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A B S T R A C T

This study aims to train and validate machine learning and deep learning models to identify patients
with risky alcohol and drug misuse in a Screening, Brief Intervention, and Referral to Treatment (SBIRT)
program. An observational cohort of 6978 adults was admitted in the western region of Alabama at three
medical facilities between January and December of 2019. Data were cleaned and pre-processed using data
imputation techniques and an augmented sampling data method. The primary analysis involved the multi-
class classification of alcohol and drug misuse. Our study shows that accurate identification of alcohol
and drug use screening instrument scores was best accomplished with mixed-effects models following the
imputation of missing data using the Generative Adversarial Imputation Networks (GAIN) method and then
followed by applying the Synthetic Minority Over-sampling TEchnique-Nominal Continuous (SMOTE-NC) data
augmentation method. Although mixed models are commonly employed in studies of electronic health records
(EHRs), using the GAIN method followed by SMOTE-NC for diagnosing alcohol and drug use disorder is novel
and original.

1. Introduction

Although few addiction science accomplishments are translated
into clinical practice in sustainable ways, the Substance Abuse and
Mental Health Services Administration’s (SAMHSA) Screening, Brief
Intervention, and Referral to Treatment (SBIRT) approach has been
implemented in several clinics throughout the United States [1]. SBIRT
involves a brief screening for substance use or mental health before
a patient’s clinic visit, followed by a clinicianś scoring of the screen-
ing and subsequent offering of a brief intervention, brief treatment,
or referral to treatment, depending on the severity of the patientś
screening score [2]. Cross-site evaluations have shown that SBIRT
programs are effective regarding healthcare costs and changes in crit-
ical end-points [2]. However, SBIRT lacks the predictive capability
for populations at risk for substance use disorders (SUD). Therefore,
a predictive model is needed to detect the potential risk for SUD.
Recently, a subsector of artificial intelligence, machine learning (ML),
has been used in substance use research. ML can provide a predictive
model based on pattern identification and computational learning [3].
Despite using ML algorithms to detect the likelihood of substance

✩ https://github.com/meera-m-t/Comprehensive-prediction-analysis-of-alcohol-and-drug-use-disorder-using-machine-deep-learning-algor.
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use patterns based on electronic medical records [4], little research
has employed ML methods within the context of SBIRT [5]. Applied
ML models within the context of SBIRT may create greater service
efficiency by enabling clinicians to understand better the contextual
factors associated with SBIRT outcomes and identify types of patients
at greater risk for substance use disorders.

2. Literature review

Approximately 20.1 million Americans have a substance use disor-
der (SUD); however, only about 10% of affected individuals receive
treatment [6]. Generally, addiction-related behaviors are harder to
detect compared to other physical symptoms [7]. The integration of
SUD screening and treatment within a primary care setting permits
individuals who are being seen by a medical provider for other health
issues to be treated for SUD, thus, increasing the likelihood of detecting
SUD in a patient and providing services that they might have otherwise
missed. As such, SBIRT services fill a critical need in the American
populationś substance use treatment and recovery needs.
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Data are routinely collected from patients in SBIRT programs via
electronic health records (EHRs). Because patients are more likely to
report SUD to their primary care physician, the data contained within
EHRs in SBIRT programs is highly accurate [8]. The vast amount of
data collected from SBIRT programs for a patient’s EHR provides an
opportunity for learning about trends and patterns akin to SUD in
primary care-seeking patients.

Artificial intelligence prediction systems, developed with Machine
Learning (ML) and Deep Learning (DL) techniques or algorithms, have
been introduced within the healthcare setting to overcome physical
limitations. ML is an empirical method of predicting and measuring
potential risk factors [9], as it can detect and diagnose, as well as
provide predictive outcomes [10], such as in the context of detecting
thyroid cancer [11]. However, presently, there is little research employ-
ing ML methods within the context of SBIRT [5] despite its capability
of detecting the likelihood of substance use patterns based on electronic
medical records [4].

According to Bi and colleagues [12], ML is a branch of computer
science that ‘‘emphasizes predictive accuracy over hypothesis-driven
inference, usually focusing on large, high-dimensional data sets’’. For
example, support vector machines, an ML algorithm based on kernel
functions that overcome the rigid assumptions of some frequentist
statistical models [13], such as least squares linear regression’s linearity
assumption, enables an EHR analyst to discover nuanced relationships
between variables as the algorithm learns from the data. As a result,
ML models provide prediction equations for outcomes (e.g., substance
use disorder severity) more accurately.

ML has been extensively used in certain health care scenarios. For
example, during the COVID-19 pandemic, many researchers turned to
ML and DL for purposes of improving screening, predictions, forecast-
ing, contact tracing, and drug development [14]. For example, [15]
used deep learning in order to predict the ending point of the pan-
demic in Canada. In another example, [16] used hybrid wavelet-
autoregressive integrated moving average models and regression trees
to conduct real-time forecasting of death rates associated with COVID-
19. Such models have incredible clinical utility. In the same way that
ML has been used to improve conditions relative to the COVID-19
pandemic, we sought to use ML in order to improve conditions related
to alcohol and drug use screenings in primary care clinics.

Using ML to understand better patient characteristics associated
with outcomes in the context of an SBIRT program could significantly
improve SUD patient identification and service provision. Although
theory-driven analysis is beneficial in understanding a baseline set
of factors associated with an outcome, MLś emphasis on atheoretical
learning from data provides an opportunity to discover previously
unknown predictors of an outcome [17]. Therefore, the purpose of
the present study was to explore the predictive accuracy of a suite
of ML and DL algorithms within the context of an SBIRT program in
Alabama to recommend a predictive model of SUD. Given that ML is an
atheoretical approach to data analysis [18], we did not specify apriori
hypotheses in this study.

3. Study area and dataset

3.1. Procedure

Executed in the western region of Alabama at three medical fa-
cilities, the screening, brief intervention, and referral to treatment in
Alabama (AL-SBIRT) program served adult patients via universal and
annual pre-screening for alcohol, drug, and tobacco use. AL-SBIRT
commenced with a population-based, universal screening procedure in
the waiting areas of medical facilities before the patient’s appointment.
As a part of the screening, each patient reported demographic data and
details of their alcohol, drug, and tobacco use. All self-report data were
retrieved with a tablet or desktop computer. Screening tool scores were
calculated automatically and given to social workers or nurses through
a web-based portal called ‘‘Wellness Tracker.’’ Score severity on each
tool was used to determine patient service recommendations. Patients

who screened positive for any use of tobacco products were referred to
a tobacco quitline [19].

Individuals who exhibited either no risk or low risk for drug or
alcohol use were provided educational feedback about alcohol and
drugs. Individuals who showed a mild risk for substance misuse were
offered a 30-minute brief intervention (variable name = BI). Each BI
comprised a brief negotiated interview based on motivational inter-
viewing techniques [20]. Persons who showed moderate risk were
offered BI and up to 12 brief treatments (variable name = BT). Each BT
session was roughly 60 min and was driven by principles of Integrated
Change Therapy [21]. Persons displaying severe risk were referred to
an in-network specialty treatment (variable name = RT). All services
were provided after the patient supplied consent. AL-SBIRT ended ser-
vices when a person no longer wanted them. Individuals who screened
positive on more than one tool were coded as 1 in a variable named
COSCREEN.

3.2. Measures

The screening tool used in this study included the following com-
ponents: demographics, tobacco, alcohol, and drugs. The demographics
component of the tool was based on the SAMHSA mandated Govern-
ment Performance and Results Act (GPRA) tool. Demographics com-
piled in the GPRA tool and available for use in this study included
sex (variable name = SEX), ethnicity (variable name = HISPANIC),
race (variable name = RACE), veteran status (variable name = VET),
active duty military status (variable name = ACTIVE), previous military
deployment status (variable name = DEPLOY), and age (variable name
= AGE).

In this study, the tobacco use question (variable name = TOB-
MONTH) was asked as follows: ‘‘In the past 30 days, how many days did
you use tobacco products (cigarettes, dip, chew, electronic cigarettes,
etc.)?’’ We used the U.S-Alcohol Use Disorders Identification Test (U.S-
AUDIT) to detect unhealthy alcohol use [19]. The U.S.-AUDIT is a
10-item tool validated for use in primary health care settings [22]. An
example item from the AUDIT follows: ‘‘How often during the last year
have you found that you were not able to stop drinking once you had
started?’’ A score between 7–15 for females and 8–15 for males resulted
in a suggestion for BI, while scores from 16–24 resulted in a suggestion
for BT, and scores higher than 25 resulted in an RT. We included a
variable in this study that was coded as one of the patients who used
alcohol in the previous 30 days and 0 if the patient did not use alcohol
in the past 30 days (variable name = ANYALC). We also included a
variable in this study that measured the number of days in the past 30
days on which binge drinking (i.e., 5 or more drinks on one occasion)
occurred (variable name = BINGEDAYS).

The DAST-10 was used as a drug misuse screening tool [23]. The
DAST-10 is a 10-item self-report survey of drug use-related topics in
the past year (variable name = DAST). An example question from the
DAST-10 follows: ‘‘ have you had medical problems as a result of your
drug use (e.g., memory loss, hepatitis, convulsions, bleeding)?’’ AL-
SBIRT patients who had a score of 1 or 2 were offered a BI, while
patients who scored between 3 and 5 were supplied with BT. Patients
who scored between 6 and 10 were referred to treatment (RT).

Other drug and alcohol use outcomes measured in this study in-
cluded the following. DRUGDAYS (i.e., variable name) measured the
number of days in the last 30 days in which any illicit drug was used.
ALCDRUG (i.e., variable name) was coded dichotomously, where a
1 equaled co-use of alcohol and illicit drugs on the same occasion
and 0 equaled no co-use of alcohol and illicit drugs. DAYSCOCAINE
(i.e., variable name) measured the number of days in the last 30 days a
person used cocaine. MARYJDAYS (i.e., variable name) measured the
number of days in the past 30 days in which a person used marijuana.
OTHER DRUGS (i.e., variable name) measured the number of days
in the past 30 days in which a person used any other illicit drug.
Finally, INJECT (i.e., variable name) was coded dichotomously, where
a 1 equaled any injection drug use in the past 30 days, and a 0 equaled
no injection drug use.
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Table 1
Interpretation of DAST-10 score categories indicating the degree of consequences related to drug abuse.

DAST-10 Score Degree of Problem related to drug abuse Suggestion action Class name

0 No problem reported Non at this time Class-0
1–2 Low level Monitor, re-assess at a later date Class-1
3–5 Moderate level Further investigation Class-2
6–8 Substantial level Intensive assessment Class-3
9–10 Sever level Intensive assessment Class-4

Table 2
Interpretation of AUDIT score categories indicating the extent of alcohol involvement along a broad continuum of severity.

AUDIT score Intervention Risk level Class name

0–7 Alcohol education Zone I Class-0
8–15 Simple advice Zone II Class-1
16–40 Referral to specialist for diagnoses evaluation and treatment Zone III Class-2

3.3. Sample

This studyś sample comprises persons pre-screened by the AL-SBIRT
program for substance use between January 2019 and December 2019.
De-identified electronic health records for 6,978 adults were acquired
from the three medical facilities. Because the data in this study were
forwarded to the authors with identifying data already removed, this
study was deemed exempt from Institutional Review Board review.
Thus, the research in this study consisted of secondary data. The
sample was primarily middle-aged (M = 44.21), female (52.16%),
non-Hispanic (97.41%), and non-white (67.18%).

4. Overview method

Our study method was comprised of two main stages. Fig. 1 shows
each step applied in both stages and summarizes the study.

Initial data pre-processing occurred in the first step. This step is cru-
cial and needs to be adequately implemented to build accurate models
for the performance analysis. ‘‘Cleaning Dataset’’ in Fig. 1 is the original
dataset obtained by applying initial pre-processing to the survey data
(dropping the columns that had 70% null values, data type conversion,
etc.). Subsequently, we determine the target variable (DAST or AUDIT),
which is the dependent feature we want to understand deeply. We
group the DAST columns by the range method using the pivot table
Table 1 [24]. Then we repeat the same process for AUDIT columns
based on Table 2 [24].

We reserve 80% of the dataset for training, ‘‘Training Dataset,’’
where we apply different deep/ML models, and we reserve 20% of the
dataset for testing, ‘‘Testing Dataset,’’ where we evaluate these models.
Subsequent operations were applied in two stages: (1.) in the first stage,
‘‘Stage (1)’’, the training dataset is used for different DL/ML classifiers,
including both fixed and mixed-effects models, after dropping the rows
with missing values; (2.) in the second stage, ‘‘Stage (2)’’, before
training the classifiers, another type of pre-processing application is
involved, which includes imputing missing values and over-sampling.
After imputation of the null values and creating ‘‘Imputed Dataset‘‘,
we apply the over-sampling method (SMOTE-NC) to achieve a more
balanced dataset, called ‘‘Balanced Dataset’’.

During the testing phase, we load a best-fitting saved model in Stage
(1) and Stage (2) for a specific classifier and apply it to the testing
dataset and evaluate the model based on four evaluation metrics (see
Section 7).

In this study, comprehensive prediction and analysis were success-
fully completed in both stages (see Section 8).

5. Pre-processing techniques

Data pre-processing techniques play a crucial role in the success of
ML/DL models and increase the quality of training data. Accordingly,
we apply imputation of missing data and over-sampling techniques.

5.1. Handling missing data

Missing values in survey research constitute the main obstacle to
accurate survey analysis. Dropping all rows with null values in a small
dataset is not ideal. A great deal of research has been done to develop
and improve imputation methods for missing survey values in the past
two decades, and research studies are still underway. These methods
aim to compensate for missing data so that the analysis file may be
subject to any form of analysis without the need for more study of
the missing data. Our missing survey data arose due to what might
be called ‘‘partial non-response,’’ which occurs when a respondent in
a multi-stage survey gives information for some but not all stages of
data collection. Partial non-response can be handled by retaining all
rows in the analysis file and imputing all missing responses. In this
study, we applied various DL and classical ML mechanisms to the task
of imputation. Good results have been gained by using classical ML
techniques, such as the K-Nearest Neighbor (KNN) imputer [25] and
Multiple Imputations by Chained Equations (MICE) [26]. Recently DL
techniques, such as Multiple Imputation with Denoising Autoencoders
(MIDAS) [27], DataWig [28], and Generative Adversarial Imputation
Networks (GAIN) [29], have been shown to possibly have even greater
potential compared to the classical ML models.

We evaluate various imputation methods based on the ability of the
process to find the correct value in each column that has missing data.
To do that, we drop all rows that have null values from the original
dataset to create an imputation dataset, which is then used to create a
Missing Completely at Random (MCAR) [30] variable (20%). Following
that, we impute the missing values using different imputation methods.
Lastly, we compute the accuracy between the imputation values and the
actual values in the imputation dataset. We choose the most efficient
method to apply to the missing values in the original training dataset
based on the results.

5.1.1. K-Nearest Neighbor (KNN) imputation
The KNN imputation approach [25] is used to detect the K-nearest

neighbors of missing values from all complete samples in a given
dataset and then replace them with the mean of the neighbors if the
target attribute is numeric, indicated by the mean rule, or using the
most frequent one occurring in the neighbors if the target attribute is
categorical, shown by the majority rule.

5.1.2. Multiple Imputations by Chained Equations (MICE)
MICE [31], sometimes known as ‘‘sequential regression of multi-

ple imputations,’’ has stood out in statistical research as an effective
technique for imputing missing data. In contrast to single imputation,
constructing multiple imputations considers the statistical uncertainty
in the imputations. Moreover, the chained equations model is adaptable
in addressing different data types (e.g., continuous or discrete). MICE
uses a process called Predictive Mean Matching (PMM) to choose which
values are imputed, which considers each missing value as the target
variable and the remaining variables as predictors, and then fills a
missing value in based on the most relative predicted value for its value
from the fitted model.
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Fig. 1. The overall flowchart of our proposed approach.

5.1.3. DataWig
Popular imputation approaches, such as KNN and MICE, focus on

imputing missing values in matrices, that is, imputation of numerical
values from other numerical values. On the other hand, DL models
address imputation for more heterogeneous data types; heterogeneous
data may be ordinal or categorical. DataWig [28] combines DL feature
extractors with automatic tuning of hyperparameters in an end-to-end
fashion using the symbolic API of Apachemxnetto on both CPUs and
GPUs. In DataWig, the user sets the imputation column (referred to as
the output column) and other columns which contain helpful informa-
tion for imputation (referred to as input columns). Then, depending
on the data type in the imputation column (numerical or categorical
variables), the trained model will be fitted using either regression or
cross-entropy loss.

5.1.4. Multiple Imputation with Denoising Autoencoders (MIDAS)
MIDAS [27] is a multi-scale computational approach that has accu-

racy, speed, and scalability by relying on advanced computation and
theories in DL. MIDAS uses a class of unsupervised neural networks
known as ‘‘denoising autoencoders,’’ which consider missing values
as corrupted data and derives imputations from a model trained to
reduce the reconstruction error on the initially observed part. In ad-
dition, functional flexibility allows MIDAS to create complicated and
simple relationships among variables, which provides the foundation
for performance gains across different data types and structures.

5.1.5. Generative Adversarial Imputation Networks (GAIN)
GAIN [29] uses the Deep Generative Network (GAN) architecture

to impute missing values. The generator observes partial elements of
an original data vector, then imputes the missing values conditioned
on which are observed, and eventually outputs a completed vector
that includes observed values. Next, the discriminator takes the vector
to determine which elements were observed and imputed. Finally,
the discriminator is provided with additional information about the
‘‘missingness’’ of the original data in a hint vector to force the generator
to learn the desired distribution.

5.2. Synthetic Minority Over-sampling Technique for Nominal and Contin-
uous features (SMOTE-NC) to make our dataset balanced

Imbalanced data is a common occurrence vis-a-vis actual data where
the samples in one class outnumber others. Balanced classes are sub-
stantial for ML/DL models in classification tasks. However, these mod-
els might be biased toward the majority class, leading to underfitting or
overfitting problems. SMOTE creates synthetic instances for minority–
classes based on the information provided in the data [32]. SMOTE
performs better than simple sampling (such as oversampling/under
sampling) by preventing over/under-fitting problems. In this study, we
used SMOTE-NC [33], an extension of the SMOTE algorithm, which
synthetically creates mixed data types with continuous and categorical
features. The particular idea of SMOTE-NC is performed as follows: de-
termine the KNN of sample 𝑥𝑖 in the class, choose 𝑁 samples randomly

4
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and record each of them as �̂�. Eventually, the new sample 𝑥𝑛𝑒𝑤 is given
by interpolation as follows:

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + (�̂� − 𝑥𝑖) × 𝛿 𝑖 = 1,… , 𝑁, (1)

where 𝛿 is a random number uniformly distributed within the range
(0,1).

It is very important to mention that SMOTE-NC is only applied to
the training dataset and not the testing dataset to avoid contaminating
and producing biases in the models.

6. ML/DL for alcohol and drugs use disorder analysis

Both AUDIT and DAST scores have promising clinical utility in
diagnosing different physical and mental illnesses and have additional
utility in learning about health behaviors. Consequently, examining
these metrics, studying the related features, and forecasting future
possibilities are important. With this objective, state-of-the-art ML/DL
models were adopted. ML/DL models were implemented using the
python library scikit-learn and Tensorflow to predict AUDIT and DAST
scores. The prediction approach allowed for the control of the early
intervention (e.g., BI and BT) for individuals with alcohol and drug
use risks and timely referral to more intense substance abuse treatment
(e.g., RT) for those with substance use disorders. To develop the opti-
mal approach for predicting AUDIT and DAST scores, we implemented
three steps:

1. We determined the best ML/DL-based prediction systems on our
dataset to uncover the best predictive models.

2. Since our dataset contained group-level characteristics (SEX,
VET, AGE), we used mixed-effects models that considered the
impact group membership has on an outcome of interest. For
example, we studied how the number of days of past-month
drug use (DRUGDAYS) affected DAST scores among different sex
types (SEX).

3. We compared mixed random and fixed-effect models for their
ability to provide accurate predictions.

6.1. ML/DL algorithms

Predictive analytics are essential processes which use data analysis
methods to create data-driven predictions. These processes employ
statistical data analyses or ML/DL methods to develop forecasting
models to estimate future observations. For example, we could estimate
the probability of receiving RT based on their DAST score. No one
algorithm works best for every problem, and it is especially relevant
for predictive models. In this study, we compare the performances
of several standard ML/DL multi-class classifiers based on supervised
learning. Each has a different level of implementation complexity and
can draw linear or non-linear classification borders.

For common ML techniques, we used (1.) Multinomial Logistic
Regression (MLR) [34], (2.) Support Vector Machines (SVM) [35],
(3.) Decision trees (DT) [36], (4.) Random Forest (RF) [37], and (5.)
Gradient Boosting Decision trees (GBDT) [38]. These five classification
models yield high accuracy in real-world applications.

MLR is used to forecast categorical placement for a target variable
based on one or multiple predictors. It is a straightforward extension of
binary logistic regression (a two classes classifier) that allows for more
than two outcome variable categories. Like binary logistic regression,
the MLR model employs maximum likelihood estimation to compute
the probability of categorical membership. SVM is a classifier model
that tries to draw the optimal boundaries (known as hyperplanes)
between different classes in N-dimensional space. DT has tree-like
constructions in which the nodes consider the modelś inputs and the
leaves as decision outputs. The class label can be forecast with adequate
reasoning when traversing the tree to classify a new observation. RF is
an ensemble model that builds and merges different DT models; each

DT is formed from a random subset of predictors. Its output will be
the most popular class that draws the most votes from the DTs in the
forest. Because of its simplicity and diversity, RF produces an overall
better model than DT. Like the RF model, GBDT combines DTs to create
a more robust model, but GBDT differs from RF in the way it builds
its DTs. GBDT builds a DT one at a time, where each new one helps
to correct errors made by the previously trained DT model, while RF
builds and trains each DT independently.

The main advantage of traditional ML is its speed and relative sim-
plicity. In addition, some of these algorithms are human interpretable,
important for failure analysis, model improvement, and discovering
insights and statistical regularities. Today, traditional ML algorithms
are significantly overshadowed by DL, which has achieved state-of-
art results for different classification problems. To study the effect of
DL models on our study, we suggest using three different supervised
models: (a.) Deep Neural Network (DNN) [39], (b.) Variational Auto-
Encoder (VAE) [40] with KNN model [25] (VAE-KNN), and (c.) Graph
Neural Network (GNN) [41].

The DNN model is designed to make intelligent decisions mimicking
human brains. It links problem-solving processes in a chain of events,
where the next process is activated once one process has solved a
problem. In DNN, the input forwardly feeds from the input layer to
the output layer over several hidden layers. Usually, ReLU, Sigmoid,
or TanH are used as activation functions that dictate the feed-forward
flow of data between the layers. The number of nodes in the output
layer must be the same as the number of classes. SoftMax, used in
the output layer, assigns decimal probabilities to each class in a multi-
class problem. Those decimal probabilities must add up to 1. During
training, the weight of each layer is updated using the backpropagation
technique [42].

In the VAE-KNN model, the encoder of the VAE is used to extract
the features as latent representations, while the KNN is then used for
classification. VAE encodes the input data into latent representations
and then reconstructs the input to learn meaningful representations. It
uses the encoding–decoding process to impose the input as a probability
distribution on the latent spaces, where the distribution of the output
from the decoder matches the observed data. The Variance of Evidence
Lower Bound (ELBO) is VAE’s loss used to train the model [40].

After training VAE end-to-end, the encoder will have latent vectors
that are lower dimensionality but with more informational features.
From this new vector of features, the computed distances should be
more significant, thus providing a way to choose better neighbors and,
eventually, better classification performance.

GNN is a neural network that works on graphs. The graph is a
data structure that has two primary ingredients: nodes (a.k.a. vertices),
which are connected by the second ingredient (i.e., edges G(V; E)). The
nodes can be conceptualized as graph entities or objects, and the edges
are any relationship those nodes may have. For example, each record
(row) consisting of a set of features for a data table is represented by
a vertex on G, and an edge weight is taken as the euclidean distance
between every two nodes. A model used to predict an attribute of each
node in a graph is commonly known as node classification. For instance,
each node can be labeled by a categorical class (binary or multiclass
classification) or predict a continuous number (regression).

6.2. Features selection

Feature selection is essential for finding the ideal subset of fea-
tures with crucial information and maximizing the model performance.
In this study, we used the stepwise procedure [43] to simplify and
interpret the models. Stepwise is a combination of two algorithms: for-
ward selection and backward elimination. Both forward selection and
backward elimination are simple algorithms that perform the variable
selection by including or excluding (respectively) variables from the
model. Both begin with an initial model (no model/full model) and
apply a selection/elimination procedure under a particular criterion,

5
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such as Akaike’s Information Criterion (AIC) or Bayesian Information
Criterion (BIC).

AIC [44] is a modification of the log-likelihood and penalizes the
likelihood of the data given by the model by taking model complexity
into account. However, when the model involves many parameters or
its likelihood is poor, the model’s credibility will drastically decrease.
BIC [45] has extended AIC by adopting a Bayesian perspective. It can
be approximated as a reformulation of the AIC by considering the
sample size. This implies that the likelihood of complicated models is
less penalized when the models are derived from large samples. AIC
attempts to realize the unknown model that has a high-dimensional
reality.

To sum up, AIC measures the information loss by adopting a work-
ing model (considered model) instead of the actual model. On the
other hand, the BIC indicates the actual model among a finite set of
candidates. Thus, AIC is best for forecasting, while BIC is best for an
explication as it lets consistent estimation of the fundamental data
generating task.

6.3. Mixed effects modeling

Over the last three decades, mixed-effect models [46] have been fre-
quently employed in many subjects in the biological, physical, and so-
cial sciences. They are robust tools when the data includes group-level
trends, as they are flexible for combining information from various
sources.

A mixed model is a statistical model encompassing both fixed-effects
and random-effect terms. While the fixed-effects terms include variables
whose significant values are all represented in the data file, the random-
effects terms include variables whose importance in the data file are
considered a random sample from a larger set of values. Random-effect
variables are used to explain the dependent predictors in a model and
comprise two types: crossed and nested variables, which are properties
of the data, not the model.

The main difference between fixed and random-effects variables is
that fixed-effects variables support forecasting only the categories of
features employed for training. In contrast, random-effects variables
allow predicting something related to the population from which the
samples are drawn.

We take into consideration the random-effects factors side by side
with the fixed-effects factors because the concern of our studies is
not about experimental impacts present only in the people who par-
ticipated in the experiment, but rather in impacts present in drug
and alcohol misusers everywhere, either within the study area, or
drug and alcohol misusers in general. We adopted two mixed-effects
models: Mixed-effects Multinomial Logistic Regression (MMLR) and
Mixed-effects Random Forests (MRF).

MMLR [47] is an extension of MLR that allows for more than two
categories of the dependent variable. It uses a maximum marginal like-
lihood solution to evaluate the probability of categorical membership
by applying quadrature to numerically integrate over the distribution
of random effects. MRF [48] models have extended the use of RF
to analyze hierarchical data. The model maintains the flexibility and
capability of complex modeling patterns within the data and can handle
both continuous and discrete covariates.

7. Performance metrics

Model evaluation is vital for building an effective ML/DL model
and measuring how accurately it forecasts the expected output. The
most frequent classification evaluation metric used is ‘‘ Accuracy’’. The
belief that a model is good with an accuracy of 99% is common.
However, this metric alone does not tell the whole story, as it can still
provide misleading results. This is where these additional performance
evaluations come in, as they help elicit more meaning from the model.
We used four metrics to evaluate the models, as follows.

7.1. Accuracy

Accuracy [49], in Eq. (2), represents the proportion of actual cases
expected from all classes. Its measurement takes into account four
elements. True-Positive (TP)/False-Positive (FP) values point to when
the class is true and was classified as true/false, whereas True-Negative
(TN) False-Negative (FN) values happen when the class is false and was
classified as false/true.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(2)

7.2. F1-score

F1-score [49] is a technique for connecting the recall and precision
of the model by representing them in the harmonic average of a model.
It is widely used for estimating many types of ML/DL classifiers. The
F1-score is computed as follows.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

)

(3)

where,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

and

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (5)

The F1 score is instrumental when you are dealing with imbalanced
class problems. These are problems when one class can dominate the
dataset. So, when dealing with imbalanced classes, the F1 score is a far
superior metric compared to accuracy.

7.3. Cohen’s kappa

Cohen’s kappa statistic is an excellent measure that can handle
multi-class and imbalanced class problems very well. Cohen’s kappa
[50] can be used to determine the degree of agreement between the
model predictions and manually established forecasting, in which each
classifies the same number of elements into finite categories. It is
an excellent statistical measurement that can handle imbalanced and
multi-class problems. Cohen’s kappa is given as follows:

𝑘 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

, (6)

where 𝑝𝑜 is the actual agreement, and 𝑝𝑒 is the predicted agreement
between the two methods. It basically tells how much better a classifier
is performing over the performance of a classifier that simply guesses at
random according to the frequency of each class. The value of Cohen’s
kappa is always less than or equal to 1, whereas the value of 0 or less
refers to the useless classifier.

7.4. Receiver Operating Characteristic (ROC)

The ROC curve represents a graphical implementation of a classi-
fier’s performance rather than a single value like most other metrics. It
is found by computing and plotting the TP rate against the FP rate for
a single classifier at various thresholds. Area Under the Curve (AUC)
explains the ROC curve’s separability degree. Generally, an AUC value
of 0.9 is deemed outstanding, while 0.7 to 0.8 is considered acceptable,
and a weight of 0.5 cannot discriminate reasonably.

ROC curves are typically used in binary classification to study the
output of a classifier. To extend ROC curve and ROC area to multi-label
classification, it is necessary to binarize the output. One ROC curve can
be drawn per label, but one can also draw a ROC curve by considering
each element of the label indicator matrix as a binary prediction (micro-
averaging). Another evaluation measure for multi-label classification
is (macro-averaging), which gives equal weight to the classification of
each label.

6
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Fig. 2. The frequency distribution of the target variable DAST, before (on the left) and after (on the right) applying the SMOTE-NC method. It is essential to mention that since
oversampling the minority class might lead to overfitting, we did not exaggerate in increasing the number of samples in the minority classes, and we take into our consideration
the percentages mentioned in the studies of the WHO report [51].

Table 3
The test accuracy of the imputation techniques for 22 features and the average accuracy
of all these features.

Name of column KNN MICE DataWig MIDAS GAIN

DAST 0.943 0.951 0.929 0.937 0.939
SEX 0.663 0.778 0.707 0.676 0.685
HISPANIC 0.931 0.944 0.981 0.987 0.991
RACE 0.255 0.228 0.621 0.663 0.683
VET 0.784 0.866 0.808 0.791 0.840
ACTIVE 0.771 0.899 0.811 0.801 0.866
DEPLOY 0.798 0.814 0.717 0.706 0.841
AUDIT 0.957 0.958 0.734 0.948 0.957
COSCREEN 0.983 0.973 0.979 0.978 0.991
BI 0.980 0.972 0.985 0.990 0.993
BT 0.974 0.982 0.991 0.992 0.995
RT 0.994 0.993 0.994 0.990 0.995
ANYALC 0.936 0.931 0.724 0.969 0.967
BINGEDAYS 0.970 0.966 0.742 0.974 0.993
DRUGDAYS 0.967 0.944 0.735 0.975 0.975
ALCDRUG 0.921 0.911 0.740 0.960 0.980
DAYSCOCAINE 0.916 0.923 0.742 0.942 0.954
MARYJDAYS 0.924 0.914 0.812 0.912 0.943
OTHERDRUGS 0.899 0.890 0.802 0.902 0.911
INJECT 0.781 0.745 0.722 0.754 0.771
TOBMONTH 0.984 0.961 0.955 0.975 0.982
AGE 0.210 0.211 0.345 0.400 0.415

Average 0.843 0.853 0.799 0.874 0.894

8. Results and discussion

Most real-life data retrieved from an administrative database has
missing data, incorrect data, duplicated data, outliers, and uneven
data distribution. Therefore, it is required to rectify these problems
before analyzing data and getting accurate results. The initial dataset
we retrieved had 6978 observations and 52 features (see Table 12).
As the initial step, we filled some null values based on logical re-
lationships between some of these features, such as between BIRTH
and AGE or between AUDIT and ANYALC. After that, the features in
which more than 70% of their observations were null values were
eliminated. Therefore, 22 features remain. Additionally, we determined
the data type in each column as numerical or categorical. SEX, DAST,
AUDIT, VET, ACTIVE, DEPLOY, COSCREEN, BI, BT, RT, INJECT, and
TOBMONTH were categorical data, whereas the rest were numerical.
We need to convert these categorical variables to numbers such that
the model is able to understand and extract valuable information [52].

We train the classification models independently in two different
stages. In Stage (1), we drop the rows that contain missing values,
resulting in 3676 rows (where 2941 for training and 735 for testing).
In Stage (2), two pre-processing applications were employed: imputing
missing data and over-sampling (augmentation) of our training set to
increase the number of samples and have a more balanced dataset
(where 18765 for training and 735 for testing).

The (80%–20%) train-test split procedure is used to estimate the
performance of the ML/DL classification algorithms. Empirical studies
show that the best results are obtained if we use 20%–30% of the data
for testing and the remaining 70%–80% of the data for training. Ideally,
if we had enough data, we would set aside a validation set and use it
to assess the performance of our prediction models [53]. However,
this is not possible since our dataset is considered relatively small to
use in training ML/DL models. To address this problem, we used 𝑘-fold
cross-validation [54], where we divided the training dataset into 10
folds (𝑘 = 10), each fold being (10%) of the whole training dataset.
A bias–variance trade-off is associated with the choice of 𝑘 in k-fold
cross-validation. Given these considerations, one performs k-fold cross-
validation using 𝑘 = 5 or 𝑘 = 10. These values have been shown
empirically to yield test error rate estimates that suffer neither from
excessively high bias nor very high variance [55]. In our case, a 20%
validation set (𝑘 = 5) might reduce the size of the training set below
the desired level, while 10% (𝑘 = 10) provide enough variance in the
training set and does not affect the size of the training dataset.

Dealing with missing values can be challenging, as it requires a
careful examination of the data to identify the type and pattern of miss-
ingness, supplemented by a clear understanding of different imputation
methods. Our assumption about missing data was MCAR, where the
probability of being missing is the same for all cases. First, we explored
the performance of the five different imputation techniques (see Sec-
tion 5.1) in terms of the ability to impute the correct values in each
column. Then we calculated the average accuracy for each technique.
Table 3 shows that GAIN performed better than other techniques.

We used the SMOTE-NC procedure to create synthetic examples to
address the class imbalance in the categorical targets (DAST/AUDIT).
For instance, Fig. 2 and Fig. 3 displays the results of running SMOTE-NC
against the minority class.

All experiments were performed in an Intel(R) Xeon(R) W-2102,
CPU @ 2.90 GHz ×4, 7.5 GiB RAM, Ubuntu 18.04.5 LTS, Quadro RTX
8000/PCIe/SSE2.
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Fig. 3. The frequency distribution of the target variable AUDIT, before (on the left) and after (on the right) applying the SMOTE-NC method. It is essential to mention that since
oversampling the minority class might lead to overfitting, we did not exaggerate in increasing the number of samples in the minority classes, and we take into our consideration
the percentages mentioned in the studies of the WHO report [51].

Fig. 4. The relationships between the levels of random-effects: (a) Nested random-effects (1|VET/DEPLOY), (b) Crossed random-effects (1|RACE)+(1|SEX).

Table 4
Architectural details of the VAE model used for VAE-KNN classifier,. Dense[n] is a
Dense layer with 𝑛 units. Batch Normalization(BN) , ReLU is Rectified Linear Units
(ReLU) activation and FC[c] is a fully connected layer with 𝑐 output classes, for which
there are 5 for DAST and 3 for AUDIT.
Encoder

Input Layer: Dense[22], BN, ReLU
Hidden Layer (1): Dense[50], BN, ReLU
Hidden Layer (2): Dense[50], BN, ReLU
Output Layer: FC [5/3] (Mean), || FC [5/3] (Std.dev)

Decoder

Input Layer: Dense[5/3], BN, ReLU
Hidden Layer (1): Dense[50], BN, ReLU
Hidden Layer (2): Dense[50], BN, ReLU
Output Layer: Dense[22], BN, ReLU

8.1. Experiments

8.1.1. Experiment (1): we applied the ML/DL models for classification of
DAST/AUDIT scores using all the features as predictors

In this Experiment, DAST/AUDIT was classified by employing tradi-
tional ML classifiers built using the scikit-learn library in Python.

Table 5
The architectural details of the GNN model. GCN[l] is a Graph Convolution Network
layer with 𝑙 features, Dense[n] is a Dense layer with 𝑛 units. Batch Normalization(BN),
Dropout[x] is a dropout layer with probability 𝑥, ReLU is Rectified Linear Units (ReLU)
activation, and FC[c] is a fully connected layer with 𝑐 output classes, for which there
are 5 for DAST and 3 for AUDIT.

GNN Classifier

Input Layer: GCN [22],
ReLU, Dropout[0.5]
Hidden Layer (1): Dense[50], BN, ReLU
Hidden Layer (2): Dense[50],BN, ReLU
Output Layer: Dense[5/3], BN, Softmax

In addition, we also applied deep learning models. Our DNN classifier
consists of 4 layers. Layer 1 was the input layer with 22 units (number
of the features), layer 2 and layer 3 were hidden layers with 50 units,
and layer 4 was the output layer with 5/3 units (number of the classes
in the target variable DAST/AUDIT). The hidden layers underwent
the ReLU activation function, and the output layer underwent Soft-
Max activation function calculations. The model was built using the
tensorflow.keras library in Python.
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Table 6
The performance evaluation of ML/DL models in Experiment (1) of Stage (1) and Stage (2) for classifying DAST score. For each classifier in Stage (1) and Stage (2), we computed
the value of Accuracy, Cohen’s Kappa, and F1 scores, where the F1 score was computed per class.

DT Classifier RF Classifier

Stage (1) Stage (2) Stage (1) Stage (2)

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 1.00 0.99 0.99 0.93
C1 0.96 0.99 0.87 0.97
C2 0.991 0.872 0.92 0.976 0.988 0.99 0.972 0.461 0.44 0.923 0.566 0.99
C3 0.22 0.87 0.00 0.49
C4 0.00 0.63 0.00 0.16

MLR Classifier DNN Classifier

Stage (1) Stage (2) Stage (1) Stage (2)

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 1.00 0.98 0.96 1.00
C1 0.93 0.97 0.00 1.00
C2 0.989 0.965 0.92 0.958 0.974 0.97 0.923 0.045 0.25 0.990 0.989 1.00
C3 0.77 0.80 0.00 0.94
C4 0.00 0.59 0.00 0.88

GBDT Classifier SVM Classifier

Stage (1) Stage (2) Stage (1) Stage (2)

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 1.00 1.00 1.00 0.99
C1 0.95 1.00 0.91 0.98
C2 0.988 0.962 0.93 0.997 0.997 1.00 0.986 0.899 0.73 0.979 0.988 0.99
C3 0.44 0.98 0.91 0.94
C4 0.00 0.96 0.00 0.83

VAE-KNN Classifier GNN Classifier

Stage (1) Stage (2) Stage (1) Stage (2)

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 0.98 1.0 0.98 0.98
C1 0.82 1.00 0.68 0.98
C2 0.967 0.877 0.75 0.996 0.997 1.00 0.956 0.440 0.25 0.963 0.967 0.99
C3 0.77 0.98 0.00 0.82
C4 0.00 0.96 0.00 0.55

Table 7
The performance evaluation of ML/DL models in Experiment (1) of Stage (1) and Stage (2) for classifying AUDIT score. For each classifier in Stage (1) and Stage (2), we computed
the value of Accuracy, Cohen’s Kappa, and F1 scores, where the F1 score was computed per class.

DT Classifier RF Classifier

Stage (1) Stage (2) Stage (1) Stage (2)

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 0.99 0.99 0.99 0.98
C1 0.986 0.734 0.89 0.976 0.949 0.95 0.977 0.600 0.68 0.966 0.938 0.93
C2 0.00 0.93 0.50 0.93

MLR Classifier DNN Classifier

Stage (1) Stage (2) Stage (1) Stage (2)

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 0.99 0.97 0.98 0.99
C1 0.986 0.882 0.79 0.953 0.902 0.91 0.957 0.000 0.00 0.988 0.979 0.97
C2 1.00 0.902 0.89 0.00 0.98

GBDT Classifier SVM Classifier

Stage (1) Stage (2) Stage (1) Stage (2)

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 0.99 0.99 0.99 0.98
C1 0.986 0.868 0.84 0.991 0.985 0.98 0.986 0.868 0.84 0.972 0.937 0.94
C2 0.84 0.99 0.77 0.93

VAE-KNN Classifier GNN Classifier

Stage (1) Stage (2) Stage (1) Stage (2)

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 0.96 0.99 0.97 0.99
C1 0.923 0.000 0.00 0.991 0.985 0.98 0.912 0.918 0.00 0.976 0.948 0.95
C2 0.00 0.99 0.00 0.92
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Table 8
The performance evaluation of the ML/DL models in Experiment (2) of Stage (1) for classifying DAST after applying bidirectional stepwise for both criteria, AIC and BIC, as shown
on Eq. (7), and Eq. (8). We computed the value of Accuracy, Cohen’s Kappa, and F1 scores, where the F1 score was computed per class.

DT Classifier RF Classifier

AIC BIC AIC BIC

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 1.00 1.00 1.00 1.00
C1 0.97 0.98 0.96 0.99
C2 0.992 0.838 0.83 0.995 0.976 0.88 0.990 0.669 0.83 0.995 0.980 0.94
C3 0.67 0.33 0.00 0.33
C4 0.00 0.00 0.00 0.00

MLR Classifier DNN Classifier

AIC BIC AIC BIC

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 1.00 1.00 1.00 1.00
C1 0.93 0.93 0.97 0.98
C2 0.990 0.938 0.83 0.988 0.895 0.94 0.993 0.816 0.83 0.994 0.932 0.88
C3 0.75 0.00 0.75 0.00
C4 0.40 0.00 0.00 0.00

GBDT Classifier SVM Classifier

AIC BIC AIC BIC

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 1.00 1.00 1.00 1.00
C1 0.98 0.98 0.93 0.91
C2 0.994 0.864 0.86 0.995 0.952 0.94 0.990 0.794 0.83 0.987 0.892 0.71
C3 0.75 0.33 0.75 0.00
C4 0.00 0.00 0.00 0.00

VAE-KNN Classifier GNN Classifier

AIC BIC AIC BIC

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 1.00 0.98 1.00 1.00
C1 0.96 0.79 0.94 0.97
C2 0.994 0.872 0.86 0.966 0.801 0.70 0.991 0.843 0.77 0.993 0.960 0.82
C3 0.89 0.00 0.89 0.33
C4 0.00 0.67 0.00 0.00

Table 9
The performance evaluation of the ML/DL models in Experiment (2) of Stage (1) for classifying AUDIT after applying bidirectional stepwise for both criteria, AIC and BIC, as
shown on Eq. (11), and Eq. (12). We computed the value of Accuracy, Cohen’s Kappa, and F1 scores, where the F1 score was computed per class.

DT Classifier RF Classifier

AIC BIC AIC BIC

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 1.00 0.99 1.00 0.99
C1 0.989 0.890 0.89 0.987 0.880 0.88 0.989 0.870 0.90 0.987 0.845 0.90
C2 0.80 0.84 0.80 0.78

MLR Classifier DNN Classifier

AIC BIC AIC BIC

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 1.00 0.97 1.00 0.99
C1 0.985 0.899 0.90 0.953 0.902 0.91 0.986 0.829 0.85 0.988 0.979 0.97
C2 0.88 0.89 0.50 0.98

GBDT Classifier SVM Classifier

AIC BIC AIC BIC

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 1.00 0.99 0.99 0.99
C1 0.990 0.892 0.89 0.988 0.870 0.90 0.984 0.868 0.81 0.984 0.805 0.85
C2 0.80 0.84 0.62 0.62

VAE-KNN Classifier GNN Classifier

AIC BIC AIC BIC

Class Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score Accuracy Cohen’s Kappa F1-score

C0 0.97 0.99 1.00 0.99
C1 0.940 0.617 0.59 0.991 0.985 0.98 0.988 0.878 0.87 0.976 0.948 0.95
C2 0.67 0.99 0.74 0.92

10
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Fig. 5. ROC curves for Experiment (1) of Stage (1); (a) DT, (b) RF, (c) GBDT, (d) SVM, (e) MLR, (f) DNN, (g) VAE-KNN, (h) GNN, and Stage (2); (i) DT, (j) RF, (k) GBDT, (l)
SVM, (m) MLR, (n) DNN, (o) VAE-KNN, (p): GNN for classification DAST score.

The architectural details of the VAE model used in the VAE-KNN
classifier are shown in Table 4. Once the VAE was trained, we generated
latent spaces from the encoder and then used KNN with (𝑘 = 5), where
𝑘 is the number of nearest neighbors to include in the majority of the
voting process, to get the best prediction in the testing phase. Next, we
created the GNN model using the library tensorflow.Kerasgraph
in python with StellarGraphś GCN Supervised Graph Classification
class [56]. The architectural details of the model are shown in Table 5.

The performance evaluation metrics, such as classification accuracy,
F1-score, and Cohen’s Kappa, were automatically computed to evaluate
the performance of these classifiers and tabulated into Tables 6 and 7.
Additionally, we visualized the performance of the multi-class classifi-
cation problem by using a ROC/AUC curve that shows the relationship
between the true positive rate (sensitivity) against the false positive rate
(1−𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦) for the different possible cut points of the target. Figs. 5
and 6 show the ROC graphs with 8 classifiers labeled (a) through (h) for
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Fig. 6. ROC curves for Experiment (1) of Stage (1); (a) DT, (b) RF, (c) GBDT, (d) SVM, (e) MLR, (f) DNN, (g) VAE-KNN, (h) GNN, and Stage (2); (i) DT, (j) RF, (k) GBDT, (l)
SVM, (m) MLR, (n) DNN, (o) VAE-KNN, (p): GNN for classification AUDIT score.

Stage (1) and (i) through (p) for Stage (2) covering both targets, DAST
and AUDIT score. In Stage (1) ‘‘without pre-processing,’’ results showed
that the classification with the imbalanced dataset produced high ac-
curacy. Still, the test data had a low F1 score for the minority classes,
and most models yielded lower Cohen’s Kappa values. ROC/AUC curves
show an unequal distribution of classes in the dataset in such a manner
that the rare class constituted a minimal amount of data, and the
classifiers could not predict the rare class very well. GBDT performed

well compared to other classifiers. Given that GBDT is a sequential
process, every subsequent iteration focuses on the incorrect prediction
from the previous iteration.

Most of the traditional ML classifiers ignore the minority class and,
in turn, perform poorly. Therefore, in Stage (2), ‘‘with pre-processing,’’
the data augmentation technique ‘‘SMOTE-NC’’ was used to address the
imbalanced classification problem and synthesize new samples for our
dataset.
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Fig. 7. ROC curves for Experiment (2) of Stage (1) for classification DAST based on AIC criterion; (a) DT, (b) RF, (c) GBDT, (d) SVM, (e) MLR, (f) DNN, (g) VAE-KNN, (h) GNN,
and AIC criterion; (i) DT, (j) RF, (k) GBDT, (l) SVM, (m) MLR, (n)DNN, (o)VAE-KNN, (p) GNN.

For Stage (1), the results in Tables 6 and 7 show that traditional ML
models, such as the GBDT classifier, perform better than DL models.
Additionally, the F1 score was poor for predicting minority classes in
the ML/DL models; the Cohen ś Kappa value was also low. On the other
hand, the performance of all the classifiers improved in Stage (2) after
applying pre-processing techniques. In addition, the performance of the
deep learning models ‘‘DNN’’ and ‘‘VAE-KNN’’ were slightly better than
most of the ML methods when trained with large sample sizes (in Stage

(2)), and the performance of the ROC/AUC curves in Figs. 5 and 6
improved as well.

8.1.2. Experiment (2): we applied the features selection model before train-
ing the ML/DL models

We used bi-directional stepwise as a feature selection technique
(a combination of forwarding selection and backward elimination) to
improve the classification and create a more straightforward model to
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Fig. 8. ROC curves for Experiment (2) of Stage (1) for classification AUDIT based on AIC criterion; (a) DT, (b) RF, (c) GBDT, (d) SVM, (e) MLR, (f) DNN, (g) VAE-KNN, (h) GNN,
and AIC criterion; (i) DT, (j) RF, (k) GBDT, (l) SVM, (m) MLR, (n) DNN, (o) VAE-KNN, (p) GNN.

interpret by decreasing the modelś complexity and handling overfitting,
resulting in including all the features in the models. The main goal
is to find the most relevant features affecting the DAST/AUDIT score,
thus allowing us to build applicable models. The results of running the
stepwise model with the AIC/BIC criterion in both stages are shown as
follows:
𝐃𝐀𝐒𝐓_𝐒𝐭𝐚𝐠𝐞(𝟏)_𝐀𝐈𝐂 ∼ 𝑆𝐸𝑋 + 𝑅𝐴𝐶𝐸 + 𝐴𝑈𝐷𝐼𝑇 + 𝐵𝐼+

𝐵𝑇 + 𝑅𝑇 +𝐷𝑅𝑈𝐺𝐷𝐴𝑌 𝑆 + 𝑇𝑂𝐵𝑀𝑂𝑁𝑇𝐻
(7)

𝐃𝐀𝐒𝐓_𝐒𝐭𝐚𝐠𝐞(𝟏)_𝐁𝐈𝐂 ∼ 𝐴𝑈𝐷𝐼𝑇 + 𝐵𝐼 + 𝐵𝑇 + 𝑅𝑇 +𝐷𝑅𝑈𝐺𝐷𝐴𝑌 𝑆 (8)

𝐃𝐀𝐒𝐓_𝐒𝐭𝐚𝐠𝐞(𝟐)_𝐀𝐈𝐂 ∼ 𝑆𝐸𝑋 + 𝑅𝐴𝐶𝐸 + 𝑉 𝐸𝑇 + 𝐴𝑈𝐷𝐼𝑇+

𝐶𝑂𝑆𝐶𝑅𝐸𝐸𝑁 + 𝐵𝐼 + 𝐵𝑇 + 𝑅𝑇 + 𝐴𝑁𝑌𝐴𝐿𝐶 + 𝐵𝐼𝑁𝐺𝐸𝐷𝐴𝑌 𝑆

+𝐷𝑅𝑈𝐺𝐷𝐴𝑌 𝑆 + 𝐴𝐿𝐶𝐷𝑅𝑈𝐺𝑆 +𝑀𝐴𝑅𝑌 𝐽𝐷𝐴𝑌 𝑆 + 𝐼𝑁𝐽𝐸𝐶𝑇

+𝐴𝐺𝐸 + 𝑇𝑂𝐵𝑀𝑂𝑁𝑇𝐻

(9)
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Table 10
The performance evaluation of the mixed-effect models (MEMLR and MERF) in Experiment (3) of Stage (1) for classifying DAST score. We computed the value of Accuracy, and
F1 scores, where the F1 score was computed per class.

Model MEMLR MERF

Accuracy F1 Score Accuracy F1 Score

1.00 1.00
0.93 0.96

DAST ∼ AUDIT+BI+BT+RT+DRUGDAYS+TOBMONTH+RACE+SEX 0.985 0.83 0.990 0.83
0.75 0.00
0.40 0.00

0.99 0.98
0.89 0.92

DAST ∼ AUDIT+BI+BT+RT+DRUGDAYS+TOBMONTH+VET+DEPLOY+RACE+SEX 0.971 0.77 0.980 0.80
0.70 0.00

0.20 0.00
1.00 1.00
0.93 0.93

AUDIT+BI+BT+RT+DRUGDAYS+TOBMONTH+VET+DEPLOY+RACE+SEX 0.981 0.83 0.988 0.81
0.74 0.00
0.37 0.00

1.00 1.00
0.94 0.97

DAST ∼ AUDIT+BI+BT+RT+DRUGDAYS+TOBMONTH+(1|RACE)+(1|SEX) 0.989 0.85 0.991 0.87
0.76 0.20
0.50 0.10

0.99 0.99
0.90 0.93

DAST ∼ DAST ∼ AUDIT+BI+BT+RT+DRUGDAYS+TOBMONTH+(1|VET/DEPLOY) 0.975 0.78 0.984 0.81
0.72 0.00
0.30 0.00

1.00 1.00
0.95 0.96

DAST ∼ AUDIT+BI+BT+RT+DRUGDAYS+TOBMONTH+(1|VET/DEPLOY)+(1|RACE)+(1|SEX) 0.983 0.86 0.990 0.87
0.77 0.20
0.54 0.20

𝐃𝐀𝐒𝐓_𝐒𝐭𝐚𝐠𝐞(𝟐)_𝐁𝐈𝐂 ∼ 𝑆𝐸𝑋 + 𝑅𝐴𝐶𝐸 + 𝑉 𝐸𝑇 + 𝐴𝑈𝐷𝐼𝑇+

𝐶𝑂𝑆𝐶𝑅𝐸𝐸𝑁 + 𝐵𝐼 + 𝐵𝑇 + 𝑅𝑇 + 𝐴𝑁𝑌𝐴𝐿𝐶 + 𝐵𝐼𝑁𝐺𝐸𝐷𝐴𝑌 𝑆

+𝐷𝑅𝑈𝐺𝐷𝐴𝑌 𝑆 +𝑀𝐴𝑅𝑌 𝐽𝐷𝐴𝑌 𝑆 + 𝐼𝑁𝐽𝐸𝐶𝑇 + 𝐴𝐺𝐸

+𝑇𝑂𝐵𝑀𝑂𝑁𝑇𝐻

(10)

𝐀𝐔𝐃𝐈𝐓_𝐒𝐭𝐚𝐠𝐞(𝟏)_𝐀𝐈𝐂 ∼ 𝐷𝐴𝑆𝑇 + 𝐵𝐼 + 𝐵𝑇 + 𝑅𝑇 + 𝐴𝑁𝑌𝐴𝐿𝐶

+𝐵𝐼𝑁𝐺𝐸𝐷𝐴𝑌 𝑆 +𝐷𝑅𝑈𝐺𝐷𝐴𝑌 𝑆
(11)

𝐀𝐔𝐃𝐈𝐓_𝐒𝐭𝐚𝐠𝐞(𝟏)_𝐁𝐈𝐂 ∼ 𝐷𝐴𝑆𝑇 + 𝐵𝐼 + 𝐵𝑇 + 𝑅𝑇 + 𝐴𝑁𝑌𝐴𝐿𝐶 (12)

𝐀𝐔𝐃𝐈𝐓_𝐒𝐭𝐚𝐠𝐞(𝟐)_𝐀𝐈𝐂 ∼ 𝐷𝐴𝑆𝑇 + 𝑆𝐸𝑋 +𝐻𝐼𝑆𝑃𝐴𝑁𝐼𝐶 + 𝑅𝐴𝐶𝐸

+𝑉 𝐸𝑇 + 𝐴𝐶𝑇𝐼𝑉 𝐸 + 𝐶𝑂𝑆𝐶𝑅𝐸𝐸𝑁 + 𝐵𝐼 + 𝐵𝑇 + 𝑅𝑇 + 𝐴𝑁𝑌𝐴𝐿𝐶

+𝐵𝐼𝑁𝐺𝐸𝐷𝐴𝑌 𝑆 +𝐷𝑅𝑈𝐺𝐷𝐴𝑌 𝑆 + 𝐴𝐿𝐶𝐷𝑅𝑈𝐺𝑆

+𝐷𝐴𝑌 𝑆𝐶𝑂𝐶𝐴𝐼𝑁𝐸 +𝑀𝐴𝑅𝑌 𝐽𝐷𝐴𝑌 𝑆 + 𝐴𝐺𝐸 + 𝑇𝑂𝐵𝑀𝑂𝑁𝑇𝐻

(13)

𝐀𝐔𝐃𝐈𝐓_𝐒𝐭𝐚𝐠𝐞(𝟐)_𝐁𝐈𝐂 ∼ 𝐷𝐴𝑆𝑇 + 𝑆𝐸𝑋 + 𝑉 𝐸𝑇 + 𝐶𝑂𝑆𝐶𝑅𝐸𝐸𝑁

+𝐵𝐼 + 𝐵𝑇 + 𝑅𝑇 + 𝐴𝑁𝑌𝐴𝐿𝐶 + 𝐵𝐼𝑁𝐺𝐸𝐷𝐴𝑌 𝑆 +𝐷𝑅𝑈𝐺𝐷𝐴𝑌 𝑆

+𝐴𝐿𝐶𝐷𝑅𝑈𝐺𝑆 +𝐷𝐴𝑌 𝑆𝐶𝑂𝐶𝐴𝐼𝑁𝐸 +𝑀𝐴𝑅𝑌 𝐽𝐷𝐴𝑌 𝑆 + 𝐴𝐺𝐸

+𝑇𝑂𝐵𝑀𝑂𝑁𝑇𝐻

(14)

The equations show that since they exist in all DAST equations,
AUDIT, BI, BT, RT, and DRUGDAYS are the most effective features for
predicting the DAST score. On the other hand, DAST, BI, BT, RT, and
ANYALC are the most effective features for predicting the AUDIT score.

After applying the stepwise technique, we calculated Accuracy,
F1-score, and Cohen’s Kappa for all the classifiers. The results of Ex-
periment (2) for Stage (1) were recorded in Tables 8 and 9. Moreover,
the results of the ROC/AUC curves are shown in Figs. 7 and 8. The
results show a slight performance improvement compared to the results
of Stage (1) in Experiment (1). We did not record the results in Stage
(2) after applying the feature selection technique because the difference
was insignificant compared to Experiment (1).

8.1.3. Experiment (3): we applied mixed-effect for classification of DAST/
AUDIT scores

In this experiment, we examined how the fixed-effects features
such as BI, BT, RT, DRUGDAYS, MARYJDAYS, INJECT, TOBMONTH,
etc., and the random-effects features such as race (RACE), gender
(SEX), military veteran status (VET) and deployment history (DEPLOY),
effected (DAST/AUDIT). We considered a model implementing the
(VET/DEPLOY) subset relations between the observed impacts on our
target to be the nested effects model. In contrast, a model implementing
the (RACE/SEX) subset relations served as the crossed random effects
model (see Fig. 4). We aim to show whether or not the mixed-effects
models are as helpful as other predictive models we applied in Experi-
ment (2). We used MMLR/MRF to predict the target (DAST/AUDIT) and
used Accuracy and F1 score as performance metrics. The results were
recorded in Table 10, and Table 11. The results show that the mixed-
effects models outperform the traditional ML models (fixed-effects
model) in Stage(1).

9. Conclusion and future work

This study sought to determine the applicability of ML/DL tech-
niques within the context of SBIRT, a substance use prevention ap-
proach often housed within primary care clinics. Results of our ex-
periments showed that accurate classification of alcohol and drug
use screening instrument scores are best accomplished with mixed-
effects models following the imputation of missing data by the GAIN
method. Although mixed models are commonly employed in studies
of electronic health records (EHRs), as in the case of the COVID-19
pandemic [14] the use of the GAIN method in this context is novel;
however, we show that the GAIN method may be an efficient and
accurate way of analyzing data from EHRs that contain many missing
values.

ML/DL has become increasingly popular in health care. With the
growing acceptance of electronic health records in clinics across the
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Table 11
The performance evaluation of the mixed-effect models (MEMLR and MERF) in Experiment (3) of Stage (1) for classifying AUDIT score. We computed the value
of Accuracy, and F1 scores, where the F1 score was computed per class.

Model MEMLR MERF

Accuracy F1 Score Accuracy F1 Score

1.00 1.00
AUDIT ∼ DAST+BI+BT+RT+ANYALC+BINGEDAYS+DRUGDAYS+RACE+SEX 0.984 0.91 0.988 0.91

0.88 0.81

1.00 1.00
AUDI T ∼ DAST+BI+BT+RT+ANYALC+BINGEDAYS+DRUGDAYS+VET+DEPLOY 0.981 0.89 0.985 0.87

0.85 0.80

1.00 1.00
AUDIT ∼ DAST+BI+BT+RT+ANYALC+BINGEDAYS+DRUGDAYS+VET+DEPLOY+RACE+SEX 0.982 0.90 0.987 0.89

0.86 0.80

1.00 1.00
AUDIT ∼ DAST+BI+BT+RT+ANYALC+BINGEDAYS+DRUGDAYS+(1|RACE)+(1|SEX) 0.987 0.95 0.990 0.94

0.89 0.83

1.00 1.00
AUDIT ∼ DAST+BI+BT+RT+ANYALC+BINGEDAYS+DRUGDAYS+(1|VET/DEPLOY) 0.92 0.99 0.98 0.91

0.88 0.84

1.00 1.00
AUDIT ∼ DAST+BI+BT+RT+ANYALC+BINGEDAYS+DRUGDAYS+(1|VET/DEPLOY) 0.98 0.93 0.98 0.92

0.88 0.82

Table 12
The types of datasets used in this study include the following: (a) The original dataset ‘‘Raw Survey Dataset’’ with 52 features and 6978 records, (b) The dataset with 22 features
and 6978 records, called ‘‘Cleaned Dataset,’’ which we applied initial pre-possessing techniques to, and where all the columns were having more than 70% of missing values were
discarded, (c) The dataset with 22 features and 3676 records used in Stage (1), where we dropped the rows which contained missing values, and (d) The dataset with 22 features
and 19500 records used in Stage (2), where we applied the imputation and over-sampling methods.

Type of dataset Name of features Number of features Number of samples

Raw Survey Dataset SEX, HISPANIC, RACE, VET, ACTIVE, DEPLOY, MILFAM, COSCREEN,
SUICIDEATTEMPT, BI, BT, RT, ANYALC, BINGEDAYS, DRUGDAYS, ALCDRUGS,
DAYSCOCAINE, MARYJDAYS, ANYOPIATEDAYS, METHADONE, HALLUC,
METHDAYS, OTHERDRUGS, INJECT, WHERELIVE, PREGNANT, CHILDREN,
JOBTRAIN, EDUC, EMPLOY, INCOME, ARRESTED, CRIMES, HEALTHSTAT, ANYSEX,
SEXCONTACT, SEXUNPROTECT, EVERHIVT, HIVRESULT, DEPRESSDAYS,
ANXIETYDAYS, HALLUCINATE, ATTENDOTHER, ATTENDAA, AATIMES,
OTHERTIMES, FAMILYINT, SBIRTCONT, AGE, TOBMONTH, AUDIT, DAST.

52 6978

Cleaned Dataset SEX, HISPANIC, RACE, VET, ACTIVE, DEPLOY, AUDIT, ALCDRUG, COSCREEN, BI,
BT, RT, ANYALC, BINGEDAYS, DRUGDAYS, MARYJDAYS, DAYSCOCAINE, INJECT,
AGE, TOBMONTH, AUDIT, DAST

22 6978

Dataset in Stage (1) ’’ 22 3676

Dataset in Stage (2) ’’ 22 19500

Note: ’’ means the same as above.

United States and the rapid acceleration of computing power, it is pos-
sible to understand factors that predict various health outcomes [57].
However, the application of ML/DL algorithms within the context of
SBIRT has been sparse. The present study shows how ML/DL can be
used for SBIRT patient data to predict alcohol and drug use outcomes.

In studies using ML/DL, it is common to report F1 scores and
prediction accuracy indices. For example, reports of ML/DL algorithms
to predict disease outcomes using electronic medical records have
been published with F1 scores of 0.81 and prediction accuracy indices
of 0.92 [58]. However, our most successful models for AUDIT and
DAST prediction had F1/prediction accuracy indices of 0.99/0.94 and
0.99/0.93. As such, the results of our experiments may indicate that
(a) using the GAIN method for missing data imputation and (b) using
military service status as a predictor of health outcomes may enhance
model precision.

Although much discussion and additional analysis are needed to
refine and enhance the predictive capability of ML/DL models within
the context of SBIRT and the broader health care landscape, there
is also a need to encourage the translation of ML/DL models into
clinical practice [59]. Creating machine/deep-learning-based clinical
tools for medical providers tasked with screening for and providing
brief interventions for alcohol and drug use is needed. For example,
suppose researchers created a mobile application that included input
fields for demographic characteristics. In that case, the clinician could

input patient characteristics in the application, and the trained/tested
ML/DL algorithm would automatically calculate the risk for AUDIT
and DAST severity scores. Engaging in research translation, as previ-
ously described, could corroborate self-reported patient data to enhance
health care delivery within the context of SBIRT.

Some limitations accompany the analysis and interpretation of data
in this study. First, data collected for this study were based on self-
reports from patients in primary care clinics and may not necessarily
reflect actual alcohol or drug use problems. In addition, patients’ self-
reported data are subject to recall bias and social desirability bias.
Second, because this study was based on a cross-sectional design, we
could not make causal inferences about the relationships examined
in the ML/DL models. Third, although our GAIN method for data
imputation was successful, this study was limited because the medical
records we used for analysis contained many null values. Fourth,
generalizability may be limited in this study because we collected data
from only three medical facilities in western Alabama.

In conclusion, this study used ML/DL approaches to understand
better alcohol and drug use problems among patients seen by primary
care providers participating in a federally funded SBIRT program. We
concluded that the GAIN method for data imputation coupled with
mixed effects prediction models are best suited for predicting AU-
DIT and DAST scores. Future research should consider fine-tuning the
ML/DL model developed in this study, especially with more complete
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data, and developing and testing the utility of a clinical tool translated
from the ML/DL algorithm.
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