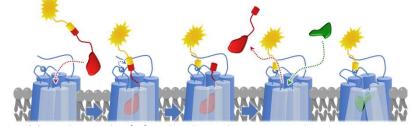


A modular ligand-directed approach to label endogenous aminergic GPCRs in live cells


<u>Xavier Gómez-Santacana^{a,b}</u>, Marin Boutonnet^a, Carles Martínez-Juvés^b, Enora Moutin^a, Juanlo Catena^b, Thomas Roux^c, Eric Trinquet^c, Laurent Lamarque^c, Julie Perroy^a, Laurent Prézeau^a, Jurriaan Zwier^c, Jean-Philippe Pin^a, Amadeu Llebaria^b.

(a) Institut de Génomique Fonctionnelle, Université de Montpellier, UMR 5203 CNRS and U 1191 INSERM, France. (b) MCS, Institute for Advanced Chemistry of Catalonia – CSIC, Barcelona, Spain. (c) Cisbio Bioassays, Perkin Elmer, Codelet France.

1. GPCR labelling approaches

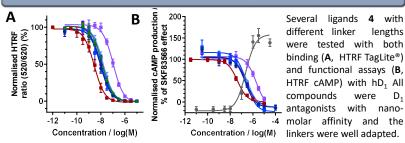
GPCR labelling through bioortogonal reactions with unnatural amino acids (A) or fused to protein domains (B, SNAP, CLIP, HALO...) is based on proteins genetically modified. Thus, a dye is linked to a reactive group that induce the conjugation to the modified part of the GPCR.

Ligand-directed approaches (LD) are based on probes containing a ligand, a reactive moiety and a dye, which bind to the native GPCR. Typically, a natural nucleophilic residue (e.g. lysine) in the vicinity of the linker group reacts with the reactive moiety to form a covalent link with the dye and the resulting ligand can be released and washed-out, leaving a native GPCR labeled and fully functional. This receptor is able to get activated by agonists or antagonists.

2. LD with nucleophilic ligands? Aminergic GPCRs

LD labelling requires the use of non-nucleophilic ligand moieties. Amines or other nucleophilic functional groups can interact with the probe reactive moiety, inducing the hydrolysis or probe degradation.

A large number of GPCR ligands contain nucleophilic ligands, such as aminergic, peptidergic or many other GPCRs. We used dopamine D1, as an archetypical aminergic class A GPCR coupled to Gs, which is mainly expressed in central nervous system (CNS), specially in the dorsal and ventral striatum.


Native hD_1 receptor contain to Lys residues K165 and K167 in the extracellular loop 2, that can be used for LD labelling.

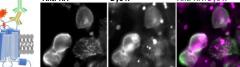
3. Lanthslider labelling approach

Our molecular probes are based in a modular approach. A linker (1) is activated by a red dye Dy647 (2) to form the reactive moiety (RM). The final probe 5 can be readily prepared before the labelling reaction from 3 and a long ligand (4). Thanks to a fast and specific chemical reaction, the nucleophilic ligand can barely react with the activated linker before it is bound to the native target GPCR and the labelling reaction occurs.

4. Pharmacological evaluation of ligands

5. D₁ labelling and determination of the site of labelling

Several ligand-directed probes **5** recently prepared were tested to label HA-D1 transiently expressed in HEK293 cells. The best candidate efficiently labelled HA-D₁ with 3 hours of incubation (**A**). The mutant K167R was fully functional (not shown) and did show labelling by the labelling probes 5 (**B**). F-ST-D₁ was doubly labelled with probe **5** (red dye, Dy647) and with SNAP-Lumi4Tb[®]. It showed continuous TR-FRET between the two dyes. Upon application of a fluorescent green D1 antagonist, we observed a decrease of the red fluorescence due to the formation of new TR-FRET with the green dye (**C**). This decrease of fluorescence indicated the availability of the binding site and was compatible with the affinity of the green D₁ antagonist.


Anti-HA Dy647 Anti-HA+Dy647

Dv647

6. Imaging labelled D₁ in cells

PerkinElmer

cisbio

 D_1 labelling was observed after applying ligand-directed probes **5** in transfected HEK293 cells with Myc-D_1-Venus, which is fluorescent (**A**). Co-localisation was observed, indicating D_1 receptor labelling. HA-D_1 was also labelled with **5** and D_1 was additionally detected by anti-HA immunofluorescence (**B**). Co-localization of both dyes was also observed, indicating D_1 receptor labelling.

7. Conclusions

В

The Lanthslider ligand-directed labelling approach is a successful modular approach based in the preparation of the probes **5** just before the labelling protein labelling. Several D_1 antagonists with different linkers were tested and they show antagonism for D1 in the nanomolar range. The probes **5** were tested and we obtained labelling with 3 hours of incubation. Myc-D₁-Venus and HA-D₁ labelling was observed by microscopy. We determined that the site of labelling is Lys167 by mutagenesis and we proved that the binding site was available after D₁ labelling.

The project leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No.801342 (Tecniospring INDUSTRY) and the Government of Catalonia's Agency for Business Competitiveness (ACCIO).

MCS, Medicinal Chemistry & Syntesis, IQAC-CSIC, Jordi Girona 20, 08034 Barcelona, Spain. Contact details: Phone: (+34) 934 006 100 ext. 1264, Email: xavier.gomez@iqac.csic.es