

Calhoun: The NPS Institutional Archive DSpace Repository

Derived Preconditions and Their Use in Program Synthesis

Smith, Douglas R.
Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/71743

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for

MAVAL POSTGRAOUATE SCHOOL MONTEREY CA F/6 12/1 DERIVED PRECONDITIONS ANO THEIR USE IN PROGRAM SYNTHESIS. (U) MAR 62 D R SMITH
UnClaSSIFIED NPS-52-82-002

NL

Derived Preconditions and Their Use in Program Synthesis

Douglas R. Smith

March 1982
I

Approved for public release; distribution unlimited
Prepared for:
Naval Postgraduate School
Monterey, California 93940

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral J. J. Ekelund Superintendent
David A. Schrady Acting Provost

The work reported herein was supported in part by the Foundation Research Program of the Naval Postgradaute School with funds provided by the Chief of Naval Research.

Reproduction of all or part of this report is authorized.
This report was prepared by:

Reviewed by:

Released by:

WILLIAM M. TOLLES
Dean of Research

UNCLASSIFIED
SECURITY CLASSIFICATION of this page (when Dema Entored)

REPORT DOCUMENTATION PAGE	BEFORD DTETRUCTYONS
T. AETOAT NUMEER NPS52-82-002	3. RECIMTENT'S CATALOG MUMECR
4. Title (mad Subtite) Derived Preconditions and Their Use in Program Synthesis	5. TYME OF REPORT a Penoo COVEnEO Technical Report
7. AUTHOR(s) Douglas R. Smith	D. CONTAICT Of GRANT MUMIEAT(
9. Penforming onganization name ano adomess Naval Postgraduate School Monterey, CA 93940	10. PROGKAM ELEMENT, PMOJECT, TASK $\begin{aligned} & 61152 \mathrm{~N} ; \operatorname{RRO} 00-01--10 \\ & \text { N0001482AF00001 } \end{aligned}$
11. CONTROLLING OFFICE NAME ANO ADORESS Naval Postgraduate School Monterey, CA 93940	12. nepont onte March 1982
	$\begin{aligned} & \text { 13. NUMAER OF PAGES } \\ & 31 \\ & \hline \end{aligned}$
T4. MONITORING AGENCY NAME A AODFESS(ll diltoreni from Controlline Offleo)	15. SECUAITY CLASS. (of thle repori) UNCLASSIFIED
	T3a. DECLAESSIFIEATION/OOWNGMADINE

Approved for public release; distribution unlimited
17. DISTRIBUTION STATEMENT (of the ebetfect mitered in Block 20, 17 difformil frem Report)
18. SUPPLEMENTAEV NOTES

To appear in: Sixth Conference on Automated Deduction, Lecture Notes in Computer Science, Springer-Verlag, 1982.

theorem proving, deduction, program synthesis, proti\&m reduction, divide and conquer.

In this paper we pose and begin to explore a deductive problem more general than that of finding a proof that a given goal formula logically follows from a given set of hypotheses. The problem is most simply stated in the propositiona calculus: given a goal A and hypothesis H we wish to find a formula P, called a precondition, such that A logically follows from P A H. A precondition provides any additional conditions under which A can be shown to follow from H. A slightly more complex definition of preconditions in a first-order theory is given and used throughout the paper. A formal system based on natural deduc-
secumity claschfication of twis pace (mimen Dete Enteroan
tion is presented in which preconditions can be derived. A number of examples are then given which show how derived preconditions are used in a program synthesis method we are developing. These uses include theorem proving, formula simplification, simple code generation, the completion of partial specifications for a subalgorithm, and other tasks of a deductive nature.

S.N 0102 . LF. 014.6601

Derived Preconditions and Their Use in Program Synthesis*
Douglas R. Smith Department of Computer Science Naval Postgraduate School
Monterey, California 93940, USA
30 November 1981; Revised 9 March 1982

Abstract

In this paper we pose and begin to explore a deductive problem nore general than that of finding a proof that a given goal formula logically follows from a given set of hypotheses. The problem is most simply stated in the propositional calculus: given a goal A and hypothesis H we wish to find a formula P, called a precondition, such that A logically follows from P $\wedge \mathrm{H}$. A precondition prom vides any additional conditions under which A can be shown to follow from E . A slightly more complex definition of preconditions in a first-order theory is given and used throughout the paper. A formal system based on natural deduction is presented in which preconditions can be derived. A number of examples are then given which show how derived preconditions are used in a program synthesis method we are developing. These uses include theorem proving, formula simplification, simple code generation, the completion of partial specifications for a subalgorithm, and other tasks of a deductive nature.

O. Introduction

Traditionally, the subject of automatic theorem proving has dealt with the problem of finding a proof that a given goal formula A logically follows from a

[^0]given hypothesis H. In this paper we pose a more general deductive problem and suggest that systems for solving this more general problem can extend the utility of deductive mechanisms, and provide a framework for overcoming some problematic features of current theorem provers. The problem is most simply stated in the propositional calculus: given a goal A and hypothesis A we wish to find a formula P, called a precondition, such that A logically follows from $P \wedge$. . In other words a precondition provides any additional conditions under which A can be shown to follow from H.

A formal system in which preconditions can be derived is described in section 2. Fach rule in this natural deduction-like system has a reduction component which reduces a goal A_{0} to subgoals $A_{1}, A_{2}, \ldots, A_{k}$ and a composition component which composes preconditions of subgoals $A_{1}, A_{2}, \ldots, A_{k}$ to form a precondition of A0.

After presenting basic terminology in section 1 a formal system for deriving preconditions is given in section 2. A number of examples are presented in section 3 which show how derived preconditions are used in a program synthesis method we are developing [9,10]. These uses include theorem proving, formula simplification, simple code generation, the completion of partial specifications for a subalgorithm, and other tasks of a deductive nature.

1. Terminology

The examples given below are drawn from a program synthesis system which works within a many-sorted first-order theory TT. The theory includes data types such as \mathbb{N} (natural numbers), LIST(\mathbb{N}) (inear lists of natural numbers), and $\operatorname{BAGC}(\mathbb{N})$ (multisets of natural numbers). We will use the (possibly subscripted) symbols i, j, k for variables ranging over \mathbb{N}, x, y, z for variables over $\operatorname{IIS}(\mathbb{N})$, and 3 as a variable over $\operatorname{BAGS}(\mathbb{N})$. The theory also includes a number of functions and predicates defined on these types and axiomatic specifications of their interactions. The notions of term, atomic formula, literal, and (well-formed) formula have their usual definitions [5]. Let T and F be propositional constants which have the values true and false respectively in all models of Tm . We make use of a distinguished subset of the theorems of IT called known theorems which are assumed to be immediately available to the deductive system. The set of known theorems may change over time but initially includes all axioms of mm . All of the known theorems required by the examples are listed in the
appendix.
Let $Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} G$ be a closed formula not necessarily in prenex form where Q_{i} is either \exists or \forall for $i=1,2, \ldots, n$. A $x_{1} x_{2} \cdots x_{n}$-precondition of $Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} G$ is a quantifier-free formula P dependent only on variables $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n}[P \Rightarrow G]
$$

is valid in $m T$. P is also a weakest $x_{1} x_{2} \cdots x_{n}$-precondition if

$$
Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n}[P=G]
$$

is valid in TT.
Two well-known special cases of these concepts can be given. First, if T can be derived as a $x_{1} x_{2} \ldots x_{n}$-precondition of a goal $Q_{1} x_{1} \quad Q_{2} x_{2} \ldots Q_{n} x_{n} G$ then the derivation is in fact a proof of the validity of $Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} G$ since

$$
Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n}[T \Rightarrow G]=Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} G
$$

Therefore any system for deriving preconditions can also be used for theorem proving. Second, Dijkstra's concept [3] of a "weakest pre-condition" $W P(S, R)$ of a program S with respect to post-condition R may be defined as a weakest q precondition of

$$
\forall q \exists k \exists p[\operatorname{TERMLVATE}(S, q, k, p) \wedge R(p))]
$$

where $\operatorname{TERMDATE}(S, q, k, p)$ holds iff program S activated in initial state q terminates within k steps (assuming a suitable definition of a program step) in a final state p. I.e.,

$$
\forall \mathrm{q}[\mathrm{WP}(\mathrm{~S}, \mathrm{R})[\mathrm{q}]=\exists \mathrm{k} \exists \mathrm{p} \operatorname{TERMINATE}(\mathrm{~S}, \mathrm{q}, \mathrm{k}, \mathrm{p}) \wedge \mathrm{R}(\mathrm{p})]
$$

our program synthesis method is not directly related to Dijkstra's approach to algorithm design [3].

In general a given goal may have many preconditions. Characteristics of a useful precondition seem to depend on the application domain. In program synthesis we generally want preconditions which are a) easily computable, b) in as simple a form as possible, and c) as weak as possible. (Criterion (c) prevents the boolean constant F from being an scceptable precondition for all goals.) Clearly there is a tradeoff between these criteria. ve are currentiy investi-
gating the possibility of measuring each criterion by a separate heuristic function, then combining the results to form a net complexity measure on preconditions. For ressons to be discussed later we assume that such a complexity measure ranges over a well-founded set (such as \mathbb{N} under the usual < relation) and that we seek to minimize complexity over all preconditions. In this paper however we are mostly concerned with setting up a formal system within which preconditions can be derived, and showing how to solve some program synthesis problems using it.

2. A Formal System for Deriving Preconditions

2.1 Goal Preparation

In presenting a set of rules which allow us to derive preconditions we use the notation $\frac{A}{H}$ to denote the statement that well-formed formula A logically follows from the set of hypotheses H in $T T$, i.e., $h_{1} \wedge h_{2} \wedge \ldots \wedge h_{k} \Rightarrow A$ is valid in TI where $H=\left\{h_{1}, h_{2}, \ldots h_{k}\right\}$.

A goal statement A and the known theorems of πT are prepared as follows. First, all occurences of equivalence ($=$) and implication (\Rightarrow) signs are eliminated and negation signs are moved in as far as possible. H and the known theorems of $\mathbb{T M}$ are then skolemized in the usual way [5], i.e., existentially quantified variables are replaced by skolem functions of the universally quantified variables on which they depend. Quantifiers are then dropped with the understanding that all remaining variables are universally quantified. The goal A is skolemized in a dual manner with universally quantified variables replaced by skolem functions of the existential variables on which they depend. All quantifiers are then dropped with the understanding that all variables in A which remain are existentially quantified. The preparation of A is equivalent (via duality of goals and assertions) to preparing $\sim A$ as an hypothesis then taking the negation of the result as our prepared goal.

2.2 Reduction/Composition Rules

Rules which reduce a goal statement to two subgoal statements are expressed in the sollowing form:

where A_{0}, A_{1}, and A_{2} are goal formulas, $\mathrm{E}_{0}, \mathrm{H}_{1}$, and H_{2} are sets of hypotheses, θ_{0}, θ_{1}, and θ_{2} are substitutions, P_{0}, P_{1}, and P_{2} are formulas (the derived preconditions), and \oplus is either V or \wedge. A rule of this form asserts that if P_{i} is a (weakest) precondition of $H_{i} \theta_{i} \Rightarrow A_{i} \theta_{i}$ where $i=1,2$ then P_{0} is a (weakest) precondition of $H_{0} \theta_{0} \Rightarrow A_{0} \theta_{0}$. P_{0} generally is $P_{1} \oplus P_{2}$. Substitution θ_{0} is formed from substitutions θ_{1} and θ_{2} in ways that depend on \oplus.

If \oplus is \wedge then θ_{0} is the unifying composition of θ_{1} and θ_{2}, denoted uc $\left(\theta_{1}\right.$, θ_{2}) [7]. If $\theta_{0}=u c\left(\theta_{1}, \theta_{2}\right)$ then θ_{0} is a most general substitution such that for any literal L

$$
\left(I \theta_{1}\right) \theta_{0}=\left(I \theta_{0}\right) \theta_{1}=I \theta_{0}=\left(I \theta_{2}\right) \theta_{0}=\left(I \theta_{0}\right) \theta_{2}
$$

$u c\left(\theta_{1}, \theta_{2}\right)$ may be computed by finding the most general unifier of

$$
\begin{aligned}
& \left(t_{1}, \cdots, t_{n}, t_{n+1}, \cdots, t_{n+m}\right) \\
& \left(v_{1}, \cdots, v_{n}, v_{n+1}, \cdots, v_{n+m}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\theta_{1}=\left\{t_{1} / v_{1}, \ldots, t_{n} / v_{n}\right\} \\
\theta_{2}=\left\{t_{n+1} / v_{n+1}, \ldots, t_{n+m} / v_{n+m}\right\}
\end{gathered}
$$

If these expressions cannot be unified then the result is a special atom NIL. For example,

$$
\begin{gathered}
\operatorname{uc}(\{a / z\},\{b / z\})=\operatorname{NIL} \\
\operatorname{uc}(\},\{a / z\})=\{a / z\} \\
u c(\{f(x) / z\},\{f(a) / z\})=\{f(a) / z, a / x\}
\end{gathered}
$$

If θ is V then θ_{0} is formed by the disjunctive composition of P_{1}, θ_{1}, P_{2} and θ_{2}, which is denoted dc $\left(P_{1}, \theta_{1}, D_{2}, \theta_{2}\right)$. The disjunctive composition may be computed as follows assuming that the derived preconditions P_{1} and $?_{2}$ contain no
variables. Let $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ be the set of skolem function names in P_{1} which come from the top level goal in the current deduction. For example if the top level goal is $Q\left(u, f_{1}(u)\right) \Rightarrow R\left(x, f_{2}(x), f_{3}\right)$ and P_{1} is $W\left(f_{1}\left(f_{3}\right), g_{2}\left(f_{3}\right)\right)$ then $\left\{f_{1}, f^{\prime} ;\right\}$ is the set of skolem function names in P_{1} which comes from the top level goal. Iet $P_{1}\left(y_{1}, \ldots, y_{k}\right)$ be the formula resulting from the replacement of each occurence of skolem function S_{j} by variable y_{j} in P_{1}. In the above example $P_{1}\left(y_{1}, y_{2}\right)$ denotes $W\left(y_{1}, g_{2}\left(y_{2}\right)\right)$. Function dc is defined as follows.
$\operatorname{dc}\left(P_{1}, \theta_{1}, P_{2}, \theta_{2}\right)=$ if $\theta_{1}=$ NIL and $\theta_{2}=$ NII then NIL else if $P_{1}=T$ or $\theta_{2}=N W$ then θ_{1} else if $P_{2}=T$ or $\theta_{1}=N I L$ then θ_{2}
else if $\theta_{1}=\{ \}$ then θ_{2} else $\left\{h_{x}\left(S_{1}, S_{2}, \ldots, S_{m}\right) / x: t / x \in \theta_{1}\right.$ or $\left.t / x \in \theta_{2}\right\}$
where

$$
h_{x}\left(y_{1}, \ldots, y_{m}\right)=\text { if } P_{1}\left(y_{1}, \ldots, y_{m}\right) \text { then } x \theta_{1} \text { else } x \theta_{2}
$$

Loosely speaking, the disjunctive composition of P_{1}, θ_{1}, P_{2}, and θ_{2} behaves like θ_{1} when P_{1} holds and behaves like θ_{2} otherwise. Some examples:

$$
\begin{gathered}
\operatorname{dc}\left(a_{0}>3,\left\{f_{1}\left(a_{0}\right) / x\right\}, m,\left\{a_{0} / x\right\}\right)=\left\{a_{0} / x\right\} \\
\operatorname{dc}\left(f_{1}>f_{2}\left(f_{1}\right),\left\{f_{1} / z, f_{2}\left(f_{3}\right) / x\right\}, f_{1}<f_{2}\left(f_{3}\right),\left\{f_{2}\left(f_{1}\right) / z, f_{3} / x\right\}\right) \\
=\left\{h_{z}\left(f_{1}, f_{2}, f_{3}\right) / z, h_{x}\left(f_{1}, f_{2}, f_{3}\right) / x\right\}
\end{gathered}
$$

where

$$
\begin{aligned}
& h_{z}\left(y_{1}, y_{2}, y_{3}\right)=\text { if } y_{1}>y_{2} \text { then } y_{1} \text { else } y_{2} \\
& h_{x}\left(y_{1}, y_{2}, y_{3}\right)=\text { if } y_{1}>y_{2} \text { then } y_{2} \text { else } y_{3}
\end{aligned}
$$

A complete deduction involving a disjunctive composition is given in section 2.5 .

Rules which reduce a goal statement to one subgoal are notated

Occasionally, as in the application of known theorems which are implicam tions, the relation between goal and subgoals is not one of equivalence but implication. Rules of this kind are notated

which asserts that if P_{1} is a precondition of $H_{1} \theta_{1} \Rightarrow A_{1} \theta_{1}$ then P_{0} is a precondition of $H_{0} \theta_{0} \Rightarrow A_{0} \theta$. For rules of this kind we cannot assert that P_{0} is a weakest precondition of $H_{0} \theta_{0} \Rightarrow A_{0} \theta_{0}$ even if P_{1} is known to be a weakest precondition of $H_{1} \theta_{1} \Rightarrow A_{1} \theta_{1}$.

The following rules are for the most part extensions of typical goal reduction rules $[2,5,8]$.

R1. Reduction of Conjunctive Goals

R2. Reduction of Disjunctive Goals

R3. Reduction of Conjunctive Hypotheses

R4. Reduction of Disjunctive Hypotheses

25. Application of an Equivalence Formula

R6. Application of an Implicational Formula

R7．Forward Inference from an Hypothesis

$$
\begin{aligned}
& \left.{ }^{\langle P}\right\rangle_{B} \mid \mathrm{UH}^{\ominus} \\
& \text { if } D \Rightarrow \bar{Z} \text { or } D=E \text { is a known theorem of } \mathbb{T} \\
& \text { or hypothesis in } H \text { and } \theta_{q} \text { unifies }\{B, D\} \\
& \text { 〈P〉 } \\
& \stackrel{9}{4}
\end{aligned}
$$

R8．Toal／Hypothesis Duality rules
R8a
R8b

Ra．Substitution of Equal Terms

if $r=s$ is an hypothesis in $:$ or a known theorem of Tm

P10．Conditional Squality Substitution

2．3 Primitive Goals

There are several types of primitive goal statements in our system．Jach are described by notations of the form $\langle P\rangle \underset{H}{A} \rightarrow$ which assert that ？is a
precondition of $H \theta \Rightarrow A \Theta$ if the associated condition holds．
P1．〈T〉 $A \neq$ if θ unifies $\{A, B\}$ where B is a known theorem of $\mathbb{M T}$ or $B \in E$
P2．〈F〉 $\frac{A}{H}$ NII if θ unifies $\{A, \sim B\}$ or $\{\sim A, B\}$ ，where B is a known theorem of TM

In addition to P1 and P2 any goal with a null hypothesis may be taken as primi－ tive：

P3．〈A＇〉 $A_{\{ \}}\{ \}$if A has the form $\sum_{i=1}^{\mathbb{V}} A_{i}$ and A^{\prime} has the form $V_{j=1}^{\mathbb{m}} A_{i j}$ where $\left\{A_{i_{j}}\right\}_{j=1, m} \in\left\{A_{i}\right\}_{i=1, k}$ and for each $j, 1 \leq j \leq m, A_{i_{j}}$ depends on the variables $x_{1}, x_{2}, \ldots, x_{n}$ only when we seek a $x_{1}, x_{2}, \ldots, x_{n}$－precondition．

Primitive goals of type P1 and P2 yield weakest preconditions but in general primitive goals of type P3 do not．Note that any goal statement can be con－ verted to an equivalent goal with a null hypothesis by repeated applications of rule R8b．

2．4 The Deduction Process

The derivation of a precondition of goal statement $\frac{A}{H}$ can be described by a two stage process．In the first phase rules are repeatedly applied to goals reducing them to subgoals and generating a goal tree．Rules are not applied to a goal satisfying the primitive goal tests P1 and P2 or if the goal has been specially converted to satisfy P 3．If for some reason，such as limits on compu－ tational resource，it is desired to terminate the reduction process before all subgoals have been reduced to primitive goals of type P 1 or P 2 ，then any subgoals waiting for rule application can be converted to a primitive goal of type P3．The result of this reduction process is a goal tree with primitive goals as leaf nodes．

The second phase involves the bottom－up composition of preconditions and substitutions．Initially each primitive goal yields a precondition and a sub－ stitution．Subsequently whenever a precondition or substitution has been found Sor each subgoal of a goal A then a precondition and substitution is composed
for A according to the reduction/composition rule emploged. Each newly composed precondition is then run through a simplification process to be described later.

Usually several rules can be applied to a given goal and each rule will generate a precondition. In an computer implementation of this system we would make use of a complexity measuring function and select that precondition of least complexity among the alternatives.

2.5 An Example

As an example of the use of this system suppose that we wish to show that

$$
\begin{equation*}
\forall i_{0} \forall i_{1} \exists i_{2}\left[\left(i_{0}<i_{1} \wedge i_{2}=0\right) \vee\left(i_{0} \geq i_{1} \wedge i_{2}=1\right)\right] \tag{1}
\end{equation*}
$$

is valid in $\mathbb{T T}$ where i_{0}, i_{1}, i_{2} are variables over \mathbb{N} (natural numbers). We do so by trying to derive T as a $i_{0} i_{1} i_{2}$-precondition of (1). The goal after preparation is:

$$
\left(r_{0}<r_{1} \wedge i_{2}=0\right) \vee\left(r_{0}>r_{1} \wedge i_{2}=1\right)
$$

where r_{0} and r_{1} are skolem constants of type \mathbb{N}. The derivation is depicted below in figure 1. Initially (1) is reduced via rule R2 to two subgoals then each of these subgoals are reduced via rule $R 1$ to two other subgoals. Subgoals $i_{2}=0$ and $i_{2}=1$ match axiom $i=i$ (theorem nO in the Appendix) with substitution $\left\{0 / i_{2}\right\}$ and $\left\{1 / i_{2}\right\}$ respectively and thus are primitive goals of type P1. Suppose that goals $r_{0}\left\langle r_{1}\right.$ and $r_{0}>r_{1}$ are taken as primitive goals of type P3. The composition phase now begins. Subgoals $r_{0}\left\langle r_{1} \wedge i_{2}=0\right.$ and $r_{0}>r_{1} \wedge i_{2}=1$ yield preconditions ($T \wedge r_{0}\left\langle r_{1}\right.$) and ($T \wedge r_{0} \geq r_{1}$) respectively. A simplification process reduces these preconditions to $r_{0}\left\langle r_{1}\right.$ and $\left.r_{0}\right\rangle r_{1}$ respectively. The composed substitutions for the immediate subgoals of (1) are just the unifying compcsitions uc $\left(\left\{0 / i_{2}\right\},\{ \}\right)=\left\{0 / i_{2}\right\}$, and $\operatorname{uc}\left(\left\{1 / i_{2}\right\},\{ \}\right)=\left\{1 / i_{2}\right\}$ respectively. The derived precondition of goal (1) is ($r_{0}<r_{1} \vee r_{0}>r_{1}$) which simplifies (via theorem n4) to T. The composed substitution is the disjunctive composition $\left\{f_{i_{2}}\left(r_{0}, r_{1}\right) / i_{2}\right\}$ where

$$
f_{i_{2}}\left(j_{1}, j_{2}\right)=\text { if } j_{1}<j_{2} \text { then } 0 \text { else } 1
$$

The derivation shows that T is a precondition of

$$
\left(r_{0}<r_{1} \wedge f_{i_{2}}\left(r_{0}, r_{1}\right)=0\right) \vee\left(r_{0}>r_{1} \wedge f_{i_{2}}\left(r_{0}, r_{1}\right)=1\right)
$$

i.e., that our original goal is valid. Furthermore we have obtained a substitution term for the one existentially quantified variable in (1). After requantifying we obtain the valid formula:

$$
\forall i_{0} \forall i_{1}\left[\left(i_{0}<i_{1} \wedge f_{i_{2}}\left(i_{0}, i_{1}\right)=0\right) \vee\left(i_{0} \geq i_{1} \wedge f_{i_{2}}\left(i_{0}, i_{1}\right)=1\right)\right] .
$$

In this example and all that follow we annotate the arcs with the name of the rule and theorem used and note the primitive goal type of each leaf node. Also in this example we write the simpr.ified form of the composed precondition P immediately under P. Hereafter in examples we will simply omit the composed precondition in favor of its simplified form. Also we omit substitutions when they are inessential to an understanding of a derivation.

2.6 Formula Simplification

Any deductive mechanism needs a means to simplify formulas which are generated during the deductive process. Simplification can be usefully viewed as the task of finding a weakest precondition (in all variables) of formula A. The search for a simple weakest precondition is kept short by using only a few of the known theorems of TT. The strategy followed in the examples is to repeat

Figure 1.
the following sequence of rule applications until the goal has been reduced to literals:
a) simplify the gool as much as possible using known equivalence theorems of $\mathbb{T T}$,
b) multiply subexpressions out using p 9 and $p 10$ (DeMorgan's Laws),
c) break the result of (b) down to subexpressions using R1 or R2.

The multiplication step allows us to mix preconditions which were returned from different branches of the goal tree.

A precondition generating mechanism used for simplification purposes must be carefully controlled in order to avoid infinite regress. One way around this problem is to prohibit simplification of preconditions generated during the simplification process. Instead we check whether the final derived precondition P is simpler than the initial goal formula A. If not then A is returned otherwise we attempt to simplify P. If our complexity measuring function ranges over a well-founded set then this simplification process will terminate.

Suppose that we need to simplify the expression

$$
\begin{equation*}
(i>j \vee i=0) \wedge(i<j \vee j=0) \tag{2}
\end{equation*}
$$

where i and j vary over \mathbb{N}. The derivation in figure $2 a$ yields

$$
(i>0 \wedge j=0) \vee i=0
$$

as a weakest precondition (i.e. equivalent form) of (2). The derivation in figure $2 b$ yields

$$
\begin{equation*}
(i=0 \vee j=0) \tag{3}
\end{equation*}
$$

as 3 weakest precondition. The result is that (2) has been simplified to (3).

3. The Use of Derived Preconditions in Program Synthesis

In this section we show how derived preconditions can play a central role in the design of algorithms $[9,10]$. Many of the key steps in the design process involve finding a precondition of a formula constructed by instantiation of a formula schema with functions, predicates and types from the specification and the partially designed algorithn. The resulting derived precondition is used to either strengthen or complete some aspect of the target algorithm.

Initially a user supplies a complete formal specification of a problem which he desires to solve. The specification consists of a naming of the input

Figure 2a. First pass at simplifying goal formula (2).

Figure 2b. Second pass: simplifying the result of figure 2 a .
and output data types, and two formulas called the input and output conditions. The types, functions and predicates involved in the specification must be part of the language of mm . For example, the problem of sorting a list of natural numbers may be specified as follows:

$$
\begin{gathered}
\operatorname{QSORT}(x)=z \text { such that } \operatorname{ORD}(z) \wedge \operatorname{BAG}(x)=\operatorname{BAG}(z) \\
\text { where } \operatorname{aSORT}: \operatorname{IST}(\mathbb{N}) \rightarrow \operatorname{IIST}(\mathbb{N}) .
\end{gathered}
$$

Here the input and output types are HST(\mathbb{N}) (lists of natural numbers). There is no input condition (except the implicit condition of the input type) and the output condition is $\operatorname{ORD}(z) \wedge \operatorname{BAG}(x)=\operatorname{BAG}(z)$ where $\operatorname{ORD}(z)$ holds iff the list z is in nondecreasing order, and $\operatorname{BAG}(x)=\operatorname{BAG}(z)$ holds iff the multiset (bag) of elements in x and z is the same.

We will construct a divide and conquer algorithm (quicksort) of the form:

$$
\begin{aligned}
& \operatorname{RSORT}(x)=\text { if } \\
& \qquad \begin{aligned}
& \operatorname{PRIM}(x) \rightarrow \operatorname{QSORT}:=f(x) \\
& \sim \operatorname{PRIM}(x) \rightarrow\left(x_{1}, x_{2}\right):=\operatorname{DECOMPOSE}(x) ; \\
&\left(z_{1}, z_{2}\right):=\left(\operatorname{QSORT}\left(x_{1}\right), \operatorname{QSORT}\left(x_{2}\right)\right) ; \\
& \operatorname{QSORT}:=\operatorname{COMPOSE}\left(z_{1}, z_{2}\right)
\end{aligned}
\end{aligned}
$$

fi
where PRIM is a predicate which determines when to terminate recursion, f is a function which provides a solution for primitive inputs, DECOMPOSE and COMPOSE are decomposition and composition functions respectively. In this program schema PRIM, f, DECOMPOSE, and COMPOSE are uninterpreted functions whose value we have to determine. The if-fi construct is Dijkstra's nondeterministic conditional statement [3]. Associated with the algorithm schema is a correctness schema which will be introduced later.

The first step in the synthesis process involves the representation of the users problem by a problem reduction model [10]. This format extends the specification of a problem and restricts the type of algorithms which can be used to solve the problem to one of a small number of algorithms which work by problem reduction. For present purposes the relevant parts of the representation for QSORT are:
a) a relation IDR, called the input decomposition relation, which constrains the way in which input x_{0} can be decomposed into objects x_{1} and x_{2} and serves as a partial output condition on subalgorithm DECOMPOSE in the divide and conquer schema:

$$
\operatorname{IDR}\left(x_{0}, x_{1}, x_{2}\right)=\operatorname{BAG}\left(x_{0}\right)=\operatorname{BAG}\left(x_{1}\right) \cup \operatorname{BAG}\left(x_{2}\right)
$$

where $B_{1} \cup B_{2}$ denotes the bag-union of bags B_{1} and B_{2}.
b) a relation $O C R$, called the output composition relation, which constrains the
way in which output object z_{0} can be formed from objects z_{1} and z_{2} and serves as a partial output condition on the subalgorithm COMPOSE:

$$
\operatorname{OCR}\left(z_{0}, z_{1}, z_{2}\right) \equiv \operatorname{BAG}\left(z_{0}\right)=\operatorname{BAG}\left(z_{1}\right) \cup \operatorname{BAG}\left(z_{2}\right)
$$

c) a well-founded ordering relation γ on $\operatorname{LIST}(\mathbb{N}$) is used to ensure that the target program terminates on all inputs:

$$
x_{0} \gamma x_{1}=I G\left(x_{0}\right)>\operatorname{IG}\left(x_{1}\right)
$$

where the function $L G(x)$ returns the length of the list x.
3.1 Checking and Enforcing Compatibility in the Representation

The representation of the user's problem by a problem reduction model is constructed by heuristic means. A formula expressing the mutual compatibility of various parts of the model is constructed and an attempt is made to verify it. If the derived precondition P is T then the parts are compatible otherwise we use P to modify the model to ensure compatibility. For example we want the input decomposition relation IDR to be compatible with the well-founded ordering \rangle, in the sense that

$$
\forall x_{0} \forall^{\prime} x_{1} \forall x_{2}\left[\operatorname{IDR}\left(x_{0}, x_{1}, x_{2}\right) \Rightarrow x_{0}>x_{1} \wedge x_{0}>x_{2}\right]
$$

i.e., if x_{0} can decompose into lists x_{1} and x_{2} then x_{1} and x_{2} must both be smaller than x_{0} under the γ relation. After substituting in the form of IDR and the well-founded ordering for the QSORM example, and preparing the formula we obtain the goal:

$$
\begin{equation*}
\operatorname{BAG}\left(a_{0}\right)=\operatorname{BAG}\left(a_{1}\right) \operatorname{UBAG}\left(a_{2}\right) \Rightarrow \operatorname{IG}\left(a_{0}\right)>\operatorname{IG}\left(a_{1}\right) \wedge \operatorname{IG}\left(a_{0}\right)>\operatorname{IG}\left(a_{2}\right) \tag{4}
\end{equation*}
$$

where a_{0}, a_{1}, and a_{2} are skolem constants for the (universally quantified) variables x_{0}, x_{1}, x_{2}. The derivation of a $x_{0} x_{1} x_{2}$-precondition of (4) is given in figure 3. The resulting precondition is

$$
\operatorname{BAG}\left(x_{0}\right)=\operatorname{BAG}\left(x_{1}\right) \operatorname{UBAG}\left(x_{2}\right) \Rightarrow \operatorname{IG}\left(x_{1}\right)>0 \wedge \operatorname{IG}\left(x_{2}\right)>0
$$

which means that IDR is not strong enough to imply the consequent of the original goal. From the definition of preconditions it follows that the conjunction of $I D R$ and the derived precondition will in fact imply the consequent of (4).

where is $\operatorname{BAG}\left(x_{0}\right)=\operatorname{BAG}\left(x_{1}\right) \cup \operatorname{BAG}\left(x_{2}\right) \Rightarrow \operatorname{IG}\left(x_{2}\right)>0$
Q_{2} is $\operatorname{BAG}\left(x_{0}\right)=\operatorname{BAG}\left(x_{1}\right) \cup \operatorname{UAG}\left(x_{1}\right) \Rightarrow \operatorname{IG}\left(x_{2}\right)>0$
Q is $\operatorname{BAG}\left(x_{0}\right)=\operatorname{BAG}\left(x_{1}\right) \cup \operatorname{BAG}\left(x_{2}\right) \Rightarrow\left(\operatorname{IG}\left(x_{2}\right)>0 \wedge \operatorname{IG}\left(x_{1}\right)>0\right)$
$\mathrm{H}=\left\{\operatorname{BAG}\left(\mathrm{x}_{0}\right)=\operatorname{BAG}\left(\mathrm{x}_{1}\right) \cup \operatorname{BAG}\left(\mathrm{x}_{2}\right), \operatorname{IN}\left(\mathrm{x}_{0}\right)=\operatorname{IG}\left(\mathrm{x}_{1}\right)+\operatorname{IC}\left(\mathrm{x}_{2}\right)\right\}$
Figure 3. Checking Compatibility of IDR and $>$

Thus we can form a new strengthened input decomposition relation DDK' where

$$
\operatorname{IDR} R^{\prime}\left(x_{0}, x_{1}, x_{2}\right)=\operatorname{IDR}\left(x_{0}, x_{1}, x_{2}\right) \wedge\left[\operatorname{BAG}\left(x_{0}\right)=\operatorname{BAG}\left(x_{1}\right) \cup \operatorname{BAG}\left(x_{2}\right) \Rightarrow \operatorname{IG}\left(x_{1}\right)>0 \wedge \operatorname{IG}\left(x_{2}\right)>0\right]
$$

The derivation in figure 3 quarantees that IDR' is compatible with the wellfounded ordering. After simplifying IDR' we have

$$
\operatorname{IDR} R^{\prime}\left(x_{0}, x_{1}, x_{2}\right) \equiv \operatorname{BAG}\left(x_{0}\right)=\operatorname{BAG}\left(x_{1}\right) \cup \operatorname{BAG}\left(x_{2}\right) \wedge \operatorname{IG}\left(x_{1}\right)>0 \wedge \operatorname{IG}\left(x_{2}\right)>0
$$

3.2 Reducing a Quantified Predicate to a Target Language Expression

The predicate $\operatorname{PRIM}(x)$ in the divide and conquer schema is intended to distinguish nondecomposable from decomposable inputs. In the QSORT example it is sufficient for $\sim \operatorname{PRIM}\left(x_{0}\right)$ to be a x_{0}-precondition of

$$
\forall x_{0} \exists x_{1} \exists x_{2} \operatorname{IDR} R^{\prime}\left(x_{0}, x_{1}, x_{2}\right)
$$

i.e. a list is decomposable only if there are lists into which it can decompose. The deduction in figure 4 jields the precondition $I G\left(a_{0}\right)>1$ and after some simple manipulations $I G(x) \leq 1$ and $I G(x)>1$ can be substituted for $\operatorname{PRIM}(x)$ and $\sim \operatorname{PRIM}(x)$ respectively in QSORT. One additional mechanism is needed to correctly handle this example. The reduction/composition rule R1 treats each subgoal independently and combines the returned substitutions into their unifying composition. This treatment does not work well when the subgoals have cormon variables. Most theorem proving systems allow substitutions in one subgoal to be applied to the other (since different substitutions may be found independently for the same variable) and we follow this practice here.
3.3 Simple Code Generation through Substitution of a Term for an Output Variable.

With the PRIM predicate in hand the synthesis process can proceed to the task of finding a target language expression to handle primitive inputs in the quicksort algorithm. A correctness formula for the primitive branch of the quicksort algorithm is:

$$
\forall x \exists z[\operatorname{IG}(x) \leq 1 \Rightarrow \operatorname{ORD}(z) \wedge \operatorname{PERM}(x, z)]
$$

The deduction in figure 5 shows that T is a xz-precondition of this formula thus proving its validity in TM. The substitution gives us a value for z for any x,
$\left\langle\operatorname{IG}\left(a_{0}\right)>1\right\rangle \operatorname{BAG}\left(a_{0}\right)=\operatorname{BAG}\left(x_{1}\right) \operatorname{UBAG}\left(x_{2}\right) \wedge I G\left(x_{1}\right)>0 \wedge I G\left(x_{2}\right)>0$

$\left\langle\operatorname{IG}\left(a_{0}\right)>1\right\rangle \operatorname{BAG}\left(a_{0}\right)=\operatorname{BAG}\left(\operatorname{cons}\left(j_{1}, w_{1}\right)\right) \operatorname{UBAG}\left(\operatorname{cons}\left(j_{2}, w_{2}\right)\right)$

$$
\left\langle\operatorname{IG}\left(a_{0}\right)>1\right\rangle \operatorname{BAG}\left(a_{0}\right)=\left\{j_{1}\right\} \cup \operatorname{UAG}\left(w_{1}\right) \cup\left\{j_{2}\right\} \cup \operatorname{BAG}\left(w_{2}\right)
$$

R9+1b5, 1b7,1b8

where $\theta_{1}=\left\{\operatorname{cons}\left(j_{1}, w_{1}\right) / x_{1}\right\}$ and $\theta_{2}=\left\{\operatorname{cons}\left(j_{2}, w_{2}\right) / x_{2}\right\}$
Figure 4. Generating a target language expression for \sim PRIM

Figure 5. Finding a target language term
namely x itself. Thus the primitive branch of our quicksort is completed since x is the desired output value. The target algorithm now has the form

$$
\begin{aligned}
\operatorname{QSORT}(x)= & \text { if } \\
& \operatorname{IG}(x) \leq 1 \rightarrow Q S O R T:=x 0 \\
& \operatorname{IG}(x)>1 \rightarrow \ldots
\end{aligned}
$$

3.4 Completion of the Partial Specification of a Subalgorithm

The next step in the synthesis provides our final example and completes the construction of the top level algorithm for QSORI. The nonprimitive branch of QSORT has two uninterpreted functions CCMPOSE and DECOMPOSE which have partial specifications based on OCR and IDR respectively. We look for a known target language function satisfying either partial specification and find that the function APPEND, which appends one list onto the end of another, satisfies the (partial) specification for COMPOSE. The algorithm schema then becomes:

$$
\begin{aligned}
& \operatorname{QSORT}(x)=\text { if } \\
& \qquad \begin{aligned}
\operatorname{IG}(x) \leq 1 \rightarrow & \operatorname{QSORT}:= \\
\operatorname{LG}(x)>1 \rightarrow & \left(x_{1}, x_{2}\right):=\operatorname{DECOMPOSE}(x) ; \\
& \left(z_{1}, z_{2}\right):=\left(\operatorname{QSORT}\left(x_{1}\right), \operatorname{QSORT}\left(x_{2}\right)\right) ; \\
& \operatorname{QSORT}:=\operatorname{APPEND}\left(z_{1}, z_{2}\right)
\end{aligned}
\end{aligned}
$$

$$
f i
$$

where subalgorithm DECOMPOSE remains to be synthesized and has partial specification

$$
\begin{aligned}
\operatorname{DECOMPOSE}(x)= & \left(x_{1}, x_{2}\right) \text { such that }\left[\operatorname{IG}(x)>1 \Rightarrow\left(\operatorname{BAG}(x)=\operatorname{BAG}\left(x_{1}\right) \operatorname{UBAG}\left(x_{2}\right) \wedge\right.\right. \\
& \left.\left.\operatorname{IG}\left(x_{1}\right)>0 \wedge \operatorname{IG}\left(x_{2}\right)>0\right)\right] \\
& \text { where } \operatorname{DECOMPOSE:~} \operatorname{LISI}(\mathbb{N}) \rightarrow \operatorname{IIST}(\mathbb{N})^{2} .
\end{aligned}
$$

The concern now is to find any additional output conditions needed by DECOMPCSE in order to make QSORT satisfy its formal specifications. A sufficient condition for the total correctness of QSORT [10] is:

$$
\begin{align*}
\forall x_{0} \forall x_{1} \forall x_{2} \forall z_{0} \forall & z_{1} \forall z_{2}\left[\left[\operatorname{BAG}\left(x_{0}\right)=\operatorname{BAG}\left(x_{1}\right) U \operatorname{BAG}\left(x_{2}\right) \wedge\right.\right. \\
& \operatorname{LG}\left(x_{1}\right)>0 \wedge \operatorname{IG}\left(x_{2}\right)>0 \wedge \\
& \operatorname{BAG}\left(x_{1}\right)=\operatorname{BAG}\left(z_{1}\right) \wedge \operatorname{ORD}\left(z_{1}\right) \wedge \\
& \operatorname{BAG}\left(x_{2}\right)=\operatorname{BAG}\left(z_{2}\right) \wedge \operatorname{ORD}\left(z_{2}\right) \wedge \\
& \left.\left.z_{0}=\operatorname{APPEND}\left(z_{1}, z_{2}\right)\right] \Rightarrow\left(\operatorname{BAG}\left(x_{0}\right)=\operatorname{BAG}\left(z_{0}\right) \wedge \operatorname{ORD}\left(z_{0}\right)\right)\right] \tag{6}
\end{align*}
$$

If (6) is not valid it is because the specification of DECOMPOSE is too weak. We seek therefore a $x_{0} x_{1} x_{2}$-precondition of (6) and add it to the output specification of DECOMPOSE. Preparing (6) results in the substitution of skolem constants $a_{0}, b_{1}, b_{2}, c_{0}, c_{1}, c_{2}$ for $x_{0}, x_{1}, x_{2}, z_{0}, z_{1}, z_{2}$ respectively. Let A denote the set of conjuncts in the antecedent of the prepared correctness formula and A the consequent. An expression of the form $P(A L L(B))$ will be used to abbreviate $\forall x \in B P(x)$ where B is a bag variable. The derivations given in figures $6 a$ and 6b yield

$$
\operatorname{ALL}\left(\operatorname{BAG}\left(x_{1}\right)\right) \leq \operatorname{ALI}\left(\operatorname{BAG}\left(x_{2}\right)\right) .
$$

Strengthening DECOMPOSE with this precondition we obtain the complete specification

$$
\begin{aligned}
& \langle\mathrm{T}\rangle \quad \operatorname{BAG}\left(a_{0}\right)=\operatorname{BAG}\left(c_{0}\right) \\
& \left\{c_{0}=\operatorname{APPEND}\left(c_{1}, c_{2}\right)\right\} U H \\
& \text { R9 } \\
& \langle I\rangle \quad \operatorname{BAG}\left(a_{0}\right)=\operatorname{BAG}\left(\operatorname{APPEND}\left(c_{1}, c_{2}\right)\right) \\
& \text { H } \\
& \text { R9+1b5 } \\
& \langle T\rangle \quad \operatorname{BAG}\left(a_{0}\right)=\operatorname{BAG}\left(c_{1}\right) \cup \operatorname{BAG}\left(c_{2}\right) \\
& \left\{\operatorname{BAG}\left(b_{1}\right)=\operatorname{BAG}\left(c_{1}\right), \operatorname{BAG}\left(b_{2}\right)=\operatorname{BAG}\left(c_{2}\right)\right\} U H \\
& \text { R9 } \\
& \begin{array}{c}
\langle T\rangle \quad \operatorname{BAG}\left(a_{0}\right)=\operatorname{BAG}\left(b_{1}\right) \cup \operatorname{BAG}\left(b_{2}\right) \\
\left\{\operatorname{BAG}\left(a_{0}\right)=\operatorname{BAG}\left(b_{1}\right) \cup \operatorname{BAG}\left(b_{2}\right)\right\} \\
\operatorname{P1}
\end{array}
\end{aligned}
$$

Figure 6a. Nonprimitive branch of QSORT

where $?$ is $\operatorname{AIJ}\left(\operatorname{BAG}\left(b_{1}\right)\right) \leq \operatorname{ALI}\left(\operatorname{BAG}\left(b_{2}\right)\right)$
Eigure 5b. Completing the specification of DECOMPCSE

```
\(\operatorname{DECOMPOSE}(x)=\left(x_{1}, x_{2}\right)\) such that \(\left[\operatorname{IG}(x)>1 \Rightarrow\left(\operatorname{BAG}(x)=\operatorname{BAG}\left(x_{1}\right) \cup \operatorname{BAG}\left(x_{2}\right) \wedge\right.\right.\)
    \(\left.\operatorname{IG}\left(x_{1}\right)>0 \wedge \operatorname{IG}\left(x_{2}\right)>0 \wedge \operatorname{ALI}\left(\operatorname{BAG}\left(x_{1}\right)\right) \leq \operatorname{ALI}\left(\operatorname{BAG}\left(x_{2}\right)\right)\right]\)
    where DECOMPOSE: \(\operatorname{LIST}(\mathbb{N}) \rightarrow \operatorname{IIST}(\mathbb{I})^{2}\).
```

The synthesis process is then recursively invoked to design an algorithm meeting these specifications.

The synthesis system from which we've drawn the examples is an attempt to obtain increased synthesis performance by 1) dividing the synthesis task into a number of relatively small deductive tasks, and 2) using large amounts of knowledge about programing. The system makes use of two types of programming knowledge: 1) control strategy knowledge encoded by program schemas (such as the schema for divide and conquer used above) and their associated correctness schemas, and 2) data structure knowledge represented in part by the known theorems of TT. Other recent deductive approaches to program synthesis $[1,4,6]$ also make use of data structure knowledge, but have different approaches to representing control knowledge and tend to construct programs on the basis of a single large deductive task.

4. Conclusion

In this paper we have defined a new deductive problem, that of itindig a precondition of a given formula, and presented a formal system wi ni.. which preconditions can be derived. We have tried to convey a sense of the flexibility and usefulness of such a system through a number of examples drawn from the domain of program synthesis. We are currently implementing a system based on the one described here and hope to report on such issues as formula complexity measures and control, which we have largely ignored here, in a future paper.

APPENDIX

Listed below are the known theorems used in the examples of this paper. It is important that these assertions are expressed in their strongest form (i.e., as
equivalences rather than implications) whenever possihle, so that it can be determined whether a weakest precondition has been derived or not. Often a theorem is used in one direction only although it may be stated as an equivalence.

Propositional theorems
p1. A $V \sim A$
p2. $\sim(A \wedge \sim A)$
p3. T $\wedge A \equiv A$
p4. T $V \mathrm{~A} \equiv \mathrm{~T}$
p5. $F \wedge A=F$
p6. $F \vee A=A$
ㄲ. $\sim(A \wedge B) \equiv \sim A \vee \sim B$
p8. $\sim(A \vee B) \equiv \sim A \wedge \sim B$
p9. $A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C)$
p10. $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$
p11. $(A \Rightarrow B) \equiv(\sim A \vee B)$
p12. $A \vee(A \wedge B) \equiv A$
p12. $A \wedge(A \vee B)=A$

Equality theorems

e1. $P(x) \wedge x=y=P(y) \wedge x=y$ where $P(x)$ is a formula depending on term x.

Natural number theorems
Let i, j, k denote variables of type \mathbb{N}.
no. $i=i$
n1. $i>0$
n2. $i=0 \vee i>0$
n3. $i \leq j \vee i \geq j$
n4. $i<j \vee i \geq j$
n5. $\sim(i<j \wedge i>j)$
n6. $i+j>i=j>0$
n7. $\sim(i>k)=1 \leq k$
n8. $\sim(i<k)=i>k$
n9. $1>k_{1} \wedge j>k_{2} \Rightarrow i+j>k_{1}+k_{2}+1$

List and Bag theorems

Let w_{0}, w_{1}, w_{2} vary over $\operatorname{LIST}(\mathbb{N})$, and let B_{1}, B_{2} vary over $\operatorname{BAGS}(\mathbb{N})$.
lb1. $w_{0}=w_{0}$
1b2. $\operatorname{BAG}\left(w_{0}\right)=\operatorname{BAG}\left(w_{1}\right) \quad \cup \operatorname{BAG}\left(w_{2}\right) \Rightarrow \operatorname{IG}\left(w_{0}\right)=\operatorname{IG}\left(w_{1}\right)+\operatorname{IG}\left(w_{2}\right)$
1b3. $I G\left(w_{0}\right) \leq 1 \Rightarrow O R D\left(w_{0}\right)$
lb4. $\left[\operatorname{ORD}\left(w_{1}\right) \wedge \operatorname{ORD}\left(w_{2}\right) \wedge \operatorname{ALL}\left(\operatorname{BAG}\left(w_{1}\right)\right) \leq \operatorname{ALL}\left(\operatorname{BAG}\left(w_{2}\right)\right)\right] \equiv \operatorname{ORD}\left(\operatorname{APPEND}\left(w_{1}, w_{2}\right)\right)$
135. $\operatorname{BAG}\left(\operatorname{APPEND}\left(w_{0}, w_{1}\right)\right)=\operatorname{BAG}\left(w_{0}\right) \quad \mathbf{U A G}\left(w_{1}\right)$
lb6. $\mathrm{B}_{1}=\mathrm{B}_{1}$
1b7. $\left\{i_{1}\right\} \mathbf{U}\left\{i_{2}\right\}=\left\{i_{1}, i_{2}\right\}$
lbs. $\mathrm{B}_{1} \cup \mathrm{~B}_{2}=\mathrm{B}_{2} \cup \mathrm{~B}_{1}$
1b9. $w_{1}=\operatorname{cons}\left(i_{0}, \operatorname{cons}\left(i_{1}, \ldots \operatorname{cons}\left(i_{n}, w_{2}\right) \ldots\right)\right) \Rightarrow \operatorname{BAG}\left(w_{1}\right)=\left\{i_{0}, i_{1}, \ldots, i_{n}\right\} \cup \operatorname{BAG}\left(w_{2}\right)$
lb10. $w_{0}=\operatorname{cons}\left(i_{0}, \operatorname{cons}\left(i_{1}, \ldots \operatorname{cons}\left(i_{n}, w_{1}\right) \ldots\right)\right) \equiv \operatorname{IG}\left(w_{0}\right)>n$

REFERENCES

1. Bibel, N. Syntax-directed, Semantics-Supported Program Synthesis, Art. Intell. 14(3), 1980, pp 243-262.
2. Bledsoe, W. Nonresolution theorem proving, Art. Intell. 9(1), 1977, pp 1-35.
3. Dijkstra, E.W. A Discipline of Prograrming, Prentice-Hall Inc., Englewood Cliffs, NJ, 1975.
4. Guiho, G., and Gresse, C., Program Synthesis from Incomplete Specifications, Proc. Fifth Conf. on Automated Deduction, Lecture Hotes in Computer Science, Eds. W. Bibel and R. Kowalski, Springer-Verlag, Berlin, 1980.
5. Loveland, D.W. (1978), Automated Theorem Proving: A Iogical Basis, North Holland Pub. Co., New York, 1978.
6. Manna, Z., and Waldinger, R. (1980), A Deductive Approach to Program Synthesis, ACM Trans. on Prog. Lang. 2(1), Jan. 1980, pp 90-121.
7. Nilsson, N. Principles of Artificial Intelligence, Tioga Pub. Co., Palo Alto, CA, 1980.
8. Reiter, R. (1976), A Semantically Guided Deductive System for Automatic Wheorem Proving, IEFE Trans. on Computers C-25(4), 1976, pp 328-334.
9. Smith, D.R. A Design for an Automatic Progranming System, Proc. of IJCAI-7, Vancouver, B.C, Canada, 1981, pp 1024-1027.
10. Smith, D.R. The Synthesis of Divide and Conquer Algorithms, Forthcoming technical report.
Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314
Dudley Knox Library 2Code 0142
Naval Postgraduate School
Monterey, CA 93940
Office of Research Administration 1
Code 012A
Naval Postgraduate SchoolMonterey, CA 93940
Marvin Denicoff 1
Director, ONR Information Science Program
Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217
Chaiman, Code 52Bz 40Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940
Professor Douglas R. Smith, Code 52Sc 12Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

[^0]: * The work reported herein was supported by the Foundation Research Program Tf the Naval ?ostgraduate Nchool with funds provided by the Thief of iaval Research.

