
Citation: Gallardo-Escárate, C.;

Valenzuela-Muñoz, V.; Nuñez-Acuña,

G.; Valenzuela-Miranda, D.; Tapia,

F.J.; Yévenes, M.; Gajardo, G.; Toro,

J.E.; Oyarzún, P.A.; Arriagada, G.;

et al. Chromosome-Level Genome

Assembly of the Blue Mussel Mytilus

chilensis Reveals Molecular

Signatures Facing the Marine

Environment. Genes 2023, 14, 876.

https://doi.org/10.3390/

genes14040876

Academic Editors: Xiangshan Ji and

Qiaomu Hu

Received: 3 March 2023

Revised: 28 March 2023

Accepted: 30 March 2023

Published: 7 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

Chromosome-Level Genome Assembly of the Blue Mussel
Mytilus chilensis Reveals Molecular Signatures Facing the
Marine Environment
Cristian Gallardo-Escárate 1,* , Valentina Valenzuela-Muñoz 1 , Gustavo Nuñez-Acuña 1,
Diego Valenzuela-Miranda 1 , Fabian J. Tapia 1 , Marco Yévenes 2 , Gonzalo Gajardo 2 , Jorge E. Toro 3 ,
Pablo A. Oyarzún 4, Gloria Arriagada 5,6 , Beatriz Novoa 7 , Antonio Figueras 7 , Steven Roberts 8

and Marco Gerdol 9

1 Center for Aquaculture Research, University of Concepción, Concepción 4070386, Chile
2 Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad,

Universidad de Los Lagos, Osorno 5310230, Chile
3 Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas (ICML), Universidad Austral de Chile,

Valdivia 5110566, Chile
4 Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
5 Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370186, Chile
6 FONDAP Center for Genome Regulation, Santiago 8370415, Chile
7 Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC),

36208 Vigo, Spain
8 School of Aquatic and Fishery Sciences (SAFS), University of Washington, Seattle, WA 98195, USA
9 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
* Correspondence: crisgallardo@udec.cl

Abstract: The blue mussel Mytilus chilensis is an endemic and key socioeconomic species inhab-
iting the southern coast of Chile. This bivalve species supports a booming aquaculture industry,
which entirely relies on artificially collected seeds from natural beds that are translocated to diverse
physical–chemical ocean farming conditions. Furthermore, mussel production is threatened by a
broad range of microorganisms, pollution, and environmental stressors that eventually impact its
survival and growth. Herein, understanding the genomic basis of the local adaption is pivotal
to developing sustainable shellfish aquaculture. We present a high-quality reference genome of
M. chilensis, which is the first chromosome-level genome for a Mytilidae member in South Amer-
ica. The assembled genome size was 1.93 Gb, with a contig N50 of 134 Mb. Through Hi-C prox-
imity ligation, 11,868 contigs were clustered, ordered, and assembled into 14 chromosomes in
congruence with the karyological evidence. The M. chilensis genome comprises 34,530 genes and
4795 non-coding RNAs. A total of 57% of the genome contains repetitive sequences with predomi-
nancy of LTR-retrotransposons and unknown elements. Comparative genome analysis of M. chilensis
and M. coruscus was conducted, revealing genic rearrangements distributed into the whole genome.
Notably, transposable Steamer-like elements associated with horizontal transmissible cancer were
explored in reference genomes, suggesting putative relationships at the chromosome level in Bivalvia.
Genome expression analysis was also conducted, showing putative genomic differences between two
ecologically different mussel populations. The evidence suggests that local genome adaptation and
physiological plasticity can be analyzed to develop sustainable mussel production. The genome of M.
chilensis provides pivotal molecular knowledge for the Mytilus complex.

Keywords: chromosome-level assembly; comparative genomics; transcriptomics; Mytilus chilensis

1. Introduction

The blue mussel M. chilensis (Hupé, 1854) is Chile’s endemic, ecological, and socioeco-
nomic key species that leads the national shellfish aquaculture. The farming of M. chilensis
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involves the use of ropes or nets that are suspended from rafts or longlines in the sea. The
mussels attach themselves to the ropes or nets and grow there until they reach market size,
which typically takes about 18–24 months. The mussels feed on natural phytoplankton in
the water, and their growth and survival depend on the availability and quality of this food
source [1]. In Chile, the aquaculture of M. chilensis is an important industry, with production
levels that have been steadily increasing over the years. The mussels are exported to many
countries around the world, and they are highly valued for their flavor and nutritional
value. The aquaculture mussel production in Chile was about 400,000 tons in 2020 [2].

However, the success of mussel aquaculture production in Chile is threatened by
a wide range of microorganisms [3–5], marine pollution [6], and climate variability that
can impact the larval settlement and growth of mussel populations [7–9]. To cope with
those stressors, mussels and marine invertebrates produce two-component responses,
a specific response to the stressor and a more general response involving immune and
endocrine pathways [10]. Multi-stressors’ impacts have been predicted to have additive,
synergetic, or antagonistic effects on marine organisms’ physiology [11]. These different
effects are directly linked to the amount of time between the occurrence of stressors,
their intensity, and the organism’s ability to return to homeostasis before a new stressor
occurs [12]. Despite these predictions, meta-data analyses show that most of the studied
multi-stressors had synergetic effects on organisms’ physiology. Notably, isolated effects of
environmental stressors or pathogen infection on the mussel immune system have been
extensively studied [13–20]. However, mussels’ immune response to the combination of
stressors remains unexplored. The interplaying between the immune system and multi-
environmental stressors such as ocean acidification, hypoxia, marine heatwaves, harmful
algal blooms, and pathogen infections requires physiological, cellular, and molecular tools
that uncover the complexity of mussel biology. High-quality genome assembly at the
chromosome level is pivotal to driving the scientific community in this endeavor and
mussels represent an outstanding model species. For instance, mussel species display
morphologically conserved karyotypes, and recent studies have evidenced whole-genome
duplication events [21,22]. Compared with other bivalves, the reported mussel genomes
share relatively large genome sizes characterized by high heterozygosity and expanded
mobile elements [23–27]. Unfortunately, these genome features challenge the assembly
efforts to avoid genome fragmentation. Up to now, chromosome-level genome assembly
for Mytilidae has only been reported for the congeneric species M. coruscus [28] and
the zebra mussel Dreissena polymorpha [27]; meanwhile, other members of the family
have been reported as highly contiguous reference assemblies at contig level [29–31].
Interestingly, the presence–absence variation (PAV) phenomenon has recently been reported
for M. galloprovincialis, where a pan-genome composed of 20,000 protein-coding genes
was observed in conjunction with dispensable genes that are entirely missing in some
mussels [32].

The Chilean blue mussel M. chilensis, a close relative of the M. edulis species complex
of the northern hemisphere [33,34], represents an iconic species to explore key questions
in ecology [35], ecophysiology [36] and adaptative genomics [37,38]. It is a keystone
taxon in the ecosystem regulating phytoplankton and nutrient flow and contributes to
remineralizing organic deposits in the sediment [39,40]. It inhabits rocky substrates in
the intertidal and subtidal zones along the southern Pacific Ocean from latitude 38S to
53S [41]. As a gonochoric species with an annual gametogenic cycle, sexual maturity
occurs in spring–summer, where planktonic larvae can drift between 20 and 45 days before
settlement [42]. Dispersal potential has been estimated to be up to 30 km, allowing different
degrees of gene flow among mussel populations [43].

In this study, PacBio sequencing, and Hi-C scaffolding technology were jointly used
to assemble the first chromosome-level reference genome of M. chilensis. Moreover, we
conducted a comparative genomics study among reported genome mussel species and ana-
lyzed the molecular signatures in two mussel populations facing distinct physical–chemical
ocean conditions. Genomic features revealed putative chromosome rearrangements among
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mussel species, suggesting phylogenetic relationships for retrotransposons in Mytilidae.
Specifically, Steamer-like elements were classified as LTR-retrotransposons because they
contain long terminal repeats (LTRs) at both ends of their DNA sequence. The chromosome-
level genome assembly of M. chilensis is a useful resource for genome-wide association
studies (GWAS) as a powerful tool used in genetics to identify genetic variants associated
with complex traits or diseases. Notably, this study revealed the most differentially ex-
pressed genes and single nucleotide polymorphisms found in M. chilensis populations,
revealing specific transcriptome profiles associated with metabolism and immune-related
genes. The knowledge gained in this research will provide pivotal information for explor-
ing how the marine environment drives phenotypic plasticity, which can be associated with
genome adaptation in mussel populations.

2. Materials and Methods
2.1. Sample Collection, NGS Libraries, and Sequencing

Adult M. chilensis were collected from a natural bed in Puerto Mont (41◦48′ S–73◦5′ W),
Chile (Figure 1A). Five mussels were selected for whole-genome sequencing using 1 mL of
hemolymph collected from each specimen to reduce the heterozygosity. The samples were
centrifuged at 1200 RPM to isolate the hemocyte cells and preserved by liquid nitrogen.
High-quality DNA was isolated using the Qiagen DNA purification kit (QIAGEN, Ger-
mantown, MD, USA) following the manufacturer’s instructions and quantified by a Tape
Station 2200 instrument (Agilent, Santa Clara, CA, USA). DNA samples >9.5 in DNA integrity
numbers (DIN) were selected for library preparation. Furthermore, 50 individuals per population
were sampled from Cochamó (41◦28′ S–72◦18′ W) and Yaldad (43◦07′ S–73◦44′ W), in southern
Chile, to isolate RNA and explore molecular signatures associated with the local genome
adaptation. Herein, these mussel populations inhabit contrasting oceanic environments
characterized by an estuary with continuous input of freshwater and vertical stratification,
and a bay exposed to open sea influence, respectively. The temporal and spatial variability
of sea surface temperature (SST) around Puerto Montt, Chiloé island, and at the Yaldad
and Cochamó sites were analyzed using satellite images. Data on sea surface temperature
in the region of interest were obtained from MUR-SST (Multi-scale Ultra-High-Resolution
SST) distributed by NOAA through its ERDDAP platform. The MUR-SST images have a
spatial resolution of 1 km and a temporal resolution of 1 day. In situ temperature (◦C) and
salinity (PSU) seawater measurements were obtained for both locations between 2018 and
2019. The raw environmental data were collected from the CHRONOS database, managed
by Instituto de Fomento Pesquero, IFOP (Puerto Montt, Chile).

Samples were prepared according to the SMRTbell guide for sequencing on the PacBio
Sequel II System. The genomic DNA isolated from 5 individuals collected from Puerto
Montt was sequenced using SMRT sequencing according to the manufacturer’s protocols.
SMRT sequencing yielded 882.1 Gb and 63 million long reads from 2 HiFi SMRT cells. The
subreads N50 and average read lengths were 14,665 and 14,535 bp, respectively. The total
HiFi reads yielded 3.7 million with an average quality of Q36 and Q35, respectively. Hi-C
libraries were constructed from hemocyte cells using Phase Genomics’ Animal Hi-C kit and
sequenced on Illumina’s Hiseq4000 (San Diego, CA, USA) platform to yield 253 million
reads using the same DNA isolated for PacBio sequencing. Short-read sequencing libraries
were prepared using an insert size of 150 bp obtained from 1 µg of genomic DNA after
fragmentation, end-paired, and ligated to adaptors. The ligated fragments were fractionated
on agarose gels and purified by PCR amplification to produce sequencing libraries. The
method applied was like that previously published by Lieberman-Aiden et al. [44]. The
PacBio and Hi-C Illumina DNA raw data were deposited in the NCBI Sequence Read
Archive (SRA) repository, accession numbers SRR20593343 and SRR20966976, respectively.
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Waltham, MA, USA). The quality and integrity of extracted RNAs were measured in a 
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folding platform was used to create chromosome-scale scaffolds from the corrected as-
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Figure 1. (A) Photograph of the native blue mussel Mytilus chilensis. (B) Metaphasic chromo-
somes from mussel larvae samples and mapping of 28S-rDNA by fluorescence in situ hybridization.
(C) Heatmap of chromosome interaction intensity in the blue mussel Hi-C assembly. The x- and
y-axis represent the length of the chromosomes. The color bar represents the Hi-C contact density.

Moreover, RNA libraries were constructed from hemocytes, digestive gland, gill,
and mantle tissues for transcriptome sequencing to obtain whole-transcriptome profiling
from the same mussels used for genome DNA sequencing. Additionally, twelve available
Sequence Read Archive (SRA) transcriptomic data (GenBank accession number SRP261955),
representing gills and mantle tissues collected from individuals of Cochamó and Yaldad
mussel populations [37,38], were incorporated to analyze population-specific transcriptome
profiles. Total RNA from three biological replicates (five total RNA extractions each) from
each mussel population was extracted by the Trizol reagent method (Invitrogen, Waltham,
MA, USA). The quality and integrity of extracted RNAs were measured in a Tape Station
2200 instrument (Agilent, Santa Clara, CA, USA), using the R6K Reagent Kit based on the
manufacturer’s instructions. RNA samples with RNA integrity numbers (RIN) >9 were
selected for the preparation of high-quality libraries using a TrueSeq Stranded mRNA LT
Sample Prep Kit and sequenced in a HiSeq 4000 (Illumina, San Diego, CA, USA).

2.2. De Novo Genome Assembly and Hi-C Scaffolding of M. chilensis

Two HiFi single-molecule real-time cells in the PacBio Sequel platform yielded
53.8 Gb of high-quality DNA genome information. These long reads were assembled
with the Hifiasm (v.0.19.3) package using default parameters [45]. For Hi-C scaffolding,
reads were aligned to the primary draft assembly, following the manufacturer’s instruc-
tions [46]. Briefly, reads were aligned using BWA-MEM (v.0.7.17) [47] with the –5SP and
–t 8 options specified and all other options default. The package SAMBLASTER (v.0.1.26) [48]
was used to flag duplicates excluded from further analysis. Sequence alignments were fil-
tered with SAMtools (v.1.17) [49,50] using the –F 2304 filtering flag to remove non-primary
and secondary alignments. This step was conducted to remove alignment errors, low-
quality alignments, and other alignment noise due to repetitiveness, heterozygosity, and
other ambiguous assembled sequences. Finally, Phase Genomics’ Proximo Hi-C genome-
scaffolding platform was used to create chromosome-scale scaffolds from the corrected
assembly, according to Bickhart et al. [51].

2.3. Karyotype of M. chilensis

Metaphase plates of 24-h-post-fertilization larvae were used to obtain chromosomes
from M. chilensis, according to Gallardo-Escárate et al. [52]. Briefly, antimitotic treat-
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ment with colchicine 0.05% solution was applied for 4 h. Then, the larvae were rinsed
in clean seawater and immersed in a hypotonic solution (seawater:distilled water, 1:1)
for 30 min. Finally, the larvae were fixed in modified Carnoy solution (methanol:acetic
acid, 3:1). Chromosome spreads were obtained by dissociating larva tissue in acetic acid
(50%), pipetting suspension drops onto slides preheated at 43 ◦C and air-dried according to
Amar et al. [53]. A FISH experiment was performed to validate the physical localization of
specific genes. Here, 28S rDNA was labeled following methods previously published [21].
Briefly, metaphase preparations were denatured at 69 ◦C for 2 min and hybridized overnight
at 37 ◦C. Signal detection was performed using fluorescein avidin and biotinylated anti-
avidin for the biotinylated probes, and mouse anti-digoxigenin, goat anti-mouse rho-
damine, and rabbit anti-goat rhodamine for the digoxigenin-labeled probes. Fluorescent
staining was carried out with 4,6-diamidino-2-phenylindole (DAPI) and mounted with
Vectacshield antifading solution. Chromosome spreads were observed using an epifluo-
rescent microscope Nikon Eclipse 80i (Minato-ku, Tokyo, Japan) equipped with a digital
camera DS-5Mc.

2.4. Genome Annotation of M. chilensis

Our repeat annotation pipeline applied a combined homology alignment strategy, and
de novo search to identify the whole-genome repeats. Tandem repeat was extracted using
TRF (v.4.09.1) (http://tandem.bu.edu/trf/trf.html (accessed on 3 October 2021)) by ab initio
prediction. The commonly used homolog prediction database Repbase
(www.girinst.org/repbase (accessed on 3 October 2021)), employing RepeatMasker (v.4.1.5)
(www.repeatmasker.org/ (accessed on 4 October 2021)) software and its in-house scripts
(RepeatProteinMask) with default parameters was used to extract repeat regions. Ab initio
prediction was used to build a de novo repetitive elements database by LTR_FINDER
(v1.07) (https://github.com/xzhub/LTR_Finder (accessed on 4 October 2021)), RepeatScout
(v.1.0.5) (www.repeatmasker.org/ (accessed on 4 October 2021)), and RepeatModeler (v.2.0.4)
(www.repeatmasker.org/RepeatModeler.html (accessed on 3 October 2021)) with default
parameters. Then, all repeat sequences with lengths >100 bp and gap ‘N’ less than 5%
constituted the raw transposable element (TE) library. A custom library (a combination
of Repbase and a custom de novo TE library processed by UCLUST (v.11) to yield a
non-redundant library) was supplied to RepeatMasker for DNA-level repeat identification.

The structural annotation approach was applied to incorporate de novo, homolog
prediction, and RNA-Seq-assisted predictions to annotate gene models. For gene prediction
based on de novo, Augustus (v3.2.3), Geneid (v1.4), Genescan (v1.0), GlimmerHMM (v3.04),
and SNAP (29 November 2013) were used in our automated gene prediction pipeline.
Sequences of homologous proteins were downloaded from Ensembl/NCBI/others for
homolog prediction. Protein sequences were aligned to the genome using TblastN (v2.2.26;
E-value ≤ 1 × 10−5), and then the matching proteins were aligned to the homologous
genome sequences for accurate spliced alignments with GeneWise (v2.4.1) software to
predict the gene structure contained in each protein region. Finally, for RNA-seq data, tran-
scriptome reads assemblies were generated with Trinity (v2.1.1) for the genome annotation.
For the genome annotation optimization, the RNA-Seq reads from different tissues were
aligned to genome fasta using Hisat (v2.0.4)/TopHat (v2.0.11) with default parameters
to identify exons region and splice positions. The alignment results were inputted into
Stringtie (v1.3.3)/Cufflinks (v2.2.1) with default parameters for genome-based transcript
assembly. The non-redundant reference gene set was generated by merging genes predicted
by three methods with EvidenceModeler (EVM v1.1.1) using PASA (Program to Assemble
Spliced Alignment) terminal exon support and including masked transposable elements
as input into gene prediction. Individual families of interest were selected for further
manual curation.

Gene functions were assigned according to the best match by aligning the protein
sequences to the Swiss-Prot database using Blastp (with a threshold of E-value ≤ 1 × 10−5).
The motifs and domains were annotated using InterProScan70 (v5.31) by searching against

http://tandem.bu.edu/trf/trf.html
www.girinst.org/repbase
www.repeatmasker.org/
https://github.com/xzhub/LTR_Finder
www.repeatmasker.org/
www.repeatmasker.org/RepeatModeler.html
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publicly available databases, including ProDom, PRINTS, Pfam, SMRT, PANTHER, and
PROSITE. Each gene’s gene ontology (GO) IDs were assigned according to the correspond-
ing InterPro entry. We predicted the protein function by transferring annotations from
the closest BLAST hit (E-value < 1 × 10−5) in the Swiss-Prot database and DIAMOND
(v0.8.22)/BLAST hit (E-value < 1 × 10−5) in the NR database. We also mapped the gene set
to a KEGG pathway and identified the best match for each gene.

Non-coding RNA annotations such as tRNAs were predicted using the program
tRNAscan-SE (http://lowelab.ucsc.edu/tRNAscan-SE/ (accessed on 5 October 2021)).
Since rRNAs are highly conserved, we chose relative species’ rRNA sequences as refer-
ences and predicted rRNA sequences using Blast. Other ncRNAs, including miRNAs and
snRNAs, were identified by searching against the Rfam database with default parameters
using the infernal software (http://eddylab.org/infernal/ (accessed on 5 October 2021)).
Additionally, lncRNAs were identified using the previously proposed pipelines [20,54,55].

2.5. Comparative Genomics between M. chilensis and M. coruscus

Syntenic relationships were explored among mussel species for which chromosome-
level reference genomes are publicly available. Here, the analysis was performed between
the two congeneric species M. chilensis (this study) and M. coruscus [28], where gene
annotations were explored by MCScanX (v. 1.0) [56] implemented in the TBtools (v.1.115)
package [57]. This approach detects groups of orthologous genes and compares their
arrangement to identify colinear segments in the compared genomes. MCScanX was used
to discover microsyntenic relationships, focusing on the local arrangement of genes near
the syntenic blocks. The microsyntenic arrangement of genes identified by MCScanX was
evaluated through GO analysis to identify the primary molecular function and biological
processes enrichened for each genomic region where macromutations or chromosome
rearrangements were detected.

Disseminated neoplasia is a disease horizontally transmitted by clonal cancer cells,
which causes leukemia in mollusk bivalves [58,59]. The neoplastic cells gradually replace
normal hemocytes leading to increased mortality, and the disease has been detected in
15 species of marine bivalve mollusks worldwide [60]. Notably, disseminated neoplasia
has been observed among mussel species with varying epizootic prevalences. For instance,
M. trossulus has shown high prevalences in some areas, whereas in Mytilus edulis, the
prevalences are generally lower. Furthermore, M. galloprovincialis has been suggested as a
species resistant to the disease in Spanish and Italian mussel populations [61]. This obser-
vation extends the relevance of exploring mussel species’ genetic features associated with
disseminated neoplasia. Herein, the molecular characterization of Steamer-like elements
in M. chilensis was conducted by cloning and the walking primer method according to
Arriagada et al. [62]. The putative M. chilensis Steamer-like was scanned through twelve refer-
ence genomes assembled at chromosome level for Bivalvia: Mytilus coruscus (GCA_017311375.1),
Mytilus edulis (GCA_019925275.1), Dreissena polymorpha (GCA_020536995.1), Mercenaria merce-
naria (GCA_014805675.2), Solen grandis (GCA_021229015.1), Ruditapes philippinarum
(GCA_009026015.1), Pecten maximus (GCA_902652985.1), Pinctada imbricata (GCA_002216045.1),
Crassostrea gigas (GCA_902806645.1), Crassostrea ariakensis (GCA_020458035.1), and Cras-
sostrea virginica (GCA_002022765.4). The putative long terminal repeat (LTR) sequences
were identified using BLAST search, where open reading frames (ORFs) between flanking
LTRs were detected. The identified Steamer-like elements were aligned using ClustalW
and annotated based on a search of the NCBI Conserved Domain database. Amino acid
sequences for the full-length Gag-Pol polyprotein region were aligned among the studied
bivalve species. The Steamer element was reported for Mya arenaria (Accession AIE48224.1)
and M. chilensis (this study). DNA sequence genealogy analysis was conducted to inves-
tigate horizontal transmission events among bivalve species. The maximum likelihood
(ML) method was conducted on the SLEs loci localized in all the publicly available bivalve
genomes assembled at the chromosome level.

http://lowelab.ucsc.edu/tRNAscan-SE/
http://eddylab.org/infernal/
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2.6. Whole-Genome Transcript Expression Analysis in Two M. chilensis Populations

The transcriptomes of mussels collected from the Yaldad and Cochamó populations
were analyzed using a hierarchical clustering approach to detect transcriptional similarities
among tissues/populations. The differentially expressed transcripts compared to normal-
ized expression values were visualized in a clustering heatmap and selected according to
the identified cluster. For an optimal comparison of the results, k-means clustering was
performed to identify candidate genes involved in specific gene expression patterns. The
distance metric was calculated with the Manhattan method, where the mean expression
level in 5-6 rounds of k-means clustering was subtracted.

Moreover, raw data from mussel tissues collected from the Yaldad and Cochamó
populations were trimmed and mapped to the M. chilensis genome using CLC Genomics
Workbench v22 software (Qiagen Bioinformatics, Aarhus, Denmark). Threshold values for
transcripts were calculated from the coverage analysis using the Graph Threshold Areas
tool in CLC Genomics Workbench v22 software. Here, an index denoted as chromosome
genome expression (CGE) was applied to explore the whole-genome transcript expression
profiling, according to Valenzuela et al. [63]. The CGE calculates the mean coverage of
transcripts mapped into a specific chromosome region, comparing mussel populations and
tissues. Specifically, the CGE index represents the percentage of the transcriptional variation
between two or more RNA-seq data for the same locus. The transcript coverage values
for each dataset were calculated using a threshold of 20,000 to 150,000 reads. A window
size of 10 positions was set to calculate and identify chromosome regions differentially
transcribed. This approach was used to visualize actively transcribed chromosome regions,
identify differentially expressed genes, and observe tissue-specific patterns in the evaluated
mussel populations. Finally, the threshold values for each dataset and the CGE index were
visualized in Circos plots [64].

RNA-seq data analyses were carried out using the raw sequencing reads and mapped
on the assembled genome by CLC Genomics Workbench v22 software (Qiagen Bioinfor-
matics, Aarhus, Denmark) separately for each tissue/population. In parallel, de novo
assembling was performed to evaluate PAVs and dispensable genes affecting the in-silico
transcription analysis. The assembly was performed with overlap criteria of 70% and a
similarity of 0.9 to exclude paralogous sequence variants. The settings were set as mis-
match cost = 2, deletion cost = 3, insert cost = 3, minimum contig length = 200 base pairs,
and trimming quality score = 0.05 using CLC Genomics Workbench v22. After assem-
bly, the contigs generated for each data set were mapped on the genes annotated in the
reference genome to evaluate genome coverage and detect PAV features. The analysis
did not show bias putatively associated with PAVs between the analyzed mussel pop-
ulations. Then, mRNA sequences annotated for the M. chilensis genome were used to
evaluate the transcription level between mussel populations, where differential expression
analysis was set with a minimum length fraction = 0.6 and a minimum similarity fraction
(long reads) = 0.5. The obtained genes from each tissue/population were blasted to CGE
regions to enrich the number of transcripts evaluated by RNA-Seq analysis. In addition,
sequences were extracted near the threshold areas in a window of 10 kb for each tran-
scriptome. The expression value was set as transcripts per million model (TPM). The
distance metric was calculated with the Manhattan method, with the mean expression level
in 5–6 rounds of k-means clustering subtracted. Finally, the Generalized Linear Model
(GLM) available in the CLC software was used for statistical analyses and to compare gene
expression levels regarding the log2 fold change (p = 0.005; FDR corrected).

Moreover, innate immunity in marine invertebrates may play an important role in
speciation and environmental adaptation [65,66]. Herein, we investigate the immune-
related genes associated with the Toll-like receptor (TLR) and apoptosis signaling pathways
given that the functional annotation revealed that they were mainly enriched between
the mussel populations analyzed. In addition, bioinformatic analyses were carried out
using the CLC Genomics Workbench software to identify single nucleotide variants (SNV)
from the transcriptomes sequenced for Yaldad and Cochamó. Candidate SNVs were called
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with the following settings: window length = 11, maximum gap and mismatch count = 2,
minimum average quality of surrounding bases = 15, minimum quality of central base = 20,
maximum coverage = 100, minimum coverage = 8, minimum variant frequency (%) = 35.0,
and maximum expected variations (ploidy) = 2. Furthermore, the genotypes of DEGs were
also identified for detecting putative genetic variations between mussel populations. Here,
singleton, dispersed, tandem, proximal, and whole-genome duplication (WGD) gene events
were evaluated using MCScanX. The amino acid changes and the zygosity proportions
were also estimated in DEGs between the Yaldad and Cochamó populations.

2.7. GO Enrichment Analysis

Differentially expressed mRNA were annotated through BlastX analysis using a cus-
tom protein database constructed from GeneBank, KEGG, GO, and UniProtKB/Swiss-Prot.
The cutoff E-value was set at 1 × 10−10. Transcripts were subjected to gene ontology
(GO) analysis using the Blast2GO plugins included in the CLC Genomics Workbench
v22 software (Qiagen Bioinformatics, Aarhus, Denmark). The results were plotted using
the Profiler R package [67]. GO enrichment analysis was conducted to identify the most
represented biological processes among protein-coding genes proximally located to the
CGE regions. The enrichment of biological processes was identified using Fisher’s exact
test tool of Blast2GO among the different tissues and mussel populations.

The Committee of Ethics, Bioethics, and Biosafety, University of Concepción, Chile,
approved this project (CEB324-2022, September 2021).

3. Results and Discussion
3.1. Chromosome Genome Assembly of M. chilensis Using Proximity Ligation

With two HiFi single-molecule real-time cells in the PacBio Sequel platform, we gener-
ated 53.8 Gb of high-quality DNA genome information. This data comprised
63 million reads with a total length of 882 Gbp (Table 1). These long reads were assembled
with the Hifiasm package using default parameters [45], yielding a primary assembly of
13,762 contigs equivalent to 2.19 Gb, with an N50 of 206 Mb. The genome size assembly
made by Hifiasm was comparable with the previous genome size described for closely
related species: 1.28 Gb for M. galloprovincialis [32], 1.57 Gb for M. coruscus [28], and
1.79 Gb for Dreissena polymorpha [27].

Table 1. Statistics of whole-genome sequence assembly and transcriptome analysis of the blue mussel
Mytilus chilensis using Illumina, PacBio, and Hi-C.

Types Method No. of Reads
(Millions) Read Length Length (Giga Base Pair)

Genome PacBio SMRT 63M 20 kb 882 Gbp
Illumina (Hi-C) 253M 150 bp 37 Gbp

Transcriptome Illumina (Hemolymph) 38.3M 100 bp 3838 Gbp
Illumina (Mantle) 37.1M 100 bp 3714 Gbp

Illumina (Gills) 38.6M 100 bp 3865 Gbp
Illumina (Digestive gland) 28.2M 100 bp 2823 Gbp

In vivo Hi-C is a technique that maps physical DNA–DNA proximity across the entire
genome [68,69]. The method was introduced as a genome-wide version of its predecessor,
3C (chromosome conformation capture). It has been a powerful tool in chromosome-scale
genome assembly of many animals in recent years [70,71]. In this study, Hi-C experiments
and data analysis of hemocyte cells were used for the chromosome assembly of the blue
mussel M. chilensis. Here, Phase Genomics (Seattle, WA, USA) prepared and sequenced
two Hi-C libraries, resulting in ~20× coverage and ~253 million 150 bp paired-end reads
(Table 1). The Hi-C analysis evidenced that 44.68% of high-quality reads showed intercontig
signals or Cis-close position (<10 kbp on the same contig), and an additional 4.09% of
sequence reads revealed a Cis-far conformation (>10 kbp on the same contig) (Table 2).



Genes 2023, 14, 876 9 of 27

Table 2. Genome assembly statistics using HiFi reads and proximity ligation analysis for
Mytilus chilensis.

Label Statistics

PacBio assembly
Assembly size 2,191,715,088

Contig (CTG) N50 206,083
CTGs 13,762

Hi-C mapping
Total read pairs (RPs) analyzed 253,342,981

High-quality (HQ) * RPs 14.71%
Clustering usable HQ reads per contig (CTGs > 5 kb) * 1215.84

RPs > 10 kb apart (CTGs > 10 kb) 18.68%
Intercontig HQ RPs 44.68%

Same strand HQ RPs 21.50%
Split reads 37.80%

* Number of contigs in scaffolds: 11,868 (100% of all contigs in chromosome clusters, 86.24% of all contigs).

Hi-C reads were aligned using Bowtie version 1.3.1 [72] to order and orient the
13,762 contigs, and scaffolding was performed using Proximo (Phase Genomics, Seattle,
WA, USA). We then applied Juicebox for visual inspection and manual correction [73]. We
also manually removed 1894 scaffolds that were microbe-sized and disconnected from
the rest of the assembly. Then, 11,868 contigs were used for the first chromosome-level
high-quality M. chilensis assembly (Table 3).

Table 3. De novo assembly of the M. chilensis genome using proximity ligation (Hi-C).

Chromosome Number Number of Contigs Length (bp)

1 988 173,300,526
2 852 140,500,440
3 957 154,573,458
4 871 155,184,769
5 902 143,621,794
6 845 146,028,403
7 946 139,985,977
8 821 134,004,722
9 794 133,130,516
10 821 132,801,123
11 802 131,378,307
12 790 122,972,572
13 735 113,313,251
14 744 117,342,092

Total 11,868 1,938,137,950
N50 134,004,722

The N50 and total genome length were calculated in 134 Mbp and 1938 Gbps, re-
spectively. The M. chilensis genome provides a valuable genomic resource for research in
mussel biology and for developing novel sustainable strategies in mussel aquaculture. The
Hi-C data generated 14 chromosomes assembled with HiFi consensus long DNA reads
(Figure 1B). The cytogenetic analysis performed for M. chilensis revealed a conservative
karyotype for the Mytilus genus composed of 2n = 14 [21]. Physical localization of 28S-rRNA
revealed two loci mapped in different submetacentric/subtelocentric chromosome pairs
(Figure 1C), confirming the presence of major rDNA clusters subterminal to the long arms
of two chromosome pairs reported in M. edulis and M. galloprovincialis [74]. Concerning
genome assembly, the largest scaffold was assembled from 998 contigs with a total size of
173.3 Mb. Meanwhile, the smallest scaffold was 117.3 Mb, consisting of 744 contigs (Table 3).
Notably, the number of contigs in the scaffolds was 11,868 (100% of all contigs in chromo-
some clusters, 86.24% of all contigs) and accounted for 1.93 Gbps of genome size (100% of all
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length in chromosome clusters, 88.43% of all sequence length). The completeness of genome
assembly was assessed by the single-copy ortholog set (BUSCO, V5.3.2) [75]. The results
showed the following BUSCO scores: (i) Eukaryota Odb10; C:94.1% (S:72.9%, D:21.2%),
F:3.1%, M:2.8%, and n:255. (ii) Metazoa Odb10; C:95.1% (S:75.5%, D:19.6%), F:2.5%, M:2.4%,
and n:954. (iii) Mollusca Odb10, C:85% (S:70.1%, D:14.9%), F:3.6%, M:11.4%, and n:5295.

3.2. Genome Annotation of M. chilensis

The genome assembly was annotated using de novo and protein- and transcript-
guided methods (Figure 2A). The first step of the annotation process was to identify the
DNA repeats through the M. chilensis genome. Repetitive elements and non-coding genes
in the blue mussel genome were annotated by homologous comparison and ab initio pre-
diction. RepeatMasker [76] was used for homologous comparison by searching against
the Repbase database [77] and RepeatModeler [78]. According to these analyses, about
1.1 Gbps of repeat sequences were annotated, which accounted for 56.73% of the whole
genome. Herein, DNA transposons, LINE, and LTR transposable elements were identified
(Table 4). Useful genome information for population genetic studies is the identification
of simple sequence repeats (SSRs) or microsatellites. The mining of SSRs revealed that
the M. chilensis genome has 548,360 SSR sequences, where 9% and 6% of the SSR loci
were annotated for each mussel chromosome (Figure S1). The most frequent SSR mo-
tif was the tetranucleotide, followed by the dinucleotides, accounting for 206,103 and
197,700 repeats, respectively. The entire SSR sequences accounted for 0.35% of the whole
genome. The development of SSR markers offers a shortcut to assessing genetic diver-
sity, which can potentially be applied in food authentication and genetic traceability for
mussel species [79–81].
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Figure 2. The native blue mussel Mytilus chilensis genome. (A) Workflow of de novo whole-genome
sequencing project and annotation for M. chilensis. The rectangles indicate the steps of the primary
data processing, and the arrows indicate output or input data. Pink diamonds indicate the combined
strategy based on homolog prediction, de novo, and RNA-seq-assisted prediction. (B) The Circos
plot shows the genomic features for the 14 pseudo-chromosomes. From the outer to the inner
circle: gene density, repeat density, GC content, rRNA localization, and ncRNAs. The transcriptome
expression for mantle (Ma), gills (Gi), hemocytes (He), and digestive gland (DG) are shown as light
blue profiles. Chromosome syntenies are represented in different colors according to each ideogram.
The chromosome size is shown in the Mb scale.
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Table 4. Statistics of the classification results of repeat sequences from the M. chilensis genome.

Type Number of Repeats Length (bp) % in Genome

DNA_TE:EnSpm 4175 1,578,431 0.08%
DNA_TE:Harbinger 3592 1,793,590 0.09%
DNA_TE:Helitron 32,469 18,451,639 0.95%
DNA_TE:MuDR 5329 2,668,407 0.14%
DNA_TE:Other 50,021 29,284,120 1.51%
DNA_TE:TcMar 4523 3,828,266 0.20%
DNA_TE:hAT 9902 4,997,238 0.26%

LTR:Copia 3229 1,398,734 0.07%
LTR:Gypsy 9724 12,056,219 0.62%
LTR:Other 8753 12,605,602 0.65%

Low_complexity 38 30,762 0.00%
NonLTR:LINE 124,903 143,701,714 7.41%
NonLTR:SINE 9366 4,939,193 0.25%

Tandem repeat: Satellite and Other 108,470 122,642,591 6.32%
Unknown 767,910 740,296,986 38.17%
All Repeat 1,142,404 1,100,273,492 56.73%

3.3. Protein-Coding Gene Prediction and Functional Annotation in the M. chilensis Genome

For the identification of protein-coding genes, de novo, homolog prediction, and RNA-
seq evidence were used as the training set (Figure 2A). For homologous predictions, the
protein sequences from Crassostrea gigas, Mytilus galloprovincialis, M. coruscus, and Dreissena
polymorpha genomes were extracted using the respectively published references and aligned
against the blue mussel genome using TBLASTN (E-value < 1 × 10−5) (Table 5). The gene
sequence structure of each candidate gene and previously mentioned tools were used to
predict protein-coding genes. Finally, a non-redundant reference gene set was generated
using the EvidenceModeler (v.2.0) (EVM) and PASA2 tools (v.2.5.2) (Figure 2A).

Table 5. Basic statistical results of gene structure prediction of relative species.

Species Number of
Genes

Average Transcript
Length (bp)

Average CDS
Length (bp)

Average Exons
Per Gene

Average Exon
Length (bp)

Average Intron
Length (bp)

Crassostrea gigas 63,340 17,784 2008 12.6 3301 286
Mytilus galloprovincialis 77,414 10,977 1369 7.8 13,727 260

Mytilus coruscus 37,478 14,735 2900 5.9 1290 2727
Dreissena polymorpha 68,018 13,316 2603 4.5 1632 1194

Taken together, 34,530 protein-coding genes were identified with a 6531 bp aver-
age transcript length, 1377 bp average CDS length, 4.92 average of exons per gene, and
1377 and 1316 average length of exons and introns, respectively (Table 6). Additionally,
516 tRNAs were predicted using tRNAscan-SE, and 143 rRNA genes were annotated us-
ing RNAmmer. For non-coding RNAs with putative regulatory roles, 1365 miRNAs and
43,011 long non-coding RNAs were identified and annotated within the M. chilensis genome
(Table 7). For functional annotation, the predicted proteins within the blue mussel genome
were searched by homology against seven databases: Swiss-Prot, Nr, Nt, KEGG, eggnog,
GO, and Pfam (Figure 2A). Overall, 70.45%, 73.01%, 8.98%, 64.94%, 80.57%, 33.61%, and
96.33% of genes matched entries in these databases, respectively. A total of 34,530 genes
(100%) were successfully annotated by gene function and conserved protein motifs (Table 8).
The genomic features annotated for the native blue mussel M. chilensis were displayed
using a Circos plot [64]. Herein, this graphical representation shows the primary genomic
features for the 14 chromosomes. Specifically, gene density, repeat density, GC content,
rRNA localization, and ncRNAs were plotted. The transcriptome expression profiles for
the mantle, gills, hemocytes, and digestive gland tissues were also displayed in connection
with the syntenic blocks (Figure 2B).
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Table 6. Statistical gene structure prediction for the blue mussel M. chilensis genome.

Type Number Average Transcript
Length (bp)

Average CDS
Length (bp)

Average Exons
Per Gene

Average Exon
Length (bp)

Average Intron
Length (bp)

De novo Augustus 83,110 10,628 1423 5.74 1423 1941
SNAP 70,217 36,619 536 9.46 536 4265

GlimmerHMM 39,700 1973 753 2.85 753 658
Geneid 49,963 3111 1036 2.79 1036 1160

Genscan 83,110 10,628 1423 5.74 1423 1941
GeneMark 81,256 11,018 1301 5.82 1301 270

Homolog GMAP 250,833 16,107 370 3.10 1649 6891
spaln 136,264 - - 7.80 179 -

RNAseq PASA 18,056 - - 2.05 504 -
EVM 63,943 6137 1133 4.54 1133 1414

Final set 34,530 6531 1377 4.92 1377 1316

Table 7. Statistics of non-coding RNA annotation for the M. chilensis genome.

Type Copy Number Average Length (bp) Total Length (bp) % of Genome

miRNA 1365 92.8 126,678 0.01%
rRNA 143 118.58 16,957 0.00%
sRNA 275 83.68 23,011 0.00%

snRNA 99 106.71 10,564 0.00%
snoRNA 2267 89.38 202,622 0.01%

tRNA 516 77.44 39,957 0.00%
tRNA pseudogenes 123 72.96 8974 0.00%

All types 4795 89.42 428,763 0.02%

Table 8. Statistics of gene function annotation for the M. chilensis genome.

Number Percentage (%)

Swiss-Prot 24,325 70.45
Nr 25,212 73.01
Nt 3102 8.98

KEGG 22,425 64.94
eggNOG 23,181 80.57

GO 11,606 33.61
Pfam 60,887 96.33

Annotated 27,821 80.57
Unannotated 6709 19.43

Total 34,530 100

3.4. Comparative Genomics

Smooth-shelled blue mussels of the genus Mytilus represent a model group because
of their cosmopolitan distribution, socioecological importance, and intriguing evolution-
ary history. This taxon provides new insights into the process of speciation and how
hybridization and introgression can be one of the biggest threats to global mussel biodiver-
sity [82]. A survey of single nucleotide polymorphisms (SNPs) on southern hemisphere
blue mussels has provided a new layer for understanding their biology, taxonomy, and phy-
logeography [83,84]. However, SNP markers cannot be applied as a single tool to evidence
chromosome rearrangement events during the Mytilus evolution. Here, whole-genome
sequencing in smooth-shelled blue mussels and relative bivalve species is a priority for
global mussel aquaculture, biosecurity, and conservation.

With the aim of exploring genomic rearrangements in Mytilus, the reported reference
genomes for M. coruscus and M. chilensis were analyzed. Of the 34,530 predicted genes
from the M. chilensis genome, 18,758 (54.32%) were found in syntenic collinear blocks after
being compared with the M. coruscus genome (Figure 3A). These syntenic blocks consisted
of 671 alignments with a minimum of 5 genes per block. The number of alignments per
chromosome ranged from 27 on chromosome 13 to 69 on chromosome 3. Chromosomes
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with higher genes in collinear blocks were chromosomes 1, 4, and 6, with 1227, 1091,
and 1088 genes, respectively. Blocks with less than five genes or E-value < 1 × 10−5

were discarded from this analysis. Most collinear blocks were located at the same pair of
chromosomes between the two genomes. For example, M. chilensis Chr1 had only syntenic
blocks with LG01 from M. coruscus in the same order. However, chromosomes 6 and 10
from M. chilensis had collinearity with chromosomes LG09 and LG02 in M. coruscus but
were orientated as two inversed blocks per pair of chromosomes (red lines in Figure 3A
and Figure S2). The genes in these alignments from inversed blocks were extracted, blasted,
and gene ontology terms were identified. Enrichment analyses from GO terms were
obtained from Chr10, and LG09 inversed blocks and Chr6 and LG02 pair of chromosomes
(Figure 3B,C). Most molecular function-enriched GO terms in the Chr10 and LG09 pair
were associated with heat shock protein (HSP) binding. By contrast, in the Chr6 and LG02
pair, most of the enriched GO terms were associated with the mitochondria and biological
processes related to autophagy or regulation of gene expression by epigenetic changes.
Notably, chromosome rearrangements have been associated with adaptative genetic traits
in marine organisms [85], where specific architectural proteins such as HSPs may have
distinct roles in establishing 3D genome organization [86].
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3.5. Comparative Analysis of Steamer-like Elements in Bivalvia

To explore the gene expansion of retrotransposon elements among representative
species from Bivalvia, we primarily characterized the Steamer-like elements (SLEs) in M.
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chilensis using the approach described by Arriagada et al. [62]. The analysis evidenced that
the genome of M. chilensis contains five copies of SLEs distributed in chromosomes 1, 6, 7,
10, and 11. The alignment showed that all SLE copies are flanked by two LTRs (5′ and 3′)
containing the Gag-Pol ORFs and the domains annotated to protease, reverse transcriptase,
RNAaseH, and integrase. Notably, an insertion composed of 12 nucleotides at position
933ˆ934 was exclusively found in chromosomes 7 and 11. The translation for the inserted
nucleotides suggests four amino acids, K, T, S, and H, in a positive orientation. However,
the translation evaluated in the reading frame (−1) evidenced a methionine localized before
the RNAaseH coding gene (Figure 4A).
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Figure 4. Molecular characterization of Steamer-like elements (SLE) in the M. chilensis genome and
phylogenetic analysis using publicly available reference genomes assembled at chromosome level for
bivalve species. (A) Alignment of five SLE copies localized in chromosomes 1, 6, 7, 10, and 11. All the
SLEs are flanked by two LTRs (5′ and 3′) containing the Gag-Pol ORFs and the domains annotated for
protease, reverse transcriptase, RNAaseH, and integrase. An insertion composed of 12 nucleotides
(933ˆ934 position) was found in chromosomes 7 and 11. The detailed alignment and the translation for
the nucleotides inserted are highlighted in the red box. (B) Maximum likelihood (ML) phylogenetic
tree of nucleotide sequences from SLEs found in eleven reference genomes for Bivalvia. Colored
chromosomes and numbers indicate the SLE genome localization and the bivalve species, respectively.
The species analyzed were: Veneridae (pink) Ruditapes philippinarum (Rphi) and Mercenaria mercenaria
(Mmer); Solenidae (grey) Solen grandis (Sgra); Pectinidae (blue) Pecten maximus (Pmax); Ostreidae
(green) Crassostrea gigas (Cgig), C. virginica (Cvir), and C. ariakensis (Caria); Pteriidae (light blue)
Pinctada imbricata (Pimb); and Mytilidae (red) Mytilus coruscus (Mcor), Mytilus edulis (Medu), and
Dreissena polymorpha (Dpol). (C) ML analysis of SLEs identified in M. edulis (orange), M. coruscus
(orange), D. polymorpha (black), and M. chilensis (blue) chromosomes.

Furthermore, the phylogenetic analysis using publicly available reference genomes
assembled at chromosome level for eleven bivalve species using maximum likelihood
(ML) revealed a six-chromosome cluster composed of bivalves belonging to the families
Veneridae, Solenidae, Pectinidae, Ostreidae, Pteriidae, and Mytilidae (Figure 4B). The
phylogenetic-reconstruction-rooted SLEs were found in three chromosomes (2, 4, and 17)
from R. philippinarum. The other Veneridae member, M. mercenaria showed a cluster of four
chromosomes (10, 12, 13, and 16) and related to two chromosomes of S. grandis (10 and
16). This last species formed a unique cluster composed of three chromosomes (8, 15, and
17), similar to P. maximus, with three chromosomes. Concerning the mussel and oyster
genomes assembled at the chromosome level, the phylogenic analysis revealed two main
clusters composed of species belonging to Ostreida and Mytilidae, where the first taxon
was comprised of the Ostreidae and Pteriidae families. Herein, one cluster was rooted with
three SLE sequences from C. virginica, C. gigas, and C. ariakensis located on chromosomes
9, 2, and 5, respectively. The second major cluster was composed of SLEs annotated in
chromosomes from Ostreidae and Pteriidae, where C. virginica chromosomes were closely
related to P. imbricata. The third cluster was observed containing three SLE sequences from
C. virginica and C. ariakensis: chromosomes 1, 2, 8, and 1, 2, and 6, respectively (Figure 4B).
The analysis of the Mytilidae family revealed two primary clusters comprising SLEs lo-
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cated in chromosomes from M. edulis and D. polymorpha, and M. coruscus, M. chilensis,
respectively (Figure 4B). This last cluster grouped five chromosomes from M. coruscus
(Chr. 1, 4, 5, 7, and 11), and two from M. edulis (Chr. 4 and 6). The Steamer-like sequence
characterized for M. chilensis was also observed in this cluster. Finally, a detailed analysis
of the three mussel species reported with genome assemblies at the chromosome level was
conducted (Figure 4C). Notably, a rooted cluster comprising chromosomes 7, 11, 9 for M.
couscous, and 4 and 6 for M. edulis were closely related. Herein, two primary clusters of
SLEs located in chromosomes from M. chilensis, M. edulis, and M. coruscus were observed.
The analysis suggested that the SLEs identified on M. chilensis chromosomes are closely
related to the SLEs annotated on chromosomes 9 and 4 in M. edulis; meanwhile, the SLEs
located in chromosomes 1, 5, and 11 in M. coruscus were also identified in the same chromo-
some cluster. The second main cluster observed comprised exclusively SLEs annotated in
D. polymorpha chromosomes, except the SLE copies identified in chromosomes 9 and 10
of M. edulis. Interestingly, the SLEs annotated in chromosome 9 from M. edulis are shared
among the three primary clusters analyzed, suggesting putative translocation gene events
in Mytilidae.

Overall, the phylogenic relationships of SLEs revealed that the reported bivalve
genomes comprise between 3 and 6 loci. A lower number of SLEs was found in Solenidae,
Pectinidae, and Veneridae, followed by Mytilidae. A higher number of SLE loci was ob-
served in genomes belonging to the Ostreida order. As far as we know, the evolution of the
bivalve chromosomes has mainly been studied using cytogenetic techniques combining
molecular probes on candidate genes to detect genome rearrangements that drive the
speciation process [87–89]. However, the availability of reference genomes assembled at
the chromosome level opens new perspectives for exploring molecular evolution in several
taxonomic orders through gene collinearity analysis. The study by Yang [28] highlighted
putative chromosome rearrangements among the king scallop Pecten maximus, the blood
clam Scapharca broughtonii, the hard-shelled mussel Mytilus coruscus, the pearl oyster Pinc-
tada martensii, and the Pacific oyster Crassostrea gigas genomes. Notably, the chromosome
synteny illustrated that large-scale rearrangements are common events between the scallop
and oyster but scarce between the scallop and mussel genomes. The reported evidence
suggested that almost all the chromosome rearrangements between the mussel and oys-
ter genomes are different, implicating independent chromosome fusion events. The SLE
loci identified in all the genomes analyzed in the current study suggest that SLEs are
relatively conserved in chromosome position for some taxa. For instance, the SLE loci
in Veneridae, Pectinidae, and Solenidae appear to be associated with chromosomes 10,
13, 12, and 16. This sharing characteristic can reflect common genetic events during the
evolution of these taxonomical groups. Similarly, the Ostreidae and Mytilidae families
share SLE loci annotated to chromosomes 1, 2, 8, and 10. The detailed analysis of SLEs
in Mytilidae shows that the transposon identified in M. chilensis was shared between M.
edulis and M. coruscus, where SLEs in D. polymorpha appear to be more phylogenetically
distant than Mytilus species. Interestingly, the mutation identified on the SLEs localized in
the M. chilensis genome (insertion of twelve nucleotides), specifically on chromosomes 7
and 11, was shared with the SLE annotated on chromosome 9 in M. edulis. This cumulative
evidence reveals diverse chromosome rearrangements, reflecting a complex evolutionary
history of bivalve chromosomes.

3.6. The Marine Environment of M. chilensis Populations

Temporal and spatial variability of sea surface temperature (SST) around Chiloé
island and at Yaldad and Cochamó were analyzed over the past two decades. The oceano-
graphic variability for the location studied was analyzed from remote sensing data and
in situ measurements (Figure 5A–D). Here, the daily time series of SST extracted from
satellite-derived data for both sites evidenced high surface temperature variability between
Yaldad and Cochamó, where this last location was constantly higher throughout the year
(Figure S3). Notably, the monthly medians computed from the SST time series showed
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that the main differences were observed during the austral summer from December to
March. During the winter, the oceanographic variability was less pronounced, showing
temperatures between 13 ◦C and 10 ◦C from April to July (Figure 5C).
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Figure 5. Temporal and spatial variability around Chiloé island, and at the Yaldad and Cochamó
sites, over the past two decades. (A,B) Maps correspond to mean SST computed for December
2017–March 2018 and the corresponding standard deviations. Stars indicate the location of sampling
sites. (C) Monthly medians computed from data in (A), showing the first and third quartiles as
error bars; note that the sequence of months shown on the x-axis begins in August and ends in July.
Shaded areas indicate summer (yellow) and fall–winter (blue) periods. (D) In situ measurements
for temperature (◦C) and salinity (PSU) from 0 to 20 m of depth. The blue and red lines for (C,D)
represent the data collected from Yaldad and Cochamó, respectively.

Furthermore, in situ data were collected from June 2017 to May 2018, exhibiting sig-
nificant differences in both locations for temperature and salinity between 0 and 20 m
of depth. Interestingly, the oceanographic survey revealed a pronounced vertical stratifi-
cation with higher temperatures and lower salinity in Cochamó compared with Yaldad
(Figure 5D). These observations support the idea that two oceanographically different
zones exist in the inner sea of Chiloé Island. In this northern area, mussels from Cochamó
and Yaldad were sampled for the current study. Taken together, we can hypothesize that
the mussels inhabiting Cochamó are significantly more exposed to environmental stress
than the Yaldad mussel population. To date, there are few studies exploring how popu-
lation genetic variation is related to, or caused by, the marine environmental variation in
mussel populations. Notably, a study conducted by Wenne et al. [90] examined the genetic
differentiation of native populations of M. galloprovincialis throughout its entire geographic
range in the Mediterranean Sea, the Black Sea, and the Sea of Azov using 53 SNP loci.
The results indicated that 7 of the 13 environmental variables explained significant varia-
tion in population-specific SNP locus allele frequencies. These seven variables explained
75% of the variation in the SNP dataset, suggesting that a complex mix of environmen-
tal variables contributes to the genetic variation in M. galloprovincialis populations in the
Mediterranean Sea.

3.7. Whole-Genome Transcript Expression Analysis in Two M. chilensis Populations

The transcriptome profiling among mussels collected during the austral summer in
2019 from Yaldad and Cochamó evidenced three primary transcriptional clusters. Herein,
gene cluster 1 was highly expressed in the gills of mussels exposed to the Yaldad marine
conditions; meanwhile, gene clusters 2 and 3 were highly expressed in individuals collected
in Cochamó or mussels exposed to estuarine conditions (Figure 6A). Notably, the RNA-
seq from individuals collected as Cochamo1 (replicate) showed a highly expressed gene
cluster, indicating a wide transcriptome variation among mussels from this population.
The RNA-seq analysis was performed with the mRNA sequences annotated on the M.
chilensis genome. Herein, it is essential to note that in mussel species, specifically in M.
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galloprovincialis, the phenomenon of presence–absence variation (PAV) has been described.
This fact means that PAVs can bias the analyses of transcriptome profiles in the studied
mussel populations. We previously conducted a de novo assembling for the RNA-data sets
sequenced from Yaldad and Cochamó populations. The results showed that the number
of genes with expression values >1 (total gene reads) did not show statistical differences
between both mussel populations. For instance, Yaldad and Cochamó mussels showed
25,086 ± 215 and 25,344 ± 212 (three replicates per population), respectively, of expressed
genes in gill tissue (p-value = 0.98). Collectively, between 72.6% and 73.3% of the annotated
genes in the M. chilensis genome were transcriptionally active in gills independently of the
population analyzed.
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Figure 6. Population-specific transcriptome analysis in the blue mussel M. chilensis. (A) Transcriptome
patterns of coding genes analyzed in gills from Yaldad and Cochamó populations. Three replicates
were evaluated from each experimental group. The heatmap was based on transcripts per million
(TPM) calculation and hierarchical clustering on Manhattan distances with average linkage (fold
change ≥ |4|; FDR = 0.05). Yellow colors mean upregulated coding genes and black represents
downregulated genes. (B) Venn diagram showing shared and unique genes expressed among
the locations and replicates. (C) Pie chart showing the number of differentially expressed genes
(DEGs) annotated for expression clusters 1, 2, and 3 between the Yaldad and Cochamó populations.
(D) Fold-change values observed for DEGs identified in each evaluated cluster. (E) GO enrichment of
cluster-specific genes (p-value < 10–16; |fold-change| > 4) annotated for key biological processes
differentially expressed. The y-axis indicates the GO term, and the x-axis indicates the clusters
identified in (A). The color bar indicates the enrichment analysis estimated by FDR (false discovery
rate) < 0.05 for the DEGs (fold change > 4, p < 0.01). The bubble size indicates the number of genes
associated with the given GO term.

The evaluation of differentially expressed genes (DEGs) showed that the main factor
of differences in the number of DEGs was the population rather than the replicates assessed
(Figure 6B). The proportion of DEGs evaluated among the gene clusters revealed that
cluster 1, highly expressed in Yaldad, accounted the 78.85% of the total DEGs analyzed.
Clusters 2 and 3 are primarily characterized by high transcription values in the Cochamó
population, evidenced by 7.32% and 13.82% of DEGs, respectively. The total number of
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DEGs analyzed was 1570 (Figure 6C). Notably, the fold-change values estimated among the
replicates and populations revealed high values in gene transcriptional cluster 1, compared
with clusters 2 and 3 where the fold-change values were significantly lower (Figure 6D).
The functional analysis showed that cluster 1 was enriched by GO terms related to pro-
tein modification processes, programmed cell death, immune system processes, defense
response, cell differentiation, and anatomical structure development (Figure 6E). Clusters
2 and 3 were less enriched, revealing significant GO terms for transmembrane transport,
reproductive processes, protein-containing complex assembly, microtube-based movement,
cytoskeleton organization, chromatin organization, and metabolic process (Figure 6E).

The cluster gene expression analysis was used to identify genetic polymorphisms
annotated in differentially expressed genes (DEGs) between the Yaldad and Cochamó
mussel populations. The DEGs were evaluated by cluster transcriptome analysis displayed
using a Circos plot to visualize specific loci where DEGs were highly transcribed. The
fold-change values calculated showed high transcription levels in clusters 1 and 2 through
all chromosomes scanned (see red dots in Figure 7A). Congruently with the previous RNA-
seq results in this study, the highest fold-change values were observed in DEGs annotated
in cluster 1 (Yaldad population). By contrast, cluster 3 showed a small number of DEGs
with high fold-change values. Notably, the physical mapping of DEGs on chromosomes
evidenced specific transcriptome patterns, revealing genes differentially expressed through
the mussel genome exposed to the marine environment. The synteny analysis for DEGs
showed a marked pattern among chromosomes 5, 7, and 12 for cluster 1; meanwhile, the
synteny observed for the DEGs annotated in clusters 2 and 3 revealed a wide distribution
along the M. chilensis genome (Figure 7A). Interestingly, the analysis carried out to detect
macro-genome mutation in gene families between the Yaldad and Cochamó populations
evidenced a similar number of dispersed genes, suggesting that those might arise from
transposition. Tandem or repeatedly duplicated genes were observed with a low propor-
tion in cluster 3 (Cochamó); meanwhile, the proximal genes showed a similar proportion
to cluster 1 (Yaldad). These results might suggest small-scale transposition or duplica-
tion/insertion events. An interesting finding was observed for whole-genome duplication
(WGD). The primary proportion was evidenced in cluster 3 (Cochamó), compared with
clusters 1 and 2 from the Yaldad population (Figure 7B). Furthermore, the bioinformatic
analysis conducted for detecting amino acid changes (AAC) in DEGs showed that 38%
of non-synonymous AAC were identified in mussels collected from Yaldad. By contrast,
the main proportion of synonymous AAC was detected in mussels exposed to Cochamó’s
estuarine conditions (Figure 7C). Notably, the analysis performed for DEGs annotated in
cluster 2 did not show non-synonymous and synonymous AAC in mussels collected from
Yaldad. Finally, evaluating the zygosity proportion estimated for each mussel population
evidenced an inverse pattern between both populations. The Yaldad cluster was higher in
the homozygous proportion than Cochamó, where heterozygous AAC were detected in a
higher proportion (Figure 7D).

To explore the transcriptome signatures between the Yaldad and Cochamó mussel
populations, we applied the genome chromosome expression (CGE) approach to test
differences among tissues and individuals through the M. chilensis genome. The CGE
analysis revealed high differences among chromosome regions, where the gill tissue was
more modulated than the mantle tissue (Figure 8A). Interestingly, there are some levels
of congruence among the CGE annotated for both mussel populations. We conducted
a gene ontology enrichment analysis using this finding from genes identified by CGE
analysis. The results evidenced that gill transcriptomes displayed functional processes
associated with transmembrane transport, protein catabolic, nervous system, and metal
homeostasis. Notably, immune system process GO terms were highly enriched in gills.
Moreover, the chromosome region differentially expressed in mantle tissue revealed that
the reproductive process, protein modification process, cell differentiation, anatomical
structure development, and gene silencing by RNA were mainly annotated (Figure 8B).
Taken together, the results reported in this study are highly congruent with the previous
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study conducted by Yévenes et al. [38], through the transcriptome responses of M. chilensis
collected in ecologically different farm-impacted seedbeds.
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Figure 7. Genetic polymorphisms annotated in differentially expressed genes (DEGs) analyzed be-
tween the Yaldad and Cochamó mussel populations. The evaluation of DEGs was performed
by cluster transcriptome analysis. (A) Circos plot showing DEGs identified in the three ana-
lyzed clusters. From outer to the inner circle: gene density, DEG cluster 1, DEG cluster 2, DEG
cluster 3, and syntenic relationships between DEGs (each color line represents the cluster ana-
lyzed). Red dots represent DEGs with fold-change values > |100|, and purple dots represent
fold-change values < |10|. (B) Genotypes of DEGs identified in M. chilensis populations according to
the transcription cluster analysis. Singleton means that the gene is single-copy, which should not be
the type of members of gene families. Dispersed means that the gene might arise from transposition.
Tandem means that genes were repeatedly duplicated. Proximal means that the gene might arise
from small-scale transposition or from tandem duplication and insertion of some other genes. Whole-
genome duplication (WGD) means the gene might arise from a chromosome duplication region. The
analysis was carried out using MCScanX. (C) Amino acid change proportions (%) between the Yaldad
and Cochamó populations. The non-synonymous and synonymous were annotated for the DEGs
selected for each mussel population according to the cluster analysis. (D) Zygosity proportion (%)
estimated for each mussel population. Cluster 1 (Yaldad) is represented by blue bars, and clusters 2
and 3 (Cochamó) are displayed in brown bars.

The cumulative findings of this study suggest that the immune system was primarily
modulated between mussels exposed to the Yaldad and Cochamó environmental condi-
tions. With the aim of exploring the transcription profiling of immune-related genes, we
selected two KEGG pathways annotated in the M. chilensis genome (Figure 9). Herein,
Toll-like receptor signaling pathway and apoptosis were analyzed in terms of transcription
activity and single nucleotide variation (SNV) between mussel populations. Notably, a non-
synonymous SNV was detected on the TLR2 gene (28T>G) in individuals collected from the
Yaldad population. The translation evidenced an amino acid change from phenylalanine
to valine at position 10 in the ORF (Phe10Val) (Figure 9A). The analysis also evidenced
SNV on genes such as AKT and TAB1, where no amino acid changes were detected. The
transcriptome profiling for the TLR pathway evidenced a high modulation of genes such as
TLR3, AKT, TRAFF6, FADD, IRAK4, and RAC1 in mussels collected from Yaldad. Interest-
ingly, mitogen-activated protein kinases (MAP2K and MAPK1) and c-Jun N-terminal kinase
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(JNK) were differentially expressed, suggesting putative roles related to stress signaling
pathways (Figure 9B). Furthermore, the apoptosis pathway revealed two SNV localized in
eukaryotic initiation factor 2 α (EIF2α) and inhibitor of apoptosis (IAP) in mussels sampled
from the Yaldad and Cochamó populations, respectively (Figure 9C). The 2613delG in the
EIF2α gene produces a frameshift at the Thr872; meanwhile, the 968_970delCTC localized
in the IAP gene produces a deletion of proline at position 323. The transcriptome profiling
of apoptosis-related genes showed a conspicuous differentiation between gills and mantle
tissue, where three primary gene expression clusters were identified (Figure 9D).
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Figure 8. Chromosome–genome transcription in M. chilensis tissues collected from the Yaldad and
Cochamó populations. (A) Circos plots showing the threshold values for transcriptional differences
between locations (Yaldad/Cochamó) and tissues (gills/mantle). The differences were estimated
through the CGE index. Heatmap in red shows the variation in gene expression from high to low
differences. (B) GO enrichment of tissue-specific genes (p-value < 10–16; |fold-change| > 5) annotated
for key biological processes differentially expressed. The y-axis indicates the GO term, and the x-axis
indicates the tissues analyzed. The color bar indicates the enriched factor. The bubble size indicates
the number of GO terms.
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activity in genes related to the intrinsic (mitochondria-mediated) pathway, such as the B-

Figure 9. Transcriptome response of the immune system by KEGG pathway analysis and sin-
gle mutation variant detection between M. chilensis populations. (A) Toll-like receptor (TLR) and
(C) apoptosis signaling pathway comparisons between mussels from Yaldad and Cochamó. Single
nucleotide polymorphisms and amino acid changes are shown in blue and brown boxes according to
the mussel population. Identified gene families on the KEGG pathways are marked with red in the M.
chilensis genome. (B,D) Transcriptome patterns of coding genes analyzed in gills and mantle tissue
from the Yaldad and Cochamó populations for TLR and apoptosis-related genes. Three replicates
were evaluated from each experimental group. The heatmap was based on transcripts per million
(TPM) calculation and hierarchical clustering on Manhattan distances with average linkage. Red
colors mean upregulated coding genes and blue colors represent downregulated genes.

Notably, genes such as P53, ERK, TP53, PARP2, and JNK were highly expressed in
gill tissue. The gene expression analysis in mantle tissue evidenced high transcriptional
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activity in genes related to the intrinsic (mitochondria-mediated) pathway, such as the
B-cell lymphoma (BCL) gene and the second mitochondria-derived activator of caspase
(DIABLO) gene. Concerning the mitogenome of M. chilensis, it was previously reported
by Gaitán-Espitia et al. [34] and Śmietanka and Burzyński [91], evidencing a genome
size of 16,748bp and structurally identical to the northern hemisphere M. edulis and M.
galloprovincialis mitogenomes. Furthermore, the putative adaptive contribution of the
mitochondrial genes was recently reported by Yevenes et al. [37]. The RNA-Seq analysis
detected differences in the number of upregulated mitogens between individuals from
Cochamó and Yaldad, some being tissue-specific (ND4L and COX2). Several monomorphic
location-specific mitochondrial genetic variants were detected in samples from Cochamó
and Yaldad, representing standing genetic variability to optimize mitochondrial functioning
under local habitats. Overall, these mitochondrial transcriptomic differences reflect the
impact of environmental conditions on the mitochondrial genome functioning and offer
new markers to assess the effects of habitat translocations on mussel fitness, a routine
industry practice. Likewise, these mitochondrial markers should help monitor and maintain
population differences in this keystone and heavily exploited native species.

Further functional studies will be conducted to validate the association between
single nucleotide polymorphisms and the fitness traits observed or how the translocation
process associated with aquaculture activity can evolve with the loss of locally adapted
alleles. Interestingly, a recent transplant experiment reported by Jahnsen-Guzmán et al. [92]
demonstrated that M. chilensis individuals are adapted to the subtidal environment (4 m
depth), as they exhibit significantly higher fitness (growth and calcification rates) than those
transferred to the intertidal environment (1 m depth), which showed increased metabolic
stress. Herein, the mussel lives in extreme environmental variability, where their ability to
cope with perturbations, and build plasticity and adaptive responses, seems based on the
genome architecture.

4. Conclusions

This study reports the first chromosome-level genome assembly of the native blue
mussel Mytilus chilensis. This genomic resource was used to identify genome signatures
related to the phenotypic plasticity in the mussel population inhabiting contrasting ma-
rine environments. Collectively, the putative mutations associated with immune- and
metabolism-related genes suggest molecular regulatory mechanisms to reduce the number
of genes and their transcriptional activity under stress conditions. This evolutionary strat-
egy can suggest that the expression of those genes has evolved a degree of “frontloading”
that potentially pre-adapts the mussel populations to frequent heat and salinity stress,
contributing to their physiological tolerance and fitness. We believe that the generated ge-
nomic resource must be instrumental for future research on population genomics informing
management and sustainable strategies for the Chilean mussel aquaculture.
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Yaldad and Cochamo, over the past two decades.
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