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Abstract 
It is well documented that energy balance and other remote sensing-based evapotranspiration (ET) models 25 
face greater uncertainty over water-limited tree-grass ecosystems (TGEs), representing nearly 1/6th of the 

global land surface. Their dual vegetation strata, the grass dominated understory and tree dominated 

overstory, make for distinct structural, physiological and phenological characteristics, which challenge 

models compared to more homogeneous and energy-limited ecosystems. Along with this, the contribution 

of grasses and trees to total transpiration (T), along with their different climatic drivers, is still largely 30 
unknown nor quantified in TGEs. This study proposes a thermal-based three-source energy balance (3SEB) 

model, accommodating an additional vegetation source within the well-known two-source energy balance 

(TSEB) model. The model was implemented at both tower and continental scales using eddy-covariance 

(EC) TGE sites, with variable tree canopy cover and rainfall (P) regimes, and Meteosat Second Generation 

(MSG) images. 3SEB robustly simulated latent heat (LE) and related energy fluxes in all sites (Tower: LE 35 
RMSD ~ 60 W/m2; MSG: LE RMSD ~ 90 W/m2), improving over both TSEB and a seasonally changing 

TSEB (TSEB-2S) models. In addition, 3SEB inherently partitions water fluxes between the tree, grass and 

soil sources. The modelled T correlated well with EC T estimates (r > 0.76), derived from a machine 

learning ET partitioning method. The T/ET was found positively related to both P and leaf area index, 

especially compared to the decomposed grass understory T/ET. However, tree and grasses had contrasting 40 
relations with respect to monthly P. These results demonstrate the importance in decomposing total ET into 

the different vegetation sources, as they have distinct climatic drivers, and hence, different relations to 

seasonal water availability. These promising results improved ET and energy flux estimations over complex 

TGEs, which may contribute to enhance drought monitoring and understanding, and their responses to 

climate change feedbacks.  45 
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1. Introduction 
 

Climate models project semi-arid tree-grass ecosystems (TGEs), such as savannas, to be 

disproportionately sensitive to global land and climate change (Bond et al., 2003; Sala et al., 2000). 

Along with this, long-term water, carbon and energy flux data are notably less available in arid 50 

and semi-arid ecosystems compared to humid or mesic systems (Biederman et al., 2017). Remote 

sensing (RS) and modeling alleviate the relative lack of data however, these are often poorly 

constrained and/or do not sufficiently represent their more complex heterogeneous features 

(Whitley et al., 2017). By contrast, global and regional-scale studies highlighted the dominant role 

that TGEs and other semi-arid ecosystems play on the global biogeochemical cycle, being the main 55 

contributor to the trend and inter-annual variability of global carbon and water fluxes (Ahlström 

et al., 2015; Poulter et al., 2014). These regions are largely water-limited, as opposed to the energy 

limited, and have unique seasonal and phenological characteristics that are much more coupled to 

water availability (Baldocchi and Xu, 2007; Higgins et al., 2011). As climate change scenarios 

predict increases in drought frequency and severity (Sheffield and Wood, 2008; Wang, 2005), an 60 

improved understanding of these TGEs is critical to not only better manage their limited 

hydrological resources, but also due to their important links with the global carbon cycle. 

Evapotranspiration (ET), the combination of the abiotically driven surface evaporation and 

biotic transpiration of vegetation, is an important proxy to determine drought events (e.g., 

González-Dugo et al., 2021). It is a major flux of the water cycle, often more than 90% of incoming 65 

annual precipitation (P) in semi-arid catchments (García et al., 2013), and of the surface energy 

balance (SEB) as latent heat flux (LE). Eddy-covariance (EC) flux tower networks such as 

FLUXNET (Baldocchi, 2020; Chu et al., 2017; Running et al., 1999) provide LE observations at 

numerous sites worldwide. Although the prevalent lack of energy balance closure (e.g., Stoy et al., 

2013) is generally attributed, at least partly, to an underestimation of LE (Foken et al., 2011; 70 

Leuning et al., 2012). Since EC measurements only offer information over a footprint of several 

hundred meters, RS is the most feasible source to obtain spatially distributed global and regional 

ET estimates (Glenn et al., 2007). Among them, SEB models find a good compromise between 

being physically-based, but without needing extensive data inputs nor parameters to constrain them 

(Kustas and Anderson, 2009). For this reason, regional and global ET products widely use SEB 75 

models (Allen et al., 2015; Anderson et al., 2020; Guzinski et al., 2020; Senay et al., 2013). These 

models compute ET as the residual of the energy balance, where the available energy (AE), the 

difference between net radiation (Rn) and ground heat flux (G), is partitioned between sensible 

heat (H) and LE fluxes. SEB modeling exploits the thermal infrared region (TIR; 8-14 µm) to 

retrieve the land surface temperature (LST), using it as the main boundary condition to give a 80 

proxy on root-zone soil moisture and vegetation status.  

There are several types of thermal-based SEB models (e.g., Allen et al., 2007; 

Bastiaanssen, 2000; Norman et al., 1995; Su, 2002). They largely differ in how they address the 

difference between the radiometric (LST) and aerodynamic temperature (T0). ‘Single-source’ 

models treat the surface as a single composite layer and may use an additional excess resistance 85 

term (Lhomme et al., 1997; Verhoef et al., 1997) and/or apply a local calibration procedure that is 

constrained by end-member pixels (e.g., Allen et al., 2007; Bastiaanssen, 2000). However, these 



 

 

adjustments are often highly parameterized (Boulet et al., 2015), need local calibration (Kustas et 

al. 2016) or rely on certain assumptions being met at the area of interest. A ‘dual-source’ approach 

instead decouples the surface temperature and energy exchange into vegetation and soil 90 

components, considering the directional effects of the TIR sensor observation (Anderson et al., 

1997; Boulet et al., 2015; Norman et al., 2003, 1995). This more physically based formulation 

avoids the need for large empirical adjustments, and more adequately represents sparse vegetation 

cover, common in semi-arid ecosystems. The two-source energy balance (TSEB) model (Kustas 

and Norman, 1999; Norman et al., 1995) has been robustly applied in diverse landscapes, including 95 

for water stressed conditions (e.g., Gonzalez-Dugo et al., 2009; Guzinski et al., 2020; Kustas et 

al., 2019; Li et al., 2019; Timmermans et al., 2007).  

However, ET models show limitations in more structurally complex landscapes, such as 

TGEs (e.g., Andreu et al., 2018; Burchard-Levine et al., 2020; Cleugh et al., 2007; Majozi et al., 

2017; Ramoelo et al., 2014). TGEs represent about 1/6th of the Earth’s surface (Sulla-Menashe et 100 

al., 2019) and are a prominent land cover within semi-arid regions. Their scattered (or open) tree 

overstory superimposing a continuous herbaceous understory have very different structural and 

phenological characteristics. These features, combined with the complex non-linear relationship 

between model parameters and flux output, causes for greater model uncertainty (Burchard-Levine 

et al., 2021, 2020). To improve ET simulations through a two-source perspective, Burchard-Levine 105 

et al. (2020) proposed a seasonally changing TSEB (TSEB-2S) to accommodate the contrasting 

phenology of trees and grasses. In a similar Mediterranean TGE, Andreu et al. (2018) calibrated 

the initial potential transpiration estimate in TSEB and adjusted the wind profile scheme to 

incorporate the effects of both the overstory and understory on wind turbulence. However, while 

these adjustments improved the flux estimations in TGEs, they do not directly account for the 110 

effect of the dual vegetation layer, limiting their applicability to other TGE sites. 

To overcome these limitations, this study proposes a remote sensing based three-source 

energy balance (3SEB) model, integrating the tree-grass-soil layers present in TGEs within its 

model structure. The inherent decoupling of fluxes across these layers seeks to improve the 

understanding of transpiration (T) and plant water use efficiency, along with their relation to water 115 

availability and climate change. This also provides a framework to quantify the different tree and 

grass contribution to T, with currently very little available knowledge in this respect, especially at 

the ecosystem scale. EC measurements benchmarked 3SEB at four TGE sites located in Australia, 

Spain (2) and USA. The natural gradient between sites including large variability in tree cover (19 

to 48%), climate (annual rainfall (P):  300 to 850 mm/y) and physiology (evergreen vs deciduous 120 

trees) required examining the T/ET relation with P and the leaf area index (LAI). In addition, TSEB 

(Norman et al., 1995) and TSEB-2S (Burchard-Levine et al., 2020) simulations were evaluated 

against 3SEB. Furthermore, as a proof-of-concept, 3SEB was implemented at quasi-global scale 

using data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat 

Second Generation (MSG) satellites. The model outputs were produced for TGE pixels within the 125 

MSG extent (~Africa, Europe and parts of Asia and South America) and evaluated over three EC 

sites in Spain, Senegal and South Africa.  



 

 

2. Methods 

2.1 Three-source energy balance (3SEB) model structure 

 130 

The 3SEB model structure is based on the TSEB (Norman et al., 1995) surface resistance 

and energy balance equations. 3SEB adds a vegetation layer to the TSEB model scheme to account 

for the dual vegetation layers. The original TSEB formulation presented both the ‘series’ and 

‘parallel’ formulations to describe the soil-vegetation-atmosphere interactions (Norman et al., 

1995). The ‘parallel’ approach portrays no interaction between the soil/substrate and vegetation 135 

components, with both components interacting directly with the atmosphere. By contrast, the 

‘series’ formulation assumes interaction between the two sources with both contributing to the 

temperature in the canopy air space (i.e., aerodynamic temperature) (Kustas and Norman, 1999b). 

The ‘parallel’ model should not be confused with the ‘patch’ model as described in Lhomme et al. 

(2012), where the surface is portrayed as ‘patches’ of vegetation and soil/substrate that are fully 140 

uncoupled and act independently of each other (Kustas and Norman, 1999b; Lhomme et al., 2012). 

Within the ‘parallel’ resistance framework, the vegetation source still has an influence on the wind 

speed attenuation below the canopy, and the radiation transmitting through canopy towards the 

soil surface (Kustas and Norman, 1999b). A combined ‘parallel-series’ three-source modeling 

approach is proposed here (Fig. 1). 145 

 

Figure 1. The three-source energy balance (3SEB) model scheme.  

Assuming blackbody emissivity, LST is partitioned between soil (𝑇𝑠𝑜𝑖𝑙), understory (𝑇𝑢𝑛) 

and overstory vegetation (𝑇𝑜𝑣) temperatures as follows: 

 𝐿𝑆𝑇 = [𝑓(𝜃),𝑜𝑣𝑇𝑜𝑣
4 + (1 − 𝑓(𝜃),𝑜𝑣)𝑇𝑠𝑢𝑏

4 ]
1 4⁄

 
(1.1) 



 

 

 

 𝑇𝑠𝑢𝑏 = [𝑓(𝜃),𝑢𝑛𝑇𝑢𝑛
4 + (1 − 𝑓(𝜃),𝑢𝑛)𝑇𝑠𝑜𝑖𝑙

4 ]
1 4⁄

 
(1.2) 

where 𝑇𝑠𝑢𝑏 is the understory vegetation + soil substrate (sub) temperature (K); 𝑓(𝜃),𝑐 is the fraction 150 

of vegetation (c for either understory, un, or overstory, ov) observed by the sensor and estimated 

as: 𝑓(𝜃),𝑐 = 1 − 𝑒𝑥𝑝(−𝑘𝑏𝑐𝛺𝑐𝐹𝑐), where F is the local LAI (m2/m2), 𝛺 is the clumping index (-), 

and 𝑘𝑏 is the beam extinction coefficient described in Campbell and Norman (1998). Section S2 

in supplementary material (SI) describes 𝛺 and 𝑘𝑏 estimations. Using this approach, the energy 

balance is decoupled between the three sources: 155 

 𝐿𝐸𝑜𝑣 = 𝑅𝑛𝑜𝑣 −  𝐻𝑜𝑣 (2.1) 

 𝐿𝐸𝑢𝑛 = 𝑅𝑛𝑢𝑛 − 𝐻𝑢𝑛 (2.2) 

 𝐿𝐸𝑠𝑜𝑖𝑙 = 𝑅𝑛𝑠𝑜𝑖𝑙 − 𝐻𝑠𝑜𝑖𝑙 − 𝐺 (2.3) 

where LE is latent heat flux (W m-2) and G is the soil heat flux (W m-2). Using the layer approach 

(Lhomme et al. 2012), the fluxes of each source sum up to obtain the total bulk surface flux (i.e., 

𝐹𝑙 = 𝐹𝑙𝑜𝑣 + 𝐹𝑙𝑢𝑛 + 𝐹𝑙𝑠𝑜𝑖𝑙, where 𝐹𝑙 represents the energy fluxes, either Rn, LE or H). The 

radiative transfer model (RTM) described in Chapter 15 of Campbell and Norman (1998), which 

was slightly adapted to consider multiple vegetation layers (see section S2 in SI), simulated the 160 

radiation transmission through the canopies. G is estimated through the approach of Santanello 

and Friedl (2003). To solve the system of equations, a two-step approach is applied. Firstly, the 

surface is treated as a parallel (i.e., uncoupled) tree-substrate system to obtain 𝐻𝑜𝑣 and 𝐻𝑠𝑢𝑏 using 

the heat transport equation (Eq. 3.1, 3.2): 

 
𝐻𝑜𝑣 =

𝜌𝐶𝑝(𝑇𝑜𝑣 − 𝑇𝐴)

𝑅𝐴
 

(3.1) 

 
𝐻𝑠𝑢𝑏 =

𝜌𝐶𝑝(𝑇𝑠𝑢𝑏 − 𝑇𝐴)

𝑅𝐴+𝑅𝑠𝑢𝑏
 

(3.2) 

where 𝜌𝐶𝑝 is the volumetric heat capacity of air (J m-3 K-1); 𝑅𝐴 is the aerodynamic resistance to 165 

heat transfer based on the Monin-Obukhov similarity theory (Eq. S9 in SI) and 𝑅𝑆𝑢𝑏 is the 

resistance to heat transfer in the surface boundary layer above substrate layer (s m-1) (Eq. S10 in 

SI). Subsequently, 𝐻𝑢𝑛 and 𝐻𝑠𝑜𝑖𝑙 are estimated through a series (i.e., coupled) approach (Eq. 4.1, 

4.2, 4.3). 

 
𝐻𝑢𝑛 =

𝜌𝐶𝑝(𝑇𝑢𝑛 − 𝑇𝐴𝐶)

𝑅𝑋
 

(4.1) 

 
𝐻𝑠𝑜𝑖𝑙 =

𝜌𝐶𝑝(𝑇𝑠𝑜𝑖𝑙 − 𝑇𝐴𝐶)

𝑅𝑠
 

(4.2) 

 
𝐻𝑠𝑢𝑏 = 𝐻𝑢𝑛 +  𝐻𝑠𝑜𝑖𝑙 =  

𝜌𝐶𝑝(𝑇𝐴𝐶 − 𝑇𝐴)

𝑅𝐴
  

(4.3) 



 

 

where 𝑇𝐴𝐶 is the air temperature in the canopy space (K) and is equivalent to the aerodynamic 170 

temperature; 𝑅𝑋 is the bulk canopy resistance to heat transfer (s m-1; Eq. S11) and 𝑅𝑆 is the 

resistance to heat transfer in the boundary layer above soil layer (s m-1; Eq. S10). Eq. 3.2 is inverted 

to estimate 𝑇𝑠𝑢𝑏, which serves as the boundary condition to derive 𝑇𝑢𝑛 and 𝑇𝑠𝑜𝑖𝑙 in Eq. 1.2. The 

three-source resistance scheme in Fig. 1 is based on the resistance formulation described in 

Appendix B of Norman et al. (1995). 175 

Since 𝑇𝑜𝑣, 𝑇𝑢𝑛 and 𝑇𝑠𝑜𝑖𝑙 are unknown a priori, the Priestley-Taylor (PT) formulation, as in 

Norman et al. (1995), computes a first estimate of the canopy LE and H for both overstory and 

understory using:  

 
𝐿𝐸𝑐 = 𝛼𝑃𝑇𝑓𝑔 (

∆

∆ + 𝛾
) 𝑅𝑛𝑐 

(5.1) 

 
𝐻𝑐 = 𝑅𝑛𝑐 −  𝐿𝐸𝑐 =  𝑅𝑛𝑐 [1 − 𝛼𝑃𝑇𝑓𝑔,𝑐 (

∆

∆ + 𝛾
)] 

(5.2) 

where 𝐿𝐸𝑐  is the initial canopy transpiration estimate (W m-2); 𝛼𝑃𝑇  is the PT coefficient (default is 

1.26) (-), defined in this case only for the vegetation canopy component (Agam et al., 2010; Kustas 180 

and Anderson, 2009); 𝑓𝑔,𝑐 is the green vegetation fraction and hence actively transpiring (-); ∆ is 

the slope of the saturation vapor pressure curve (kPa K-1) at air temperature (TA); and γ is the 

psychrometric constant (kPa K-1). The subscript c here refers to the understory or overstory 

vegetation component. 

The PT formulation initializes the model to solve the system of equations. However, this 185 

assumes the canopy is transpiring at a potential rate (without water stress). While the vegetation 

canopy behaves more conservatively compared to the bulk surface (Agam et al., 2010), if the plant 

is stressed, the PT equation overestimates LE at the canopy level, underestimating the canopy 

temperature. This induces an overestimation of soil and substrate temperatures and, thus, 𝐻𝑠𝑢𝑏/𝑠𝑜𝑖𝑙 

to conserve the total surface temperature (Eq. 1.1-1.2). As such, to preserve the energy balance 190 

(Eq. 2.1-2.3), this would produce a negative soil or substrate LE (i.e., condensation), which is 

considered unrealistic for daytime conditions. Therefore, an iteration procedure reduces 𝛼𝑃𝑇 to 

mimic water stress until there is conservation in the radiometric and energy balance under feasible 

bounds (i.e., non-negative daytime component LE). 3SEB implements this procedure separately 

for the overstory-substrate and the understory-soil systems, since it is expected that each vegetation 195 

layer experiences water stress differently, both in terms of magnitude and timing. As such, the 

understory-soil layer applies the PT formulation considering 𝑇𝑠𝑢𝑏 as the main boundary condition 

(Eq. 1.2 and 3.2). The overstory-substrate uses LST as the main boundary condition (Eq. 1.1 and 

3.1). Refer to the model source code for further details 

(https://github.com/VicenteBurchard/3SEB). 200 

A combination of proximal and satellite RS data forced the 3SEB model. All sites collected 

half-hourly proximal TIR measurements. This approach is more efficient than daily or bi-weekly 

satellite near-noon overpasses, since the later does not capture the entire temporal and seasonal 

dimension and requires clear-sky conditions. However, the model implementation would 

https://github.com/VicenteBurchard/3SEB


 

 

essentially be the same using spatially discrete LST imagery (see section 2.4). LAI is another 205 

important variable that dictates the radiation transmission between the various layers (Campbell 

and Norman, 1998; section S1 in SI). It also characterizes the roughness and aerodynamic 

resistance of the surface (Norman et al., 1995; section S2 in SI). In this study, Moderate Resolution 

Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellite platforms retrieved 

LAI and 𝑓𝑔, key for the initial transpiration estimate (Eq. 5.1, 5.2). Section 2.3 describes details on 210 

LST, LAI and 𝑓𝑔 retrievals. In addition, the respective sites collected meteorological data to 

characterize the turbulent and atmospheric condition (section 2.2). Other auxiliary inputs included 

the vegetation structure (height, cover and leaf width) (section 2.4) and parameters related to the 

resistance and radiation transfer sub-models (section S1 and S2 in SI).  

2.2 Study sites 215 

 

Four experimental TGE EC sites across three continents evaluated the 3SEB model: Majadas 

de Tiétar (ES-LM1) and Albuera (ES-Abr) in Spain, the Tonzi Ranch in California, USA (US-

Ton) and Dry River in Australia (AU-Dry) (Fig. 2). At all sites, P is mostly concentrated during 

specific wet seasons and suffer a sustained seasonal drought period. The wet season largely falls 220 

during autumn (~October-November) and spring (~March-April), except for AU-Dry 

(~December-February). Sites vary in P and LAI (Fig. 3), from the relatively arid ES-Abr (P ~300 

mm/year) with large seasonal range in LAI (~0.4-2 m2/m2) to the more humid AU-Dry (P ~850 

mm/year), with comparatively less range in LAI (~0.8-1.8 m2/m2). The peak biomass period occurs 

in ~April-May, but slightly earlier for AU-Dry in ~February-March (Fig. 3). The dry season occurs 225 

for all sites roughly in ~June-August, when most of the understory herbaceous species largely 

senesce. 

 

Figure 2. TGE EC locations that implemented and evaluated 3SEB at the site scale 



 

 

Distinct tree overstory and grass understory compose all TGE sites with variable vegetation 230 

composition and density. ES-LM1 is a managed agro-forested area in central Spain, known as 

dehesa (El-Madany et al., 2018), where evergreen Holm Oak (Quercus ilex. L.) represents roughly 

20% of the surface and stands at a mean height of 8.7 m (Bogdanovich et al., 2021; El-Madany et 

al., 2020). At ~200 km south, ES-Abr is a more arid dehesa also composed of Holm Oaks, but 

with slightly larger tree fractional cover (24%) and lower canopy height (6.6m) (El-Madany et al., 235 

2020). Deciduous Blue Oaks (Quercus douglasii H. & A) dominate the overstory with a larger 

48% cover at the US-Ton site, an oak savanna woodland located on the lower foothills of the Sierra 

Nevada Mountains in California, USA (Baldocchi et al., 2010). Evergreen eucalyptus species 

(Eucalyptus tetrodonta F.Muell, Eucalyptus terminalis F.Muell and Eucalyptus dichromophloia 

F.Muell) standing at 12.3 m mean height dominate in AU-Dry, with roughly 25% cover (Hutley 240 

et al., 2011; Sea et al., 2011).  

 

Figure 3. Rainfall (P), half-hourly air temperature (TA,hh), daytime mean temperature (TA,mean) and leaf area index 

(LAI) time series during the simulation period for AU-Dry, ES-Abr, ES-LM1 and US-Ton. 

All four EC sites have similar instrumentation to force and evaluate 3SEB, including three-245 

dimensional sonic anemometer (Gill LTD1, Lymington, UK), along with infrared gas analyzers 

 
1 The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. Such 

use does not constitute official endorsement or approval by the US Department of Agriculture or the Agricultural 

Research Service of any product or service to the exclusion of others that may be suitable 



 

 

(Li-Cor Inc., Lincoln, NE, USA) and four-component net radiometers (CNR4, Kipp and Zonen, 

Delft, Netherlands). Refer to the respective reference of each site for more details (Table S1). Half-

hourly meteorological and flux data were downloaded for the four-year simulation period shown 

in Fig 3 and listed in Table S1, using hydrological years (1-Oct to 30-Sept) to fully capture the 250 

main wet and growing seasons. These include incoming shortwave (SWin) and longwave (LWin) 

irradiance, outgoing longwave irradiance (LWout), TA, relative humidity (RH), and wind speed (u). 

Additionally, in-situ energy balance observations of Rn, LE, H and G benchmarked the model 

performance. Allocating residuals to the observed LE ensured the energy balance closure (i.e., 

∑[𝐿𝐸 + 𝐻] / ∑[𝑅𝑁 − 𝐺]), which ranged from 0.76 and 0.83 across sites, with the assumption that 255 

errors in LE are larger than H (e.g., Foken et al., 2011), as applied in similar studies (e.g., Burchard-

Levine et al., 2020; Guzinski et al., 2014; Kustas et al., 2012).  

In addition to these four sites, two other EC sites were also used to benchmark the 3SEB 

model when applied at the continental scale (see section 2.3.3). These were the Dhara site in 

Senegal (SN-Dhr; Tagesson et al., 2013; 2015)  and the Skukuza site in South Africa (ZA-Kru; 260 

Archibald et al., 2009; Scholes, 2013). Datasets were collected from FLUXNET2015 release 

(Pastorello et al., 2020).  

 

2.3 The 3SEB model implementation and evaluation 

  265 
2.3.1 Model set-up 

Each site implemented 3SEB at the half-hourly time step for a four-year period (Table S1). 

LST and meteorological forcing (i.e., SWin, TA, u, RH) were incorporated at this time step, while 

vegetation biophysical variables (i.e., LAI, 𝑓𝑔) were forced daily (see section S4.2 of SI).  

LST was estimated from LW radiation measurements from CNR4 (Kipp & Zonen, Delft, 270 

Netherlands) radiometers (see section S4.1 in SI). The MODIS LAI v006 (MCD15A3H) product 

provided green LAI (LAIgreen) at 500 m spatial resolution (LAIMODIS). Because the non-green or 

non-photosynthetically active vegetation (i.e. dead leaves/plants or wooded material) influence the 

aerodynamic and radiative transfer, total LAI (LAItotal) or plant area index (PAI) would be more 

appropriate but it is not available globally. The Gutman and Ignatov (1998) approach based on the 275 

normalized difference vegetation index (NDVI) estimated 𝑓𝑔. NDVI time series at the pixel 

centered over each site for the simulation period came from the MODIS daily Nadir BRDF-

adjusted Reflectance v006 (MCD43A4) product. Pacheco-Labrador et al. (2017) demonstrated the 

500×500 m pixel to adequately represent the EC flux footprint area. 3SEB must distinguish total 

LAI and 𝑓𝑔 for each vegetation layer; their decomposition into each vegetation sources and other 280 

processing details are given in section S4.2 of the SI. 

EC measurements benchmarked 3SEB flux outputs (H, LE, Rn and G) at both half-hourly 

and daily scales. Additionally, 3SEB ET partitioning (T/ET) was evaluated against the 

Transpiration Estimation Algorithm (TEA) (Nelson et al., 2018). TEA is a data-driven method, 

which uses the carbon (i.e., gross primary production, GPP) and water (i.e., ET) relations to 285 

decouple the T signal from ET. For more details on the TEA algorithm, see Nelson et al. (2020, 



 

 

2018). ES-LM1 and US-Ton also had EC tower measurements below the tree overstory to further 

evaluate the modelled flux partitioning.  

TSEB (Norman et al., 1995) and TSEB-2S (Burchard-Levine et al., 2020) simulations were 

additionally performed for comparison purpose. Since TSEB has only one vegetation source 290 

assumed in the model structure, effective input and parameter values depict the mixed surface 

(Table 2). TSEB-2S adjusts the parameterization of the vegetation source depending on the 

assumed dominant vegetation source, a grass dominated (understory-soil system) growing phase 

and a tree-dominated (overstory-soil) drought phase. For more information on TSEB-2S, refer to 

Burchard-Levine et al. (2020).  295 

Table 1 lists the structural vegetation parameters implemented in 3SEB and TSEB. TSEB-

2S applies the ‘understory’ or ‘overstory’ configuration depending on the phenological phase 

(section S5 in SI). To clarify, 𝑓𝑐 is different to 𝑓(𝜃),𝑜𝑣 and 𝑓(𝜃),𝑢𝑛 from Eq. 1.1 and 1.2. The 𝑓𝑐 

mostly characterizes the distribution and canopy clumping (Eq. S4.1), while 𝑓(𝜃),𝑜𝑣 and 𝑓(𝜃),𝑢𝑛, 

functions of LAI and sensor viewing angle, are the vegetation fraction viewed by the sensor and 300 

partitions the temperature contribution from the different sources. For example, the understory 𝑓𝑐 

(i.e., 𝑓𝑐,𝑢𝑛) is maintained constant at 1 throughout the simulation period, since the understory rather 

homogeneously covers the entire soil surface, even during the dry period (Table 1). Nevertheless, 

𝑓𝑔 quantifies the vegetation percentage that is photosynthetically active and, by contrast, varies 

seasonally (Fig. S1).  305 

 

 
Table 1. Structural parameters for the overstory (ov) and understory (un) vegetation for the different EC sites  

   
 3SEB TSEB 

  Vegetation 

Parameters 

AU-Dry ES-Abr ES-LM1 US-Ton AU-Dry ES-Abr ES-LM1 US-Ton 

 

 ov un ov un ov un ov un effective 

vegetation 

effective 

vegetation 

effective 

vegetation 

effective 

vegetation 

𝑓𝑐  Fractional cover (-) 0.25 1 0.24 1 0.2 1 0.48 1 1 1 1 1 

ℎ𝑐 Canopy height (m) 12.3 0.5 6.6 0.5 8.7 0.5 9.4 0.5 12.3* 6.6* 8.7* 9.4* 

𝑙𝑤 Effective leaf width 

(m) 

0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.05 0.05 0.05 

LAI Leaf area index 

(m2/m2) 
LAIov LAIun LAIov LAIun LAIov LAIun LAIov LAIun LAIMODIS LAIMODIS LAIMODIS LAIMODIS 

𝑓𝑔 Green fraction (-) 𝑓𝑔,𝑜𝑣 𝑓𝑔,𝑢𝑛 𝑓𝑔,𝑜𝑣 𝑓𝑔,𝑢𝑛 𝑓𝑔,𝑜𝑣 𝑓𝑔,𝑢𝑛 𝑓𝑔,𝑜𝑣 𝑓𝑔,𝑢𝑛 𝑓𝑔,𝑡𝑜𝑡𝑎𝑙 𝑓𝑔,𝑡𝑜𝑡𝑎𝑙 𝑓𝑔,𝑡𝑜𝑡𝑎𝑙 𝑓𝑔,𝑡𝑜𝑡𝑎𝑙 

        * See section S7 in SI 

2.3.2 Model performance evaluation  310 

In-situ LAI measurements evaluated the MODIS-based understory (LAIun) and overstory 

(LAIov) LAI decomposition, as required by 3SEB. These data were only available for ES-LM1 and 

US-Ton. In ES-LM1, the retrieved LAIun were benchmarked against measured understory LAI 

from 24 field campaigns between 2014-10-31 and 2018-07-16 through the FLUXPEC 

(http://www.lineas.cchs.csic.es/fluxpec/) and SynerTGE 315 

http://www.lineas.cchs.csic.es/fluxpec/project_overview


 

 

(http://www.lineas.cchs.csic.es/synertge/) projects. In this site, destructive sampling with the 

separation of green/non-green material and leaf scanning obtained in-situ LAI. The mean of ~20-

30 samples acquired during each campaign represented the ecosystem LAIun. Details on field 

protocols for ES-LM1 are available in Melendo-Vega et al. (2018) and Mendiguren et al. (2015). 

For US-Ton, in-situ LAIun was collected from the Biological, Ancillary, Disturbance, and 320 

Metadata (BADM) dataset available through AMERIFLUX. A Li-cor (LI-3100C) area meter 

(https://www.licor.com/env/products/leaf_area/LI-3100C/) from 400 cm2 sampling areas 

measured LAI (Baldocchi and Ma, 2013). In-situ LAIun measurements in US-Ton acquired on 33 

dates from 2010-02-10 to 2013-05-08 were outside the simulation period, but nonetheless served 

to benchmark the retrieved LAIun.  325 

 

The root-mean-square-deviation (RMSD), mean bias (bias), the Nash-Sutcliffe efficiency 

index (NSE) and the Pearson´s correlation coefficient (r) quantified the modeling performance. In 

addition, mean daily error plots inspected the seasonal trends of model uncertainty. The standard 

deviation (𝜎) of mean daily errors quantified the intra-annual variability, while the mean range of 330 

errors for each day of year evaluated the inter-annual variability (IAV).   

 

The estimated T/ET, including separating the understory (Tun) and overstory (Tov) 

transpiration, were related to monthly and annual P. In addition, the Wei et al. (2017) empirical 

equation (Eq. 9), which evaluated the relation between T/ET and LAI, contextualized the retrieved 335 

relationship between photosynthetic activity and T (Wang et al., 2014). 

 

 𝑇

𝐸𝑇
= 𝑎𝐿𝐴𝐼𝑏 

 

(9) 

where a and b correspond to the coefficients optimized for different land classes, which for the 

‘grasslands and shrubs’ land classification, including savannas, are 0.69 and 0.28, respectively. 

 340 

2.3.3 Continental-scale implementation of 3SEB with Meteosat Second Generation data 

In addition to site-level model runs, satellite data primarily from the Spinning Enhanced 

Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) satellites 

forced 3SEB. The MSG disk covers Africa, Europe and parts of South America and Asia (Fig. S4 

in SI). This area represents roughly 60% of worldwide TGEs (Sulla-Menashe et al., 2019). LST, 345 

vegetation indices and shortwave irradiance were acquired from the Land Surface Analysis 

Satellite Application Facilities (LSA SAF) (https://landsaf.ipma.pt/en/data/catalogue/). The 

canopy height was obtained from spaceborne LiDAR through the Global Ecosystem Dynamics 

Investigation (GEDI) L3 product (Dubayah et al., 2021). The Copernicus Global Land Operations 

(CGLOPS-1) 100m land cover and forest cover product (Tsendbazar et al., 2021) delineated TGE 350 

pixels and offered an overstory 𝑓𝑐 estimate. Global meteorological data were collected from the 

Copernicus ECMWF ERA5 reanalysis dataset (Hersbach et al., 2020) and processed similarly to 

the Sentinels for Evapotranspiration (Sen-ET, Guzinski et al., 2020) approach. Refer to section S8 

http://www.lineas.cchs.csic.es/synertge/
https://www.licor.com/env/products/leaf_area/LI-3100C/
https://landsaf.ipma.pt/en/data/catalogue/


 

 

in the SI for further details on the data sources and processing used to implement 3SEB over the 

MSG disk. 355 

Model runs were forced at the hourly time step between 9:00 and 18:00 UTC for 2012 over 

all pixels (pixel size: 0.05°) classified as TGEs within the MSG disk (see section S8.2 in SI). In-

situ data from ES-LM1, SN-Dhr and ZA-Kru benchmarked this continental approach. Other sites 

used in this study were not included in this evaluation due to being outside the MSG extent (AU-

Dry and US-Ton) or due to data unavailability during the processing period (ES-Abr).  360 

3. Results 

3.1 Vegetation biophysical inputs 

In ES-LM1, the MODIS-derived LAIun correlated well with both in-situ LAItotal (r = 0.71) 

and LAIgreen (r = 0.83) (Fig. 4). However, moderate errors were observed, notably compared 

against LAItotal (RMSD = 0.59 m2/m2). LAIun was systematically lower compared to LAItotal (bias 365 

= -0.45 m2/m2), notably during the March-May 2016 peak biomass (Fig. 4b). Nevertheless, LAIun 

was generally aligned with LAIgreen (RMSE = 0.32 m2/m2 and bias = -0.08 m2/m2). In ES-LM1, as 

field sampling protocols separated green and non-green material, the fg,un was also assessed (Fig. 

4a). The retrieved fg,un aligned reasonably well with in-situ measurements in ES-LM1, being well 

correlated (r = 0.6) and capturing the magnitudes (bias = -0.05 m2/m2). Despite this, modeled fg,un 370 

had moderate errors (RMSE = 0.22) and a quicker dry down compared to observed values, which 

sustained peak values for longer (Fig. 4a). In US-Ton, the retrieved LAIun were within similar 

magnitudes to the observed understory LAI (Fig. 4d). However, correlation was lower (r = 0.44), 

while errors similar (RMSE = 0.43 m2/m2) as found in ES-LM1. 

 375 

Figure 4. Evaluation of MODIS derived understory green fraction (fg,un , a) and leaf area index (LAIun) against in-situ 

total (LAItotal, b) and green LAI (LAIgreen, c) measurements in ES-LM1 and US-Ton (d). Red error bars represent the 

standard deviation of sample values during each field campaign. 



 

 

3.2 Tower-based flux estimations with 3SEB 

 380 

For all sites, midday half-hourly LE3SEB correlated well with observed LE (LEobs), with r 

ranging from 0.81-0.88 (Fig. S3). LE3SEB RMSD ranged between 59 and 67 W/m2. Errors and bias 

were generally larger in ES-Abr and US-Ton due to the slight underestimation of H (bias = -38 

and -36 W/m2, respectively). By contrast, H3SEB was slightly overestimated in AU-Dry (bias = 26 

W/m2). For all sites, the NSE was greater than 0.5, which indicated a satisfactory model fit 385 

compared to observed data (Moriasi et al., 2007).  

The ET3SEB RMSD ranged between 0.35 and 0.48 mm/day (Fig. 5). At the daily scale, the 

NSE was greater for all sites, ranging from 0.82 to 0.89. In AU-Dry, 3SEB tended to underestimate 

ET during the Jan-April peak biomass period. By contrast, ES-Abr, ES-LM1 and US-Ton often 

overestimated ET during the seasonal drought period. For ES-Abr and ES-LM1, this is particularly 390 

apparent during the 2016 dry period, largely due to the sustained H underestimation. It is 

noteworthy that 2016 was an extraordinarily productive year so the LAItotal, including non-green 

elements, was unusually high during the summer (Fig. 4b).  

 

Figure 5. Daily time series of ET3SEB (blue) and observed ET (black) throughout the simulation period. 395 

3.3 Comparison with TSEB and TSEB-2S 

TSEB, TSEB-2S and 3SEB model performance indicators (see Table S2) show that midday 

H3SEB RMSD decreased for all sites from 89 to 66 W/m2 compared to HTSEB. The H NSE also 

increased from 0.33 to 0.65. LE3SEB similarly improved for all model evaluation indicators.  

Along with overall decrease in bias, 3SEB had less seasonal variability in errors compared 400 

to TSEB and TSEB-2S (Fig. 6). For example, in AU-Dry, estimated H with TSEB and TSEB-2S 



 

 

deviated most from observations during the peak growing period (Feb-March), reaching H 

deviations up to ~200 W/m2. In ES-Abr, ES-LM1 and US-Ton, H errors with both two-source 

models were largest during the dry-down and seasonal drought. By contrast, the error distribution 

of 3SEB remained relatively consistent throughout the year, with 𝜎 lower compared to TSEB and 405 

TSEB-2S (Fig. 6). This was particularly evident during the seasonal dry-down period in US-Ton 

and ES-LM1, where TSEB-2S errors tended to increase largely compared to 3SEB (Fig S4). 

However, TSEB-2S performed similarly to 3SEB in ES-Abr and even had slightly less bias during 

the peak seasonal drought (~August). The IAV was lowest for 3SEB (~45 W/m2) and largest for 

TSEB-2S (~60 W/m2).  410 

 

Figure 6. Annual time series of the average daily H errors (|Hobs − Hmod|) for TSEB (green), TSEB-2S (blue), and 

3SEB (red). Shaded area corresponds to the minimum and maximum daily error of the four years assessed. The 

average H bias, annual standard deviation (𝜎) and average daily range of error (IAV) are also shown. 

3.4 Flux partitioning between ecosystem sources 415 

3.4.1 Flux partition evaluation  

The daily T3SEB correlated well with the data-driven TTEA at all sites (Fig. 7; r > 0.76). 

Using the TTEA as the benchmark, errors are also relatively low (RMSD = 0.46 to 0.91 mm/day) 

and without large systemic biases from 3SEB (bias = -0.03 to 0.6 mm/day). The largest deviations 

occurred in US-Ton, mostly due to T overestimations during low LAI periods. 420 

In addition, sub-canopy EC towers, available in ES-LM1 and US-Ton, assessed the 

modeled fluxes from the understory substrate (understory T + soil E). H, instead of LE, 

benchmarked the partitioning to limit issues related to energy balance (EB) closure and 



 

 

uncertainties with the AE below the overstory canopy. The modeled Hsub were highly correlated 

with those measured for both sites, with r of 0.84 and 0.92 (Fig. 8). However, US-Ton had 425 

important systematic biases with an RMSD and bias of 117 and 87 W/m2, respectively. By contrast, 

modeled Hsub in ES-LM1 had less errors (RMSD: 63 W/m2) and only slightly overestimated. 

 

Figure 7. Scatter plots of modelled daily transpiration (T3SEB) versus the TEA estimates (TTEA). Colors visualize the 

daily ecosystem LAI (LAIMODIS). 430 

 

Figure 8. Scatter plots of modelled midday (between 11 and 13 UTC) substrate (understory + soil) H (Hsub, mod) versus 

those observed (Hsub, obs) from the sub-canopy towers in ES-LM1 (left) and US-Ton (right). Colors visualize the daily 

ecosystem LAI (LAIMODIS).  

3.4.2 Seasonal flux partition  435 

The overall mean annual T/ET for all sites was between 46-66%. However, these TGEs 

are highly seasonal with the phenology of dual vegetation layers inducing large variability to the 

different contributions to ET (Fig. 9). Tov/ET was largest in AU-Dry (i.e., 45±11 %) and lowest in 



 

 

ES-Abr and ES-LM1 with mean annual contributions of 31±9 and 34±11 %, respectively. In US-

Ton, the mean Tov/ET was much more variable (40±29 %) due to the deciduous nature of the tree 440 

species. In ES-Abr and ES-LM1, Esoil/ET was generally higher with mean annual contribution of 

54±9 and 53±12 %, respectively. The Tun/ET in US-Ton had the largest variability (22±20 %), 

with contribution ranging from nearly 60% during the peak biomass period to ~0% during the 

seasonal drought. 

 445 

Figure 9. Average daily seasonal ET partitioning into overstory (green), understory (blue) and soil (black) sources as 

a percentage of total surface ET. Shaded area represents the IAV (i.e., range for that day of year) of the four simulated 

years. 

 

3.4.3 ET partitioning relation with P and LAI 450 

The results show that Tov/ET and Tun/ET have contrasting relations with monthly P (Fig. 

10), with the former negatively correlated (r = -0.32, p < 0.01), while latter being positively related 

(r = 0.34, p < 0.01). However, at the annual scale, both Tov/ET and Tun/ET are positively correlated 

with P, but the relation with Tov/ET is not as significant (i.e., p = 0.1). T/ET showed no trend with 

monthly P (r = 0.05, p = 0.51), but had a significant positive relation with annual P (r = 0.58, p = 455 

0.02).  



 

 

 

Figure 10. Scatter plots of P versus Tov/ET (upper rows), Tun/ ET (center rows) and T/ET (lower rows) at both monthly 

(left column) and annual (right column) scales. 

The empirical Wei et al. (2017) T/ET and LAI regression (Wei2017) was developed using 460 

mean site level LAI and T/ET measurements from numerous sites, aggregating over large temporal 

periods, and not at the monthly time step such as presented here with the 3SEB partitioning (Fig. 

11). At the ecosystem level, T/ET is less correlated with LAI (r ~ 0.4). Nevertheless, the relation 

becomes much stronger and linear when only the ratio transpired from the understory (i.e., Tun/ET) 

is assessed (r = 0.75). Although the fitted regression was linear, the power function of Wei2017 465 

still explained a large portion of the variance (r = 0.71), even though notable biases were observed 

(RMSD: 0.54). Interestingly, by examining only the substrate system, the ET partitioning 



 

 

(Tun/[Tun+Esoil]) was very much linked to LAIun (r = 0.86). Additionally, the fitted power trend is 

more notable and like Wei2017, although T/ET increases more slowly as LAI increases.  

 470 

Figure 11. Relationship between monthly LAI and T/ET (a) and Tun/ET (b); and LAIun and Tun/Tun+Esoil (c). Black 

lines are the fitted regression optimizing a and b coefficients of Eq. 9 and purple lines are the associated relation 

derived from Wei et al. (2017) with the mean site level averages (yellow).  

 

3.4 Continental 3SEB flux estimations 475 

Fig. 12 shows the estimated 2012 mean annual LE, including the different component 

partitioning ratios, when 3SEB was forced with at the continental scale using SEVIRI/MSG data. 

The mean annual T/ET ratio was 50.5% over the entire MSG extent.  

Three EC sites (shown in Fig. 12) evaluated the flux outputs from this satellite 

implementation of 3SEB (Fig. 13). The SEVIRI/MSG 3SEB implementation observed higher 480 

errors compared to site-scaled simulations (section 3.2). However, H retrievals, especially for ES-

LM1 and SN-Dhr, maintained within similar error magnitudes. Midday hourly H RMSD ranged 

from 64 to 97 W/m2 over the three sites, with both ES-LM1 and SN-Dhr observing high correlation 

with measured fluxes (r > 0.75). ZA-Kru observed higher H errors (RMSD = 97 W/m2 and r = 

0.36). The increases in error were more pronounced for LE, with RMSD and r ranging from 83 to 485 

104 W/m2 and 0.4 to 0.87, respectively.  



 

 

 

Figure 12. Map of SEVIRI/MSG forced 3SEB estimations of 2012 mean annual LE (a), Tov/ET (b), Tun/ET (c) and T/LE (d). Dark 

grey areas correspond to TGE pixels not processed due to cloud or other processing issues. In-situ EC sites are located by red 

points. 490 

 

Figure 13. Evaluation of SEVIRI/MSG 3SEB daytime fluxes against tower measurements in 2012 from ES-LM1, SN-Dhr and 

ZA-Kru 



 

 

4. Discussion 
 495 

The proposed 3SEB model improved the depiction and simulation of water and energy 

fluxes for heterogeneous semi-arid TGE landscapes, typically poorly represented by state-of-the-

art models (Majozi et al. 2017; Ramoelo et al. 2014; Whitley et al. 2017). In the four sites, 3SEB 

accurately simulated ET (RMSD < 0.5 mm/day) and related energy fluxes (midday H RMSD ~60 

W/m2). The model structure also demonstrated robustness when applied at the continental scale 500 

(LE RMSD ~90 W/m2), along with reproducing flux dynamics for sites with spatial and temporal 

variability in canopy cover, P and LAI. Furthermore, it consistently improved over TSEB and 

TSEB-2S with fewer overall errors (Table S2), along with less intra- and IAV of errors (Fig. 6). 

These semi-arid ecosystems often switch from being carbon sinks and sources. Therefore, better 

capturing the IAV is particularly relevant (Biederman et al., 2017; El-Madany et al., 2020).  505 

 

As shown in Burchard-Levine et al. (2021), the combination of tree and grass features in 

TGEs caused large uncertainties when using effective input/parameter values at coarser spatial 

scales (pixel size > 10 m). Along with spatial complexities, the 3SEB model incorporated the 

distinct overstory and understory phenological dynamics of the TGEs semi-arid vegetation. 510 

Whitley et al. (2017) highlighted these considerations as important characteristics generally not 

accounted for within land surface models, misrepresenting and generating uncertainty over TGEs. 

In particular, the seasonal dry-down induces an even greater landscape heterogeneity with 

important mixing of senesced and active understory vegetation along with the overstory. As shown 

in Fig. 6 and Fig. S4, 3SEB better captured these transitional periods, as the LAI is decoupled and 515 

the phenology of each vegetation source can change independently. It is more challenging to 

represent the heterogeneity present through effective values (e.g., TSEB) for a landscape with dual 

vegetation layers (Burchard-Levine et al. 2020, 2021). To account for this, TSEB-2S alters the 

model parameterization assuming either the understory or overstory vegetation as dominant. 

However, the sharp change in the parameterization caused uncertainty during the seasonal 520 

transition periods, when both vegetation sources co-dominate (Fig. 6; S4). This was particularly 

evident in US-Ton, where TSEB-2S had large errors at the beginning of the summer season (~June, 

Fig. 6), subsequently decreasing during the peak seasonal drought periods (~July-August), when 

the understory had largely senesced. 

 525 

As a proof of concept, 3SEB was applied at the continental scale over Africa, Europe and 

neighboring regions from other continents. Quasi-global datasets available from LSA-SAF and 

ancillary data sources parameterized the model. The promising evaluation over three sites rendered 

errors only slightly greater than the site-level simulations (Fig. 13). LE errors increased more 

significantly than H due to more uncertainty in the AE estimation (i.e. Rn – G, see Fig. S9). This 530 

was expected due to numerous reasons. First off, the ERA-5 reanalysis meteorological and LSA-

SAF shortwave irradiance data inputs are likely to add more uncertainty, compared to locally 

measured meteorological and irradiance data. Crucially, shortwave irradiance directly affects Rn 

estimations and, thus, LE as it estimated as the residual of the EB. Fig. S9 shows that LSA-SAF 

irradiance inputs are highly correlated to tower measurements in all sites. Nevertheless, important 535 

errors are present (RSMD >100W/m2), translating to nosier modeled outputs. Secondly, there is a 



 

 

large spatial scale mismatch between the pixel size (~5km) and the EC tower footprint (~hundreds 

of meters). This substantially increases pixel heterogeneity, which may induce greater uncertainty 

to the primary (i.e. LST, LAI) and ancillary (i.e., fg, fc, hc,) inputs (Chu et al., 2021). Despite these 

greater sources of errors from model inputs, 3SEB performed relatively well at the MSG pixel 540 

level, obtaining similar errors statistics as the 20m Sen-ET retrievals (LE RMSD ~80-100 W/m2; 

Guzinski et al. 2020), and performed better than the LSA-SAF ET product (see Fig. S8). These 

promising results demonstrate 3SEB’s potential application on the operational level or 

incorporated within global Earth System Models.  

 545 

In addition to improving flux estimates in these complex landscapes, 3SEB explicitly 

decomposes ET into the different vegetation and land surface components. Research on ET 

partitioning from biotic and abiotic sources (i.e., T/ET) has gained traction because of its key links 

to plant water use and limitations in the context of climate and agronomic sciences (Anderson et 

al., 2017; Fisher et al., 2017). Despite current efforts (Ma et al., 2020; Nelson et al., 2020; Stoy et 550 

al., 2019), determining T remains a challenge due to its complex relations with soil moisture, 

climatology, vegetation cover and phenological cues (Perez-Priego et al., 2018; Scott and 

Biederman, 2017; Wei et al., 2017). Numerous studies indicate that global mean T/ET is roughly 

60% (Fatichi and Pappas, 2017; Li et al., 2019; Schlesinger and Jasechko, 2014; Stoy et al., 2019; 

Wei et al., 2017; Good et al., 2015; Lian et al., 2018; Sun et al., 2019). However, these reported 555 

global T/ET values carry large uncertainty, ranging between ~30-90% (Stoy et al., 2019). 3SEB 

reported here a T/ET between 44-66% at site scale, which aligned well with the TEA algorithm 

(RMSD: ~ 0.6 mm/day), and 50.5% for the continental-scale (~Africa and Europe) 3SEB 

simulations (Fig.12d). A meta-analysis of T/ET estimates over 38 semi-arid sites (Sun et al., 2019) 

reported the T/ET was roughly 50%, as similarly reported in this study.  560 

 

Soil evaporation (Esoil/ET) was largest in ES-Abr and ES-LM1 representing around ~55% 

of ET. This is in line with Perez-Priego et al. (2017, 2018) who show that the understory ET 

dominated in ES-LM1. In fact, Esoil/ET in Perez-Priego et al. (2018) reached up to ~70% during 

the growing period through lysimeter measurements and a novel ET partitioning method, similar 565 

to that achieved with 3SEB (Fig. 9). The summer drought maintained relatively large Esoil/ET. 

Perez-Priego et al. (2018) observed considerable soil evaporation rates even when the shallow (i.e., 

sandy) soil was dry, indicating the evaporation rates may be upheld from moisture of the deeper 

soil (e.g., clay) layer.  

 570 

While past studies suggested T/ET to be independent from P (e.g., Fatichi and Pappas, 

2017; Schlesinger and Jasechko, 2014, Sun et al. 2019), mean annual T/ET correlated positively 

here with annual P (r = 0.58, p = 0.02; Fig. 10). In water-limited ecosystems, ET partitioning might 

be more strongly linked to P and water availability (e.g., Perez-Priego et al., 2018). El-Madany et 

al. (2020) reported very strong linear correlations between annual P and GPP for ES-Abr and ES-575 

LM1, which has mechanistic links to T. At the monthly scale, Tun/ET and Tov/ET had opposing 

relations with seasonal P. This further demonstrated the contrasting survival strategies of both 

vegetation functional types. The tree overstory has large root systems to access deeper soil 

moisture sources and remain physiologically active during the dry season (Archibald and Scholes, 



 

 

2007; Higgins et al., 2011; Luo et al., 2018). Their growth is less dependent on rainfall events or 580 

other meteorological cues (Archibald and Scholes, 2007; Higgins et al., 2011). By contrast, 

herbaceous understory species respond quickly to water availability, opting for an annual 

phenology to avoid the drought season (Bond, 2008; Moore et al., 2016). Therefore, Tov/ET is 

usually greater during the dry months with the inactivity of understory species, and hence the 

negative correlation. Interestingly, Tov/ET was positively related to P at the annual scale (r = 0.43, 585 

p = 0.1). This fact suggests that, while seasonal water availability is not important for tree species, 

the long-term P is. However, this non-significant relationship (p > 0.05) needs more observations 

to confirm this trend. At the ecosystem level, there was no significant correlation between monthly 

T/ET and P (r = 0.05, p = 0.5), due to the contrasting relation each of the vegetation layers had 

with seasonal P.  590 

 

Other studies reported stronger links between T/ET and LAI compared to P (e.g., Sun et 

al. 2019; Wang et al., 2014; Wei et al., 2017). Wei et al. (2017) developed empirical models for 

different land cover types to obtain T/ET estimates from LAI. Nevertheless, they stated that 

savanna ecosystems presented large uncertainties due to the overstory and understory differences 595 

in water uptake processes. Indeed, LAI did not explain a large portion of the T/ET variance (r = 

0.4). However, the relationship was much stronger with LAI (r = 0.77), after separating the fluxes 

to consider only Tun/ET. Furthermore, Tun/[Tun+Esoil] was highly correlated with the understory 

LAIun (r = 0.83), with a similar fitted power function to Wei et al. (2017). This result is somewhat 

expected since LAIun is an input to 3SEB. Nonetheless, it illustrates the advantage of decomposing 600 

the flux and vegetation components in TGEs. Indeed, this has important implications for land 

surface models, which often rely heavily on LAI through a ‘big leaf’ approach (e.g., Lian et al, 

2018). While certain models consider horizontal heterogeneity within modeling grids, the 

integration of different vertical layers (e.g. overstory and understory) are rarely considered in Earth 

system models. As shown in Bonan et al. (2021), ‘big leaf’ canopies may oversimplify complex 605 

vertical vegetation structures and processes, resulting in poorer model robustness compared to 

multi-layered models. This canopy misrepresentation is particularly relevant in TGEs, having two 

vegetation layers with highly different survival strategies and characteristics, making it inadequate 

to relate singular bulk biophysical variables to represent vegetation functioning at the ecosystem 

scale (as supported by Fig. 11). The simple, yet effective, dual vegetation layer representation in 610 

3SEB is a way forward for future model development, particular for landscapes with important 

differences in the overstory and understory canopies.  

 

The 3SEB processed-based T/ET partitioning compared well with the data-driven TEA, 

even though they have very different and independent approaches. While TTEA is not a measured 615 

dataset, its highly data-driven approach allows for an appropriate benchmark, especially 

considering the limitations (an unavailability) of T/ET measurements, such as sap flux or isotopic 

methods (Anderson et al., 2017; Kool et al., 2014). TEA exploits ET’s link with GPP and does not 

incorporate inputs related to vegetation structure (e.g., ℎ𝑐, LAI). Despite this, the sites assessed 

rendered high T correlations from both methods (r > 0.75) and obtained similar magnitudes. The 620 

largest discrepancies occurred in US-Ton during the summer drought, with large T3SEB 

overestimations compared to TTEA. The understory EC tower in US-Ton corroborated this pattern, 



 

 

as the model systematically overestimated Hsub (Hun + Hsoil) (Fig. 8). Total ecosystem H was well 

modeled and even slightly underestimated (see Fig.S3), indicating that Hov was substantially 

underestimated. Since the residual of the energy balance determined LE, the underestimated Hov 625 

suggests LEov was overestimated, as supported through the TTEA comparison. 

  

The apparent LEov overestimation in US-Ton may be linked to the constant LAIov forced 

into 3SEB, including uncertainty in capturing US-Ton’s more dynamic deciduous overstory 

phenology. This would primarily affect the amount of radiation intercepted (and available) by 630 

overstory (i.e. Rnov) as LAI is the main input of the RTM within 3SEB (section S1 in SI). However, 

the estimated leaf-on LAIov in US-Ton (and other sites) was well captured compared to previous 

measurements found in the literature (see S4.2 in SI). In fact, a local sensitivity analysis of LAIov 

showed very little effect of this input on T/ET estimates (Fig. S5). As shown in Ryu et al. (2012) 

with upward-point cameras in US-Ton, LAIov peaks during the initial leaf-on period at around 635 

~0.85 m2/m2, but gradually declines to ~0.7 m2/m2, before the rapid decrease in LAI during the 

leaf-off. Additionally, during the same seasonal period, Xu and Baldocchi (2003) showed gradual 

decreases in carbon assimilation and stomatal conductance from the tree overstory. These results 

demonstrate their conservative water saving strategies during dry conditions. Similar observations 

were reported for trees in both Spanish and Australian sites (Luo et al., 2018; Moore et al., 2016) 640 

These findings suggest that trees in semi-arid climates hold a strong physiological control 

on ET, regulating their stomata during periods of sustained increases in atmospheric vapour 

pressure deficit (VPD) (Niinemets, 2015; Pérez-Priego et al., 2010; Villalobos et al., 2012, 2000). 

3SEB may not adequately depict this stomatal control, especially in relation to VPD, resulting in 

the LEov overestimation apparent in US-Ton. This effect is likely more pronounced in US-Ton, 645 

due to the larger tree overstory canopy cover (48%) compared to other sites (~20%). Certain 

studies suggested that the potential PT coefficient (i.e., 𝛼𝑃𝑇 in Eq. 5.1) is closer to ~1 in trees, even 

with ample water availability, instead of the widely used 1.26 (Andreu et al., 2018; Baldocchi and 

Xu, 2007; Black, 1979; Shuttleworth and Calder, 1979). To test this, 3SEB was also forced with 

𝛼𝑃𝑇 = 1 for the overstory ET initialization, which slightly improved T/ET estimates in US-Ton 650 

(Fig. S6) but further underestimated ET in AU-Dry (data not shown). This suggests that 3SEB 

should directly incorporate the physiological control of stomatal resistance, instead of calibrating 

the 𝛼𝑃𝑇 parameter. Colaizzi et al. (2014) applied the Penman-Monteith (PM) formulation within 

TSEB to derive the initial canopy T, which resulted in better T/ET agreement over a semi-arid 

cultivated site compared to the PT approach. However, they applied it with a constant maximum 655 

stomatal conductance. Therefore, the use of a tree stomatal closure constraint with increasing VPD 

(e.g., Damour et al., 2010; Miner et al., 2017), coupled with the PM initialization, may be a way 

forward to improve 3SEB’s Tov/ET estimates.  

 

The proposed MODIS-based LAI partitioning method seemingly captured the understory 660 

LAI dynamics in both magnitude and timing for TGEs (Section S4.2 in SI). The retrieved LAIun 

had low errors compared to in-situ destructive measurements in ES-LM1 and US-Ton (Fig. 4). 

However, ES-LM1 observed important LAIun underestimations against LAItotal, especially during 

the dry periods of highly productive years. Very low LAIun values (i.e., < 0.5 m2/m2) during the 



 

 

seasonal drought caused non-linear increases to the bulk vegetation resistance Rx (data not shown), 665 

which is negatively related to LAI (Eq. S11). These highly productive years led to increased 

amounts of remaining dry vegetation biomass during the seasonal drought period. The dead 

vegetation, while not active, increased the roughness of the landscape. This issue induced more 

aerodynamic conductivity and H. This situation was most evident during ‘wet’ years with large 

vegetation productivity, most visible in 2016 for ES-Abr and ES-LM1, which suffered important 670 

LE biases during the seasonal drought (Fig. 5). The in-situ data in ES-LM1 revealed that LAItotal 

remained between 0.5-1 m2/m2 during the peak drought period. By contrast, the MODIS estimated 

LAIun was < 0.4 m2/m2. MODIS LAI product refers to LAIgreen (Fensholt et al., 2004), whereas 

LAItotal affects the resistance and radiation partition of the landscape. This demonstrated the Rx 

sensitivity to the LAI uncertainty at very low magnitudes, which should include non-green 675 

elements (i.e., LAItotal or PAI). During the growing season, high LAI values are largely composed 

of green material, making LAIgreen a good estimate of LAItotal. However, LAItotal deviated from 

LAIgreen during the seasonal drought due to the large presence of senescent vegetation. 

 

The effect of senescent vegetation on biophysical variables remains challenging to quantify 680 

(Martín et al. 2020; Melendo-Vega et al., 2018; Pacheco-Labrador et al., 2020). More specific 

retrieval methods, such as applying RTMs incorporating senescent vegetation may improve LAI 

estimations (e.g., SenSCOPE; Pacheco-Labrador et al., 2020; Proctor et al., 2017). The need for a 

complete annual time series, with both rainy and dry seasons, was another drawback of the LAI 

partitioning method presented here. This makes the current model set-up applicable for only non-685 

time-critical diagnosis or hindcast purposes as it cannot dynamically separate LAI as it is 

prescribed. Spectral unmixing techniques (e.g., Meyer and Okin, 2015) may be a way forward to 

improve the LAI retrievals and partitioning in these dual-vegetated landscapes. Other data streams 

like spaceborne LiDAR data from NASA’s GEDI mission also open new opportunities to retrieve 

more accurate plant structural (e.g., hc, fc) and biophysical (e.g., PAI) variables in complex 690 

ecosystems (Dubayah et al. 2020). Other remaining challenges include adequately quantifying the 

Rn in these heterogenous landscapes, particularly with the use of global shortwave irradiance 

inputs. The 3SEB estimated Rn remains slightly underestimated (see Table S2 in SI) with scarce 

measured data available to validate its decomposition across canopy sources. Three-dimensional 

RTMs, such as the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry 695 

et al., 2015) or as described by Kobayashi et al. (2012) may serve as a framework to better 

characterize Rn in these complex ecosystems.   

 

5. Conclusions 
 700 

The novel, yet structurally simple, 3SEB model offers new avenues to improve drought 

monitoring and investigate the different plant water uses in semi-arid TGEs. ET and energy flux 

retrievals over these complex, multi-layered ecosystems is a challenging and well-documented 

issue (Andreu et al. 2018; Burchard-Levine et al. 2020, Majozi et al. 2017; Ramoelo et al. 2014; 

Whitley et al. 2017), despite being critical for the global carbon and water cycle (Ahlström et al., 705 

2015; Jung et al., 2011; Poulter et al., 2014).The dual vegetation strata, the grass dominated 

understory and tree dominated overstory, have distinct structural, physiological and phenological 



 

 

characteristics that should be considered within modeling schemes (Whitley et al. 2017). 3SEB 

accommodated an additional vegetation source to the well-known TSEB to accomplish this, 

improving their depiction and effect on energy fluxes.  710 

 

The 3SEB model achieved accurate ET estimations during four-year periods over sites in 

Australia, Spain (2) and USA (ET RMSD: ~0.4 mm/day and NSE > 0.8). The model performed 

well despite the highly variable climatic and vegetation conditions. 3SEB largely improved the 

energy flux modeling compared to TSEB and TSEB-2S. It slightly underestimated ET for AU-Dry 715 

due to H overestimation during the peak biomass. By contrast, ES-LM1 and US-Ton slightly 

overestimated LE during the seasonal drought, particularly for highly productive (i.e., ‘wet’) years. 

This issue was linked to the Rx overestimation at very low LAI values (< 0.5 m2/m2). The LAIun 

input was slightly underestimated compared to field measurements in ES-LM1 and US-Ton, and 

particularly lower compared to LAItotal measurements in ES-LM1. This highlights the importance 720 

of accounting for the large effect of senescent vegetation on remote sensing derived LAI products, 

notably in semi-arid ecosystems, which play an important role in the transfer of radiation and 

turbulence. Continental-scale 3SEB results forced with SEVIRI/MSG data also showed promising 

results. However, the larger uncertainty from model inputs, particularly shortwave irradiance, and 

spatial mismatch between pixel and tower scales caused larger modeling errors. 725 

 

3SEB additionally separated ET into the different tree-grass-soil components of the 

landscapes, not previously possible with available data-driven methods. The 3SEB T/ET 

partitioning compared well to the data-driven TEA algorithm (r > 0.76) and demonstrated the 

contrasting relations of the two vegetation layers in TGEs with seasonal P. This fact confirmed 730 

their different survival strategies. T/ET was not very correlated with LAIMODIS at the ecosystem 

level. However, the relation was much stronger when decomposing T/ET and LAI into the 

different vegetation layers. These findings should alleviate the disproportionally large uncertainty 

of global remote sensing-based ET products in these important and extensive ecosystems, along 

with offering a simple multi-layer approach of potential use to Earth system models. 3SEB presents 735 

a new framework to understand the role of complex and distinct vegetation dynamics, at both 

temporal and spatial scales, in modulating ecosystem level fluxes and water scarcity.  
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