential operation under the control of OCU (the control unit of

the IL U). After the operation is done, the OCU will generate signal ifa_done

to tell the GCU that the cube operation is done. The GCU will keep checking

the signal ifo._done to see if the cube operation is done. If not, the GCU will

remain in state S5; otherwise (the operation is done), the GCU will check if

this is a loop operation by asserting the opcode of the current CCM instruction

on the [Bus. If this is a loop operation (ope = 1l:z:), then the GCU will go

to state S3, otherwise, the GCU goes back to state SO and becomes ready to

process the next CCM instruction.

• State S6: This state means that the operation is a combinational cube oper

ation. In this state, the signal ifo._enable keeps 0, which means that all ITs

107

in the ILU will remain in before states, or goes to active states if the current

cube operation is a complex combinational cube operation (the pm field of

the instruction register represents whether the operation is complex or not,

see section 5.2.3) and the given IT is a special variable2 (or part of special

variable). The ILU executes this (complex) combinational cube operation by

using before and active functions (see section 2.3.1 and 2.3.2).

The GCU will generate proper write signals (in the same way with state P4)

to write the resultant cube to Accu, and/or memory, and/or the output FIFO

depending on three output control bits if the empty signal is 0 in this state.

The GCU always goes to state S7 from state S6.

• State S7: In this state, the GCU will check if this is a loop operation by

asserting the opcode of the current CCM instruction on the /Bus. If this is a

loop operation (ope= llx), then the GCU will go to state S3, otherwise, the

GCU goes to state SO and becomes ready to process the next CCM instruction.

In this state, the GCU also adjusts the address of the memory if the CCM

read the data from and/or write the data to the memory bank(s).

5.5 Mapping CCM onto PeRLe-1 board

This design of the CCM is mapped onto DEC PeRLe-1 board, and the mapping

is described by VHDL codes. Since the mapping detail is too tedious to list here,

we only give the outline of idea in this section.

The outline of mapping is shown in Figure 5.11. As shown in the figure, for using

Matrix as regular as possible, only ITs are mapped in it; The GCU is mapped in

South-West controller (CSK') because it is easy to control input and output FIFOs

from the controller, OCU is mapped in South Switch (SWS) because it is easy to

control all matrix chips from the switches. All other parts are shown in the figure.

2Do not confuse states before and active with the states of the GCU, these two states are the
states of the state machine inside IT.

108

input FIFO
32,, FSW 32,, I

output FIFO ,, ·. ,, I
:

DBusSW DBusNE

(I

D
I OBus7

16,,
/

iterative L 41Ts - t •••••• '

signals a,,,,

MEMA ~

I / 41Ts
,.__,

,, 16- a, ;...____,,, L=
,__ sww

,_GCU
(CSW)

/ ..
- I SWE ---
...._ ,, l

.....I

'16 --- ••••• ·O

41Ts
Jr=._______.

-----------+----+--'a, i i
16 V /

/ I 16 V
I

31Ts -······ I
a, l I

.___.....,t--t...::-=-=-.::t:+:::JJ-;,,ii"-j,:::::....:::.....:::::.:::....:t.:..:t...,-1:::==:::t;:::,

~als between
locuandOCU I -----

! I
L........................i

5,, ,,

32 /
/

Figure 5.11: The outline of mapping

109

The components of PeRLe-1 that are represented by dotted lines are not used in

this design. The following section will discuss how we derived this mapping.

One important mapping principle is that the mapping should be as simple as

possible, which means the designer should try to use direct connections as more as

possible.

In my design, the input FIFO connects the bus [B'US, and the output FIFO

connects to the bus OB'US. Both these two buses are 32-bit wide. Since the PeRLe-

1 has two 32-bit-wide I/O buses: DBusSW and DBusNE, the bus /Bus is mapped

to DBusSW, and the bus OBus is mapped to DBusNE. It is very easy to connect

the input FIFO to DB'USSW and the output FIFO to DBusNE through Fifo Switch

(FSW).

Since the GCU is connected to the bus /Bus, and it should be able to control

the input and output FIFOs directly, it should be mapped to a FPGA chip that

connects to lB'US and the control signals of the input and output FIFOs directly3
•

In the PeRLe--1 , the only FPGA chip that meets this requirement is South-West

Controller (CSW). Therefore, the GCU is mapped into CSW.

Our design needs two memory banks. It can be seen from Chapter 4 that the

address signals of the memory banks are connected to two controller FPGAs CSW

and CNE. In our design, the two Address Units and Address Register should be able

to copy their 18-bit-wide contents to each other, which means they should reside

in one FPGA chip; and they are also connected to the bus /Bus. So I mapped

these two Address Units in CSW. This means also that we use the west and south

memory banks to map two memory banks: MEM_A and MEM...B.

The ILU, the data path of our CCM, is mapped into the matrix of PeRLe--1 since

the matrix is the only place that is large enough to hold the ILU. In the previous

experiment [17], David W. Foote mapped four ITs in one Xilinx 3090 FPGA chip,

which took about 50% CLB resources of the FPGA. In our design, more functions

are added to one IT, like COUNT and EMPTY blocks; and I still want to reserve

3 We can map GCU to a FPGA chip that does not connect to 1Bu6 and the control signals of
the input and output FIFOs directly, but it will take more time to transfer signal between them,
see section 4.2.7.

110

some resource for the future modifications. Thus, four ITs are mapped into one

matrix FPGA chip in our mapping, which means we need 4 matrix chips to map 15

ITs. We can use any 4 FPGAs inside matrix to map the ILU, but we want to keep

the structure as regular as possible. So I decided to use one column or one row of

the matrix to map the ILU. The bus DBtLSA is connected to the MEM_A and the

bus lBtLS. Suppose MEM_A is mapped to west memory bank4
, so the bus DBtLSA

is routed into the matrix from the west side. There are only 16 connections from

West Switch to any row of the matrix. The width of DBtLSA is 30-bit, so we use

the first column FPGAs of the matrix to map ILU that has 15 ITs.

The registers (Accu, Data, Water, Right, Inst and PRPO are also mapped in

the first column of the matrix because that there is not enough direct connections

between the matrix and the west/south switches if these registers are mapped into

the west/south switches.

The last unmapped component is OCU. The OCU is connected to every I Ts in

the ILU and the GCU. The only FPGA chip that has direct connection to the first

column FPGAs of matrix and the GCU (mapped in CSW) is South Switch (SWS).

Therefore, the OCU is mapped into SWS.

4 There exists another choice of mapping MEM_A to the south memory bank. These two
mapping choices are symmetrical.

111

CHAPTER 6

CCM Assembly

The programs written for the CCM are in the form of a list of binary bytes

which are CCM instructions encoded by the programmer. This method of pro

gramming is very tedious and error prone. All instruction encoding formats had

to be remembered in order to use them, and it is painful to look at and maintain

this kind of programs. Therefore, a very simple assembly language, called COM

assembly was created. With the CCM assembly, the programmer needs only to

remember the name of the CCM instructions. This programming methodology still

requires the programmer to think in terms of registers and individual instructions.

This chapter will describe the CCM assembly and will give some examples.

6.1 CCM Assembly

In the CCM assembly, one instruction has two or three fields and occupies one

line; the fields are separated by blank spaces; and the comments can be added after

the last field of the instruction. The names of the instructions, called mnemonics,

occupy the first field in an instruction line. The subsequent fields are the operands

of the instruction.

In the syntax of CCM assembly, keywords are represented in upper case, operands

are represented in lower case, and they should be substituted by actual operands

when they are used.

There are four instructions in the CCM assembly, and their corresponding in

structions are discussed in detail in section section 5.3. The syntax of them is

described as follows:

112

• ENABLE/DISABLE: The ENABLE/DISABLE instructions are used to enable/disable

tri-state buffers in the CCM. The corresponding CCM instruction is set tri

state buffers. The syntax is as follows:

ENABLE eontrol..signal...na.tlle

and

DISABLE eontrol...signal...name .

where control...signal..:na.me is one of ENADDRA, ENADDRB, ENIFIFOA, ENIFIFOD,

ENMEMAWR, ENMEMBRW, ENILUA and ENILUB (see section section 5.3.2).

• SET: The SET instructions are used to load the data into registers and address

units from their inputs. The corresponding CCM instructions are set accu

mulator and set registers. The syntax is as follows:

SET register.name, operand

where register.name is one of ADORA, ADDRB, ADDRR, WATER, RIGHT, INST,

ACCU, CONF, PRPO; the operand in the syntax is a binary number that will

show up on /Bus, the width of this number depends on the register of the

instruction .(see section section 5.3.3).

• EXEC: The EXEC instruction is used to execute only one cube operation. The

corresponding CCM instruction is execute. The syntax is as follows:

EXEC operand

where operand is a 30-bit-wide binary data that will show up on /Bus when

the instruction is executed (see section section 5.3.4).

• LOOP: The LOOP instruction is used to execute multiple cube operations contin

uously without fetching the input FIFO. The corresponding CCM instruction

is loop. The syntax is as follows:

LOOP operand

where operand is a 30-bit-wide binary number that will show up on /Bus

when the instruction is executed (see section section 5.3.5).

Two more efforts are made to make the CCM assembly program easy to under

stand:

https://eontrol..signal...na

113

• The symbol slash('-') can be inserted into binary number. The program that

interprets the CCM assembly should ignore these slashes.

Example 6.1. The functions of the following two instructions are identical.

set inst 000000000000100000000

set inst oo-o-o-o-oooo-0001-r0000-oooo

It is obvious that the second instruction is easier to understand.

• The unused bits at the end of a binary number can be omitted. The program

that interprets the CCM assembly should fill these bits with O's or 1 's (only

the omitted bits of the binary number, that is the operand of "set water"

instruction, will be filled with 1 's, see the definition of water signal in section

section 3.4.1).

Example 6.2. The functions of the following two instructions are identical.

set vater 000011111111111

set vater 0000

Both of these two instructions mean that only first 4 ITs are used; and it is

obvious that the second instruction is easier to understand.

Example 6.3. The functions of the following two instructions are identical.

set right 111100000000000

set right 1111

The CCM assembly is a very simple assembly language. It is easy to develop

an interpreter for the CCM assembly, this CCM interpreter accepts CCM assembly

programs as its input, then executes CCM instructions by calling proper PeRLe-

1 runtime library routines, and passes the result back to the host program.

For making the CCM easy to use, the CCM runtime library, a set of library

calls which can be called from C/C++ programs, need to be developed by the

next student in the CCM project group. For example, this library should have

a routine (function) to carry out sharp operation on two arrays of cubes. The

CCM runtime library can hide unnecessary details about the CCM hardware from

114

the programmer, and enables programmers to think at a higher level and develop

applications more efficiently.

6.2 Examples of Using CCM Assembly

This section presents several examples of solving some cube operation problems

in CCM assembly. These examples serve as a tutorial about how to use the CCM to

solve the problems. All these programs have an assumption that the CCM is reset,

which means that all registers and control signals of tri-state buffers are zeroed.

Example 6.4. Assuming two cubes A = ab and B = be, where a, b and c are

binary variables. Write a CCM assembly program to calculate the intersection of

cubes A and B.

Solution. The intersection operation is a simple combinational cube operation,

it does not have pre-relation/pre-operation (see section 3.5), and

rel= xxxx, and_or = x, bef 0001

Since we process cubes with 3 binary variables, we have

water= 000-1111-1111-1111, rightedge = 111-xxxx-xxxx-xxxx

Cubes A and B can be described in positional notation as:

A ab ➔ 01-01-11, B =be ➔ 11-01-10

Therefore, the program is as follows:

1. enable enififod
2. set conf 100000100
3. set water 000
4. set right 111
6. set inst oo-o-0-0-0000-0001-oooo-oooo ;intersection
6. set accu 01-01-11 ; cube A
7. exec 11-01-10 ; cube B

Line numbers are not part of the CCM assembly, they are used here to help

identify specific lines of code in our discussion. Everything to the right of the

semi-colon ";" are the comments.

Line 1 enables the tri-state buffer from the bus IBu.s to the DBu.sA, which means

the data existing on the !Bus exist also on the bus DBusA at the same time. Line

115

2 sets ASrc = OSrc = O, toOFifo = 1 and enFinish 1, which means that the

inputs of registers accu and data are connected to the bus DBu.sA (see Figure 5.3),

and the CCM will write the result(s) to the output FIFO. This instruction means

also that the CCM is enabled to generate finish word. In this example, we don't

care about the other bits of the config register.

Lines 3 to 5 are very straightforward. Line 6 lets the CCM load the cube A into

the accumulator. Line 7 lets the CCM load the cube B into the data register and

execute the cube operation (defined by inst and prpo registers) on the operand cubes

(stored in the Accu and the Data registers). Please note that the CCM does not

know (or does not care) the configuration of the datapath, it is the programmer's

responsibility to set config register and the control bits of tri-state buffers correctly

before issuing the EXEC command. In this example, these signals are set in Lines 1

and 2 of above program.

This is an example of executing pattern (a) (see section section 5.1), and the

dataflow mode used by this example is shown in 5.2 (b) (see section section 5.2.4).

Example 6.5. Assuming four cubes A= ac, B = ad, C = bd and D = cd, where

a, b, c and d are binary variables. Write a CCM assembly program to calculate

the intersection of these four cubes: A· B · C · D (Try to use as few instructions as

possible).

Solution. The program is as follows:

1. enable enififod
2. set water 0000
3. set right 1111
4. set inst oo-o-0-0-0000-0001-oooo-oooo intersection operation
5. set accu 01-11-01-11 cube A
6. set conf 000010010 sent result back to ACCU
7. enable eniluB
8. exec 01-11-11-01 cube B
9. exec 11-01-11-01 cube C
10. set conf 100000100
11. disable eniluB
12. exec 11-11-01-01 ; cube D

As mentioned before, there is an assumption that the CCM is reset, which

means the config register is set to 000000000. Lines 2 to 5 set the registers water,

116

ri.ght_edge, inst and accu. Lines 6 and 7 set a feedback path from the output of the

ILU to the input of the Accu and let the COM write the results back to the Accu.

Line 8 let the COM calculate A· B and write the result back to Accu. Line 9 let

the COM calculate [Accu] •C and write the result back to Accu, where [Accu] repre

sents the content of the Accu. At this time, the content of Accu is the intersection

of cubes A, Band C.

Line 10 let the COM write the result to the output FIFO; and enables the COM

to generate "finish word". Line 11 breaks the feedback path created by Lines 6

and 7. Line 12 let the COM calculate [Accu] · D and write the result to the output

FIFO.

This is an example of executing pattern (c) (see section 5.1), and the dataflow

mode used by this example is shown in 5.2 (c) (see section 5.2.4).

Example 6.6. Let us assume two cubes A = c and B = bd, where a, b, c and d

are binary variables. We present a a COM assembly program to calculate the basic

sharp of cubes A and B: A#ba.aicB (Cube A is stored in the Accu and cube B is

stored in the data register).

Solution. The program is as follows:

1. enable enififod
2. set conf 100000100
3. set water 0000
4. set right 1111
6. set inst oo-1-o-o-0010-0011-0010-0011 basic sharp [Accu]#[Data]
6. set accu 11-11-10-11 cube A
7. exec 11-01-11-01 cube B

This example is the same as Example 6.4 except that it uses a different operation

on different operand cubes. This is an example of executing pattern (b) (see section

5.1), and the data:flow mode used by this example is shown in 5.2 (b) (see section

5.2.4).

Example 6. 7. Write a program in the COM assembly to calculate the basic sharp

operation of two cubes A and B: B #ba.aic A, where cubes A and Bare the same as

117

in the previous example (Again, cube A is stored in the Accu, and cube B is stored

in the data register).

Solution. It can be seen from the definition of sharp that (A #baaie B) -:f:. (B #bane A),

and B #bane A is not listed in Table 3.1. This is a "new" cube operation. This op

eration is very useful to execute the sharp operation on an array of cubes and a

cube.

The functions rel, bef, act and aft are 2 inputs Boolean function f(ai,bi)• The

4 output values of each function are corresponding to minterms ai~, a,b,, aJi and

aibi., respectively, where ai comes from operand cube stored in Accu, and bi comes

from operand cu be stored in data register.

Now, we want to perform sharp operation [DataJ#baaie[AccuJ (where [DataJ,

[Accu] represent the contents of data and Accu registers, respectively), therefore,

we have to substitute ai with bi and bi with ai in function f (ai, bi) in order to

obtain function /(bi, ai)- Its minterms are (bi is the most significant bit now): biai,
bi.ai, biai and biai, respectively. We have to use the format of f(ai, b,) to represent

f(bi, ai) in the instruction, and we can obtain it by swapping minterms ba and ba.

Therefore, we just swap second and third output values of the functions rel, bef,

act and aft. Therefore, only Line 5 of previous example needs to be changed. The

whole program is as follows:

1. enable enififod
2. set conf 100000100
3. set water 0000
4. set right 1111
6. set inst oo-1-o-o-0100-0101-0100-0101 basic sharp [Data]#[Accu]
6. set accu 11-11-10-11 cube A
7. exec 11-01-11-01 cube B

Example 6.8. Write a program in the CCM assembly to calculate basic sharp

operation: B #ba.aie A = (B1 B2 B3) # A = (ab, c) # bd, where B is an array of

3 cubes, A is a cube, and a, b, c and d are binary variables (Try to use as few

instructions as possible).

Solution. The program is as follows:

1. enable enififod
2. set cont 000000100
3. set vater 0000
4. set right 1111
6. set inst oo-1-o-o-0100-0101-0100-0101 basic sharp [Data]#[Accu]
6. set accu 11-11-10-11 cube A
7. exec 01-11-11-11 cube Bl
8. exec 11-01-11-11 cube B2
9. set cont 100000100 generate finish vord
10. exec 11-11-01-11 cube BS

This is an example of executing pattern (d) (see section 5.1).

Example 6.9. Write a program in the CCM assembly to calculate disjoint sharp

operation: A #dB= A #d (B1 +B2 +B3) 1 # (ab+ac+bc) where A is a cube,

B is a array of cubes, and a, b and c are three binary variables. Please note that

this example shows how to use the loop instruction.

Solution. The program is as follows:

1. set cont 000000000
2. enable enififoa
3. set addrb 0
4. disable enififoa
6. enable enififod
6. set vater 000
7. set right 111
8. set prpo 1-1110-10-o-0101--0-0100-01-o-oooo disjoint sharp [D]#d[A]
9. set inst 11-1-o-o-0100-0101-0100-0001 disjoint sharp [D]#d[A]

10. set accu 01-01-11 cube B1
11. set conf 001000001 vrite result to MEM_B
12. enable eniluB
13. disable MemBR'W
14. exec 11-11-11 cube Al
16. disable eniluB
16. enable enaddrb [AddrB] => [AddrR]
17. set addrr 0
18. disable enaddrb
19. enable enIFifoA
20. set addrb 0
21. disable enIFifoA
22. set accu 10-11-01 cube B2
23. disable enIFifoD
24. set conf 011101001 memB=>ILU=>memA
25. enable MemBR'W
26. disable MemAR'W
27. enable eniluA

119

28. loop 0
29. disable MemBRW
30. disable eniluA
31. enable enaddra [AddrA] => [AddrR]
32. set addrr O
33. disable enaddra
34. enable enIFifoA
36. set addra 0
36. disable enIFifoA
37. set conf 000000000
38. enable enIFifoD
39. set accu 11-10-10 cube B3
40. disable enIFifoD
41. set conf 110000100 memA=>ILU=>OFifo
42. enable MemARW
43. loop 0

This is a little bit more complex example. Lines 2 to 4 set AddrB to 0. Lines

5 to 9 set water right_edge, inst and prpo registers. Please note that this example

shows how to carry out pre-relation/pre-operation.

Lines 10 to 15 calculate A# B1 and write result (called fl here) to MEM-8

(please note that the result can not write to MEM..A at this time because the

execute instruction needs DBusA to load cubes A). The dataflow mode used in this

step is shown in Figure 5.2 (d) (see section 5.2.4).

Lines 16 to 30 calculate /l # Ba and write result (called /2) to MEM..A. This

is an example of using loop instruction. Now what we want to do is to calculate

the following operation:

fl# Ba= (ll1#Ba lla#Ba ...)

Because the array of cube fl is stored in memory bank MEM-8, we can use the

"loop" instruction to carry this out.

The loop instruction loads one cube from one of two memory banks (determined

by signal enMemA, enMemB, MemARWand MemBRW, see section 5.2) to the Data

register. Then the memory address pointer will be increased by 1, and the operation

currently set in the inst and the prpo registers is executed on two cubes stored in

Accu and Data registers. After the operation is done, the GCU checks if the loop

operation is done by comparing the content of AddrR with AddrA or AddrB. If their

contents are not the same, the GCU will load one cube from the memory to the

120

Data register again, and will repeat the whole process until the contents of AddrR

and AddrA (or AddrB) become the same.

The array of cubes ll is stored in MEM..B. For using loop instruction, we need

to set the content of AddrR to the number of cubes of Ji, which is currently stored

in AddrB. Lines 16 to 18 copy the content of AddrB to AddrR. After that, the

content of AddrB is set to O (Lines 19 to 21) to point the beginning of /l. Line 22

loads cube B2 into Accu.

The operation Jl#B2 is not the last operation of this example, and the result

will be used in the subsequent operation, therefore, the result array of cubes of the

operation will be stored in MEM_A. The dataflow mode used in this step is shown

in Figure 5.2 (f) (see section 5.2.4). Lines 23 to 27 set the data flow mode.

The loop instruction is issued in Line 28. Lines 29 and 30 remove the drivers

of buses DBv.sA and DBv.sB for the subsequent operation since the subsequent

operation will use different dataflow mode, which means that the driver of DBv.sA

and DBv.sB will be changed (remember for setting new bus driver, we have to

remove the previous driver first, see section 5.3.2).

Lines 31 to 43 calculate l2#B3 in the similar way with Lines 16 to 30. The

difference is that the GCU loads the array of cubes 12 from MEM_A, and write the

results to the output FIFO this time. By comparing to Line 16 to 30, Line 31 to

43 are not hard to understand. The dataflow mode used in this step is shown in

Figure 5.2 (e) (see section 5.2.4).

The operation 1#(ab + i.ie + be) = a.be + abc. This example is used as a test

program to test the entire CCM (see section 7.2.6).

Example 6.10. Write a program in the CCM assembly to calculate the following

operation:

A· B·C= (Ai +A2 +A3) · (Bi + B2 +B3) · (Ci +C2 +03)

= (ab+ be+ ed) •(be+ cd +ad)• (a+ b + e)

where A, B and C are three arrays of cubes, and a, b, e and d are four binary

variables.

121

Solution. The program is as follows:

1. set conf 000000000
2. enable enififoa
3. set addrb 0
4. disable enififoa
6. enable enififod
6. set water 0000
7. set right 1111
8. set inst oo-o-0-0-0000-0001-oooo-oooo intersection
9. set accu 01-01-11-11 cube A1

10. set conf 001000001 write result to HEH_B

11. enable eniluB
12. disable MemBRW
13. exec 11-01-01-11 cube B1
14. exec 11-11-01-01 cube B2
16. exec 01-11-11-01 cube B3
16. set accu 11-01-01-11 cube A2
17. e:r.ec 11-01-01-11 cube B1
18. exec 11-11-01-01 cube B2
19. exec 01-11-11-01 cube B3
20. set accu 11-11-01-01 cube A3
21. e:r.ec 11-01-01-11 cube Bl
22. e:r.ec 11-11-01-01 cube B2
23. e:r.ec 01-11-11-01 cube B3
24. disable eniluB
26. enable enaddrb [AddrB] => [AddrR]
26. set addrr 0
27. disable enaddrb
28. enable enIFifoA
29. set addrb 0
30. set conf 001101100 memB=>ILU=>0Fifo
31. enable MemBRW
32. set accu 10-11-11-11 cube C1
33. loop 0
34. set addrb 0
36. set accu 11-10-11-11 cube C2
36. loop 0
37. set addrb 0
38. set accu 11-11-10-11 cube C3
39. set conf 101101100 generate finish word
40. loop 0

This program is very straightforward. Lines 1 to 23 calculate A•ii and write

the results (called f) to MEM.13. Lines 24 to 38 calculate f. Cand write the result

to the output FIFO. This example is used as a test program to test the entire CCM

(see section 7.2.6), the result is also shown there.

122

CHAPTER 7

Simulation

A complete design of the Cube Calculus Machine version II (CCM2) is accom

plished in this thesis. This design is captured in VHDL and is simulated by Quick

HDL [44, 45], a VHDL/HDL simulator from Mentor Graphics. The functionality

of this design is tested and approved to be correct.

7.1 Design Capture

The design of CCM2 is captured in VHDL code hierarchically, which means

that the VHDL codes of the lower level design blocks were captured first, then

these blocks are tested (through simulation) and modifieq until their function was

proved to be correct. This way, the design bugs can be identified earlier and can be

fixed easier. Later, these blocks were used in the VHDL code of upper level design

blocks. Figure 7.1 shows the hierarchical structure of the CCM. The rectangular

boxes in the figure represent design blocks, their names and corresponding VHDL

file names (in parentheses) are shown in the boxes. The "other logic'' rectangular

box includes VHDL modes of some basic components, like D flip-flop, multiplexer

and others. Details about VHDL language can be found in [19, 20]; details about

how to use QuickHDL tool can be found in [45]. The VHDL code of this design is

available by contacting Dr. Perkowski (mperkows@ee.pdx.edu).

mailto:mperkows@ee.pdx.edu

123

Figure 7.1: Hierarchical structure of the CCM

7.2 Functional Verification

After the design of the CCM is captured, its functionality needs to be fully

tested to make sure that it does what it is supposed to. Functional verification of

the CCM was performed through simulation using the QuickHDL tool.

A test bench file (testccm.vhd) was created. This test bench file realizes CCM

assembly described in Chapter 6, which means that it accepts the CCM assembly

instructions as input instead of a "force" file, and prints out the resultant cube(s).

The test bench file greatly improves the efficiency of the functional verification.

Due to the VHDL not accepting variable-length strings, this test bench file always

uses "test.ccm" as the input file name, which means that the user has to rename

his/her CCM assembly program to "test.ccm" before he/she tests it.

The test bench is very simple, it just simulates the function of the host computer

(just interface part). The test bench contains two VHDL processes:

• Verify: This process reads one CCM instruction from file test.ccm, then en

codes this instruction into binary format and pushes it into the input FIFO

of the CCM. This procedure will be repeated until all CCM instructions in

file test.ccm are processed. This process simulates the host computer sending

CCM instructions to the CCM.

124

• Read Output FIFO: This process fetches the resultant cubes from the output

FIFO of the CCM. This process simulates the host computer receiving the

result from the CCM.

For more information about the test bench, please read Chapter 10 of [20].

A test plan was drafted to systematically verify the functionality of the CCM.

The test procedure is as follows:

• A single combinational operation (like Example 6.4) was selected to be tested

first because this is the simplest case.

• A single complex combinational operation without pre-relation/pre-operation

has been tested.

• A single complex combinational operation with pre-relation/pre-operation

had been tested.

• A single sequential operation without pre-relation/pre-operation had been

tested.

• A single sequential operation with pre-relation/pre-operation had been tested.

• Complicated programs shown in Examples 6.9 and 6.10 have been tested.

These two tests both perform multiple cube operations. The memory banks

and several data flow modes are also tested in these two tests.

This following section will represent some tests that we have performed. All

test programs (CCM assembly programs) are given in Appendix A, except the last

two tests.

7.2.1 Simple combinational cube operation

This test is to test an intersection operation. TESTl.A tests an intersection

operation which creates a resultant cube. TESTl.B tests an intersection operation

which creates a contradiction.

125

IIUI Qint stap stap Over 8n!al<- 11
::S·:QHSIM 1 > run -all

II Initialize the CCM ...
11 [Time: 1OS nsl read command
II 1.11 Test intersection operation
II [Time: 1OS ns] read command
11 2. II Chen. Qlhong. 1/16/98
II [Time: 105 ns] read command
II 3.11
II [Time: 105 ns] read command
II 4. II A • (a b), B • (b lo
II [Time: 105 ns] read command
II 5.
II [Time: 105 ns] read command
II 6. set cont 100000100
II encoded command Is 00111000000000000000000100000100
II [Time: 205 ns] read command
11 7. enable enififod
11 encoded command is 00010110000000000000000000000000
II [Time: 305 ns] read command
II 8. set water 000
11 encoded command is 00101100000000000000111111111111
11 [Time: 405 nsl read command
II 9. set right 111
II encoded command Is 00110000000000000111000000000000
II [Time: 505 ns] read command
II 10. set inst oo--0-0-0-0000-0001-oooo-oooo ; intersection
II encoded command is 00110100000000000000000100000000
II [Time: 605 ns] read command
II 11. setaccu 01-01-11 ; cube A
II encoded command is 01010111000000000000000000000000
II [Time: 705 ns] read command
II 12. esec 11-01-10 ;cubeB
II encoded command is 10110110000000000000000000000000
11 [Time: 2600 nsJ result cube (No.1): 00-01011000-00000000-oooooooo-oooooo
II [Time: 2700 ns] result cube (No.2): 10-01011000-00000000-00000000-000000
II Time: 2805 ns
II - Note: Simulation is done.
II Time: 2805 ns Iteration: O Instance:/
II Break at src/testccm.vhd line 529

IL.Q_H_S-,IM:-:-2>...,,....-,,....,.-------------------------···_I
, Now: 2,805 ns Delta: o

Figure 7.2: The simulation of Testl

TESTl.A

Example 2.4 is used as the test operation. The screen of the simulation is shown

m Figure 7.2. As shown in the figure, every line read from file "test.ccm" shows

on the simulation window, and if the input line is a valid instruction, its encoding

shows on the simulation windows too. There are two resultant cubes for this test

(near the bottom of the figure):

result cube (No.1): 00-01011000-00000000-00000000-000000

result cube (No.2): 10-01011000-00000000-00000000-000000

If the highest 2 bits of the resultant cube are "00", then the lower 30 bits are the

resultant cube; if the highest 2 bits of the resultant cube are "10", then this word

represents the "finish word" (see section §5.3, Execute instruction). For this test,

126

the first resultant cube is a valid resultant cube which represents abc; the second

resultant cube is the "finish word". This result is correct.

TESTl.B

Example 2.18 is used as a test operation. This test just produces a "finish word"

which means there is no resultant cube, and it is correct.

7.2.2 Complex combinational operation without pre-relation

This test is to test a cofactor operation. Example 2.8 is used as the test opera

tion. There are two resultant cubes for this test:

result cube (No.1): 00-11010000-00000000-00000000-000000

result cube (No.2): 10-11010000-00000000-00000000-000000

which means that the resultant cube is x2, and it is correct.

7.2.3 Complex combinational operation with pre-relation

This test is to test a consensus operation. TEST3.A tests first pre-relation/pre

operation (distance(A, B) = 0). TEST3.B tests second pre-relation/pre-operation

(distance(A, B) > 1). TEST3.C test the basic consensus operation (distance(A, B) =
1).

TEST3.A

Assuming two cubes A = x 1x3 and B = x 1:f2, where x 1, x2, x3 and x4 are binary

variables. Because the distance of cubes A and Bis 0, then the consensus of cubes

A and Bis: A * B =An B = x 1x2 x3 • The outputs of the simulation are:

result cube (No.1): 00-01101011-00000000-00000000-000000

result cube (No.2): 10-01101011-00000000-00000000-000000

which is correct.

127

TEST3.B

Assuming two cubes A = i"1z2i"3 and B = :z:1£2 , where :z:1, z2, :z:3 and :Z:4 are

binary variables. Because the distance of cubes A and Bis 2 (> 1), then there is

no consensus of cubes A and B. The output of the simulation is a "finish word",

which is correct.

TEST3.C

Example 2. 7 is used as the test operation. There are two resultant cubes for

this test:

result cube (No.1): oo-01111011-00000000-oooooooo-oooooo
result cube (No.2): 10-01111011-00000000-oooooooo-oooooo

which means that the result cube is :z:1£3 , and it is correct.

7.2.4 Test sequential cube operation without pre-relation

This test is to test a crosslink operation. Example 2.9 is used as the test

operation. There are two resultant cubes for this test:

result cube (No.1): oo-11111011-00000000-oooooooo-oooooo
result cube (No.2): oo-01111111-00000000-oooooooo-oooooo

result cube (No.3): 10-01111111-00000000-00000000-000000

which means that the result cubes are x3 and :z:1 , and it is correct.

7.2.5 Test sequential cube operation with pre-relation

This test is to test disjoint sharp operation. TEST3.A tests first pre-relation/pre-

operation (An B = 0). TEST3.B tests second pre-relation/pre-operation (A~ B).

TEST3.C tests the basic disjoint sharp operation.

TESTS.A

Assuming two cubes A X3 and B = :z:2:z:3:z:4 , where :z: 1 , :z: 2 , :z:3 and :z:4 are binary

variables. Because A n B !1S, then the disjoint sharp A #dB = A. The outputs

128

of the simulation are:

result cube (No.1): 00-11111011-00000000-00000000-000000

result cube (No.2): 10-11111011-00000000-00000000-000000

which means that the resultant cube is x3 (cube A), and it is correct.

TEST5.B

Assuming two cubes A = x 1x 2x3 and B = x 1x 2 , where x1 , x 2 , x 3 and x 4 are

binary variables. Because A ~ B, then the disjoint sharp A #dB = 121. The output

of the simulation is a "finish word", which is correct.

TEST5.C

Example 2.11 is used as the test operation. There are two resultant cubes for

this test:

result cube (No.1): 00-11101011-00000000-00000000-000000

result cube (No.2): 00-11011010-00000000-00000000-000000

result cube (No.3): 10-11011010-00000000-00000000-000000

which means that the resultant cubes are x2 x3 and x 2 x3 x4 , and it is correct.

7.2.6 Test two complex cases

This test is to test cube operation on array of cubes. The memory read/write

operations and several data flow modes are verified in this test.

TEST6.A

Example 6.9 is used as the test operation. There are three resultant cubes for

this test:

result cube (No.1): 00-10011000-00000000-00000000-000000

result cube (No.2): 00-01100100-00000000-00000000-000000

result cube (No.3): 10-00000000-00000000-00000000-000000

There are one "finish" words and two valid resultant cube abc and abc, which means

l#(ab + ac + be) =ii.be+ abc, and it is correct.

129

TEST6.B

Example 6.10 is used as the test operation. Let us multiply out the function

manually first:

(ab+ be+ cd)(bc +cd +ad)(a +b+ c)

= (abc +abed+ abd +be+ bed+ abed+ bed+ cd +acd)(o. +b+c)

= a.be +abed +abed + o.cd +
barbed +abed +
abed

Therefore, there are 7 cubes in the result array of cubes. Please note that the

duplicated cubes are not removed, and the function is not simplified. The simulation

produced 8 resultant cubes for this test:

result cube (No.1): 00-10010111-00000000-00000000-000000

result cube (No.2): oo-10010101-00000000-oooooooo-oooooo
result cube (No.3): oo-10010101-00000000-oooooooo-oooooo
result cube (No.4): oo-10110101-00000000-oooooooo-oooooo
result cube (No.5): oo-11100101-00000000-oooooooo-oooooo
result cube (No.6): oo-01100101-00000000-oooooooo-oooooo
result cube (No.7): oo-01011001-00000000-oooooooo-oooooo
result cube (No.8): 10-oooooooo-oooooooo-00000000-000000

The resultant array of cubes is correct.

130

CHAPTER 8

Design Evaluation

The design of CCM was captured using schematic editor of Xilinx Foundation

Series software, and was implemented on 17 Xilinx XC3090A FPGA chips (see

Figure 5.11) using Ml software from Xilinx. Now that the CCM has been verified

in its operation, a proper timing analysis must be done to evaluation of the design

of the CCM.

Since our design was mapping on multiple FPGA chips, we will focus on some

paths that span multiple FPGA chips and are likely to have greater delays. The

following paths will be discussed in this section:

• The path begins from the outputs of registers accu and data, and goes to the

input of the output FIFO. The delay of this path is the time that the CCM

takes to compute a combinational cube operation once the content of registers

are set properly. This path will be refereed as vertical path1 in the following

section.

• The counter carry path includes the entire iterative network of counter blocks

and the circuit that is used to evaluate pre-relation. The delay of this path

is the time that the CCM takes to evaluation the signal pre_res (see section

3.7) once the registers and control signals are set properly.

• The empty carry path is the data path used to generate signal empty. The

delay of this path is the that time the CCM takes to generate the result cube,

1This path just goes through one IT, while the horizontal signals like empty and ready go
through all ITs.

131

and then determine whether the resultant cube is an empty cube or not once

the registers and control signals are set properly.

• The memory path connects two memory banks (MEM..A and MEM_b) and

the registers accu. and data.

The delay of the ready signal will not be discussed here since our design is

already able to handle it (see section 3.3.3). Actually, the delay of ready signal

is approximate to that of the empty carry path. Now let us analysis the time

characteristics of these paths.

• The vertical path.

All ITs are mapped in the first column of the matrix of the PeRLe-1 . The

output of the ITs (resultant cubes) goes to the output FIFO through MBusE,

SWE, DBusNE, FSW and FifoOutData. The delay of 385 ns is the greatest

delay of this path.

• The counter carry path.

This path goes to CSW through 4 matrix FPGAs, 3 segments of matrix direct

connections, MBusS, SWS and RingSW. The delay of 643 ns is the greatest

delay of this path.

• The empty carry path

This path goes to CSW through 4 matrix FPGAs, 3 segments of matrix direct

connections and RingMat. The delay of 648 ns is the greatest delay of this

path.

• The memory path.

The memory path that connects the memory bank MEM..A and the registers

goes through RamDataW, SWW and MBusW. This path has a delay of 104

ns. The other memory path that connects the memory bank MEM..B and

the registers goes through MBusE, one matrix FPGA, MBusS, SWS and

RamDataS. This path has a delay of 160 ns.

132

As we discussed in section 5.4, the CCM evaluates pre-relation in states P2 and

P5 of GCU, and this should be done in one clock period. Therefore, the clock

period should be greater than 643ns.

For comparing the performance of the CCM and that of the software approach,

a program can carry out disjoint sharp operation on two arrays of cubes was created

using C language. Then this program and the CCM are used to solve the following

problems:

• Three variables problem: 1# (all minterm with 3 binary variables).

• Four variables problem: 1# (all minterm with 4 binary variables).

• Five variables problem: 1# (all minterm with 5 binary variables).

The C program is compiled by GNU C compiler version 2. 7.2, and is run on

Sun Ultra5 workstation with 64MB real memory. The CCM is simulated using

QuickHDL software from Mentor Graphics. We simulated the VHDL model of

CCM, got the number of clocks used to solve the problem, then calculated the time

used by CCM using formula: clock x clock-period. A clock of 1.33 MHz (clock

period: 750 ns) is used as the clock of the CCM. The experiential result is shown

in Table 8.1.

Table 8.1: Compare CCM (1.33 MHz) with software approach

Problem 3 variables 4 variables 5 variables

Ultra5 111 usec 268 usec 812 usec

CCM 546 X 0.75

= 409 usec

1285 X 0.75

= 963. 75 usec

3405 X 0.75

= 2553. 75 usec

speedup 0.27 0.28 0.32

It can be seen from Table 8.1 that our CCM is about 4 times slower than the

software approach. But, the clock of the CPU of Sun Ultra5 workstation is 270

MHz, which is 206 times faster than the clock of the CCM. Therefore, we still can

say that the design of the CCM is very efficient for cube calculus operations.

133

It also can be seen from Table 8.1 that the more variables the input cubes have,

the more efficient the CCM is. This is due to the software approach need to iterate

through one loop for each variable that is presented in the input cubes.

However, the clock period of 750ns is too slow. From the state diagram of the

GCU (shown in Figure 5.10), it can be found that the delays of empty carry path

and counter carry path only occur in a few states. Thus, if we can just give more

time to these states, then we can speedup the clock of the whole CCM. This is

very easy to achieve: for example, the state P2 of GCU need more time for the

delay of counter carry path, so add two more states in series between states P2 and

P3. These two extra states do nothing but give the CCM two more clock periods

to evaluate the signal preLres, which means that the CCM has 3 clock periods to

evaluate signal preLres in state P2 after adding two more "delay" states. After

making similar modifications to all these kind of states, the CCM can run against

a clock of 4 Mhz (clock period of 250 ns). The CCM was simulated again, and the

result is shown in Table 8.2.

Table 8.2: Compare CCM (4MHz) with software approach

Problem 3 variables 4 variables 5 variables

Ultra5 111 usec 268 usec 812 usec

CCM 611 X 0.25

152.75 usec

1486 X 0.25

= 371.5 usec

4078 X 0.25

= 1019.5 usec

speedup 0.72 0.72 0.80

It is very hard to increase the clock frequency again with this mapping because

some other paths like memory path have delays greater than 150 ns.

From the above comparison result, I have to say that a design like CCM with a

complex control unit and complex data path is not good for the architecture of the

PeRLe-1 board. It can be seen from our CCM mapping that since a lot of signals

must go through multiple FPGA chips, this leads to greater signal delays. For

instance, if we can connect the memory banks a.nd the registers directly, then the

memory pa.th ha.s a delay of only 35 ns. But our current memory path ha.s a. delay

134

of 160 ns. Another issue is that XC3090 FPGA is kind of "old" now (6 to 8 years

old technology). The latest FPGA from Xilinx or other vendors has more powerful

CLBs and more routing resource, and they are made using deep sub-micron process

technology.

If we can map the entire CCM inside one FPGA chip, then we can speedup the

CCM from the following aspects:

• If we map entire CCM into one FPGA chip, the signals do not need to go

through multiple chips again, which means the routing delay is reduced.

• Since the new FPGA chip has more powerful CLBs and routing resource, we

can map the CCM denser. This also reduces the routing delays.

• Since new FPGA chips are made using deep sub-micron technology, the delay

of CLB and routing wires are both reduced. For example, the delay of the

CLB of XC3090A is 4.5 ns while the delay of CLB of XC4085XL (0.35 micron

technology) is only 1.2 ns. This means that it is very easy to achieve 3 times

faster mapping.

XC4085XL FPGA, a new FPGA from Xilinx, has a CLB matrix of 56 x 56 and

up to 448 user I/0 pins. The CCM should be able to map into one XC4085XL

FPGA. With this new chip, it should not be difficult to run the CCM against a

clock of 20 MHz (clock period: 50 ns). This means that our CCM will be about 4

times faster than the software approach while the system clock of the CCM is still

5 times slower than that of the workstation.

As said by the designers of the PeRLe-1 board in paper [9]: PAM technology

is currently best applied to low-level, massively repetitive task such as image or

signal processing. The example applications are a long integer multiplier, RSA

cryptography and Fast Hough transform [9]. All these applications have no or very

simple control units, and their data paths can be easily pipelined.

The CCM has a complex control unit, and a complex data path. It is difficult

to pipeline the data path of the CCM. Therefore, the PeRLe-1 board is not good

for the CCM.

135

CHAPTER 9

Applications of Cube Calculus Machine

Many logic minimization software tools such as ESPROSS0[37], MIS, SIS[38]

and EXORCISM-MV-2[16, 32] may benefit from the introduction of the CCM.

David W. Foote analyzed how much the CCM can improve the performance of

ESPRESSO-II in his thesis[l 7].

The CCM can be used to perform set operation, like set intersection, set union,

set complement, and set relations such as subset as we discussed in Chapter 2. The

CCM can be seen as a machine for set-theoretical problems when it is configured

to process only one variable with many possible values. The Examples 2.12 to 2.15

are this kind of examples.

The CCM can also speed up the process of solving small size of the satisfiability

problem and the tautology problem1 that are the two most fundamental combina

tional problems used in many research and application areas. As shown in [53],

these two problems can be used to solve many other more complicated problems in

CAD, Machine Learning and other fields. The point here is that we speed up the

process of solving small size of these two problems by speeding up the very basic

operator.

1Both satisfiability problem and tautology problem are NP-complete problem, which means we
are unlikely to find a polynomial-time algorithm for solving it exactly. In practice, only small size
NP-complete problems can be solved and it may still be possible to find near-optimal solutions
in polynomial-time using approximation algorithm, and the near-optimal solutions is often good
enough. For more information about NP-complete problem, please see [54].

136

9.1 Satisfiability Problem

Given a product of terms, each term being a Boolean sum of literals; the sat

isfiability problem is to find any product of literals that satisfies all terms or prove

that such product does not exist.

Example 9.1. Find all products of literals that let function f (a, b, c, d) (a +
b)(b + c)(a + c) be L

Solution. It is very easy to rewrite this problem by multiplying out the expression

as follows:

f(a,b,c,d) = (a+b)(b+c)(a+c)

= (ab+ ac +bc)(a +c)

= abc+ abc

The Covering Problem is used in many two level logic minimization algorithms

(being various improvements and extensions of the classical Quine-McCluskey

algorithm[23]) and it can be reduced to the Petrick Function Minimization Prob

lem, a special case of satisfiability problem. This means that the Covering Problem

can be solved by minimizing the Petrick Function. Let us see the following example.

Example 9.2. The following is a covering table. The problem is to find the smallest

set of rows that covers all columns.

C1 G2 03 04 Cs Cs

R1 X X X X

R2 X X X

R3 X X

~ X X

Solution. First, let us find all sets of rows that cover all columns. The column

C1 is covered by rows R1 and R3 ; the column 0 2 is covered by rows R1and R3 ; the

column C3 is covered by rows R2 and ~; the column 0 4 is covered by rows R1 and

R2; the column Cs is covered by row~; the column Cs is covered by rows R1 and

137

R2 ; Therefore, the problem can be solved by solving the following Petrick function

(PF):

PF= 1 =(R1 + R3)(R1 + R3)(R2 + ~)(R1 + R2)(R4)(R1 + R2)

=(R1 + R3)(R2 + ~)(R1 +R2)(~)

=(R1R2 +R1~ + R2R3 + R3~)(R1 + R2)(R4)

The last sum shows that there are five sets of rows that cover all columns: {R1,~},

{R1,R2,~}, {R1,R3,~}, {R2,R31~} and {R1,R2,R3,~}. Now use the absorption

law A+AB = A to simplify the decision function and obtain PF= R1R4 +R2R3~,

which means {Ri,~} is the smallest set of rows that covers all columns.

The above example shows how to reduce the Covering Problem to the Petrick

function problem. The CCM can be used to multiply out the function, then the

function can be simplified by the software or Sorter/Absorber circuitry designed by

Dr. Perkowski and his students[39]. It has to be kept in mind by the reader that

CCM was designed because real life covering problems have matrices with hundreds

of thousands of rows and columns. Because, however the number of variables in

the CCM is limited, a large problem has to be first decomposed to many smaller

problems that fit the CCM word length and can be solved by it sequentially.

9.2 Tautology Problem

The tautology problem is the verification a logic function to see if it is always

true or not.

Example 9.3. Is the function f(a, b, c, d) = a + b + c +d a tautology (always be

1)?

Solution. If the function J(a,b,c,d) = 1, this implies that l#J(a,b,c,d) = 0,

and the function J(a, b, c, d) is a tautology. If 1# f(a, b, c, d) =/:- 0, then the function

J(a, b, c, d) is not a tautology.

138

Because 1#(a +b + c +d) a.bed =f O, then the function f (a, b, c, d) is not a

tautology. The CCM assembly program used to solve this problem is very similar

to the Example 6.9.

139

CHAPTER 10

Conclusions and Future Work

The concept of Cube Calculus, Cube Calculus Machine and a complete design of

the Cube Calculus Machine have been presented. This is the first complete design

of the CCM that has been done so far.

The design of the IL U presented in this thesis is a collaboration of many stu

dents' ideas over the years. I have evaluated two designs from past texts [15, 17, 18]

and made some very important changes (like EMPTY block, Pre-relation/pre

operation logic block).

The author's contributions to the CCM project are outlined below in the manner

in which the project pieces were completed.

• Design a complete CCM which is presented in this thesis. For the most part

of ILU comes from past texts [15, 17, 18], all other parts have been designed

by the author. The pre-relation/pre-operation that were missing in past texts

[15, 17, 18] have been designed by the author.

• Modeled the CCM in VHDL code and simulated it using QuickHDL tool from

Mentor Graphics. This is the first simulation of the entire CCM.

• Created CCM assembly language for the CCM and realized it in the test

bench. This made the VHDL model of the CCM a research tool. Future

students can explore cube operations by using this model with having the

knowledge of the encoding scheme of the CCM instructions, but they still

need to think in terms of registers and individual instructions of the CCM.

There are several complete examples given in this thesis, and they can be

used as a tutorial.

140

• Improve and unify the descriptions of cube calculus from previous texts.

• Wrote an introduction to the DEC PeRLe-1 board.

• Derived the formula to calculate cofactor operation by using cube calculus.

The result is shown in Equation 2.11.

• Mapped this design onto the PeRLe-1 board. The entire design has been

captured using Xilinx Foundation software, and has been implemented in 17

XC3090A FPGA chips using Xilinx Ml software.

Suggestions are made here for future work that will build a ready-to-use Cube

Calculus Machine.

• Develop the CCM runtime library (see section 6.1). DEC C++ compiler is

required.

• Build several complete demo applications of practical use such as tautology,

satisfiability, or set covering.

• Run the demos on benchmark functions.

141

REFERENCES

[1] J. Villasenor and W. H. Mangione-Smith Configurable Computing, Scientific

American, June 1997.

[2] URL http://www.reconfig.com/

[3] URL http://www.fccm.org/

[4] URLhttp://www.ccic.gov/pubs/blue97 /nsa/splash.html

[51 URL http://pam.devinci.fr/

[6] URL http://www.research.digital.com/PRL/publications/pam.html

[7] P. Bertin, D. Roncin, and J. Vuillemin, Introduction to Programmable Active

Memories, PRL Research Report 3, Digital Equipment Corp., Paris Research

Lab, June 1989.

[81 P. Bertin, D. Roncin, and J. Vuillemin, Programmable Active Memories: a

Performance Assessment, PRL Research Report 24, Digital Equipment Corp.,

Paris Research Lab, March 1993.

[9] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard,

Programmable Active Memories: Reconfigurable Systms Come of Age, IEEE

Transactions on VLSI System, Vol 4, No. 1, pp.56-69, March 1996.

[10] P. Bertin and P. Boucard, DECPeRLe-1 Hardware Installation Manual, Paris

Research Laboratory, Digital Equipment Corp., January 1993.

[11] P. Bertin and P. Boucard, DECPeRLe-1 Hardware Programmer's Manual,

Paris Research Laboratory, Digital Equipment Corp., January 1993.

http://www.research.digital.com/PRL/publications/pam.html
http://pam.devinci.fr
https://URLhttp://www.ccic.gov/pubs/blue97
http://www.fccm.org
http://www.reconfig.com

142

(
i

[12] P. Bertin, DECPeRLe-1 Software Version 1.2 Installation Guide and General

Description, Paris Research Laboratory, Digital Equipment Corp., January

1993.

[13] Paris Research Laboratory, Digital Equipment Corp., DEGPeRLe-1 Introduc

tory Tutorial► April 1993

[14] H. Touati, PerlelDC: a C++ Library for the Simulation and Generation of

DEGPeRLe-1 Designs, PRL Technical Note 4, Digital Equipment Corp., Paris

Research Lab, February 1994.

[15] C. Engelbarts, The Multiple-valued Cube Calculus Machine Version 2.5, Dept.

of Electrical Engineering, Portland State University, August 1993.

[16] N. Song, Minimization of Exclusive Sum of Products Expressions for Multiple

valued Input Incompletely Specified Functions, Master thesis, Dept. of Electri

cal Engineering, Portland State University, 1993.

[17] D.W. Foote, The design, realization and testing of the !LU of the CCM2 us

ing FPGA technology, Master thesis, Department of Electrical Engineering,

Portland State University, 1994.

[18] L. Zhou, Testability Design and Testability Analysis of Cube Calculus Machine,

Master thesis, Dept. of Electrical Engineering, Portland State University, 1995.

[19] S. Mazor and P. Langstraat, A Guide to VHDL, 2nd edition, Kluwer Academic

Publishers, Boston, 1993.

[20] K. Skahill, VHDL for Programmable Logic, Addison-Wesley Publishing Inc.,

Reading, Massachusetts, 1996.

[21] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, New York,

1978.

[22] C.H. Roth, Fundamentals of Logic Design, 4th edition, West Publishing Com

pany, St. Paul, 1992.

143

I

[23] 0. Coudert, Two-level Logic Minimization: an Overview, Integration, the VLSI

Journal, Vol. 17, No. 2, pp. 97-140.

[24] R.G. Casey and C. Delobel, Decomposition of a Database and the Theory of

Boolean Switching Functions, IBM Journal Research and Development, Vol.

17, No. 5 (Sep. 1973), pp. 374-386.

[25] L.C. Farrell and M.E. Balogh, An Application of Boolean Minimization to

Database Normalization, Technical Report, No. TR-90-25, Department. of

Computer Science, Portland State University.

[26] T. Downs and M.F. Schulz, Logic Design with Pascal Computer-Aided Design

Techniques, Van Nostrand Reinhold, New York, 1988.

f
[27] D.L. Dietmeyer, Logic Design of Digital Systems, 2nd Edition, Allyn and Ba

con, Boston, 1978

[28] M.E. Ulug and B.A. Bowen, A Unified Theory of the Algebraic Topological

Methods for the Synthesis of Switching Systems, IEEE Transaction on Com

puters, Vol. C-23, No. 3 (Mar. 1974), pp. 255-267.

(29] M. Helliwell and M.A. Perkowski, A Fast Algorithm to Minimize Multi-output

Mixed-polarity Generalized Reed-Muller Forms, Proc. 25-th ACM/IEEE De

sign Automation Conference, pp.427-432, Jun 12-15, 1988.

[30] M.A. Perkowski, M. Helliwell and P. Wu, Minimization of Multiple-valued

Input Multi-output Mixed-radix Exclusive Sum of Products for Incompletely

Specified Boolean Functions, Proc. of the 19th International Symposium on

Multiple-Valued Logic, pp. 256-263, May 1989.

[31] M.A. Perkowski, A Universal Logic Machine, Proc. of the IEEE ISMVL'92,

the 21st International Symposium on Multiple-Valued Logic, Sendai, Japan,

May 27-29, 1992, pp. 262-271.

144

[32] N. Song and M.A. Perkowski, EXORCISM-MV-2: Minimization of Exclusive

Sum of Products Expression for Multiple-valued Input Incompletely Specified

Boolean Functions, Proc. of the 23th International Symposium on Multiple

Valued Logic, pp. 132-137, May 24-27, 1993.

[33] G.D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms,

Kluwer Academic Publishers, Boston, 1996.

[34] J.P. Roth, Computer Logic, Testing, and Verification, Computer Science Press,

Potomac Maryland, 1980.

[35} R.R. Stoll, Set Theory and Logic, Dover Publications, Inc., New York, 1979.

[36} K. Hrbacek and T. Rech, Introduction to Set Theory, Marcel Dekker, Inc., New

York, 1984.

[37} R.K. Brayton, G.D. Hachtel, C.T. McMullen and A.L. Sangiovanni-Vincentelli

Loigc Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publish

ers, Boston, 1984.

[38) E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A.Saldanha, H.

Savoj, P.R. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli, SIS: A

System for Sequential Circuit Synthesis, Technical Report Memorandum No.

UCB/ERL M92/41, University of California Berkeley, 1992.

[39) P. Kashubin, A. Ojha and E. Tuers, An Scaleable Minterm Sorter/Absorber

Using Iterative Circuit Techniques, Project report, Dept. of Electrical Engi

neering, Portland State University, Spring 1997.

[40} C. Files, R. Drechsler, and M.A. Perkowski, Functional Decomposition of

MVL Functions using Multi- Valued Decisions Dragrams, Proc. of the IEEE

ISMVL'97, Halifax, Nova Scotia, May 1997, pp. 27-32.

[41} M.A. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S. Grygiel, M.

Nowicka, R. Malvi, Z. Wang, and J.S. Zhang, Decomposition of Multi- Valued

145

Relations, Proc. of the IEEE ISMVL'97, Halifax, Nova Scotia, May 1997, pp.

13-18.

[42] S. Mohamed, M.A. Perkowski, and L. Jozwiak, Fast Approximate Minimization

of Multi-Output Boolean Functions in Sum-of-Condition-Decoders Structures,

Proc. Euromicro'97, September 1997.

[43] N. Song and M.A. Perkowski, New Fast Approach to Approximate ESOP Min

imization for Imcompletely Specified Multi-Output Boolean Functions, Proc.

RM'97 Conference, Oxford Univ., U.K., September 1997, pp 61-72.

[44] QuickHDL Release Notes, Software Version 8.5-4.6c, Mentor Graphics Corpo

ration, Wilsonville, OR, 1996.

[45] QuickHDL User's and Reference Manual, Software Version 8.5-4.6c, Mentor

Graphics Corporation, Wilsonville, OR, 1996.

[46] XILINX: The Programmable Logic Data Book, Xilinx Inc., San Jose, CA, 1994.

[47] XILINX: User Guide and Tutorials, Xilinx Inc., San Jose, CA, 1991.

[48] XILINX: XAPP Applications Handbook, Xilinx Inc., San Jose, CA, 1992.

[49] Quick Start Guide for Xilinx Alliance Series 1..4, Xilinx Inc., San Jose, CA,

1997.

[50] Development System User Guide for Xilinx Alliance Series 1.4, Xilinx Inc.,

San Jose, CA, 1997.

[51] Xilinx Library Guide, Xilinx Inc., San Jose, CA, 1997.

[52] Dave Van Den Bout, The Practical Xilinx Designer Lab Book, Prentice Hall

Inc., New Jersey, Dec. 1997.

[53] M.A. Perkowski's book in preparation on Finite State Machine, winter 1998.

https://8.5-4.6c
https://8.5-4.6c

146

[54} Thomas H. Carmen, Charles E. Leiserson, and Ronald L. Rivest, Introduction

to Algorithms, The MIT Press and McGraw-Hill Book Company, Cambridge,

Massachusetts, 1989.

147

APPENDIX A

Test Programs

All CCM assembly programs listed in this appendix are used to test the func

tionality of our CCM design, see section 7.2 for detail.

TESTl.A
Test intersection operation
Chen, Qihong, 1/16/98

#A= (ab), B = (b /c)

set conf 100000100
enable enififod
set water 000
set right 111
set inst oo-o-0-0-0000-0001-oooo-oooo intersection
set accu 01-01-11 cube A
exec 11-01-10 cube B

TESTl.B

Test intersection operation
Chen, Qihong, 1/16/98

set conf 100000100
enable enififod
set water 00
set right 11
set inst oo-o-0-0-0000-0001-oooo-oooo intersection
set accu 01-01 cube A
exec 01-10 cube B

TEST2

Test cofactor operation
Chen, Qihong, 1/16/98

set conf 100000100

148

enable enififod
set water 00
set right 11
set inst oo-o-1-1-1011-0001-1111-oooo cofactor
set accu 01-01 cube A
exec 01-11 cube B

TEST3.A
Test consensus operation
Chen, Qihong, 1/16/98

set conf 100000100
enable enififod
set water 0000
set right 1111
set prpo 1-1110-01-o-0001--1-1110-10-1-oooo consensus
set inst 11-o-1-1-1110-0001-0111-oooo consensus
set accu 01-11-10-11 cube A
exec 01-10-11-11 cube B

TEST3.B
Test consensus operation
Chen, Qihong, 1/16/98

set conf 100000100
enable enififod
set water 0000
set right 1111
set prpo 1-1110-01-o-0001--1-1110-10-1-oooo consensus
set inst 11-o-1-1-1110-0001-0111-oooo consensus
set accu 10-01-10-11 cube A
exec 01-10-11-11 cube B

TEST3.C
Test consensus operation
Chen, Qihong, 1/16/98

set conf 100000100
enable enififod
set water 0000
set right 1111
set prpo 1-1110-01-o-0001--1-1110-10-1-oooo consensus
set inst 11-o-1-1-1110-0001-0111-oooo consensus
set accu 01-01-10-11 cube A
exec 01-10-11-11 cube B

TEST4

149

Test crosslink operation
Chen, Qihong, 1/16/98

set conf 100000100
enable enififod
set water 0000
set right 1111
set inst oo-1-o-1-1110-0011-0111-0101
set accu 10-11-10-11
exec 01-11-01-11

TESTS.A
Test disjoint sharp operation
Chen, Qihong, 1/16/98

set conf 100000100
enable enififod
set water 0000
set right 1111
set prpo 1-1110-10-0-0011--o-0010-01-o-oooo
set inst 11-1-o-o-0010-0011-0010-0001
set accu 11-11-10-11
exec 11-01-01-01

TEST5.B
Test disjoint sharp operation
Chen, Qihong, 1/16/98

set conf 100000100
enable enififod
set water 0000
set right 1111
set prpo 1-1110-10-0-0011--o-0010-01-o-oooo
set inst 11-1-o-o-0010-0011-0010-0001
set accu 01-01-10-11
exec 01-01-11-11

TEST5.C
Test disjoint sharp operation
Chen, Qihong, 1/16/98

set conf 100000100
enable enififod
set water 0000
set right 1111
set prpo 1-1110-10-o-0011--0-0010-01-o-oooo
set inst 11-1-o-o-0010-0011-0010-0001
set accu 11-11-10-11
exec 11-01-11-01

cross link
cube A
cube B

disjoint-sharp [A]#[D]
disjoint-sharp [A]#[D]
cube A
cube B

disjoint-sharp [A]#[D]
disjoint-sharp [A]#[D]
cube A
cube B

disjoint-sharp [A]#[D]
disjoint-sharp [A]#[D]
cube A
cube B

150

APPENDIX B

VHDL Codes

iLident.vhd
The identify block of IT.

Signals:
rel: 4 bits output value of partial relation function.
a: two bits from operand literal A.
b: two bits from operand literal B.
and_or: and_or signal
redge: re[i), right edge signal
redge_pre: re[i-1), right edge signal
water: w(i], water signal
carry: carry[i], carry signal
carry_nxt: carry[i+l], carry signal
conf: conf(i], confirm signal
conf_pre: conf[i-1], confirm signal
count: count[i], count signal

library ieee;
use ieee.std_logic_1164.all;
use work.all;
use work.parts.all;

entity it_identify is
port(rel: in std_logic_vector (0 to 3};

a, b: in std_logic_vector (0 to 1};
and_or, water: in std_logic;
redge, redge_pre: in std_logic;
carry, conf: in std_logic;
carry_nxt, conf_pre, var: out std_logic;
count : out std_logic

} ;
end;

architecture dataflow of it_identify is

signal u0sel, ulsel: std_logic_vector (1 downto 0);
signal rel0, rell, i_carry_nxt, i_conf_pre, i_var: std_logic;

151

begin

uOsel <= a(O) I b(O);
UO: parts.mux41 port map (din=>rel, sel=>uOsel, dout=>relO);

ulsel <= a(1) I b(1);
U1: parts.mux41 port map (din=>rel, sel=>u1sel, dout=>rel1);

i_carry_nxt <= ((not water)
and ((relO and rel1 and redge_pre)

or (relO and rel1 and carry)
or (carry and (not redge_pre) and (not and_or))
or ((relO or rel1) and (not and_or))

)
)

or (water and carry) after 2 ns;

i_conf_pre <= (i_carry_nxt and redge) or (conf and (not redge)) after 2 ns;

i_var <= i_conf_pre and (not water) after 2 ns;

carry_nxt <= i_carry_nxt;

conf_pre <= i_conf_pre;

count<= i_var and redge and (not water) after 2 ns;

var <= i_var;

end data.flow;

it_oper.vhd
The operation block of IT cell

Signals:
bef: 4 bits output value of before function.
act: 4 bits output value of active function.
a.ft: 4 bits output value of after function.

a: two bits from operand literal A.
b: two bits from operand literal B.
c: two bits of the output literal.

state: state of the IT, comes from state block.

library ieee;
use ieee.std_logic_1164.all;
use work.all;
use work.parts.all;

152

entity it_operation is
port (bef,act,aft: in std_logic_vector (0 to 3);

state: in std_logic_vector (1 downto 0);
a,b: in std_logic_vector (0 to 1);
c: out std_logic_vector (0 to 1));

end;

architecture dataflow of it_operation is

-- temp signals.
signal u0sel,ulsel: std_logic_vector (1 downto 0);
signal bus4, fourzero: std_logic_vector (0 to 3);

begin

fourzero <= 11 0000 11
;

U0: parts.mux441 port map
(din0=>bef, dinl=>act, din2=>aft, din3=>fourzero, sel=>state, dout=>bus4);

u0sel <= a(0) l b(0);
Ul: parts.mux41 port map (din=>bus4, sel=>u0sel, dout=>c(0));

ulsel <= a(l) l b(l);
U2: parts.mux41 port map (din=>bus4, sel=>ulsel, dout=>c(l));

end dataflow;

it_state.vhd
The state block of IT cell

Signals:
clear: used to reset IT to "before" state.
request: the clock signal of FSM of the IT
reset: global reset. this signal can be seen as chip reset.
prime: prime signal
nxt: next[i] signal ("next" is a reserved word in VHDL).
nxt_nxt: next[i+l] signal.
var: var[i], variable signal
water: w[i], water signal
redge: re[i], right edge signal
state: state signal
ready: subready[i], ready signal of the IT

library ieee;
use ieee.std_logic_1164.all;
use work.all;

153

use work.parts.all;

entity it_state is
port (clear, request, reset, prime: in std_logic; -- global signals

nxt, var, water, redge: in std_logic;
state: out std_logic_vector (1 downto O);
nxt_nxt, ready: out std_logic);

end;

architecture dataflow of it_state is

signal st1, stO : std_logic; current state
signal nst1, nstO: std_logic; next state
signal dff_reset: std_logic;

begin

dff_reset <= reset or clear;

UO: parts.dff port map
(d=>nstO, clk=>request, reset=>dff_reset, q=>stO);

U1: parts.dff port map
(d=>nst1, clk=>request, reset=>dff_reset, q=>st1);

nstO <== (not {~1) and (not 'stO) and (not clear) and nxt and var after 3 ns;
nst1 <= stO or st1 or (nxt and (not var)) after 3 ns;

state(!)<== st1;
state(O) <= stO or (var and prime) after 1 ns;

nxt_nxt <= (nxt and water) or
((not water) and
(((not st1) and stO) or (nxt and (not (var and redge)))))
after 3 ns;

ready<= redge and nxt and var and (not request) after 3 ns; . \

end dataflow;

it_count.vhd

The counter block of IT

Signals:
cnt_in: cnt[i], counter carry signal
cnt_out: cnt[i+1], counter carry signal
count: count[i], count signal

154

This is a 4-bit counter. In this VHDL mode of CCM, there are 16 ITs
in the ILU, which means the counter should be able to count from 0
to 15. As described in the thesis, 4-bit counter can count from Oto
14. By combine the "count" signal of the last IT, we are able to
count from Oto 15. By using 4-bit counter instead of 5-bit counter,
we save 1 iterative signal. The decoder of this counter is described
by pcountd.vhd

library ieee;
use ieee.std_logic_1164.all;
use work.all;
use work.parts.all;

entity it_count is
port (cnt_in in std_logic_vector (3 downto O);

count in std_logic;
cnt_out out std_logic_vector (3 downto 0)

) ;
end;

architecture arch of it_count is

signal tmp_sig: std_logic_vector(1 to 1);

begin

uO: parts.mux21N generic map (size=>1) port map
(dinO=>cnt_in(O downto 0), din1=>cnt_in(1 downto 1),

sel=>count, dout=>cnt_out(O downto O));

u1: parts.mux21N generic map (1) port map
(dinO=>cnt_in(1 downto 1), din1=>cnt_in(2 downto 2),

sel=>count, dout=>cnt_out(1 downto 1));

u2: parts.mux21N generic map (1) port map
(din0=>cnt_in(2 downto 2), din1=>cnt_in(3 downto 3),

sel=>count, dout=>cnt_out(2 downto 2));

tmp_sig(1) <= cnt_in(O) xor cnt_in(1);

u3: parts.mux21N generic map (1) port map
(din0=>cnt_in(3 downto 3), dinl=>tmp_sig,

sel=>count, dout=>cnt_out(3 downto 3));

end arch;

it_empty.vhd
-- The empty block of IT

155

Signals:
redge_pre: re[i-1], right edge signal
redge: re(i], right edge signal
water: w(i], water signal
empty_pre: empty_carry[i], empty carry signal
empty_nxt: empty_carry[i+1], empty carry signal
empty: subempty[i], empty signal
c: two bits of the output literal.

library ieee;
use ieee.std_logic_1164.all;

entity it_empty is
port (c : in std_logic_vector (0 to 1);

redge_pre, redge, water: in std_logic;
empty_pre: in std_logic;
empty_nxt, empty: out std_logic);

end;

architecture dataflow of it_empty is

signal empty_nxt_tmp std_logic;

begin

empty_nxt_tmp <= (redge_pre and (not c(O)) and (not c(1))) or
((not redge_pre) and empty_pre and (not c(O)) and (not c(1)));

empty<= empty_nxt_tmp and redge and (not water);

empty_nxt <= empty_nxt_tmp;

end dataflow;

itcell.vhd
IT cell

Signals:
bef: 4 bits output value of before function.
act: 4 bits output value of active function.
aft: 4 bits output value of after function.
rel: 4 bits output value of partial relation function.
a: two bits from operand literal A.
b: two bits from operand literal B.
c: two bits of the output literal.
and_or: and_or signal
redge: re[i], right edge signal

156

redge_pre: re[i-1], right edge signal
water: w[i], water signal
reset: global reset. this signal can be seen as chip reset.
request: the clock signal of FSM of the IT
clear: used to reset IT to "before" state.
prime: prime signal
nxt: next[i] signal ("next" is a reserved word in VHDL).
nxt_nxt: next[i+l] signal.
carry: carry[i], carry signal
carry_nxt: carry[i+l], carry signal
conf: conf(i], confirm signal
conf_pre: conf[i-1], confirm signal
ready: subready(i], ready signal of the IT
empty_pre: empty_carry[i], empty carry signal
empty_nxt: empty_carry[i+l], empty carry signal
empty: subempty[i], empty signal
cnt_in: cnt[i], counter carry signal
cnt_out: cnt[i+1], counter carry signal
count: count[i], count signal

library ieee;
use ieee.std_logic_1164.all;
use work.all;
use work.parts.all;

entity itcell is
port (rel, bef, act, aft: in std_logic_vector (0 to 3);

a, b: in std_logic_vector (0 to 1);
and_or, redge, redge_pre, water: in std_logic;
reset, request, clear, prime: in std_logic;
nxt, carry, conf in std_logic; propagation signals
nxt_nxt, carry_nxt, conf_pre: out std_logic; propagation signals
ready: out std_logic;
c: out std_logic_vector (0 to 1);
empty_pre: in std_logic;
empty_nxt, empty: out std_logic;
cnt_in : in std_logic_vector (3 downto O);
cnt_out : out std_logic_vector (3 downto O);
count : out std_logic);

end;

architecture dataflow of itcell is

component it_operation
port (bef,act,aft: in std_logic_vector (0 to 3);

state: in std_logic_vector (1 downto O);
a,b: in std_logic_vector (0 to 1);
c: out std_logic_vector (0 to 1));

end component;

157

component it_state
port (clear, request, reset, prime: in std_logic;

nxt, var, water, redge: in std_logic;
state: out std_logic_vector (1 downto 0);
nxt_nxt, ready: out std_logic);

end component;

component it_identify
port (rel: in std_logic_vector (0 to 3);

a, b: in std_logic_vector (0 to 1);
and_or, water: in std_logic;
redge, redge_pre: in std_logic;
carry, conf: in std_logic;
carry_nxt, conf_pre, var: out std_logic;
count : out std_logic);

end component;

component it_empty
port (c : in std_logic_vector (0 to 1);

redge_pre, redge, water: in std_logic;
empty_pre: in std_logic;
empty_nxt, empty : out std_logic);

end component;

component it_count
port (cnt_in in std_logic_vector (3 downto 0);

count in std_logic;
cnt_out out std_logic_vector (3 downto 0));

end component;

-- state: state[i], state signal of FSM within the IT
signal state: std_logic_vector (1 downto 0);

-- var: var[i], variable signal
-- tmp_count signal is the count signal.
signal var, tmp_count : std_logic;
-- c_tmp signal is the c signal (the output literal)
signal c_tmp: std_logic_vector (0 to 1);

begin

U0: it_identify port map
(rel=>rel, and_or=>and_or, a=>a, b=>b,
water=>water, redge=>redge, redge_pre=>redge_pre,
carry=>carry, carry_nxt=>carry_nxt,
conf=>conf, conf_pre=>conf_pre, var=>var, count=>tmp_count);

~ '• •·""-_.",, ~

U1: it_state port map
(clear=>clear, request=>request, reset=>reset, prime=>prime,
nxt=>nxt, var=>var, water=>water, redge=>redge,

158

state=>state, nxt_nxt=>nxt_nxt, ready=>ready);

U2: it_operation port map
(bef=>bef, act=>act, aft=>aft, state=>state,
a=>a, b=>b, ~>~~J!ijU;

c <= c_tmp;

U3: it_empty port map
(c=>c_tmp, redge_pre=>redge_pre, redge=>redge, water=>water,
empty_pre=>empty_pre, empty_nxt=>empty_nxt, empty=>empty);

U4: it_count port map
(cnt_in=>cnt_in, count=>tmp_count, cnt_out=>cnt_out);

count<= tmp_count;

end dataflow;

pcountd.vhd
Pseudo-random number decoder

Signals:
din: 5 bits pseudo-random number input
dout: 4 bits binary number output

library ieee;
use ieee.std_logic_1164.all;

-- psedo-counter decoder

entity pcount_decoder is
port (din in std_logic_vector (4 downto O);

dout : out std_logic_vector (3 downto 0)
) ;

end;

architecture arch of pcount_decoder is

begin (:;()C, ,. , ; '.~·,. ,,, l

r
IIdout <= 11 0000 11 after 5 ns when (din = 1111 11

) else
""'?"'' 0001 11 after 5 ns when (din = 11,:g111 11

) else
-')1'0001 11 after 5 ns when (din = II: 0111 11) else

= II..-''0010 11 after 5 ns when (din 0011 11
) else

= II11 0010 11 after 5 ns when (din 0011 11
) else

II11 0011 11 after 5 ns when (din = 0001 11
) else

159

"0011" after 5 ns when (din= ",t0001") else
11 0100 11 after 5 ns when (din= "01000") else
"0100" after 5 ns when (din= "11000") else
11 0101 11 after 5 ns when (din= "00100") else
11 0101 11 after 5 ns when (din= "10100") else
11 0110" after 5 ns when (din = "00010") else
11 0110" after 5 ns when (din = "10010") else
"0111 11 after 5 ns when (din = "01001") else
"0111" after 5 ns when (din = 11 11001") else
"1000" after 6 ns when (din= 11 01100") else
11 1000" after 5 ns when (din= "11100") else
"1001" after 5 ns when (din= 11 00110 11

) else
11 1001 11 after 5 ns when (din= 11 1011011

) else
11 101011 after 5 ns when (din = "01011") else
11 101011 after 5 ns when (din= 11 11011 11

) else
"1011" after 5 ns when (din= 11 00101 11

) else
"1011" after 5 ns when (din= "10101") else
11 110011 after 5 ns when (din= "01010") else
"1100" after 6 ns when (din = "11010") else
"1101" after 5 ns when (din = "01101") else
"1101" after 5 ns when (din = "11101") else
"1110 11 after 5 ns when (din= "01110") else
"1110" after 5 ns when (din = "11110") else
"+.111" after 5 ns when (din= "11111") else
n ____ u

after 5 ns; ..,._

end arch;

ilu_cu.vhd
File: ilu_cu.vhd
Author: CHEN, Qihong, Portland State University
Date: 12/9/97

The control unit of ILU (OCU in the thesis)

Signals:
reset: global reset. this signal can be seen as chip reset.
elk: global clock signal.
enable: ilu_enable signal in the thesis.
done: ilu_done signal in the thesis.
init: next[1], first next signal
term: next[n+1], last next signal.
ready: ready signal
to_mem: toMem signal, one bit of config register.
clear: used to reset all ITs to "before" state.
re(uest: the clock signal of FSM of the IT
write_output: this signal is generated when there is a resultant cube.
inc_waddr: this signal used to increase mem address unit by 1.

160

The section 3.6 of the thesis give a brief introduction to this finite
state machine. The OCU is only used to deal with sequential cube operation.
The ilu_enable (enable in the VHDL code) will be O when the CCM is used to
carry out the combinational cube operation (including complex combinational
cube operation). In this caae, the clear signal is set to 1 (in state stO)
to keep all ITs in "before" state.

library ieee;
use ieee.std_logic_1164.all;

entity ilu_cu is
port (reset, elk, enable, ready, term, to_mem: in std_logic;

clear, request, init, write_output, inc_waddr, done: out std_logic);
end;

architecture behavior of ilu_cu is

-- In figure 3.17 of the thesis, the states of OCU are sO to s5, and they
-- are corresponding to stO ... st5, respectively.
type ILUstate is (stO, stl, st2, st3, st4, st5);

signal present_state, next_state: ILUstate;

begin

state_clocked: process (elk)
begin

if (clk'event and clk='l') then
present_state <= next_state;

end if;
end process state_clocked;

state_comb: process (present_state, enable, reset, ready, term)
begin

if (reset= '1') then

next_state <= stO;

else

case present_state is

when stO =>

if (enable = '1') then
next_state <= stl;

else

161

next_state <= st0;
end if;

clear <= I 1';
request <= '0';
init <= '0';
write_output <= '0';
inc_waddr <= '0';
done <= '0';

when st1 =>

if (term= '1') then
next_state <= stS;

else
if (ready= '1') then

next_state <= st2;
else

next_state <= st1;
end if;

end if;

clear <= '0';
request <= '0';
init <= I 11;
write_output <= '0';
inc_waddr <= '0';
done <= '0';

when st2 =>

next_state <= st3;

clear <= '0';
request <= '1';
init <= '1';
write_output <= '1';
inc_waddr <= '0';
done <= '0';

when st3 =>

if (term= '1') then
next_state <= stS;

else
if (ready= '1') then

next_state <= st4;
else

next_state <= st3;

162

end if;
end if;

clear <= '0';
request <= '0 I;
init <= '0' ;
write_output <= '0';
inc_waddr <= to_mem;
done <= '0';

when st4 =>

next_state <= st3;

clear <= '0';
request <= '1';
init <= I 0';
write_output <= '1';
inc_waddr <= '0';
done <= '0';

when st6 =>

next_state <= st0;

clear <= '0';
request <= '0';
init <= '0';
write_output <= '0';
inc_waddr <= '0';
done <= '1' ;

end case;
end if;

end process state_comb;

end behavior;

ilu.vhd
The ILU

Signals:
reset: global reset. this signal can be seen as chip reset.
elk: global clock signal.
ilu_enable: ilu_enable signal.
ilu_done: ilu_done signal.
bef: 4 bits output value of before function.
act: 4 bits output value of active function.

163

aft: 4 bits output value of after function.
rel: 4 bits output value of partial relation function.
a: two bits from operand literal A.
b: two bits from operand literal B.
c: two bits of the output literal.
and_or: and_or signal
prime: prime signal
to_mem: toMem signal, one bit of config register.
redge: re in the thesis, right edge vector signal.
water: win the thesis, water vector signal.
empty: empty signal.
write_output: this signal is generated when there is a resultant cube.
inc_waddr: this signal used to increase mem address unit by 1.
cnt_val: counter value, the output of pseudo-random number decoder.

ILU consists of the iterative network (IT is the cell) and the control
unit of the iterative network (called 0CU in the thesis).

library ieee;
use ieee.std_logic_1154.all;
use work.all;

-- ILU

entity ilu is
generic

(Number0fIT: integer:= 4); -- The number of ITs
port

(reset, elk, ilu_enable, prime, to_mem, and_or: std_logic;
rel, bef, act, aft: in std_logic_vector (0 to 3);
water, redge: in std_logic_vector (0 to Number0fIT - 1);
a, b: in std_logic_vector (0 to (Number0fIT • 2 - 1));
c: out std_logic_v~or (0 to (Number0fIT • 2 - 1));

(J)lu_done, write_otit:p(lt, inc_waddr, empty: out std_logic;
_ ,.cnt_val : . ,i:m.\ std_logic_vector (3 downto 0));

end, , .,.;,..._.,,.
architecture dataflow of ilu is

component ilu_cu
port (reset, elk, enable, ready, term, to_mem: in std_logic;

clear, request, init, write_output, inc_waddr, done: out std_logic);
end component;

component itcell
port (rel, bef, act, aft: in std_logic_vector (0 to 3);

a, b: in std_logic_vector (0 to 1);
and_or, redge, redge_pre, water: in std_logic;
reset, request, clear, prime: in std_logic;

164

nxt, carry, conf in std_logic; propagation signals
nxt_nxt, carry_nxt, conf_pre: out std_logic; propagation signals
ready: out std_logic;
c: out std_logic_vector (0 to 1);
empty_pre : in std_logic;
empty_nxt, empty: out std_logic;
cnt_in : in std_logic_vector (3 downto O);
cnt_out : out std_logic_vector (3 downto O);
count : out std_logic);

end component;

component pcount_decoder
port (din in std_logic_vector (4 downto O);

dout : out std_logic_vector (3 downto O));
end component;

-- carry, nxt (next in the thesis), conf, empty_carry, nct_carry
-- all are propagational signals of the iterative network.
signal clear, request, ready, init, term: std_logic;
signal carry, nxt : std_logic_vector(1 to (NumberOfIT+1));
signal conf : std_logic_vector(O to NumberOfIT);
signal empty_carry: std_logic_vector(1 to NumberOfIT+1);
signal subready, subempty: std_logic_vector(1 to NumberOfIT);
signal const_one: std_logic := '1';
signal tempready, tempempty: std_logic_vector(l to NumberOfIT);
signal subcount : std_logic_vector (1 to NumberOfIT);
signal decoder_in: std_logic_vector (4 downto O);

type sigNx4 is array (1 to NumberOfIT+l) of std_logic_vector(3 downto O);
signal cnt_carry: sigNx4;

begin

cu: ilu_cu port map
(reset=>reset, clk=>clk, enable=>ilu_enable, ready=>ready,
term=>term, to_mem=>to_mem, clear=>clear, request=>request,
init=>init, write_output=>write_output,inc_waddr=>inc_waddr,
done=>ilu_done);

carry(1) <= '0'; carry(1) is "don't care"
conf(NumberOfIT) <= '0'; conf(NumberOfIT) is "don't care"
empty_carry(l) <= '0'; empty_carry(1) is "don't care"

nxt (1) <= init ;
term<= nxt(NumberOfIT+1);

cnt_carry(l) <= "1111";

it: for i in 1 to NumberOfIT generate
itl: if i=1 generate

165

itl: itcell port map
(rel=>rel, bef=>bef, act=>act, aft=>aft,

a=>a(O to 1), b=>b(O to 1),
and_or=>and_or, redge_pre=>const_one, redge=>redge(O), water=>water(O),
reset=>reset, request=>request, clear=>clear, prime=>prime,
nxt=>nxt(l), carry=>carry(l), conf_pre=>conf(O),
nxt_nxt=>nxt(2), carry_nxt=>carry(2), conf=>conf(l),
ready=>subready(l), c=>c(O to 1),
empty_pre=>empty_carry(l), empty_nxt=>empty_carry(2),
empty=>subempty(l), count=>subcount(l),
cnt_in=>cnt_carry(l), cnt_out=>cnt_carry(2)

) ;
end generate itl;

iti: if i>l generate
iti: itcell port map

(rel=>rel, bef=>bef, act=>act, aft=>aft,
a=>a(2*i-2 to 2•i-1), b=>b(2•i-2 to 2*i-1), and_or=>and_or,
redge_pre=>redge(i-2), redge=>redge(i-1), water=>water(i-1),
reset=>reset, request=>request, clear=>clear, prime=>prime,
nxt=>nxt(i), carry=>carry(i), conf_pre=>conf(i-1),
nxt_nxt=>nxt(i+l), carry_nxt=>carry(i+1), conf=>conf(i),
ready=>subready(i), c=>c(2*i-2 to 2*i-1),
empty_pre=>empty_carry(i), empty_nxt=>empty_carry(i+1),
empty=>subempty(i), count=>subcount(i),
cnt_in=>cnt_carry(i), cnt_out=>cnt_carry(i+1)

) ;
end generate iti;

end generate it;

the count signal of last IT is combined with 4-bit pseudo-random number.
By using 4-bit counter instead of 5-bit counter, we save 1 iterative
signal. The decoder of this counter is described by pcountd.vhd

decoder_in <= subcount(NumberOfIT) t cnt_carry(NumberOfIT);

-- see pcountd.vhd
decoder: pcount_decoder port map

(din=>decoder_in, dout=>cnt_val);

ready= subready(1) or subready(2) or ... or subready(NumberOfIT)
tempready(1) <= subready(1);
readys: for i in 2 to NumberOfIT generate

tempready(i) <= tempready(i-1) or subready(i);
end generate readys;
ready<= tempready(NumberOfIT) after 3 ns;

-- empty= subempty{1) or subempty(2) or ... or subempty(NumberOfIT)
tempempty(1) <= subempty{1);
emptys: for i in 2 to NumberOfIT generate

tempempty(i) <= tempempty(i-1) or subempty(i);

166

end generate emptys;
empty<= tempempty(NumberOfIT) after 3 ns;

end dataflow;

biu_cu.vhd
-- File: biu_cu.vhd
-- Author: CHEN, Qihong, Portland State University

Date: 3/30/97

The control unit of GCU (it was called BIU, Bus Interface Unit)

Signals:
reset: global reset. this signal can be seen as chip reset.
elk: global clock signal.
infifoempty: whether the input FIFO is empty or not.

vfiu_enable: ilu_enable signal.
\,J:iu_done: ilu_done signal.

seq_com: sequential or combinational operation.
loop_done: whether a loop operation is done or not.
to_mem: toMem signal, one bit of config register.

:- ~pc: the highest 3 bits of CCM instructions, it's the op-code.
-"or read_fifo: read the CCM instructions from the input FIFO.
-0.rite_fifo: write the result to the output FIFO.
-- ld_tbufs: load tri-state buffers control bits.

ld_regs: load registers.
ld_accu: load accumulator.
ld_data: load data register.
inc_raddr1: increase the source mem (for reading operands) address by 1
inc_waddr1: increase the target mem (for writing results) address by 1.

-- j,inish: finish bit, see section 5.3.4 of the thesis.
-- \v~rite_output1: this signal is generated when there is a resultant cube.

mem_read: mem read signal, it is a temporary signal, see biu.vhd.
prel1,prel2,prel_res,prel_sel: see pre-relation/per-operation section in

the thesis.

The section 5.4 of the thesis give a brief introduction to this finite
state machine. The GCU is used to deal with combinational cube operation
and pre-relation/pre-operation.

library ieee;
use ieee.std_logic_1164.all;
-- use work.parts;
use work.ccmtype.all;

entity biu_cu is
port (reset, elk, ilu_done, infifoempty: in std_logic;

seq_com, loop::Aone, to_mem: in std_logic;

167

ope : in std_logic_vector (0 to 2);
read_fifo, :Q~_f!»..a:'2lt : out std_logic;
ld:.,tbufs, ld_r~g~. ld_accu, ld_data: out std_logic;
inc_raddr1, inc_waddr1, finish: out std_logic;
write_fifo, write_output1, mem_read: out std_logic;
state: out BIUstate;
prel1, prel2, prel_res : in std_logic;
prel_sel: out std_logic_vector(1 downto 0));

end;

architecture behavior of biu_cu is
type BIUstate is (s0, s1, s2, s3, s4, sS, s6, s7, p1, ... , p7);

signal present_state, next_state: BIUstate;
signal cur_prel_sel, next_prel_sel: std_logic_vector(1 downto 0);

begin

state<= present_state;
prel_sel <= cur_prel_sel;

state_clocked: process (elk)
begin

if (clk'event and clk='1') then
present_state <= next_state after 5 ns;
cur_prel_sel <= next_prel_sel;

end if;
end process state_clocked;

state_comb: process
(present_state, reset, loop_done, infifoempty,

to_mem, ilu_done, seq_com, opc(0), opc(1), opc(2),
prel1, prel2, prel_res)

begin

if (reset= '1') then

next_state <= s0;

else

case present_state is

when s0 =>

if (infifoempty = '1') then
next_state <= s0;

else
next_state <= s1;

end if;

168

ilu_enable <= '0';
ld_tbufs <= '0';
ld_regs <= '0';
ld_accu <= '0';
ld_data <= '0';
inc_raddr1 <= '0';
inc_waddr1 <= '0';
finish <= '0';
read_fifo <= not infifoempty;
write_fifo <= '0';
write_output1 <= '0';
mem_read <= '0';
next_prel_sel <= cur_prel_sel;

when s1 =>

if (opc(0) = '1') then
if (opc(1) = '1') then

next_state <= s3;
else

next_state <= s4;
end if;

else
next_state <= s2;

end if;

ilu_enable <= '0';
ld_tbufs <= '0' j
ld_regs <= '0';
ld_accu <= '0';
ld_data <= '0';
inc_raddr1 <= '0';
inc_waddrl <= '0';
finish <= '0';
read_fifo <= '0';
write_fifo <= '0';
write_output1 <= '0';
mem_read <= '0';
next_prel_sel <= cur_prel_sel;

when s2 =>

next_state <= s0;

ilu_enable <= '0';
ld_tbufs <= (not opc(0)) and (not opc(l)) and (not opc(2))

after 2 ns;
ld_regs <= (not opc(0)) and (not opc(l)) and opc(2)

after 2 ns;
ld_accu <= (not opc(0)) and opc(1)

169

after 2 ns;
ld_data <= '0';
inc_raddrl <= '0' ;
inc_waddrl <= '0';
finish <= '0' ;
read_fifo <= '0' ;
write_fifo <= •o';
write_outputl <= '0';
mem_read <= '0' ;
next_prel_sel <= cur_prel_sel;

when s3 =>

if (loop_done = '1') then
next_state <= s0;

else
next_state <= s4;

end if;

ilu_enable <= '0';
ld_tbufs <= '0';
ld_regs <= '0';
ld_accu <= '0';
ld_data <= '0';
inc_raddrl <= '0';
inc_waddrl <= '0';
finish <= loop_done;
read_fifo <= '0';
write_fifo <= loop_done;
write_outputl <= •o•;
mem_read <= '1';
next_prel_sel <= cur_prel_sel;

when s4 =>

if (prell = '1') then
next_state <= p2;
next_prel_sel <= "00";

else
next_state <= pl;
next_prel_sel <= "10";

end if;

ilu_enable <= '0';
ld_tbufs <= '0';
ld_regs <= '0';
ld_accu <= '0';
ld_data <= I 1 > ;

inc_raddrl <= '0';
inc_waddrl <= '0';

170

finish <= '0';
read_fifo <= '0';
write_fifo <= 'O';
write_output1 <= '0';
mem_read <= '1' ;

when p1 =>

if (seq_com = '1') then
next_state <= s5;

else
next_state <= s6;

end if;

ilu_enable <= '0';
ld_tbufs <= '0';
ld_regs <= '0';
ld_accu <= '0';
ld_data <= '0';
inc_raddrl <= '0';
inc_waddr1 <= '0';
finish <= '0';
read_fifo <= '0';
write_fifo <= '0';
write_outputl <= ,0' ;
mem_read <= '0';
next_prel_sel <= cur_prel_sel;

when sS =>

if (ilu_done = '1') then
if cpc(1) = '1' then

next_state <= s3;
else

next_state <= s0;
end if;

else
next_state <= s5;

end if;

ilu_enable <= not ilu_done;
ld_tbufs <= '0';
ld_regs <= '0';
ld_accu <= 'O';
ld_data <= IO I j

inc_raddr1 <= ilu_done and opc(1);
inc_waddr1 <= 'O I;

finish <= ilu_done and (not opc(l));
read_fifo <= '0';
write_fifo <= ilu_done and (not opc(l));

171

write_output1 <= '0';
mem_read <= ;

1 0 1

next_prel_sel <= cur_prel_sel;

when s6 =>

next_state <= s7;

ilu_enable <= IO I;

ld_tbufs <= •o';
ld_regs <= '0 I;
ld_accu <= IO I,

ld_data <= '0';
inc_raddr1 <= 10 I;

inc_waddr1 <= '0';
finish <= 10 I;

read_fifo <= '0';
write_fifo <= '0';
write_output1 <= I11;
mem_read <= IO>;

next_prel_sel <= cur_prel_sel;

when s7 =>

if (opc(1) = '1') then
next_state <= s3;

else
next_state <= s0;

end if;

ilu_enable <= 10 I;

ld_tbufs <= '0 I;

ld_regs <= '0';
ld_accu <= '0';
ld_data <= '0' ;
inc_raddr1 <= opc(1);
inc_waddr1 <= to_mem;
finish <= not opc(1);
read_fifo <= '0';
write_fifo <= not opc(1);
write_output 1 <= '0';
mem_read <= 10 I;

next_prel_sel <= cur_prel_sel;

when p2 =>

next_state <= p3;

ilu_enable <= '0';
ld_tbufs <= '0';

172

ld_regs <= '0';
ld_accu <= '0';
ld_data <= '0';
inc_raddr1 <= '0';
inc_waddr1 <= '0';
finish <= '0';
read_fifo <= '0';
write_fifo <= '0';
write_output1 <= '0';
mem_read <= '0';
next_prel_sel <= cur_prel_sel;

when p3 =>

if (prel_res = '1') then
next_state <= p4;
next_prel_sel <= cur_prel_sel;

else
if (prel2 = '1') then

next_state <= p5;
next_prel_sel <= "01";

else
next_state <= p1;
next_prel_sel <= "10";

end if;
end if;

ilu_enable <= '0';
ld_tbufs <= '0';
ld_regs <= '0';
ld_accu <= '0';
ld_data <= '0';
inc_raddr1 <= IO I ;

inc_waddr1 <= '0 I;
finish <= 'O';
read_fifo <= '0 I;
write_fifo <= '0' ;
write_output1 <= '0' ;
mem_read <= '0';

when p4 =>

next_state <= s7;

ilu_enable <= '0';
ld_tbufs <= '0';
ld_regs <= '0';
ld_accu <= 'O I;
ld_data <= '0';
inc_raddr1 <= '0';

173

inc_waddr1 <= '0';
finish <= '0';
read_fifo <= '0';
write_fifo <= '0';
write_output1 <= '1';
mem_read <= '0';
next_prel_sel <= cur_prel_sel;

when p6 =>

next_state <= p6;

ilu_enable <= '0';
ld_tbufs <= '0';
ld_regs <= '0';
ld_accu <= '0';
ld_data <= '0';
inc_raddr1 <= '0';
inc_waddr1 <= '0';
finish <= '0';
read_fifo <= '0';
write_fifo <= '0';
write_output1 <= '0';
mem_read <= '0';
next_prel_sel <= cur_prel_sel;

when p6 =>

if (prel_res = '1') then
next_state <= p7;
next_prel_sel <= cur_prel_sel;

else
next_state <= p1;
next_prel_sel <= "10";

end if;

ilu_enable <= '0';
ld_tbufs <= '0';
ld_regs <= '0';
ld_accu <= '0';
ld_data <= '0' ;
inc_raddr1 <= '0';
inc_waddr1 <= '0';
finish <= '0' ;
read_fifo <= '0';
write_fifo <= '0';
write_output1 <= '0 I;
mem_read <= '0' ;

when p7 =>

174

next_state <= s7;

ilu_enable <= l 0';
ld_tbufs <= '0';
ld_regs <= l O l ;

ld_accu <= '0 l;

ld_data <= '0';
inc_raddr1 <= '0,;
inc_waddr1 <= '0';
finish <= '0';
read_fifo <= 'O';

write_fifo <= '0';
write_output1 <= '1';
mem_read <= '0';
next_prel_sel <= cur_prel_sel;

end case;
end if;

end process state_comb;

end behavior;

biu.vhd

-- File: biu.vhd
-- Author: CHEN, Qihong, Portland State University
-- Date: 3/30/97

-- Global Control Unit (GCU for short, it was called BIU, Bus Interface Unit)

library ieee;
use ieee.std_logic_1164.all;
use work.parts.all;
use work.ccmtype.all;

entity biu is
port

(-- global signals and input data bus
reset, elk : in std_logic;
InstBus : in std_logic_vector (31 downto 23);
-- InstBus is IBus(31 downto 23) in the thesis.
DataBus : in std_logic_vector (8 downto 0);

DataBus is IBus(8 downto 0) in the thesis.

(1 .
i, • -- signals between GCU and ILU 'l?op_#ne, i~one, writeli,6utput2, inc_'lifddr2 in std_logic;
lf;ilu_enable: buffer std_logic;

to_¥m: buffer std_logic;
" /t

175

~•.P.:J,.: in std_logic;

-- signals between GCU and the input/output Fifos
infifoempty: in std_logic;
read_fifo, write_fifo, finish: out std_logic;

-- signals to Memory Address Units and Memory Banks from GCU
ld_addrA, ld_addrB, ld_addrR: out std_logic;
inc_addrA, inc_addrB: out std_logic;
MemAwrite, MemAread out std_logic;
MemBwrite, MemBread: out std_logic;

-- Load signals for registers generated by GCU
ld_accu, ld_data, ld_water, ld_rightedge: out std_logic;
ld_inst buffer std_logic;
ld_prpo: out std_logic; -- PreRelation and PreOperation

-- multiplexers select signals (Src signals)
CmpSrc, ASrc, OSrc: out std_logic;

-- Control signals of Tri-state buffers
EnAddrA, EnAddrB, EnIFifoA, EnIFifoD buffer std_logic;
MemARW, EniluA, MemBRW, EniluB : buffer std_logic;

-- current state of BIU-CU (just for debug)
state : out BIUstate;

-- signals for pre-relation and pre-operation
prel_res in std_logic;
prel_sel out std_logic_vector (1 downto 0)

) ;
end;

architecture arch of biu is

component biu_cu
port (reset, elk, ilu_done, infifoempty: in std_logic;

seq_com, loop_done, to_mem: in std_logic;
ope : in std_logic_vector (0 to 2);
read_fifo, ilu_enable: out std_logic;
ld_tbufs, ld_regs, ld_accu, ld_data: out std_logic;
inc_raddr1, inc_waddr1, finish: out std_logic;
write_fifo, write_output1, mem_read: out std_logic;
state: out BIUstate;
prel1, prel2, prel_res : in std_logic;
prel_sel: out std_logic_vector(1 downto 0));

end component;

-- Sequential/combinational operation
signal seq_com: std_logic;

176

-- Output control bits
signal to_ofifo, to_accu std_logic;

-- Load signals
signal ld_tbufs, ld_regs : std_logic;
signal ld_conf, ld_accu1, ld_accu2: std_logic;

-- Output signals for conf_reg and 3-to-8 decoders
signal conf_reg: std_logic_vector (8 downto O);
signal decoder_out: std_logic_vector (7 downto O);

-- Tri-state buffers control bits and Buses status bits
signal ld_EnAddrA, ld_EnAddrB, ld_EnIFifoA, ld_EnIFifoD: std_logic;
signal ld_MemARW, ld_EnlluA, ld_MemBRW, ld_EniluB: std_logic;

-- tempory tri-state control signals
signal tEnAddrA, tEnAddrB, tEnIFifoA, tEnIFifoD std_logic;
signal tMemARW, tEniluA, tMemBRW, tEniluB std_logic;

-- Status of the 3 Buses
signal ABusStatus, DBusAStatus, DBusBStatus: std_logic;

-- Singals for Address Units
signal inc_raddr, inc_waddr, inc_waddr1 std_logic;

-- Signals for memory and outputs
signal mem_read, write_output, write_output1, write_fifo1 std_logic;

-- Config bits
signal enMemA, enMemB, enFinish std_logic;

-- temp signal
signal t_ilu_enable std_logic;

-- pre-relation flags
signal prel1, prel2 : std_logic;

begin

prel1_dff: dff port map
(d=>InstBus(25), clk=>ld_inst, reset=>reset, q=>prel1);

prel2_dff: dff port map
(d=>InstBus(24), clk=>ld_inst, reset=>reset, q=>prel2);

seq_com_dff: dff port map
(d=>InstBus(23), clk=>ld_inst, reset=>reset, q=>seq_com);

cu: biu_cu port map

177

(reset=>reset, clk=>clk, ilu_done=>ilu_done, infifoempty=>infifoempty,
seq_com=>seq_com, loop_done=>loop_done, to_mem=>to_mem,
opc=>InstBus(31 downto 29),
read_fifo=>read_fifo, ilu_enable=>t_ilu_enable,
ld_tbufs=>ld_tbufs, ld_regs=>ld_regs,
ld_accu=>ld_accul, ld_data=>ld_data,
inc_raddr1=>inc_raddr, inc_waddr1=>inc_waddr1, finish=>finish,
write_fifo=>write_fifol, write_outputl=>write_outputl,
mem_read=>mem_read, state=>state,
prell=>prell, prel2=>prel2, prel_res=>prel_res, prel_sel=>prel_sel);

ilu_enable <= t_ilu_enable;

-- Address pointer

-- Both BIU_CU and ILU_CU are able to generate inc_waddr (call inc_waddrl
-- and inc_waddr2 here), the inc_waddr signal is finally generated here.
inc_waddr <= (inc_waddrl or (ilu_enable and inc_waddr2)) and (not ilu_empty);

-- inc_addrA is used to increase the address of mem bank A by 1
inc_addrA <= enMemA and

((MemARW and inc_raddr) or ((not MemARW) and inc_waddr));

-- inc_addrB is used to increase the address of mem bank B by 1
inc_addrB <= enMemB and

((MemBRW and inc_raddr) or ((not MemBRW) and inc_waddr));

-- Load signals for output devices (mem, ofifo, accumulator)

I. Both BIU_CU and ILU_CU are able to generate write_output (call
write_outputl and write_output2 here), the write_output signal

[fl is finally generated here.
H
-_l

write_output <= write_outputl or (ilu_enable and write_output2);
,i

·tu··.-.-.. write_fifo is used to write resultant cube to the·.·.·.· o.u.tput FIFO .
. write_fifo <= (write.:..out:eut and to_oFifo and (not ~~u_emp,ty)) c,

.. ,~- or (write_fifol and enFinish); J_
11

ld_accul is used to load operand cube into accumulator
ld_accu2 is used to load resultant cube back to accumulator
ld_accu combines ld_accul and ld_accu2 together.

ld_accu2 <= write_output and to_accu;
ld_accu <= ld_accul or ld_accu2;

-- MemAwrite is used to write resultant cube to the mem bank A.
MemAwrite <= write_output and to_mem and (not MemARW) and enMemA

178

and (not ilu_empty) after 3 ns;

-- Mem.Bwrite is used to write resultant cube to the mem bank B.
Mem.Bwrite <= write_output and to_mem and (not MemBRW) and enMemB

and (not ilu_empty) after 3 ns;

-- Memory read signals

-- MemAread is used to read operand cube from the mem bank A.
MemAread <= mem_read and MemARV and enMemA after 3 ns;

-- Hem.Bread is used to read operand cube from the mem bank B.
Hem.Bread<= mem_read and MemBRV and enMemB after 3 ns;

-- Config-register is used to store 8 config bits:
--.enMemA, enMemB, CmpSrc, ASrc, OSrc, to_oFifo, to_accu, to_mem

config_reg: regN generic map (Size=>9) port map
(d=>DataBus(8 downto 0), load=>ld_conf, reset=>reset, q=>conf_reg);

enFinish <= conf_reg(S);
enMemA <= conf_reg(7);
enMemB <= conf_reg(6);
CmpSrc <= conf_reg(S);
ASrc <= conf_reg(4);
OSrc <= conf_reg(3);
to_oFifo <= conf_reg(2);
to_accu <= conf_reg(1);
to_mem <= conf_reg(O);

decoder: decoder3to8 port map
(din=>InstBus(28 downto 26), dout=> decoder_out);

ld_addrA <= ld_regs and decoder_out(O);
ld_addrB <= ld_regs and decoder_out(1);
ld_addrR <= ld_regs and decoder_out(2);
ld_water <= ld_regs and decoder_out(3);
ld_rightedge <= ld_regs and decoder_out(4);
ld_inst <= ld_regs and decoder_out(S);
ld_conf <= ld_regs and decoder_out(6);
ld_prpo <= ld_regs and decoder_out(7);

-- tri-buffers connected to ABus

179

Avoiding contention on ABus which would result from multiple
drivers, see section 5.3.2 of the thesis.

EnAddrA_dff: dff port map
(d=>InstBus(25), clk=>ld_EnAddrA, reset=>reset, q=>tEnAddrA);

EnAddrA <= tEnAddrA;

EnAddrB_dff: dff port map
(d=>InstBus(25), clk=>ld_EnAddrB, reset=>reset, q=>tEnAddrB);

EnAddrB <= tEnAddrB;

EnIFifoA_dff: dff port map
(d=>InstBus(25), clk=>ld_EnIFifoA, reset=>reset, q=>tEnIFifoA);

EnIFifoA <= tEnIFifoA;

ABusStatus <= not ((tEnAddrA or tEnAddrB or tEnIFifoA) and InstBus(25));
ld_EnAddrA <= decoder_out(O) and ABusStatus and ld_tbufs after 3 ns;
ld_EnAddrB <= decoder_out(1) and ABusStatus and ld_tbufs after 3 ns;
ld_EnIFifoA <= decoder_out(2) and ABusStatus and ld_tbufs after 3 ns;

-- tri-buffers connected to DBusA

Avoiding contention on DBusA which would result from multiple
drivers, see section 5.3.2 of the thesis.

MemARW_dff: dff port map
(d=>InstBus(25), clk=>ld_MemARW, reset=>reset, q=>tMemARW);

MemARW <= tMemARW;

EniluA_dff: dff port map
(d=>InstBus(25), clk=>ld_EniluA, reset=>reset, q=>tEniluA);

EniluA <= tEniluA;

EnIFifoD_dff: dff port map
(d=>InstBus(25), clk=>ld_EnIFifoD, reset=>reset, q=>tEnIFifoD);

EnIFifoD <= tEnIFifoD;

DBusAStatus <= not ((tMemARW or tEniluA or tEnIFifoD) and InstBus(25));
ld_MemARW <= decoder_out(3) and DBusAStatus and ld_tbufs after 3 ns;
ld_EniluA <= decoder_out(4) and DBusAStatus and ld_tbufs after 3 ns;
ld_EnIFifoD <= decoder_out(5) and DBusAStatus and ld_tbufs after 3 ns;

-- tri-buffers connected to DBusB

Avoiding contention on DBusB which would result from multiple
drivers, see section 5.3.2 of the thesis.

180

Mem.BRW_dff: dff port map
(d=>InstBus(25), clk=>ld_MemBRW, reset=>reset, q=>tMemBRW);

Mem.BRW <= tMemBRW;

EniluB_dff: dff port map
(d=>InstBus(25), clk=>ld_EniluB, reset=>reset, q=>tEniluB);

EniluB <= tEniluB;

DBusBStatus <= not ((tMemBRW or tEniluB) and InstBus(25));
ld_Mem.BRW <= decoder_out(6) and DBusBStatus and ld_tbufs after 3 ns;
ld_EniluB <= decoder_out(7) and DBusBStatus and ld_tbufs after 3 ns;

end arch;

ccm.vhd
-- File: ccm.vhd

Author: CHEN, Qihong, Portland State University
Date: 3/30/97

Cube Calculus Machine Version 2 (CCM2 for short)

In this file, all components of CCM2 are combined together according
to figure 5.3 of the thesis. The reader should compare this code with
the figure 5.3 to understand it.

Signals:
ififo_din: the input of the input FIFO.
ofifo_dout: the output of the output FIFO.
ififo_we: write enable signal of the input FIFO.
ififo_ff: full flag signal of the input FIFO.
ofifo_re: read enable signal of the output FIFO.
ofifo_ef: empty flag signal of the output FIFO.

library ieee;
use ieee.std_logic_1164.all;
use work.all;
use work.parts.all;
use work.ccmbasic.all;
use work.ccmtype.all;

entity ccm is
port (-- global signals

reset, elk: in std_logic;

-- the input/output FIFOs
ififo_din: in std_logic_vector (31 downto O);
ofifo_dout: out std_logic_vector (31 downto O);

181

ififo_we, ofifo_re in std_logic;
ififo_ff, ofifo_ef buffer std_logic;

-- current state of BIU (just for debug)
state: out BIUstate

) ;
end;

architecture arch of ccm is

constant memSize integer:= 64;

-- Bus signals
signal IBus, OBus : std_logic_vector (31 downto O);
signal ABus : std_logic_vector (17 downto O);
signal DBusA, DBusB: std_logic_vector (29 downto O);

-- Tri-state buffer enable signals
signal EnAddrA, EnAddrB, EnIFifoA, EnIFifoD std_logic;
signal Mem.ARW, EniluA, MemBRW, EniluB std_logic;

-- multiplexers select signals
signal CmpSrc, ASrc, OSrc: std_logic;

-- register/address unit load signals
signal ld_accu, ld_data, ld_water, ld_rightedge, ld_inst std_logic;
signal ld_addrA, ld_addrB, ld_addrR: std_logic;

-- memory address unit inc signals
signal inc_addrA, inc_addrB: std_logic;

-- memory read/write signals
signal MemAwrite, MemAread, MemBwrite, MemBread std_logic;

-- signals related to the input/output Fifos
signal ififo_ef, ofifo_ff, ififo_re, ofifo_we std_logic;

-- signals between BIU and ILU
signal ilu_enable, ilu_done, write_output2, inc_waddr2, to_mem: std_logic;
signal ilu_empty: std_logic;
signal cnt_val : std_logic_vector(3 downto O);
signal cmp_q: std_logic_vector(O to 3);

-- enent flag signal
signal addrEQ, finish: std_logic;

-- pre-relation and pre-operation
signal ld_prpo: std_logic;
signal prpo_q: std_logic_vector (23 downto O);
signal rel, bef, tmp_and_or: std_logic_vector (0 to 3);

182

signal and_or, prel_res : std_logic;
signal prel_sel: std_logic_vector (1 downto 0);
signal fourzero: std_logic_vector (0 to 3) := "0000";
signal prel_val: std_logic_vector (3 downto 0);
signal res_sel : std_logic_vector (1 downto 0);

-- others
signal const_one : std_logic := '1';
signal const_zero: std_logic := '0';
signal addrA_q, addrB_q, addrR_q, CmpMux_q: std_logic_vector(17 downto 0);

signal memaBus, membBus : std_logic_vector (31 downto 0);
signal memaDump, membDump: std_logic := '0';
signal a_dump_start, b_dump_start : integer:= 0;
signal a_dump_end, b_dump_end: integer:= memSize;
signal MemARWn, Mem.BRWn: std_logic;
signal 0Mux_q, AMux_q std_logic_vector (29 downto 0);

signal accu_q, data_q std_logic_vector (29 downto 0);
signal water_q, right_q: std_logic_vector (14 downto 0);
signal inst_q: std_logic_vector (17 downto 0);

signal addra_clk, addrb_clk: std_logic;

begin

biu: ccmbasic.biu port map
(reset=>reset, clk=>clk,

InstBus=>IBus(31 downto 23), DataBus=>IBus(8 downto' 0),
loop_done=>AddrEQ, ilu_done=>ilu_done, write_output2=>write_output2,
inc_waddr2=>inc_waddr2, ilu_enable=>ilu_enable, to_mem=>to_mem,
infifoempty=>ififo_ef, read_fifo=>ififo_re,
write_fifo=>ofifo_we, finish=>finish,
ld_addrA=>ld_addrA, ld_addrB=>ld_addrB, ld_addrR=>ld_addrR,
inc_addrA=>inc_addrA, inc_addrB=>inc_addrB,
MemAwrite=>MemAwrite, MemAread=>MemAread,
Mem.Bwrite=>Mem.Bwrite, MemBread=>Mem.Bread,
ld_accu=>ld_accu, ld_data=>ld_data, ld_water=>ld_water,
ld_rightedge=>ld_rightedge, ld_inst=>ld_inst,
CmpSrc=>CmpSrc, ASrc=>ASrc, 0Src=>0Src,
EnAddrA=>EnAddrA, EnAddrB=>EnAddrB, EnIFifoA=>EnIFifoA,
EnIFifoD=>EnIFifoD, MemARW=>MemARW, EniluA=>EniluA,
Mem.BRW=>Mem.BRW, EniluB=>EniluB, state=>state, ilu_empty=>ilu_empty,
ld_prpo=>ld_prpo, prel_res=>prel_res, prel_sel=>prel_sel

) ;

tbuf_ibus_A: parts.tbufN generic map (18) port map
(en=>EnIFifoA, din=>IBus(17 downto 0), dout=>ABus);

addra_clk <= inc_addrA or ld_AddrA;

183

addrA: parts.counterN generic map (18) port map
(reset=>reset, clk=>addra_clk, ld=>ld_addrA, ce=>const_one,

d=>ABus, q=>addrA_q);

tbuf_addrA: parts.tbufN generic map (18) port map
(en=>EnAddrA, din=>addrA_q, dout=>ABus);

addrb_clk <= inc_addrB or ld_AddrB;
addrB: parts.counterN generic map (18) port map

(reset=>reset, clk=>addrb_clk, ld=>ld_addrB, ce=>const_one,
d=>ABus, q=>addrB_q) ;

tbuf_addrB: parts.tbufN generic map (18) port map
(en=>EnAddrB, din=>addrB_q, dout=>ABus);

addrR: parts.regN generic map (18) port map
(reset=>reset, load=>ld_addrR, d=>ABus, q=>addrR_q);

mux_cmp: parts.mux21N generic map (18) port map
(dinO=>addrA_q, din1=>addrB_q, sel=>CmpSrc, dout=>CmpMux_q);

equ: parts.equalN generic map (18) port map
(dinO=>CmpMux_q, din1=>addrR_q, o=>addrEQ);

mema: ccmbasic.ra.m
generic map

(Size=>memSize, AddrWidth=>18, DataWidth=>32, download_on_power_up=>false)
port map

(ce=>const_one, memread=>MemAread, memwrite=>MemAwrite,
clk=>clk, addr=>addrA_q, dbus=>memaBus, dump=>memaDump,
dump_start=>a_dump_start, dump_end=>a_dump_end

) ;

memb: ccmbasic.ra.m
generic map

(Size=>memSize, AddrWidth=>18, DataWidth=>32, download_on_power_up=>false)
port map

(ce=>const_one, memread=>MemBread, memwrite=>MemBwrite,
clk=>clk, addr=>addrB_q, dbus=>membBus, dump=>membDump,
dump_start=>b_dump_start, dump_end=>b_dump_end

) ;

tbuf_mema_r: parts.tbufN generic map (30) port map
(en=>MemARW, din=>memaBus(29 downto 0), dout=>DBusA);

tbuf_mema_w: parts.tbufN generic map (30) port map
(en=>MemARWn, din=>DBusA, dout=>memaBus(29 downto 0));

MemARWn <= not MemARW after 1 ns;

tbuf_memb_r: parts.tbufN generic map (30) port map

184

(en=>MemBRW, din=>membBus(29 downto 0), dout=>DBusB);

tbuf_memb_w: parts.tbufN generic map (30) port map
(en=>MemBRWn, din=>DBusB, dout=>membBus(29 downto 0));

MemBRWn <= not MemBRW after 1 ns;

tbuf_ibus_D: parts.tbufN generic map (30) port map
(en=>EnIFifoD, din=>IBus(29 downto 0), dout=>DBusA);

mux_o: parts.mux21N generic map (30) port map
(din0=>DBusA, dinl=>DBusB, sel=> □ Src, dout=>0Mux_q);

mux_a: parts.mux21N generic map (30) port map
(din0=>DBusA, dinl=>DBusB, sel=>ASrc, dout=>AMux_q);

reg_accu: parts.regN generic map (30) port map
(reset=>reset, load=>ld_accu, d=>AMux_q, q=>accu_q);

reg_data: parts.regN generic map (30) port map
(reset=>reset, load=>ld_data, d=> □ Mux_q, q=>data_q);

reg_water: parts.regN generic map (15) port map
(reset=>reset, load=>ld_water, d=> □Mux_q(14 downto 0), q=>water_q);

reg_rightedge: parts.regN generic map (15) port map
(reset=>reset, load=>ld_rightedge, d=>0Mux_q(14 downto 0), q=>right_q);

reg_inst: parts.regN generic map (18) port map
(reset=>reset, load=>ld_inst, d=> □Mux_q(17 downto 0), q=>inst_q);

reg_prpo: parts.regN generic map (24) port map
(reset=>reset, load=>ld_prpo, d=>0Mux_q(23 downto 0), q=>prpo_q);

mux_rel: parts.mux441 port map
(din0=>prpo_q(22 downto 19), dinl=>prpo_q(10 downto 7),

din2=>inst_q(15 downto 12), din3=>fourzero,
sel=>prel_sel, dout=>rel);

mux_bef: parts.mux441 port map
(din0=>prpo_q(15 downto 12), dinl=>prpo_q(3 downto 0),

din2=>inst_q(11 downto 8), din3=>fourzero,
sel=>prel_sel, dout=>bef);

tmp_and_or <= prpo_q(23) t prpo_q(11) i inst_q(16) t const_zero;

mux_and_or:parts.mux41 port map
(din=>tmp_and_or, sel=>prel_sel, dout=>and_or);

ilu: ccmbasic.ilu generic map (15) port map
(reset=>reset, clk=>clk, ilu_enable=>ilu_enable,

185

prime=>inst_q(17), to_mem=>to_mem, and_or=>and_or,
rel=>rel, bef=>bef,
act=>inst_q(7 downto 4), aft=>inst_q(3 downto 0),
water=>water_q, redge=>right_q, a=>accu_q, b=>data_q,
c=>0Bus(29 downto 0), ilu_done=>ilu_done,
write_output=>write_output2, inc_waddr=>inc_waddr2, empty=>ilu_empty,
cnt_val=>cnt_val

) ;

mux_pval: parts.mux21N generic map (size=>1) port map
(din0=>prpo_q(16 downto 16), din1=>prpo_q(4 downto 4),

sel=>prel_sel(0), dout=>prel_val(0 downto 0));

prel_val(3 downto 1) <= "000";

cmp_prel: parts.cmpN generic map (size=>4) port map
(dinA=>cnt_val, dinB=>prel_val,

lt=>cmp_q(0), eq=>cmp_q(1), gt=>cmp_q(2));

cmp_q(3) <= '0';

mux_res_sel: parts.mux21N generic map (size=>2) port map
(din0=>prpo_q(18 downto 17), din1=>prpo_q(6 downto 5),

sel=>prel_sel(0), dout=>res_sel);

mux_prel_res: parts.mux41 port map
(din=>cmp_q, sel=>res_sel, dout=>prel_res);

tbuf_IluA: parts.tbufN generic map (30) port map
(en=>EniluA, din=>0Bus(29 downto 0), dout=>DBusA);

tbuf_IluB: parts.tbufN generic map (30) port map
(en=>EniluB, din=>0Bus(29 downto 0), dout=>DBusB);

ififo: ccmbasic.fifo
generic map (Width=>32, depth=>512)
port map

(data=>ififo_din, q=>IBus, clk=>clk, reset=>reset,
re=>ififo_re, we=>ififo_we, ef=>ififo_ef, ff=>ififo_ff

) ;

ofifo: ccmbasic.fifo
generic map (Width=>32, depth=>64)
port map

(data=>0Bus, q=>ofifo_dout, clk=>clk, reset=>reset,
re=>ofifo_re, we=>ofifo_we, ef=>ofifo_ef, ff=>ofifo_ff

) ;

0Bus(30) <= const_zero;
0Bus(31) <= finish;

186

end arch;

testccm.vhd
File: testccm.vhd
Author: CHEN, Qihong, Portland State University
Date: 3/30/97

Test bench of CCM2

library ieee;
use std.textio.all;
use ieee.std_logic_textio.all;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.stringpkg.all;
use work.ccmtype.all;

entity testccm is
end testccm;

architecture test of testccm is

component ccm
port (-- global signals

reset, elk: in std_logic;

-- the input/output fifos
ififo_din: in std_logic_vector (31 downto 0);
ofifo_dout: out std_logic_vector (31 downto 0);
ififo_we, ofifo_re: in std_logic;
ififo_ff, ofifo_ef : buffer std_logic;
state : out BIUstate

) ;
end component;

constant cmd_filename: string:= "test.ccm";
signal elk: std_logic := '0';
signal reset: std_logic;
signal ififo_din, ofifo_dout: std_logic_vector (31 downto 0);
signal ififo_we, ofifo_re std_logic := '0';
signal ififo_ff, ofifo_ef : std_logic;
signal state: BIUstate;
signal init_done: boolean:= false;

BEGIN

u0: ccm port map

187

(reset=>reset, clk=>clk,
ififo_din=>ififo_din, ofifo_dout=>ofifo_dout,
ififo_we=>ififo_we, ofifo_re=>ofifo_re,
ififo_ff=>ififo_ff, ofifo_ef=>ofifo_ef,
state=>state

) ;

-- clock process is used to generated clock signal.
clock: process
begin

elk<= not elk after 50 ns;
wait for 50 ns;

end process;

-- read output FIFO whenever there is a cube in it.
read_ofifo: process

variable outbuf: line;
variable resultno: integer.- O;

begin

wait for 100 ns;

if (init_done) then
if {ofifo_re = '1') then

resultno := resultno + 1;
write(outbuf, string'{" [Time:"));
write(outbuf, now);
write(outbuf, string'("] result cube (No."));
write(outbuf, resultno);
write(outbuf, string'("):"));
write(outbuf, ofifo_dout(31 downto 30));
write(outbuf, string'("-"));
write(outbuf, ofifo_dout(29 downto 22));
write(outbuf, string'("-"));
write(outbuf, ofifo_dout(21 downto 14));
write(outbuf, string'("-"));
write(outbuf, ofifo_dout(13 downto 6));
write(outbuf, string'("-"));
write(outbuf, ofifo_dout(5 downto O));
writeline(output, outbuf);

end if;

if (ofifo_ef = I 1') then
ofifo_re <= '0';

else
ofifo_re <= '1' ;

end if;
end if;

end process;

188

-- This is the main process of the test bench.
verify: process

type CCMSymbol is
(-- command symbols

ccmSET, ccmENABLE, ccmDISABLE, ccmEXEC, ccmLOOP,

-- registers
regAddrA, regAddrB, regAddrR, regWater, regRight,
reginst, regConf, regACCU, regPRPO,

-- tri-buffers
tbufAddrA, tbufAddrB, tbufIFifoA, tbufIFifoD,
tbufMemARW, tbufMemBRW, tbufiluA, tbufiluB,

-- others
ccmINVALID

) ;

-- convert ccm assembly command into CCMSymbol.
procedure to_command(token: inout line; symID: out CCMSymbol) is

variable cmpret : boolean;
begin

cmp_string(token, string'("SET"), cmpret);
if (cmpret) then

symID := ccmSET;
else

cmp_string(token, string'("ENABLE"), cmpret);
if (cmpret) then

symID := ccmENABLE;
else

cmp_string(token, string'("DISABLE"), cmpret);
if (cmpret) then

symID := ccmDISABLE;
else

cmp_string(token, string' ("EXEC"), cmpret);
if (cmpret) then

symID := ccmEXEC;
else

cmp_string(token, string'("LOOP"), cmpret);
if (cmpret) then

symID := ccmLOOP;
else

symID .- ccmINVALID;
end if;

end if;
end if;

end if;
end if;
Deallocate(token);

189

end to_command;

-- convert register name into CCMSymbol.
procedure to_register(token: inout line; symID: out CCMSymbol) is

variable cmpret : boolean;
begin

cmp_string(token, string'("AddrA"), cmpret);
if (cmpret) then

symID := regAddrA;
else

cmp_string(token, string'("AddrB"), cmpret);
if (cmpret) then

symID := regAddrB;
else

cmp_string(token, string'("AddrR"), cmpret);
if (cmpret) then

symID := regAddrR;
else

cmp_string(token, string'("Water"), cmpret);
if (cmpret) then

symID := regWater;
else

cmp_string(token, string'("Right"), cmpret);
if (cmpret) then

symID := regRight;
else

cmp_string(token, string' ("Inst"), cmpret);
if (cmpret) then

symID := reginst;
else

cmp_string(token, string' ("Conf"), cmpret);
if (cmpret) then

symID := regConf;
else

cmp_string(token, string' ("Accu"), cmpret);
if (cmpret) then

symID := regAccu;
else

cmp_string(token, string'("Prpo"), cmpret);
if (cmpret) then

symID .- regPRPO;
else

symID := ccmINVALID;
end if;

end if;
end if;

end if;
end if;

end if;

190

end if;
end if;

end if;
Deallocate(token);

end to_register;

-- convert tri-state buffer name into CCMSymbol.
procedure to_tribuf(token: inout line; symID: out CCMSymbol) is

variable cmpret : boolean;
begin

cmp_string(token, string'("enIFifoA"), cmpret);
if (cmpret) then

symID := tbufIFifoA;
else

cmp_string(token, string'("enIFifoD"), cmpret);
if (cmpret) then

symID := tbufIFifoD;
else

cmp_string(token, string'("eniluA"), cmpret);
if (cmpret) then

symID := tbufiluA;
else

cmp_string(token, string'("eniluB"), cmpret);
if (cmpret) then

symID := tbufiluB;
else

cmp_string(token, string'("enAddrA"), cmpret);
if (cmpret) then

symID := tbufAddrA;
else

cmp_string(token, string'("enAddrB"), cmpret);
if (cmpret) then

symID := tbufAddrB;
else

cmp_string(token, string'("MemARW"), cmpret);
if (cmpret) then

symID := tbufMemARW;
else

cmp_string(token, string'("MemBRW"), cmpret);
if (cmpret) then

symID := tbufMemBRW;
else

symID := ccmINVALID;
end if;

end if;
end if;

end if;
end if;

end if;

191

end if;
end if;
Deallocate(token);

end to_tribuf;

file ifile: text is in cmd_filename;
variable inbuf, outbuf, tempstr, token: line;
variable good, equal, valid_cmd: boolean := false;
variable lineno, state_sO_no: integer:= O;
variable ch : character;
variable cursymID, argsymID : CCMSymbol;
variable vec_addra, vec_addrb, vec_addrr: std_logic_vector(1 to 18);
variable vec_water, vec_right : std_logic_vector(1 to 15);
variable vec_inst: std_logic_vector(1 to 21);
variable vec_conf : std_logic_vector(1 to 9);
variable vec_accu, vec_data: std_logic_vector(1 to 30);
variable vec_prpo: std_logic_vector(1 to 24);
variable encoded_cmd: std_logic_vector(31 downto O);

begin
-- initialize the CCM.
if (not init_done) then

-- ififo_we <= '0';
-- ofifo_re <= '0';
reset<= '1';
wait for 75 ns;
reset <= '0';
wait for 30 ns;
write(outbuf, string'("Initialize the CCM ... "));
writeline(output, outbuf);
init_done <= true;

end if;

the following while loop read one line of CCM assembly, converts
into CCM instruction represented by binary number. If it encounts
a line of invalid CCM assembly (like comments), it will read next
line of CCM assembly.

while not endfile(ifile) loop

write(outbuf, string'("[Time: "));
write(outbuf, now);
write(outbuf, string'(") read command"));
writeline(output, outbuf);

lineno := lineno + 1;
readline(ifile, inbuf);
tempstr := new string'(inbuf.all);
write(outbuf, lineno, right, 3);
write(outbuf, string'("."));

192

write(outbuf, string'(tempstr.all));
writeline(output, outbuf);

read(inbuf, ch, good);
if (not good) or (ch/=' ') then next; end if;

get_string(inbuf, token, good);
if (not good) then next; end if;

encoded_cmd := "00000000000000000000000000000000";
encoded_cmd :=(others=> '0');
valid_cmd := true;
to_command(token, cursymID);
case cursymID is

when ccmSET =>
get_string(inbuf, token, good);
if (not good) then

write(outbuf, string'(" CCM ERROR: Invalid set command."));
writeline(output, outbuf);
next;

end if;
encoded_cmd(31 downto 29) := 11 001 11

;

to_register(token, argsymID);
case argsymID is

when regAddrA =>
read_std_logic_vector(inbuf, vec_addra, '0');
encoded_cmd(28 downto 26) := "000";
encoded_cmd(17 downto 0) := vec_addra;
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when regAddrB =>
read_std_logic_vector(inbuf, vec_addrb, '0');
encoded_cmd(28 downto 26) := 11 001 11

;

encoded_cmd(17 downto 0) := vec_addrb;
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when regAddrR =>
read_std_logic_vector(inbuf, vec_addrr, '0');
encoded_cmd(28 downto 26) := 11 010";
encoded_cmd(17 downto 0) := vec_addrr;
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when regWater =>
read_std_logic_vector(inbuf, vec_water, '1');
encoded_cmd(28 downto 26) := "011";
encoded_cmd(14 downto 0) := vec_water;
write(outbuf, string'(" encoded command is"));

193

write(outbuf, encoded_cmd);
writeline(output, outbuf);

when regRight =>
read_std_logic_vector(inbuf, vec_right, '0');
encoded_cmd(28 downto 26) := "100";
encoded_cmd(14 downto 0) := vec_right;
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when reginst =>
read_std_logic_vector(inbuf, vec_inst, '0');
encoded_cmd(28 downto 26) := "101";
encoded_cmd(26 downto 23) := vec_inst(1 to 3);
encoded_cmd(17 downto 0) := vec_inst(4 to 21);
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when regConf =>
read_std_logic_vector(inbuf, vec_conf, '0');
encoded_cmd(28 downto 26) := 11 110 11

;

encoded_cmd(8 downt6 0) := vec_conf;
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when regAccu =>
read_std_logic_vector(inbuf, vec_accu, '0');
encoded_cmd(31 downto 30) := 11 01 11

;

encoded_cmd(29 downto 0) := vec_accu;
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when regPRPO =>
read_std_logic_vector(inbuf, vec_prpo, '0');
encoded_cmd(28 downto 26) := "111";
encoded_cmd(23 downto 0) := vec_prpo;

11write(outbuf, string'(" encoded command is));

write(outbuf, encoded_cmd);
writeline(output, outbuf);

when others =>
write(outbuf, string'(" invalid set command. "));
writeline(output, outbuf);
valid_cmd := false;

end case;
when ccmENABLE =>

get_string(inbuf, token, good);
if (not good) then

write(outbuf, string'(" CCM ERROR: Invalid enable command."));
writeline(output, outbuf);
next;

end if;

194

encoded_cmd(31 downto 29) := 11 000 11
;

encoded_cmd(26) := '1';
to_tribuf(token, argsymID);
case argsymID is

when tbufAddrA =>
encoded_cmd(28 downto 26) := "000";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufAddrB =>
encoded_cmd(28 downto 26) := "001";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufIFifoA =>
encoded_cmd(28 downto 26) := "010";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufMemARW =>
encoded_cmd(28 downto 26) := "011";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufiluA =>
encoded_cmd(28 downto 26) := 11 100 11

;

write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufIFifoD =>
encoded_cmd(28 downto 26) := "101";

11write(outbuf, string'(" encoded command is));

write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufMemBRW =>
encoded_cmd(28 downto 26) := "110";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufiluB =>
encoded_cmd(28 downto 26) := "111";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when others =>
write(outbuf, string'(" invalid enable command. "));
writeline(output, outbuf);
valid_cmd := false;

end case;
when ccmDISABLE =>

195

get_string(inbuf, token, good);
if (not good) then

write(outbuf, string'(" CCM ERROR: Invalid disable command."));
writeline(output, outbuf);
next;

end if;
encoded_cmd(31 downto 29) := "000";
to_tribuf(token, argsymID);
case argsymID is

when tbufAddrA =>
encoded_cmd(28 downto 26) := "000";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufAddrB =>
encoded_cmd(28 downto 26) := 11 001 11

;

write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufIFifoA =>
encoded_cmd(28 downto 26) := "010";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufMemARW =>
encoded_cmd(28 downto 26) := "011";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufiluA =>
encoded_cmd(28 downto 26) := "100";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufIFifoD =>
encoded_cmd(28 downto 26) := "101";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufMemBRW =>
encoded_cmd(28 downto 26) := "110";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when tbufiluB =>
encoded_cmd(28 downto 26) := "111";
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when others =>

196

11write(outbuf, string'(" invalid disable command.));

writeline(output, outbuf);
valid_cmd := false;

end case;
when ccmEXEC =>

read_std_logic_vector(inbuf, vec_data, '0');
encoded_cmd(31 downto 30) := 11 10";
encoded_cmd(29 downto 0) := vec_data;
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when ccmLOOP =>
read_std_logic_vector(inbuf, vec_data, '0');
encoded_cmd(31 downto 30) := "11";
encoded_cmd(29 downto 0) := vec_data;
write(outbuf, string'(" encoded command is"));
write(outbuf, encoded_cmd);
writeline(output, outbuf);

when others=>
write(outbuf, string'(" invalid command. "));
writeline(output, outbuf);
valid_cmd .- false;

end case;

if (not valid_cmd) then next; end if;

push the command into the input fifo
ififo_we <= '1';
ififo_din <= encoded_cmd;
wait for 100 ns;

end loop; read command file

ififo_we <= '0';

-- if CCM keeps in state SO in two continuous clock periods, then
-- the simulation is done.
while (state_sO_no < 2) loop

if (state= sO) then
state_sO_no .- state_sO_no + 1;

else
state_sO_no := O;

end if;
wait for 100 ns;

end loop;

-- simulation is done
write(outbuf, string'(" Time: "));
write(outbuf, now);
writeline(output, outbuf);
assert false

197

report "Simulation is done."
severity note;

wait;
end process;

END;

••

198

APPENDIX C

The C program to perform disjoint-sharp

operation

This is a C program to perform disjoint-sharp operation on two arrays of cubes,

See Chapter 8 for detail. This program consists of three files: main.c, cubeoper.h,

cubeoper.c.

MAIN.C

/• File: main.c, Chen, Qihong Apr 1, 1998

** This program is used to perform disjoint sharp operation on two
** arrays of cubes. Please note that this program only handles binary
** variables.
**
** This program reads two arrays of cubes from two files. The file
** format is similar to PLA file format, but it only support
** ".i", ".e" and cubes in PLA format. There is only input cubes
** in this file format.

** ** Example: the follow lines represent a array of cubes with 3 variables
•• . i 3

** 000
** 011

** 11-
•• .e
•I

#include <stdio.h>
#include <sys/time.h>
#include "cubeoper.h"

int debug= O;

main(int argc, char •argv[])
{

ARRAYOFCUBES a, b, temp;

199

FILE *fp1, •fp2;

struct timeval tv1,tv2,tvdiff;
struct timezone tz;
int res1, res2;

/• initialize arrayofcubes •/
a.numvar = O; a.numcube = O;
b.numvar = O; b.numcube = O;
temp.numvar = O; temp.numcube = O;

if (argc<3 I I argc>4)
{ printf("Usage: dsharp <infile1> <infile2> <d>\n");

exit(O);
}

if (argc==4)
if (strcmp(argv[3],"d")==O) debug=1;

if ((fp1=fopen(argv[1] ,"r")) == 0)
{ printf("cannot open file ¼s\n", argv[1]);

exit(O);
}

read_cubes(fp1, ta);
fclose(fp1);
if (debug) showarray(l:a, "A");

if ((fp2=fopen(argv [2], "rw")) == 0)
{ printf("cannot open file ¼s\n", argv[2]);

exit(O);
}

read_cubes(fp2, l:b);
fclose(fp2);
if (debug) showarray(l:b, "B");

resl = gettimeofday(l:tvl, l:tz);
dsharparr(ta, lb, ltemp);
res2 = gettimeofday(ltv2, ltz);
showarray(&:temp, "Result");

if (debug)
{ if (! resl)

printf("start: ¼ld sec ¼ld usec\n", tv1.tv_sec, tv1.tv_usec);
else

printf("first gettimeofday failed\n");

if (! res2)
printf(" end: ¼ld sec ¼ld usec\n", tv2.tv_sec, tv2.tv_usec);

200

else
printf("second gettimeofday failed\n");

}

difftv(ttvl, ttv2, ltvdiff);
printf("time difference is ¼ld sec ¼ld usec\n",tvdiff.tv_sec,tvdiff.tv_usec);

}

CUBEOPER.H
/• File: cubeoper.h •/
#include <sys/time.h>
#define MAXCUBES 1024 /• the ma.x cubes in a array of cubes•/

/• The cube is represent by a long int(4-byte, 32-bit). Since this program
•• only handle binary variables, a cube has at most 16 binary variables.
•• The 32 bits are used from left to right, which means the first cube is
•• represented by the highest two bits.
•I
typedef unsigned long CUBE;

/• The structure is used to represent an array of cubes•/
struct ArrayOfCubes
unsigned char numvar;
int numcube;
CUBE cube[MAXCUBES];

typedef struct ArrayDfCubes ARRAYOFCUBES;

/• Functions' definition. see file cubeoper.c •/
void getvar(CUBE •cube, short idx, short •value);
void setvar(CUBE •cube, short idx, short •value);
void storecube(ARRAYOFCUBES •parray, CUBE •pcube);
void skip_line(FILE *fp);
char •get_word(FILE •fp, char •word);
int str2pn(char •str, int nvar, CUBE •pcube);
void pn2str(CUBE •pcube, int nvar, char •str);
void read_cubes(FILE •fp, ARRAYOFCUBES •cubes);
void showarray(ARRAYOFCUBES •parray, char •name);
void dsharp(CUBE cubea, CUBE cubeb, int numvar, ARRAYDFCUBES •parray);
void copyarrcube(ARRAYOFCUBES •parraya, ARRAYDFCUBES •parrayb);
void dsharparr(ARRAYDFCUBES •parraya,ARRAYDFCUBES •parrayb,ARRAYOFCUBES •pres);
void difftv(struct timeval •tvl, struct timeval •tv2, struct timeval •tvdiff);

CUBEOPER.C
/• File: cubeoper.c •/

201

#include <stdio.h>
#include "cubeoper.h"

extern int debug;

/• get a literal of the given cube•/
void getvar(CUBE •pcube, short idx, short •pvalue)
{ CUBE temp;

temp= •pcube;
•pvalue =(temp>> (30-idx•2)) t Ox03L;

}

/• set a literal of the given cube•/
void setvar(CUBE •pcube, short idx, short •pvalue)
{ CUBE temp;

temp= •pvalue t Ox0003;
•pcube = (•pcube) t (*(Ox03L << {30-idx•2)));
•pcube = •pcube I (temp<< {30-idx•2));

}

/• store a cube into the given array of cubes•/
void storecube(ARRAYOFCUBES •parray, CUBE •pcube)
{

parray->cube[parray->numcube] = •pcube;
parray->numcube += 1;

}

/• skip the rest of line when read file•/
void skip_line(FILE •fp)
{ int ch;

while ((ch=getc{fp)) != EOF ti ch != '\n•);
}

/• get a word from the file, the words are seperated by white spaces•/
char •get_word(FILE •fp, char •word)
{ int ch, i = O;

while ((ch= getc(fp)) != EOF tt isspace(ch));

word[i++] = ch;
while ((ch= getc(fp)) != EOF ti isspace(ch))
{ word[i++] = ch;
}

word[i++] = '\0';

return word;
}

202

I* convert a cube from PLA format to positional notation format *I
int str2pn(char •str, int nvar, CUBE *pcube)
{ short i, val, res=0;

*pcube = 0L;

if ((strlen(str) != nvar) I I (nvar >= 16))
{ printf("wrong length (¼s,¼d).\n", str, nvar);

res = 1;
}

else
{ for (i=0; i<nvar; i++)

{ switch (str[i])
{ case '0': val=2; break;

case 11 ; val=1; break;l

case ,_': val=3; break;
default : res = 2;

}
setvar(pcube, i, tval);

}
}

return res;
}

/• convert a cube from positional notation format to PLA format *I
void pn2str(CUBE *pcube, int nvar, char •str)
{ short i, val;

for (i=0; i<nvar; i++)
{ getvar(pcube, i, tval);

switch (val)
{ case 0: str[i] = , e J ; break;

case 1: str[i] = l 1' j break;
case 2: str[i] = '0'; break;
case 3: str[i] =) -) "

' }
}

str[nvar] = '\0';
}

void read_cubes(FILE *fp, ARRAY0FCUBES •cubes)
{

inti, ch, lineno, numvar, res;
char word[2S6];
CUBE tempcube;

while (1)

203

{ switch(ch = getc(fp))
{ case EOF: return;

case '\n':
case '.'
case '\t': break;

case '#': (void) ungetc(ch, fp);
skip_line(fp);
break;

case '. ':
get_word(fp, word);

I• .i gives the cube input size (binary-functions only) •I
if (strcmp(word, "i") == 0)

{ if (fscanf(fp, 11 1/.d", &:numvar) != 1)
printf("error reading .i");

cubes->numvar = numvar;
/• printf("there are 1/.d variables\n", numvar); •/

}

I• .e and .end specify the end of the file•/
if (strcmp(word, "e") == 0) return;

break;

default:
(void) ungetc(ch, fp);
get_word(fp, word);
I• printf("cube is >1/.s< ", word); •I
res= str2pn(word, numvar, &:tempcube);
I• printf("res=1/.d, cube is >Y.08X< \n", res, tempcube); •/
storecube(cubes, &:tempcube);

}
}

}

/• display an array of cubes•/
void showarray(ARRAYOFCUBES •parray, char •name)
{ int i;

char word [1 7] ;

printf("Array Of Cubes [1/.s]: 1/.d variables, 1/,d cubes\n",
name, parray->numvar, parray->numcube);

for (i=O; i<parray->numcube; i++)
{ printf(" cube[Y.d]: 1/.08X (", i, parray->cube[i]);

pn2str(l:parray->cube[i], parray->numvar, word);

204

printf("o/.s)\n", word);
}

}

I• disjoint sharp operation on two cubes•/
void dsharp(CUBE cubea, CUBE cubeb, int numvar, ARRAYOFCUBES •parray)
{ short vala, valb, vale;

inti, j, res=0;
CUBE tempcube = 0L;

int subset[4][4] = { 1, 1, 1, 1,
0, 1, 0, 1,
0, 0, 1, 1,
0, 0, 0, 1 };

int active[4] [4] = { 0, 0, 0, 0,
1, 0, 1, 0,
2, 2, 0, 0,
3, 2, 1, 0 };

I• check the first pre-relation •I
for (i=0; i<numvar; i++)
{ getvar(lcubea, i, lvala);

getvar(lcubeb, i, lvalb);

if (!(vala l valb)) /• there is no intersection•/
{ res = 1;

break;
}

}
if (res == 1)
{ storecube(parray, lcubea);

return;
}

/• check the second pre-relation •I
for (i=0; i<numvar; i++)
{ getvar(lcubea, i, lvala);

getvar(acubeb, i, avalb);

if (!subset[vala][valb]) /• A is not the subset of B •/
{ res = 1;

break;
}

}
if (res != 1) return; /• no result cube•/

/• calculate disjoint sharp•/
for (i=0; i<numvar; i++)
{ getvar(lcubea, i, lvala);

205

getvar(tcubeb, i, tvalb);

if (!subset[vala][valb]) /• i is the special position•/
{ tempcube = OL;

/• printf("the position Y.d is a special positon ... \n", i); •I

for (j=O; j<i; j++) I• after function•/
{ getvar(tcubea, j, tvala);

getvar(tcubeb, j, tvalb);
vale= vala t valb;
setvar(ttempcube, j, tvalc);

}

getvar(tcubea, i, tvala);
getvar(tcubeb, i, tvalb);
vale= active[vala][valb];
setvar(ttempcube, i, tvalc);

for (j=i+1; j<numvar; j++) I• before function•/
{ getvar(tcubea, j, tvala);

vale= vala;
setvar(ttempcube, j, tvalc);

}

storecube(parray, ttempcube);
}

}
}

/• copy one array of cubes to another array of cubes•/
void copyarrcube(ARRAYOFCUBES •parraya, A.R:R.AYOFCUBES *parrayb)
{inti;

parrayb->numvar = parraya->numvar;
parrayb->numcube = parraya->numcube;

for (i=O; i<parraya->numcube; i++)
parrayb->cube[i] = parraya->cube[i];

}

/• disjoint sharp operation on two arrays of cubes•/
void dsharparr(A.R:R.AYOFCUBES •parraya,A.R:R.AYOFCUBES •parrayb,A.R:R.AYOFCUBES •pres)
{ A.R:R.AYOFCUBES tmparraya, tmparrayb;

A.R:R.AYOFCUBES •pcubesa, •pcubesb, •ptmp;
int i, j;

if (parraya->numvar != parrayb->numvar)
{ pres->numvar = O;

pres->numcube = O;

206

return;
}

copyarrcube(parraya, ttmparraya);
pcubesa = "mparraya;
pcubesb = ttmparrayb;

pcubesb->numvar = parraya->numvar;

/• showarray(pcubesa, "Copy arrA to tmp buf A");•/

for (i=0; i<parrayb->numcube; i++)
{ pcubesb->numcube = 0;

for (j=0; j<pcubesa->numcube; j++)
dsharp(pcubesa->cube[j], parrayb->cube[i], pcubesa->numvar, pcubesb);

if (debug) printf("Iteration ¼d: 'Y.d cubes\n", i, pcubesb->numcube);
/• showarray(pcubesb, "intermedia result");
•I

ptmp = pcubesa;
pcubesa = pcubesb;
pcubesb = ptmp;

}

/• showarray(pcubesa, "final result");•/
copyarrcube(pcubesa, pres);
pres->numvar = pcubesa->numvar;
pres->numcube = pcubesa->numcube;

}

/• calculate the difference time between two moments (two timeval structure)•/
void difftv(struct timeval •tv1, struct timeval •tv2, struct timeval •tvdiff)
{

if (tv2->tv_usec < tv1->tv_usec)
{ tvdiff->tv_usec = tv2->tv_usec - tv1->tv_usec + 1000000;

tvdiff->tv_sec = tv2->tv_sec - tv1->tv_sec - 1;
}

else
{ tvdiff->tv_usec = tv2->tv_usec - tv1->tv_usec;

tvdiff->tv_sec = tv2->tv_sec - tv1->tv_sec;
}

}

	New Approaches to Column Compatibility Checking and Column-Based Input/Output Encoding for Curtis Decompositions of Completely or Incompletely Specified Switching Functions
	Let us know how access to this document benefits you.
	Recommended Citation

