The GSK3β-MAFB axis controls the pro-fibrotic gene profile of pathogenic monocyte-derived macrophages in severe COVID-19

Miriam Simón-Fuentes¹, Israel Ríos², Ittai B. Muller³, Laura Anta⁴, Cristina Herrero¹, Bárbara Alonso¹, Fátima Lasala⁶, Nuria Labiod⁶, Joanna Luczkowiak⁶, Gerrit Jansen⁵, Rafael Delgado⁶, Maria Colmenares¹, Amaya Puig-Kröger^{2*}, Miguel A. Vega^{1*}, Ángel L. Corbí^{1*}, Ángeles Domínguez-Soto^{1*}.

1 Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain. 2 Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain. 3 Department of Clinical Chemistry, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands. 4 Servicio de Cirugía Ortopédia y Traumatología, Hospital la Mancha Centro, Alcázar de San Juan. 5 Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands. 6 Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain.

ABSTRACT

MAF and MAFB are members of the "large MAF" transcription factor family that shape the transcriptome of anti-inflammatory and pro-tumoral human macrophages. We have now determined the MAF- and MAFB-dependent gene profile of M-CSF-dependent monocyte derived macrophages (M-MØ) and found that both factors exhibit overlapping transcriptional outcomes during monocyte-to-M-MØ differentiation, but differentially affect macrophage effector functions like production of monocyte-recruiting chemokines, T-cell activation and immunosuppression. Remarkably, MAFB was found to positively regulate the expression of the genesets that define the pathogenic monocyte-derived pulmonary macrophage subsets in COVID-19, as evidenced through siRNA-mediated silencing and analysis of MAFB overexpressing M-MØ from a Multicentric Carpotarsal Osteolysis (MCTO) patient. MAFB silencing downregulated the expression of genes coding for biomarkers of COVID-19 severity, and genome-wide mapping of MAFB-binding elements in M-MØ identified biomarkers of COVID-19 severity (CD163, IL10 and CCL2) as direct MAFB targets. Further, and in line with the GSK3β-dependent expression of MAFB, GSK3β inhibition in M-MØ significantly boosted the expression of genes that characterize pathogenic macrophage subsets in severe COVID-19, an effect that was primarily dependent on MAFB. Indeed, SARS-CoV-2 infection was found to significantly upregulate the expression of GSK3β- and MAFB-dependent pro-fibrotic genes in human monocyte-derived M-MØ. Globally, our results demonstrate that the GSK3β-MAFB axis controls the transcriptome of pathogenic pulmonary macrophages in COVID-19, and positively regulates the expression of biomarkers for COVID-19 severity. Thus, macrophage reprogramming through modulation of GSK3β-MAFB axis has potential therapeutic strategy for COVID-19 and inflammatory diseases.

С

RESULTS

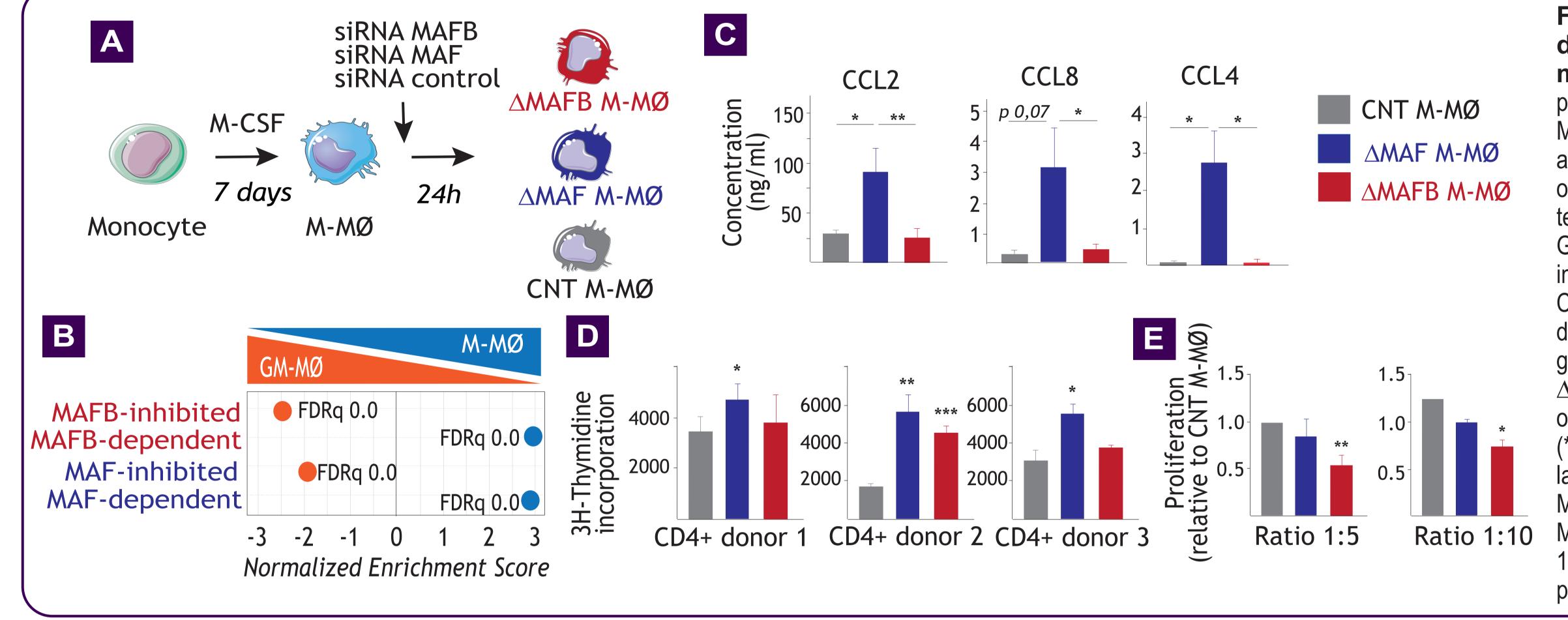
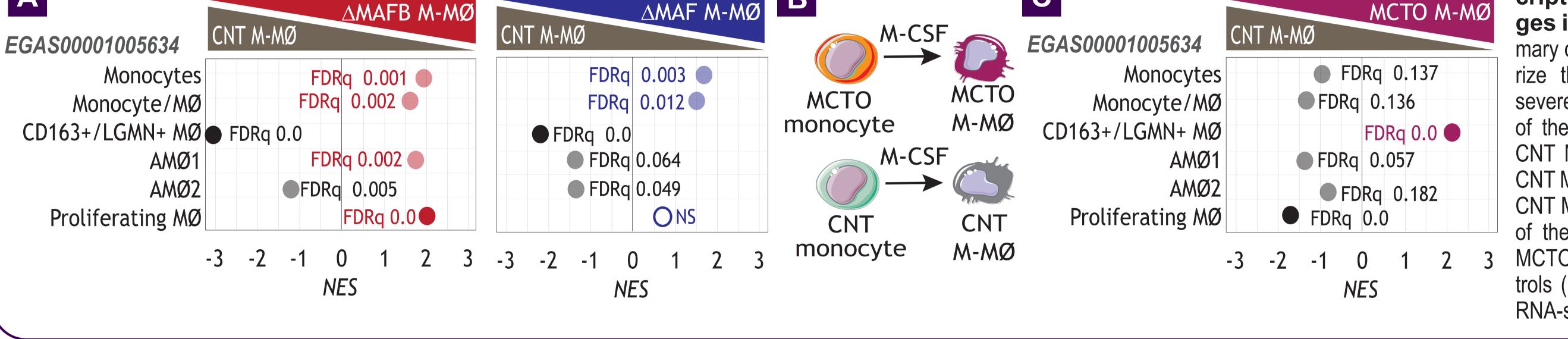



Figure 1. MAFB and MAF regulate shared and disparate genes and functions in anti-inflammatory monocyte-derived M-MØ. A. Schematic representation of the generation of Δ MAFB M-MØ, Δ MAF M-MØ and control M-MØ (CNT M-MØ) before RNA isolation and RNA sequencing (GSE155719). **B.** Summary of GSEA of the top 150 MAF/MAFB dependent or MAF/MAFB-inhibited genes on the ranked comparisons of the M-MØ and GM-MØ transcriptomes (GSE68061). C. Production of the indicated chemokines in Δ MAFB M-MØ, Δ MAF M-MØ and CNT M-MØ, as determined by ELISA. Mean ± SEM of 9 independent donors are shown (*, p<0.05; **, p<0.01). **D.** Allogeneic CD3+ T lymphocyte proliferation promoted by Δ MAFB M-MØ, Δ MAF M-MØ or CNT M-MØ. Mean ± SEM of the 4 replicates performed in each experiment are shown (*, p<0.05; **, p<0.01). **E.** Proliferation of CD3/CD28-stimulated CD4+ T lymphocytes in the presence of Δ MAFB M-MØ, Δ MAF M-MØ or CNT M-MØ, using 2 different M-MØ:T cell ratios. Mean ± SEM of 7 (ratio 1:5) or 4 (ratio 1:10) independent experiments are shown (*, p<0.05; **, p<0.01).

B

ges in severe COVID-19. A & C. Summary of GSEA of the gene sets that characterize the macrophage subsets identified in severe COVID-19 on the ranked comparison of the transcriptomes of Δ MAFB M-MØ vs. CNT M-MØ (A left panel), ΔMAF M-MØ vs. CNT M-MØ (A right panel) or MCTO M-MØ vs. CNT M-MØ (C). B. Schematic representation of the in vitro generation of M-MØ from a MCTO patient (MCTO M-MØ) or healthy controls (CNT M-MØ) before RNA isolation and RNA-sequencing (GSE155883).

Figure 2. MAFB shapes the trans-

criptome of pathogenic macropha-

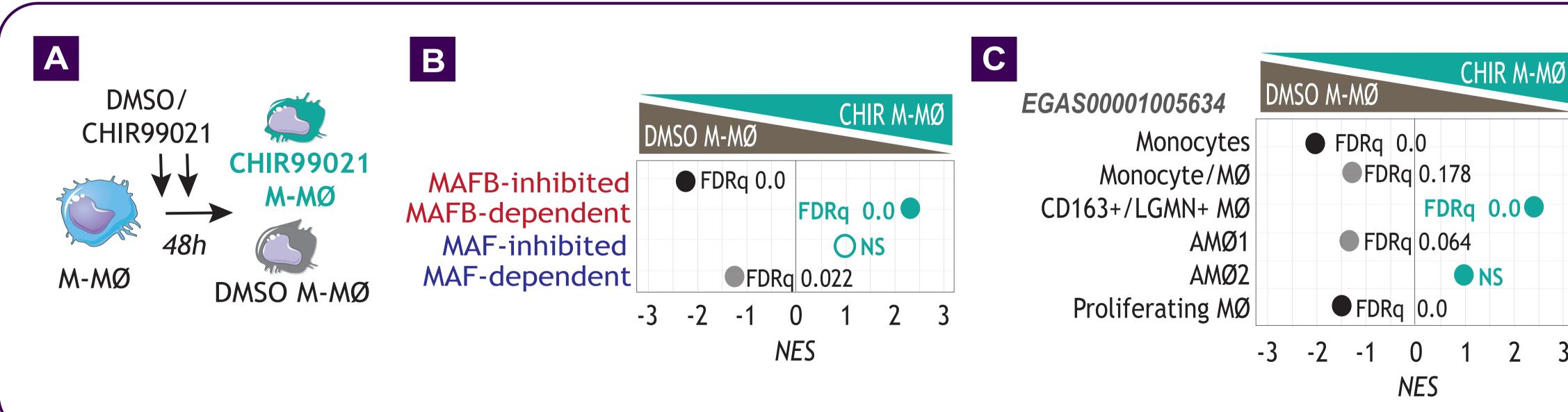
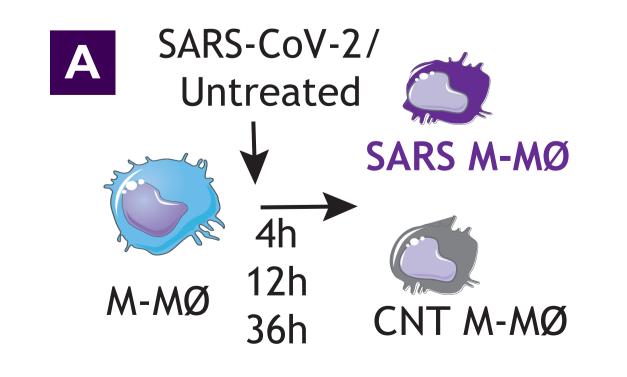
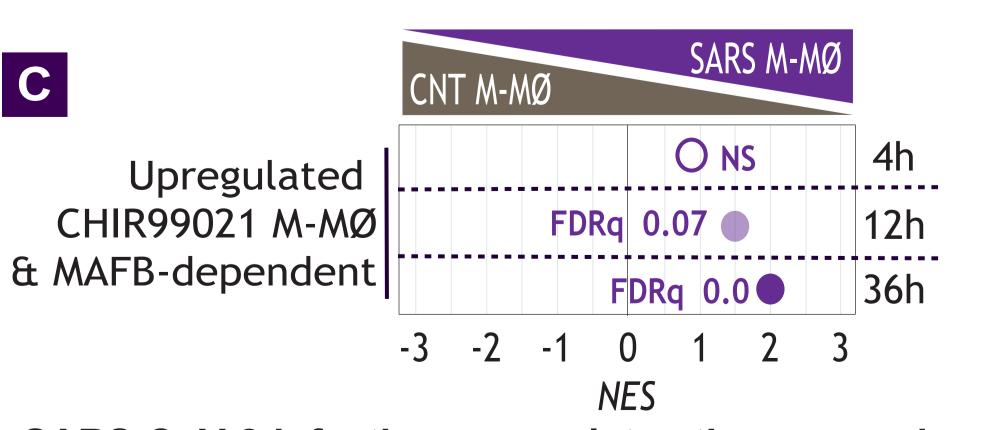




Figure 3. GSK3β inhibition prompts the acquisition of the pro-fibrotic gene profile that identifies pathogenic macrophages in severe COVID-19 primarily via MAFB. A. Schematic representation of the treatment of M-MØ with the GSK3β inhibitor CHIR99021 (CHIR99021) M-MØ) or DMSO (DMSO M-MØ) as a control before RNA isolation and RNA-sequencing (GSE185872). **B.** Summary of GSEA of MAF/MAFB-dependent gene sets and MAF/MAFB-inhibited gene sets on the ranked comparison of the CHIR99021 M-MØ and DMSO M-MØ transcriptomes. **C.** Summary of GSEA of the gene sets that characterize the macrophage subsets identified in severe COVID-19 on the ranked comparison of the transcriptomes of CHIR99021 M-MØ vs. DMSO M-MØ.

CONCLUSIONS

- MAFB IS RELEVANT IN THE ADQUISITION OF THE PRO-FIBROTIC PROFILE OF PATHOGENIC MACRO-PHAGES IN COVID-19.
- THE GSK3 β -MAFB AXIS IS A POTENTIAL THERAPEU-TIC TARGET IN SEVERE SARS-CoV-2 INFECTION.

Plan de Recuperación Transformación v Resiliencia

This research work was also funded by the European Commission – NextGenerationEU (Regulation EU 2020/2094), through Global Health Platform (PTI CSIC's Salud Global).

NextGenerationEU

B MAFB Vinculin 36h **4**h 12h

Figure 4. SARS-CoV-2 infection upregulates the expression of GSK3β- and MAFB-dependent pro-fibrotic genes in human monocyte-derived macropha**ges. A.** Schematic representation of the generation of SARS-CoV-2 infected M-MØ (SARS M-Ø) and uninfected M-MØ (CNT M-MØ) at different times before RNA isolation and RNA-sequencing (GSE207840). **B.** MAFB protein levels in M-MØ subjected to the indicated treatments, as determined by Western blot and densitometry. Vinculin protein levels were determined as protein loading control. C. Summary of GSEA of the MAFB-dependent and upregulated by GSK3^β inhibitor CHIR99021 gene set on the ranked comparison of the SARSCoV-2 infected M-MØ (SARS-M-MØ) relative to uninfected M-MØ (CNT M-MØ) transcriptomes at indicated times.