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ABSTRACT 

 Deep neural networks (DNN) are producing groundbreaking results in virtually all 

academic and commercial domains and will serve as the workhorse of future 

human-machine teams that will modernize the Department of Defense (DOD). As such, 

leaders will need to trust and rely on these networks, which makes their security a 

paramount concern. Considerable research has demonstrated that DNNs remain 

vulnerable to adversarial examples. While many defense schemes have been proposed to 

counter the equally many attack vectors, none have been successful at securing a DNN 

from this vulnerability. Novel attacks expose blind spots unique to a network’s defense, 

indicating the need for a robust and adaptable attack, used to expose these vulnerabilities 

early in the development phase. We propose a novel reinforcement learning–based attack, 

Adversarial Reinforcement Learning Agent (ARLA), designed to learn the vulnerabilities 

of a DNN and generate adversarial examples to exploit them. ARLA was able to 

significantly degrade the accuracy of five CIFAR-10 DNNs, four of which used a 

state-of-the-art defense. We compared our method to other state-of-the-art attacks and 

found evidence that ARLA is an adaptive attack, making it a useful tool for testing the 

reliability of DNNs before they are deployed within the DOD. 
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CHAPTER 1:
Introduction

1.1 Deep Learning and the DOD
If the U.S. Navy (USN) and Department of Defense (DOD) are serious about building an
enduring technological advantage over our adversaries [1], they must be willing to integrate
cutting-edge machine learning (ML) technologies into current systems and processes. ML,
in which systems extract meaning and knowledge from raw data [2], has propelled the
broader field of artificial intelligence (AI) into seemingly endless applications. One would
be hard pressed to find a field, whether academic, commercial, or medical, that ML has
not revolutionized. ML has been used to help identify automobile insurance fraud [3], to
provide early detection of cervical cancer [4], and to detect and characterize the formation
of ice on aircraft [5]. It is not the role of the ML model to make a decision in these scenarios,
only to provide the human operator with better information. By applying ML in a similar
manner, the DOD has a road map for evolving systems and processes into human-machine
teams that adhere to the principles of ethical AI [6].

While ML can encompass a broad range of models used for making predictions, a subset
known as deep learning is the driving force behind this AI summer. Unlike more simplistic
ML techniques such as linear regression modeling and support vector machines, deep
learning encompasses ML models that take advantage of deep neural networks (DNNs)
which use many hidden layers of artificial neurons to learn complex concepts through data
[2]. Though DNNs are utilized for many purposes, this thesis focuses on those specializing
in image recognition.

1.2 Trusting the Machine
For the DOD to successfully transition to human-machine teams, military and civilian
leaders must be able to trust and rely on the underlying technology. This is not a small ask
for senior leaders. Unlike human analysts, whose thought process can be understood through
dialog, there is no clear path to understanding how a DNN makes a decision based solely on

1
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data. Trust, then, must be built upon a reasonable belief that the system is resistant to attack
and that its results are consistent and reliable. Any concern regarding trustworthiness and
reliability is more than justified, because a litany of research has demonstrated that DNNs
are persistently vulnerable to adversarial examples.

An adversarial example (AE) is a benign input sample that has been malformed through
the addition of perturbations resulting in the target DNN returning incorrect output. The
purpose of an AE is to appear non-malicious while degrading the overall accuracy of
the target network, which can have severe and life-threatening consequences. Consider, for
example, autonomous driving and how crucial it is that a car does not confuse stop and yield
signs. For military commanders, if a network is not robust against adversarial examples,
trust in that system can easily be degraded and the system is disregarded for more traditional
and time-consuming analysis. Imagine a system where the DNN correctly filters out 90%
of images, leaving only 10% tagged for human review. Should that system be successfully
attacked, then the human-machine team fails, and the analyst is quickly overwhelmed by
the new workload.

1.3 Research Questions
Adversarial attack algorithms are, at their core, functions, where, given a benign input of
𝑋 , an adversarial �̂� is generated. Many attacks may require the sample’s true label (𝑦), or
the target network or some approximation of it, but they are still just functions. A certain
attack will therefore always output the same AE given a certain set of input variables.
Deep learning is not a part of the attack itself, which means that there is no ML involved
when creating adversarial examples. This algorithmic approach to generating AEs led us to
consider the field of reinforcement learning (RL), where a DNN “agent” learns to behave
optimally in a specific environment while pursuing a specific goal [7]. There have been a
flood of successes coming from the RL research group DeepMind demonstrating that RL
is capable of achieving super-human performance playing a variety of games [8]–[11]. In
simplest terms, an RL agent learns through a pattern of observing the environment, playing
an action for which it receives some reward, and then observing the subsequent state. The
agent, attempting to maximize the total rewards it receives, eventually learns the best policy
for behavior.

2
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Considering RL and the threat that adversarial examples pose to DNNs led us to our first
research question:

1) If an image is the environment, and pixel changes are playable actions, can a rein-
forcement learning agent learn to generate minimally perturbed adversarial examples?

For all the academic literature researching adversarial attacks, there is an equal amount
covering adversarial defenses: A novel attack is proposed, followed sometime thereafter by
a defense which counters it, and the cycle repeats itself. While a state-of-the-art defense
may defend against all current attacks, there is no guarantee that a defense will be able to
defend against an unknown attack. If an attack could be adaptable to any defense, it would
assist researchers and developers in staying ahead of unknown attacks. Considering attack
adaptability led us to our second research question:

2) Can a reinforcement learning-based adversarial attack be an adaptive attack?

By addressing these two questions, we blend the two fields of adversarial research and
reinforcement learning for the first time.

1.4 Adversarial Reinforcement Learning Agent (ARLA)
This research introduces the first RL–based adversarial attack. Named Adversarial Rein-
forcement Learning Agent (ARLA), our attack uses a benign sample image as a learning
environment to generate adversarial examples with the goal of finding the adversary with the
shortest ℓ2 distance from the original sample. ARLA uses double deep Q-learning (DQL),
explained in Chapter 2, with an a improved deep Q-network (DQN) agent architecture,
explained in detail in Chapters 2 and 3. Our results provide evidence that ARLA is an
adaptive adversarial attack by showing significant attack success against all five models
used for attack evaluation in this thesis. While our results are promising, more work will
need to be done to stabilize how ARLA learns the optimal behavior policy.

The intent of our research was to give the DOD an effective tool for evaluating DNNs being
developed by the armed services. Unlike other adaptive attacks which need to be tuned to a
specific defense by a technical expert, an RL-based adversarial attack might be utilized with
greater ease and minimal training. It is our hope that ARLA is such an attack, and becomes a

3
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small, but valuable step in building institutional trust in the human-machine teams deployed
as a part of future military systems.

4
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CHAPTER 2:
Background and Related Work

In this chapter, we present background material and related research and make connections
to our present work. Section 2.1 discusses convolutional neural networks and their utility
with image recognition. Section 2.2 discusses adversarial examples and the threat they pose
to deep neural networks. Section 2.3 discusses reinforcement learning, specifically deep
Q-learning.

2.1 Convolutional Neural Networks
A DNN is any neural network that has two or more hidden layers within its architecture [12].
Figure 2.1 depicts one of the most recognizable examples of a DNN, the fully connected
DNN, in which every neuron in one layer is connected to each neuron in the next. Though
fully connected architectures have proven useful when applied to complex datasets [13],
they come up short when applied to image recognition. This shortcoming is due to the
structure of the input layer, where each node is a feature of the data. When the input is
an image, each pixel becomes a feature, and the input layer quickly becomes unwieldy.
For example, MNIST digits [14] are displayed as 28x28 grayscale images, but those pixels
equate to an input layer of 728 features. More importantly, individual pixels are meaningless
when removed from the larger picture. Pixels only reveal information when aggregated, and
standard DNNs are not designed for such a task.

5
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Figure 2.1. Example of a basic fully connected DNN, where each neuron is
connected to all the neurons in the next layer. Source: [15].

Stemming from the introduction of the neocognitron in 1992, convolutional neural networks
(CNNs) addressed the problem of image recognition in deep learning [16]. Based on the
visual cortex of the human brain, a CNN extracts the most important features of an image
before classifying it. Feature extraction is done primarily with the help of two layers unique
to CNNs: convolution and pooling layers. Convolutional layers create a convolved feature,
or feature map, which is the product of a kernel filter sliding over the input. This process is
best understood by envisioning an image as a large grid, where each cell represents a pixel
value and the kernel filter as a smaller grid where each cell represents a weight. As the
filter traverses the image, it performs a computation on the pixels within its receptive field
to produce a single value within the feature map [12].

Figure 2.2 depicts a simple example of this process, with three important points to note:
First, the filter is using a stride length of one, meaning that the filter only shifts by one
pixel with each iteration. Second, this example has no padding, meaning that the output is
smaller than the input. In certain cases, padding the output leads to better performance of the
model. Third, this example is only for a single-channel image, meaning it is color-mapped

6

_________________________________________________________
NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



in grayscale. A three-channel red, green, and blue (RGB) image would need a matching
three-channel filter, one for each color, but would still result in the same output.

Figure 2.2. Process of creating a feature map of a 5x5 image using a 3x3
kernel filter, with a stride of 1 and no padding. Adapted from [17].

Following the application of one or more convolutional layers, a pooling layer reduces
the dimensions of the image through subsampling. Reducing the dimensions of the output,
typically in half, reduces the computational load, memory usage, and model parameters [12].
Pooling can be accomplished by taking either the max value or average of the pooling kernel.
In Figure 2.3, we see a 2x2 pooling kernel reducing the input by half using either max or
average operations.
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Figure 2.3. Pooling with a 2x2 kernel using either max or average operations.
Source: [18].

Using any number of convolution and pooling layers, depending on the architecture of the
model, the output is then transformed for the classification head of the model. In Figure 2.4,
this transformation is taking place when the output from the last pooling layer is flattened
and then fed into a fully connected network. The final layer has an output shape that matches
the number of predictable classes.

Figure 2.4. Convolutional neural networks extract features from an image,
which are then fed into a deep neural network that returns an output of class
probabilities. Source: [17].
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2.2 Adversarial Examples
As powerful as CNNs are, they have proven quite vulnerable to malformed input. First
described by Szegedy et al. [19], an AE is an image to which non-random perturbation
(noise), indistinguishable to the human eye, is added to maximize the likelihood of that
image being misclassified by a trained DNN. The goal of an AE is that the predicted label
(�̂�) does not match the true label (𝑦). Figure 2.5 depicts an adversarial example generated
by the Fast Gradient Sign Method, which will be discussed later in this chapter. Two
common attack methodologies for generating AEs are gradient optimization and constrained
optimization. Gradient optimization attacks calculate the noise for each pixel based upon
its gradient value, whereas constrained optimization attacks minimize perturbations by
optimizing some similarity metric. All adversarial attacks, regardless of the overarching
methodology they belong to, can be classified by the transparency of the method, and the
specificity of the desired misclassification.

Figure 2.5. Example of how Fast Gradient Sign Method quickly generates
an adversarial example. Source: [20].

Attack Transparency and Specificity
A white box attack is considered transparent because the attacker has direct access to
the model they intend to attack along with detailed information such as its architecture,
weights, output logits, and class probabilities. As such, the attacker may generate adversarial
examples to attack the target model directly. Black box attacks are non-transparent. Without
access to the target model, the attacker must instead generate adversarial examples on an
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approximate DNN first. Then, those examples must be transferred to the target DNN to carry
out the attack. Certain attacks are designed specifically as black box attacks, such as the
Square attack, which only needs access to the output of the target DNN to craft adversarial
perturbation [21]. Since black box attacks are first generated on a surrogate model, they
generally have a much lower success rate when attacking the target model compared to their
white box equivalents, though not always [21].

Specificity refers to whether an attack is attempting to induce the target model to misclassify
an image as a specific (target) class, or as any (non-targeted) class. Where non-targeted
attacks only require that the model’s prediction differs from the truth label (�̂� ≠ 𝑦), targeted
attacks are only considered successful when the model predicts some specific class targeted
by the adversary (�̂� = 𝑦𝑡𝑎𝑟𝑔𝑒𝑡). As one would expect, targeted attacks in general have a lower
success rate than their non-targeted equivalents.

2.2.1 Adversarial Attacks
For our research, we compared six well-known attacks to our novel method: Fast Gradient
Sign Method, Projected Gradient Descent, DeepFool, Square, Carlini-Wagner ℓ2, and Auto
attack.

Fast Gradient Sign Method (FGSM)
One of the earliest proposed attacks, FGSM was designed to quickly produce adversarial
examples [20]. FGSM generates adversarial noise by first calculating the gradient map of
the image with respect to the cost function (∇𝑥𝐽 (\, 𝑥, 𝑦)) and then multiplying the signs of
those gradients by some noise parameter, 𝜖 [20]. The adversarial example, �̂� , is created by
adding the noise map to the original image, such that

�̂� = 𝑋 + 𝜖 𝑠𝑖𝑔𝑛(∇𝑥𝐽 (\, 𝑋, 𝑦)).

FGSM-generated adversarial examples are non-optimal with regards to the distance metric.
The name of the game with FGSM is speed, not optimization.
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Projected Gradient Descent (PGD)
Best understood as a multi-step variation of FGSM, the PGD attack described in Madry
et al. [22] can quickly find robust adversaries which are bound by either ℓ∞ or ℓ2 distance
metrics. For ℓ∞-bound adversaries, PGD first samples one or many times from the ℓ∞-
ball of the original image. With a small step size 𝛼, PGD then ascends the gradient to
maximize loss for non-targeted attacks or descends the gradient to minimize loss for targeted
attacks. Perturbation is clipped by 𝜖 after every step to enforce the ℓ∞ bound. Through this
method of projecting off the manifold by introducing noise to the benign image followed by
multiple bounded steps, PGD can better constrain perturbations while finding more effective
adversarial examples better than FGSM.

DeepFool
The DeepFool attack, proposed by Moosavi-Dezfooli et al. [23], was originally designed to
generate ℓ2-bounded adversaries, but later altered to fit any ℓ𝑝 metric. Strictly a non-targeted
attack, DeepFool makes an approximate calculation of the minimum distance to the nearest
adversarial class and uses an adaptive step size to reach it [23]. Since this calculation is only
an approximation, there is no guarantee that the perturbations introduced to �̂� are optimal.
However, this greedy approach yields very small perturbations that are good approximations
of the optimum [23].

Square Attack
Strictly black box, the Square attack is a score-based non-targeted attack that can adhere to
either ℓ∞ or ℓ2 constraints. Instead of relying on gradient information to generate adversarial
noise, it finds minimal perturbations through randomized search at the approximate decision
boundary for the proposed set of classes [21]. Importantly, these characteristics make Square
impervious to gradient masking as a defensive technique. Compared to similar state-of-the-
art black box attacks, the Square attack increases query efficiency by a maximum factor of
three against various ImageNet classifiers [21]. Even more impressive, it has outperformed
certain gradient-based white box attacks.
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Carlini-Wagner ℓ2 Attack
Carlini and Wagner [24] outlined a suite of attacks that optimize the perturbations for a
sample based on various distance metrics (ℓ0, ℓ2, and ℓ∞). By addressing the attack as an
optimization problem, where the objective is to minimize the amount of adversarial noise
while maximizing the loss between a model’s prediction and target label, Carlini-Wagner
attacks are capable of creating highly robust adversaries with minimal perturbations [24].
When compared with other gradient-based attacks, Carlini-Wagner AEs demonstrate a
higher success rate while remaining closer to the benign original with regard to distance.
This research exclusively used the ℓ2 attack.

Auto Attack
The Auto attack is not a single attack but an ensemble of attacks used as a comprehensive
approach to evaluating the robustness of a trained DNN. First, it uses a novel method of
implementing PGD, called Auto PGD, which utilizes an adaptive method for better deter-
mining the number of 𝑘 steps to take [25]. Second, the Auto Attack iterates through multiple
attacks (Auto PGD, DeepFool, Square, etc.) in an attempt to induce misclassification of as
many benign samples as possible across the ensemble [25].

2.2.2 Adversarial Defenses
This research utilizes a variety of adversarial defenses to compare the performance of our
RL attack methodology to those just discussed.

Adversarial Training
Perhaps the simplest defense, adversarial training adds adversarial examples to the training
set, each with the associated true label. Once trained, the network will be more likely to
predict the correct class of an adversarial example. Easy to implement, this approach has a
multitude of weaknesses. First, adversarial training can only defend against known attacks
and is still susceptible to unknown attacks. Second, a well-defined training set would need
to include an adversary for each image per known attack, and to be truly robust it would
need to contain multiple adversaries for every benign sample, each derived from a unique
perturbation bound. Given the breadth of attacks available, this strategy is not reasonable.
Our research implemented adversarial training using PGD adversaries.
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Gradient Regularization
Research has suggested that AEs exist at the edge of the decision boundary between classes,
where small pixel changes are enough to push an image into the incorrect class [26].
Gradient regularization addresses this vulnerability by penalizing a DNN during training
when small differences in pixel values lead to dramatic increases in loss [27]. That is,
gradient regularization seeks to protect the network from minimally perturbed AEs by
reinforcing the decision boundary for each class. While gradient regularization has not
proven to be particularly effective against white box attacks, it has demonstrated robustness
against black box attacks.

TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization (TRADES)
When training a network to defend against adversarial examples, there is a known but
poorly understood trade-off between adversarial robustness and model accuracy. That is,
when adversarial robustness is strong, accuracy tends to suffer, and vice versa. Winner
of the NeurIPS 2018 Adversarial Vision challenge, TRADES offers a defensive technique
that balances these competing goals by tightly bounding the robust error of a model. This
balancing can be accomplished by decomposing the error into two parts: 1) a natural error
and 2) a boundary error [28]. By regularizing both of these terms through the surrogate loss
function, natural accuracy is promoted while the decision boundary is pushed away from
the data, providing adversarial robustness [28].

PadNet
Proposed by Barton et al. [29], PadNet is unique relative to other defenses in two key
areas: First, PadNet incorporates into the mode a padding class designed to detect likely
AEs. In practical terms, if a network is designed for 𝑛 number of classes, the padding
class is 𝑛 + 1. Training the padding class is similar to adversarial training but is refined
by adding AEs generated from a mix of benign and PGD adversaries. This technique adds
boundary padding to the model that is used to better define valid classes and remove
decision space, which adversarial attacks might exploit. Second, PadNet further refines the
decision boundary around valid classes by incorporating targeted gradient regularization
to penalize gradients in the direction of the barrier class [29]. Again, this defense feature
is important, as minimally perturbed adversarial examples are found at the edge of the
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decision boundary for the incorrect class [26]. By combining boundary padding and targeted
gradient regularization, PadNet has demonstrated remarkable resilience to a variety of attack
methodologies [29].

2.3 Reinforcement Learning
Unlike other attacks, our novel method uses reinforcement learning to generate adversarial
examples. As a field of research, reinforcement learning (RL) is concerned with learning
behavior, mapped to a situation, in service of achieving a goal [7]. Examples of RL in
action range from the simple, such as a smart thermostat learning to efficiently regulate
temperatures [30], to the wildly complex task of air-to-air combat [31]. Unlike supervised
learning, in which a network has access to the correct answer in the form of labeled data, or
unsupervised learning, in which the DNN is seeking to find structure in unlabeled data, RL
DNNs, or agents, learn through some form of observe-act-reward loop meant to reinforce
behavior that returns the highest rewards [7]. Implemented correctly, RL agents can often
learn to outperform human experts, without having prior human knowledge [9]–[11].

2.3.1 RL Structure and Training
To discuss the key elements and terminology of RL, let us take the example of trying to
train an agent to play the game Pac-Man [32]. In this scenario, the agent is the DNN playing
as the Pac-Man character, and the environment is the game maze, to include pellets, fruit,
and ghosts. Training takes place over the course of many episodes, which to the observer
is a single game played to completion, win or lose. At each time step, or simply step, the
environment presents the agent with a state, which contains the current position of the agent,
obstacles, and game elements. For this training example, there is no limit to the number of
steps for a game, but this may not be the case for environments where speed could be an
element of success. Given the state, the agent will predict and play the best action based on
its current policy for playing. The total number of actions available to the agent is called
the action space, which in this case is discrete (four actions: up, down, left, right) but may
be continuous in other cases (as in the power output to a drone motor). Once an action is
played, the environment evaluates the action and returns a reward, which signals how well
an action performed for that specific state. The episode is over when the agent has reached
a terminal state, which may be when all pellets and fruit have been consumed (success) or
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when the agent runs out of lives (failure). At the end of an episode, training will occur to
update the target policy, and if training is not complete, the environment will reset for the
next episode.

The generalized learning regimen of an agent is graphically summarized in Figure 2.6:

Figure 2.6. Basic observe-act-reward loop used with reinforcement learning.
1) Environment presents its current state (𝑠𝑡) to the agent for observation.
2) Agent uses behavior policy to predict and play the best action for the
current state. 3) Environment returns a reward for the played action (𝑟𝑡)
and the next state (𝑠𝑡+1). Repeat steps 1–3 until terminal phase or max time
steps reached. 4) Agent updates policy in an effort to maximize rewards.
5) Environment resets if there are more training episodes, else the program
terminates. Adapted from [7].

On-Policy versus Off-Policy Algorithms
When discussing agent policies, we need to understand the distinctions between the behavior
and target policies mentioned above. The target policy represents the optimal policy that
the agent is trying to learn, while the behavior policy is what it uses to select actions.
For on-policy algorithms, the policies are the same. For off-policy algorithms, the policies
are distinct, and the behavior policy is updated less frequently than the target. Off-policy
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algorithms tend to do better at exploring the environment, which can lead to a better target
policy. The tradeoff between exploration versus exploitation is discussed in more detail in
section 2.3.2.

On the Importance of Rewards and Future Rewards
As rewards are arguably the most critical part of RL, let us briefly return to the reward
function and its impact on agent learning. With RL a “best action” must be defined in
the context of immediate versus future rewards. Since “best” is therefore relative to the
task, the reward function needs to be carefully designed to reinforce only good behaviors.
With RL, the emphasis is on accomplishing the objective or goal, and not simply teaching
specific actions, since it is the job of the agent to learn potentially unexpected strategies for
optimizing a task [7]. Depending on the environment and the task, the best reward function
can range from simple to complex. For our Pac-Man example, a sparse reward might be
+1 point for every time step survived, with the goal being to maximize time steps played.
However, this strategy may be too simplistic and may train a policy that prioritizes longevity
over game completion. A more complex reward signal may be to give +1 for pellets, +5 for
fruit, and -5 for dying.

Almost as important as the reward function itself is the discount factor (𝛾) used for evaluating
the importance of future rewards. Represented as a continuous value between 0 and 1, the
discount factor determines how much emphasis is put on future versus immediate rewards.
Values closer to 1 indicate that the agent should heavily weight future rewards, encouraging
the agent to perhaps forgo immediate but small rewards for large rewards in the future. Low
𝛾 values signal to the agent that the immediate reward is the most important.

In the next sections, we will discuss the method of reinforcement learning used in this
research.

2.3.2 Q-learning with Deep Neural Networks
Described in the 1950s by mathematician Richard Bellman [12], Markov decision processes
(MDP) describe the means by which an agent can choose one of many possible actions, and
by receiving some reward, reinforce behavior that will maximize its performance (evaluated
by overall reward). Derived from Markov chains, which have no memory of past states, MDP
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transition probabilities only rely on the current and next possible state (𝑠𝑡 , 𝑠𝑡+1). Figure 2.7
shows a simple example of an MDP represented as a state diagram [12].

Figure 2.7. Example of a Markov decision process. Source: [12].

Q-learning
Derived from MDP, Q-learning assumes that all initial transition probabilities and associated
rewards are unknown, and therefore must be explored [12]. Without any knowledge about
the goal or proper behavior, an agent must first play randomly to learn the value of state-
action pairs, represented as 𝑄(𝑠, 𝑎). The Q-learning algorithm is expressed with Equation
2.1, which states that the Q-value of each state action pair is computed from the reward of
that state-action pair plus discounted future rewards expected [12].

𝑄(𝑠, 𝑎) ←
𝛼
𝑟 + 𝛾 · 𝑚𝑎𝑥

𝑎′
𝑄(𝑠′, 𝑎′) (2.1)

Exploration vs. Exploitation
Recall that initially an agent has no knowledge about its environment and all the possible
state-action pairs that exist within it. For the agent to be able to eventually exploit the
environment, it first has to adequately explore it, typically through random actions [7], [12].
While this concept seems simple enough, each action must be played for one particular
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state for the agent to get a good approximation of the reward it can expect. Extrapolate that
pattern over all possible states and it becomes clear that such a task will be computationally
expensive and require extremely long periods of training. One solution to the exploration-
exploitation dilemma is to use an Y-greedy policy, where Y is the probability of acting
randomly, and 1-Y is the probability of the agent predicting the greedy action using its
current behavior policy. At the start of training, Y will be 1, meaning that all actions are
random. As time progresses, Y will slowly decay towards some minimum value, such as
0.01. The Y-greedy policy allows the agent to almost exclusively explore the environment
early in training and then gradually transition to exploitation [12]. For example, an Y of 0.6
means that 60% of actions in an episode will be random choice, with the remaining 40%
chosen by the behavior policy. To avoid confusion with AE nomenclature, where Y refers
to the noise found in an adversary, we simply use the term Y-greedy (Y𝑔) to refer to the
exploration-exploitation probability.

Deep Q-learning with Deep Q-networks
Though the theory behind Q-learning is sound, its greatest drawback is that it does not
scale well to environments with complex MDPs. DeepMind showed that this problem could
be solved by combining Q-learning with deep learning [8]. This approach is called deep
Q-learning (DQL) and uses a specialized DNN referred to as a deep Q-network (DQN).

An important feature of DQL is the use of experience replay, which allows the DQN to
learn from prior experiences. An experience is defined as the tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1), where
𝑠𝑡 is the state at time step 𝑡, 𝑎𝑡 is the played action for that step, 𝑟𝑡+1 is the returned reward,
and 𝑠𝑡+1 is the subsequent state. For each time step 𝑡, an experience is saved to the replay
memory. At the training step, the DQN will randomly sample a mini-batch of experiences to
train the target policy. Deep Q-learning is an off-policy algorithm, as it requires a behavior
policy that allows for environment exploration (such as Y-greedy).

The DQL algorithm calculates the target Q-value to use when training the DQN [12], and
can be expressed as

𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠, 𝑎) = 𝑟 + 𝛾 · 𝑚𝑎𝑥
𝑎′

𝑄\ (𝑠′, 𝑎′). (2.2)

While equation 2.2 shares many similarities with the original Q-learning algorithm (equation
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2.1), the future rewards are only an expectation based on the policy of the agent at that
time. While this method has proven capable of learning to exploit a given environment,
the drawback was that a single target network often overestimates Q-values. DeepMind
addressed this issue by proposing a variation to DQL - double Q-learning.

Double DQN
DeepMind researchers found that using a single target network, represented as \𝑇 in equation
2.3, for evaluating both action selection and action evaluation when calculating the Q-
learning error often resulted in overestimating Q-values [33].

𝑌
𝑄
𝑡 = 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, arg max

𝑎

𝑄(𝑆𝑡+1, 𝑎; \𝑇 ); \𝑇 ) (2.3)

A solution was discovered by decoupling the action selection and evaluation functions and
assigning them to separate DQNs, which in practice is referred to as double DQN. An online
model would be responsible for action selection using the greedy policy, while a target model
would evaluate the overall policy. The double Q-learning error is shown in Equation 2.4,
where the online and target models are represented as \𝑇 and \′

𝑇
, respectively [33].

𝑌
𝐷𝑜𝑢𝑏𝑙𝑒𝑄
𝑡 ≡ 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, arg max

𝑎

𝑄(𝑆𝑡+1, 𝑎; \𝑇 ); \′𝑇 ) (2.4)

Another important distinction between the online and target models is the manner in which
their weights are updated. Since the online model is the policy the agent uses for its action
selection, the weights are updated with each training step. However, this is not the case
for the target model, which is evaluating the online policy. By only periodically updating
the weights for the target model with those of the online model, the evaluation function
is stabilized, which leads to increased performance [33]. Figure 2.8 depicts how the two
DQNs work in tandem to stabilize learning.
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Figure 2.8. Double DQN. Source: [34].

Dueling DQN
Shortly after the publication of double DQN, DeepMind introduced the dueling deep Q-
network (DQN) (DDQN) architecture, depicted in Figure 2.9. This dueling architecture
shares the same convolutional layers but separate estimator networks: one for learning
state values and another for learning action-advantages [35]. These two networks are then
aggregated to produce the Q-values for a given state.

Figure 2.9. Dueling DQN architecture below traditional DQN. In the DDQN
the state-value and action-advantages are calculated in separate networks
and then aggregated. Source: [35].
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The benefit of this approach is that by using separate estimators, DDQN does a better job of
learning which states are irrelevant to the goal, meaning that it does not have an appreciable
effect regardless of the action played [35]. This leads to more generalized learning, which
results in better policy evaluation for states where all actions produce similar results.

2.4 Summary
In this chapter, we discussed the value of convolutional neural networks to deep learning,
specifically image and object recognition. As powerful as they are, convolutional neural net-
works are highly susceptible to attacks from malformed input images, known as adversarial
examples. We briefly described the adversarial attacks and defenses used for comparison
in this research. Finally, we discussed reinforcement learning, and more specifically deep
Q-learning and deep Q-networks, which power our attack.
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CHAPTER 3:
Methodology

In this chapter, we describe the research methodology and experiment design used for this
thesis. Section 3.1 reviews terminology used in this research. Section 3.2 is a generalized
discussion of our method, an ARLA. Section 3.3 discusses the dataset used to form ad-
versarial examples in this research. Section 3.4 discusses ARLA’s learning environment.
Section 3.5 discusses the Y-greedy policy used to determine if ARLA is going to explore
or exploit the environment. Section 3.6 discusses our reward function and approach for
determining correct behavior. Section 3.8 covers our experiments for comparing ARLA to
other well-known attacks.

3.1 Terminology
The following is a review of terminology used in our research.

• 𝛼: ARLA pixel noise per step (Section 3.2)
• Y-greedy: exploration-exploitation probability
• 𝛾: discount factor for future rewards
• Y: ℓ2 bound for noise in adversarial example
• 𝐶: Confidence of adversarial examples, lower number results in AE closer to original

3.2 A Reinforcement Learning Approach
We propose an Adversarial Reinforcement Learning Agent (ARLA) as a means of generating
minimally perturbed adversarial examples. As an agent, ARLA is a double dueling deep
Q-network (DQN) (D3QN), as described in Section 2.3.2. Figure 3.1 illustrates the dueling
architecture used for both the online and target models.
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Figure 3.1. Dueling DQN architecture used for ARLA models. Environment
consists of color and gradient map channels. Adapted from [36].

ARLA’s goal is to interact with an image to learn adversarial perturbations. It does so by
traversing the 2D image space much like a Pac-Man agent would traverse a 2D grid. At
any given state, the ARLA agent occupies a single pixel location. A state transition occurs
when the agent takes one action from the following action space: move_up, move_down,
move_left, move_right, change_pixel. For an image with three color channels red, green, and
blue, the change_pixel action is extended to include change_red, change_green, change_blue
making a total of seven actions in the action space. Pixel changes are based upon the sign
of the gradient for that pixel multiplied by some noise parameter, 𝛼. The major difference
between non-target and target attacks is the label ARLA uses to generate the gradient maps
and the direction of the change for that pixel. For the non-targeted attack, the gradient is
calculated with the true label, and the change ascends the gradient in order to maximize
loss between the input image and the truth label. The targeted attack takes the opposite
approach, where the gradient is first calculated by the target label, and the change descends
the gradient to minimize loss between the input image and the targeted label. Equations 3.1
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and 3.2 represent these non-target and target methods, respectively.

𝑁𝑜𝑛 − 𝑇𝑎𝑟𝑔𝑒𝑡 : 𝑝𝑖𝑥𝑒𝑙𝑛𝑒𝑤 = 𝑝𝑖𝑥𝑒𝑙𝑜𝑙𝑑 + (𝛼 · 𝑠𝑖𝑔𝑛(∇𝑥 ( 𝑓 (𝑥), 𝑦𝑡𝑟𝑢𝑒))) [𝑝𝑖𝑥𝑒𝑙𝑖𝑛𝑑𝑒𝑥] (3.1)

𝑇𝑎𝑟𝑔𝑒𝑡 : 𝑝𝑖𝑥𝑒𝑙𝑛𝑒𝑤 = 𝑝𝑖𝑥𝑒𝑙𝑜𝑙𝑑 − (𝛼 · 𝑠𝑖𝑔𝑛(∇𝑥 ( 𝑓 (𝑥), 𝑦𝑡𝑎𝑟𝑔𝑒𝑡))) [𝑝𝑖𝑥𝑒𝑙𝑖𝑛𝑑𝑒𝑥] (3.2)

During the course of this research, a third attack was considered, which will be referred
to as the hybrid attack. While being a non-targeted attack, the hybrid attack combines the
gradient calculation and pixel change of the target attack with the success condition of the
non-target attack (�̂� ≠ 𝑦𝑡𝑟𝑢𝑒). In another words, ARLA drives towards a target label but stops
as soon as it classifies to any incorrect label. This allows ARLA to find distinct adversarial
example space that would not be found using our targeted or non-targeted approach.

During the course of an episode, ARLA saves an experience, (𝑆𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑆𝑡+1), for each
time step to a fixed-size replay memory. The replay memory uses a simple deque data
structure, which is first in, first out, so newer experiences push out older ones. Once the
replay memory has filled to a certain number of episodes, training occurs after each episode
with a randomly sampled mini-batch of experiences.

3.3 Image Dataset
To generate adversarial examples, we chose the CIFAR-10 dataset [36], which is well known
in image classification and adversarial research. Images in this dataset have dimensions of
32x32x3 (color) and belong to ten classes. An example of each class can be seen in Figure
3.2. Pixel values are normalized between 0.0 and 1.0.
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Figure 3.2. Example of each class within the CIFAR-10 dataset. From top
left to bottom right: airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck. Adapted from [36].

3.4 Learning Environment
Built using the OpenAI Gym API [37], ARLA’s environment requires two major compo-
nents - a classifier network and a benign image. In the context of this learning environment,
the classifier network is not necessarily the target network, which we are ultimately trying
to attack. For a white box attack, yes, the classifier network is the target network. However,
in the case of a black box attack where the target network is hidden, the classifier network
is just the best approximation of the real-world target. In this research, black box target
networks share the same architecture as their white box counterparts, but with different
weights.

Using the benign image and classifier network, the environment creates six channels, which
can be considered as two distinct sets. The first set consists of the RGB color channels of
the image, and the second set consists of the gradient channels calculated by the classifier
network for each color channel. This process is illustrated with Figure 3.3. Each time ARLA
adds noise to a pixel, the environment state is updated to reflect the new gradient values.
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Figure 3.3. Creation of ARLA environment using benign image and target
network. Adapted from [36].

3.5 Epsilon-Greedy Policy
To find the middle ground between exploration and exploitation within the environment,
ARLA uses a simple Y-greedy policy for determining the action to play. Algorithm 1 outlines
this policy. For each step, a random number between 0 and 1 is generated (line 1). If that
number is less than the Y-greedy value, then action is chosen at random, otherwise the
action is predicted by the online model for the given state (lines 2-5).
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Algorithm 1 Epsilon-Greedy Policy
Variables
𝑆 environment state
𝐴𝑂 ARLA Online Model
Y𝑔 Y-greedy value
Functions
𝑟𝑎𝑛𝑑𝑜𝑚() returns random float between 0 and 1
𝑟𝑎𝑛𝑑𝑖𝑛𝑡 (𝑖) returns random integer between 0 and 𝑖 exclusive
𝐴𝑂 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑆) 𝐴𝑂 predicts action based on state
1: function 𝑒𝑔_𝑝𝑜𝑙𝑖𝑐𝑦(𝐴𝑂, 𝑆, Y𝑔)
2: 𝑟𝑎𝑛𝑑 ← 𝑟𝑎𝑛𝑑𝑜𝑚()
3: if 𝑟𝑎𝑛𝑑 < Y𝑔 then
4: 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡 (7)
5: else
6: 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐴𝑂 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑆)
7: end if
8: return 𝑎𝑐𝑡𝑖𝑜𝑛

3.6 Reward Function
A common theme in reinforcement learning is carefully crafting the reward function to
reinforce good behaviors. For ARLA, “good” behavior was envisioned as rewarding minimal
pixel changes that led to large loss values, which would result in an image being misclassified
with only minimal perturbation. A good reward function would be one where a successful
adversarial example with the highest score also has the shortest ℓ2 distance from the benign
original.

Algorithm 2 outlines our approach to this problem. We used a parameterized loss threshold
to differentiate between good and bad pixel changes. For pixel changes that generate a high
level of loss, the 𝑛𝑒𝑤_𝑙𝑜𝑠𝑠 will be much greater than the 𝑜𝑙𝑑_𝑙𝑜𝑠𝑠, resulting in a loss ratio
greater than 1. Therefore, if the ratio is greater than the threshold (we used 1.001) we can
say that the pixel change was a good action. We then multiply the threshold decimal by
1,000 to scale the reward to the amount of loss incurred (greater loss = greater ratio =
greater reward). Likewise, if the loss ratio fell below that threshold, that pixel change was
considered a bad action and received a fixed negative reward (-4). In an attempt to neither
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punish nor reward movements which are necessary to explore the environment to find the
most meaningful pixels, our reward function is only called when a pixel is changed. Agent
movements (up, down, left, right) automatically receive a score of 0.

Algorithm 2 Calculate Reward
Variables
𝐴 𝑦 probability
𝐵 �̂� probability
𝐶 success_bonus
𝑑𝑜𝑛𝑒 boolean
1: function Reward(𝐴, 𝐵, 𝐶, 𝑑𝑜𝑛𝑒)
2: 𝑛𝑒𝑤_𝑙𝑜𝑠𝑠 = 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴, 𝐵)
3: 𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 =

𝑛𝑒𝑤_𝑙𝑜𝑠𝑠
𝑜𝑙𝑑_𝑙𝑜𝑠𝑠

4: if 𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 >= 1.001 then
5: 𝑟1 = 𝑟𝑜𝑢𝑛𝑑 (𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 − 1)
6: 𝑟1 = 𝑖𝑛𝑡 (𝑟1 ∗ 1000) + 1
7: else
8: 𝑟1 = −4
9: end if

10: 𝑜𝑙𝑑_𝑙𝑜𝑠𝑠← 𝑛𝑒𝑤_𝑙𝑜𝑠𝑠
11: 𝑟2 = 𝑑𝑜𝑛𝑒 ∗ 𝐶
12: 𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑟1 + 𝑟2
13: return 𝑟𝑒𝑤𝑎𝑟𝑑

14: end function=0

3.7 ARLA Algorithm
Now that we have covered all the individual components of ARLA, we can construct a
holistic view of our approach. Algorithm 3, adapted from the double DQN algorithm [33],
decomposes ARLA’s method for generating adversarial examples during its training loop.
First, ARLA’s online model is instantiated (line 1) with the architecture discussed in Section
3.2. The target model is a direct copy of the online model (line 2), to include the weights.
Replay memory is instantiated using a deque data structure, where 𝑁_𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑠 is the
maximum number of experiences the memory can hold (line 3). As described in Section
3.4, ARLA’s environment is instantiated using a original image (𝑋), the true label (𝑦), the
classifier network being attacked (𝐶), and a categorical crossentropy loss object (𝐶𝐶𝐸)
used for calculating the reward, as defined in Section 3.6 (line 4). The outer for loop
iterates through a total of 𝑁_𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠, where each episode starts with the initial state, and
calculates the Y-greedy value (Y𝑔) for that episode (lines 5-7). The inner for loop iterates
through 𝑁_𝑆𝑡𝑒𝑝𝑠, where actions are played within the environment until an adversarial
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example is found or the total number of steps have been played. Within this for loop, an
action is first derived through the Y-greedy policy, defined previously with Algorithm 1
(line 9). The action is played in the environment, which returns the next state, the reward,
and a boolean value 𝑑𝑜𝑛𝑒, which represents whether an adversary was found (line 10). The
state, action, reward and next state are then stored in the replay memory as a tuple (line
11). The next state is now the current state for the next step (line 12). If 𝑑𝑜𝑛𝑒 is true, then
the RGB channels of the state are saved as an adversarial example and the episode is over
(line 13-14). If enough episodes have elapsed, then a batch of experiences is sampled from
the memory (line 18). The target Q value is calculated, as described with Figure 2.8 and
Equation 2.4, and a gradient descent step is performed on ARLA’s online model (lines
19-20). The target model weights are then updated incrementally using some percentage of
the online model weights (line 21). For our research we used 𝜏 = 0.99.

3.8 Experiments
As this research was centered on generating minimally perturbed adversarial examples,
our experiments were designed to compare ARLA’s success rate against six well-known
attacks, discussed in Section 2.2.1: FGSM, PGD, DeepFool, Carlini-Wagner ℓ2, Square, and
Auto attack. To ensure consistency and correctness of our comparison methods, we used
the Adversarial Robustness Toolbox (ART) [38] for adversary generation. Parameters for
both ARLA and ART attacks are covered in Table 3.1. For benign samples we used the
first 100 images of the CIFAR-10 test set. ARLA was trained on a given benign image for
100 episodes, and the AE with the shortest ℓ2 distance was saved for comparison with other
attacks. At the end of those 100 episodes, ARLA was reinitialized with new weights and a
new environment for the next image.

For target networks, we used seven variations of a Wide Residual Network (WRN) [39]
model, each trained with a different style of defense, described in Section 2.2.2: 1) un-
defended, 2) Projected Gradient Descent (PGD) Adversarial Trained (PGDAT), 3) Gra-
dient Regularization, 4) TRADES, and 5) PadNet. White box attacks are straightforward
enough—the target network is loaded into ARLA’s environment, as outlined in Section 3.4,
with those resulting adversaries used to attack the same network. For black box attacks, we
used the same adversaries but attacked a similar network. “Similar” in this case is defined

30

_________________________________________________________
NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



Algorithm 3 ARLA
Variables
𝑋 original image
𝑦 true label for 𝑋
𝑆𝑡 current state
𝑆𝑡+1 Next state
𝐴𝑂 ARLA online model
\ ARLA online model weights
𝐴𝑇 ARLA target model
\𝑇 ARLA target model weights
𝐶 classifier network
𝐶𝐶𝐸 Categorical Crossentropy
𝑅𝑀 replay memory
𝜏 Update parameter \𝑇
Functions
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 (𝑋, 𝑌, 𝐶, 𝐶𝐶𝐸) creates ARLA environment
𝑀𝑆𝐸 (𝑄∗, 𝑄 \ ) Mean squared error between target and predicted Q values
𝐷𝑜𝑢𝑏𝑙𝑒_𝐷𝑄𝑁 (𝐴𝑂, 𝐴𝑇 , 𝑏𝑎𝑡𝑐ℎ) Defined with Equation 2.4
1: 𝐴𝑂 ← 𝑑𝑢𝑒𝑙𝑖𝑛𝑔_𝑑𝑞𝑛()
2: 𝐴𝑇 ← 𝑐𝑜𝑝𝑦(𝐴𝑂)
3: 𝑅𝑀 ← 𝑑𝑒𝑞𝑢𝑒(𝑁_𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑠)
4: 𝑒𝑛𝑣← 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 (𝑋, 𝑦 , 𝐶, 𝐶𝐶𝐸)
5: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 in 𝑁_𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do
6: 𝑆𝑡 ← 𝑒𝑛𝑣.𝑟𝑒𝑠𝑒𝑡 ()
7: Y𝑔 ← max(1− 𝑒𝑝𝑖𝑠𝑜𝑑𝑒

𝑁_𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠
, 0.01)

8: for 𝑠𝑡𝑒𝑝 in 𝑁_𝑆𝑡𝑒𝑝𝑠 do
9: 𝑎𝑡 ← 𝑒𝑔_𝑝𝑜𝑙𝑖𝑐𝑦(𝐴𝑂, 𝑆𝑡 , Y𝑔)

10: 𝑆𝑡+1, 𝑟𝑡 , 𝑑𝑜𝑛𝑒 ← 𝑒𝑛𝑣.𝑠𝑡𝑒𝑝(𝑎𝑐𝑡𝑖𝑜𝑛)
11: 𝑅𝑀.𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑆𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑆𝑡+1))
12: 𝑆𝑡 ← 𝑆𝑡+1
13: if 𝑑𝑜𝑛𝑒 then
14: save (𝑆𝑡 [𝑟, 𝑔, 𝑏]) and break
15: end if
16: end for
17: if episode >= training_start then
18: 𝑏𝑎𝑡𝑐ℎ← 𝑅𝑀.𝑠𝑎𝑚𝑝𝑙𝑒(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒)
19: 𝑄∗ (𝑆𝑡 , 𝑎𝑡 ) ≈ 𝑟𝑡 + 𝛾𝑄 \ (𝑆𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎

𝑄(𝑆𝑡+1, 𝑎𝑡 ; \); \𝑇 )
20: Perform gradient descent step on 𝑀𝑆𝐸 (𝑄∗, 𝑄 \ )
21: \𝑇 ← (𝜏 ∗ \𝑇 ) + ((1 − 𝜏) ∗ \)
22: end if
23: end for

as sharing the same architecture but with different weights.
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Table 3.1. Attack parameters for ARLA and ART attacks. It is important
to note that for ART parameters, “Confidence” is exclusive to the Carlini-
Wagner attack, and “Max_iter” is exclusive to the Square attack.

ARLA Parameters
Total Episodes 100 Batch Size 32

Steps per Episode 500 Training Steps 1
𝜶 0.031 Training Start 10
𝜸 0.95 Loss Function MSE

Memory Size 20,000 Learning Rate 0.006
ART Attack Params

𝜺 0.5 Norm 2
Confidence 0 Max_iter 5,000

3.9 Summary
In this chapter, we discussed our methodology and line of experiments used in our research.
ARLA is a deep Q-learning agent designed to generate minimally perturbed adversarial
examples, enhanced with double Q-Learning and a dueling deep Q-network (DQN) archi-
tecture. Target images being used come from the CIFAR-10 dataset, which is composed of
ten distinct classes [36]. ARLA’s learning environment requires a single image and target
network, which are then used to calculate gradient maps. Our reward function was one of
the greatest challenges of this research and premised on the concept that increases in loss
should be rewarded. Finally, we discussed how our experiments are designed to compare
ARLA to other well-known attacks.
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CHAPTER 4:
Results

In this chapter, we present the results from our experiments comparing the performance of
ARLA to other attacks. Section 4.1 discusses ARLA’s performance relative to other attacks
against an undefended model using two different 𝛼 sizes. Section 4.2 discusses our results
against PGD Adversarial Training; Section 4.3, against Gradient Regularization; Section
4.4, against TRADES; and Section 4.5, against PadNet. Overall, ARLA performed well
against all models, in terms of both attack success and average ℓ2 distance compared to the
other attacks. However, ARLA significantly stood out compared to the other attacks when
tested against the PadNet defense in which ARLA was the top performing attack.

4.1 Undefended WRN
For our initial experiment, we varied the 𝛼 parameter used by ARLA to create perturbations,
which highlighted the drastic impact it has on attack performance. Table 4.1 contains
observed performance metrics for ARLA compared to other attacks when targeting the
undefended model. For the first set of attacks, ARLA used a 𝛼 value of 0.1. This large 𝛼

produced considerably higher success rates with our white box attacks compared to our
black box attacks. While not the overall best performer, ARLA did outperform other attacks
in the white box category, at least in terms of success rate. However, using a large 𝛼 resulted
in average ℓ2 distances for ARLA-generated AEs roughly two to three times higher than
those for the best-performing attack, PGD. We successfully constrained the adversarial
perturbations by setting the 𝛼 parameter to 0.031. Using this smaller 𝛼 resulted in lower
success rates for ARLA against the undefended model overall, but also pushed the average
ℓ2 distance below that of most other attacks. Regardless of which 𝛼 value used, ARLA’s
hybrid attack outperformed the targeted attack, which was a common result across our
experiments.
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Table 4.1. Comparative attack performance against the undefended WRN
model.

Undefended Model
White Box (Benign Accuracy = 0.91) Black Box (Benign Accuracy = 0.92)

Non-Targeted Targeted Hybrid Non-Targeted Targeted Hybrid
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
ARLA (𝜶=0.1) 87% 0.934 66% 0.953 79% 0.911 13% 0.339 14% 0.69 16% 0.652

ARLA (𝜶=0.031) 56% 0.427 43% 0.416 53% 0.399 11% 0.122 11% 0.264 13% 0.221
FGSM (𝜺=0.5) 75% 0.497 78% 0.498 N/A N/A 42% 0.497 41% 0.498 N/A N/A
PGD (𝜺=0.5) 93% 0.5 88% 0.464 N/A N/A 68% 0.5 58% 0.449 N/A N/A

DeepFool (𝜺=0.5) 93% 19.327 N/A N/A N/A N/A 77% 20.345 N/A N/A N/A N/A
Square (𝜺=0.5) 21% 0.499 N/A N/A N/A N/A 10% 0.494 N/A N/A N/A N/A

C&W ℓ2 (𝑪=0.0) 57% 0.421 50% 0.311 N/A N/A 15% 1.139 14% 0.639 N/A N/A
Auto Attack (𝜺=0.5) 94% 0.5 94% 0.5 N/A N/A 70% 0.5 71% 0.5 N/A N/A

While this table provides useful metrics for understanding ARLA’s performance, to fully
appreciate the results, we need to visualize them. Subsections 4.1.1 and 4.1.2 provide
examples of benign original images, followed by the shortest ℓ2 adversary ARLA generated
for that image, and then the isolated noise. For example, regarding Figure 4.1, the first row
depicts the benign sample. As indicated at the bottom of each column, the model predicted
the correct class of the original sample (O) with some probability. This probability indicates
how certain the model is that the image belongs to that class. The second row shows the
shortest ℓ2 AE that ARLA generated for that image during 100 episodes of training. As
indicated by the text, the model predicts that the adversarial image (A) is an incorrect
prediction with some probability. Recall that the predicted class must only have a higher
probability than all other classes. The third row is the adversarial noise isolated from the
AE, and enhanced to five times its original value for easier viewing. Distance is the ℓ2

distance between the benign and adversarial images.

4.1.1 Large 𝜶 Value
With a large 𝛼 value, adversarial noise is fairly pronounced and easily visible to a human
observer. Figures 4.1, 4.2, and 4.3 show examples of ARLA-generated AEs below their
benign originals for the non-targeted, targeted, and hybrid attacks, respectively.
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Figure 4.1. ARLA non-targeted attack against undefended WRN model. Us-
ing 𝛼=0.1, adversarial noise is pronounced. Adapted from [36].

Figure 4.2. ARLA targeted attack against undefended WRN model, where
𝛼=0.1. Adapted from [36].

35

_________________________________________________________
NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



Figure 4.3. ARLA hybrid attack against undefended WRN model, where
𝛼=0.1. Adapted from [36].

4.1.2 Small 𝜶 Value
By lowering the 𝛼 parameter to one-third its original value, we observed a decrease in
visually identifiable perturbations, and in certain cases, an increase in adversarial certainty.
Figures 4.4, 4.5, and 4.6 show ARLA AEs using the non-targeted, targeted, and hybrid
methodologies, respectively. By using the same benign samples from Section 4.1.1, we can
see that, with a smaller 𝛼, ARLA can induce misclassification with fewer perturbations,
albeit at a lower success rate. Based on these results, our other experiments exclusively used
the lower 𝛼 rate since it produced higher-quality AEs.
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Figure 4.4. ARLA non-targeted attack against undefended WRN model. Us-
ing 𝛼=0.031, noise is constrained and difficult to detect. Adapted from [36].

Figure 4.5. ARLA targeted attack against undefended WRN model, where
𝛼=0.031. Adapted from [36].
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Figure 4.6. ARLA hybrid attack against undefended WRN model, where
𝛼=0.031. Adapted from [36].

4.2 PGD Adversarial Trained Model
Table 4.2 contains the performance metrics for ARLA compared to other attacks when
targeting the Projected Gradient Descent (PGD) Adversarial Trained model. Again, for
this experiment and those remaining, we set the 𝛼 parameter to 0.031. Results show that
ARLA significantly degraded the accuracy of the PGDAT model, though at a lower rate
than more successful attacks, such as FGSM, PGD, and Auto. ARLA’s average ℓ2 distance
was comparable to other attacks, and in some cases superior. The exception to this was
the Carlini-Wagner attack, which had similar success rates to ARLA, but with considerably
fewer perturbations. For black box attacks, ARLA was again a poor performer compared to
other attacks. We attribute ARLA’s low distance scores to the natural error of the black box
model itself (8%).

The example adversaries shown in Figures 4.7, 4.8, and 4.9 demonstrate the relationship
observed between predicted certainty and potential for misclassification. For example, the
non-targeted adversaries in Figure 4.7 all have ℓ2 distances commensurate with their original
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Table 4.2. Comparative attack performance against the Projected Gradient
Descent (PGD) Adversarial Trained model.

PGD Adversarial Trained Model
White Box (Benign Accuracy = 0.9) Black Box (Benign Accuracy = 0.92)

Non-Targeted Targeted Hybrid Non-Targeted Targeted Hybrid
Success

Rate
Avg ℓ2
Dist

Success
Rate

Avg ℓ2
Dist

Success
Rate

Avg ℓ2
Dist

Success
Rate

Avg ℓ2
Dist

Success
Rate

Avg ℓ2
Dist

Success
Rate

Avg ℓ2
Dist

ARLA (𝜶=0.031) 51% 0.456 36% 0.514 45% 0.449 11% 0.204 10% 0.223 11% 0.154
FGSM (𝜺=0.5) 73% 0.498 71% 0.498 N/A N/A 31% 0.498 29% 0.498 N/A N/A
PGD (𝜺=0.5) 89% 0.499 82% 0.499 N/A N/A 38% 0.5 27% 0.5 N/A N/A

DeepFool (𝜺=0.5) 91% 17.762 N/A N/A N/A N/A 77% 17.934 N/A N/A N/A N/A
Square (𝜺=0.5) 10% 0.499 N/A N/A N/A N/A 13% 0.498 N/A N/A N/A N/A

C&W ℓ2 (𝑪=0.0) 58% 0.22 51% 0.24 N/A N/A 12% 0.167 11% 0.133 N/A N/A
Auto Attack (𝜺=0.5) 89% 0.5 88% 0.5 N/A N/A 39% 0.5 35% 0.5 N/A N/A

certainty: greater certainty is often associated with greater ℓ2 distance. This is not necessarily
true for all benign images but has been observed as a consistent trend.

Figure 4.7. ARLA non-targeted attack against the PGDAT model, where
𝛼=0.031. As the original image with the lowest certainty, the bird requires
less noise to induce misclassification. Adapted from [36].
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Figure 4.8. ARLA targeted attack against the PGDAT model, where
𝛼=0.031. Adapted from [36].

Figure 4.9. ARLA hybrid attack against the PGDAT model, where 𝛼=0.031.
Adapted from [36].
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4.3 Gradient Regularization Model
Table 4.3 contains the performance metrics for ARLA compared to other attacks when
targeting the Gradient Regularization model. ARLA had the most difficulty attacking this
model compared to other experiments. For white box metrics, ARLA’s success rates were
30-50% lower than high-performing attacks. ARLA remained a poor performer in black
box attacks compared to other attacks, with success rates two to three times lower than
high-performing attacks.

Table 4.3. Comparative attack performance against the Gradient Regular-
ization model.

Gradient Regularization Model
White Box (Benign Accuracy = 0.9) Black Box (Benign Accuracy = 0.91)

Non-Targeted Targeted Hybrid Non-Targeted Targeted Hybrid
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
ARLA (𝜶=0.031) 48% 0.461 37% 0.503 43% 0.434 15% 0.311 14% 0.391 15% 0.381
FGSM (𝜺=0.5) 78% 0.498 77% 0.498 N/A N/A 31% 0.499 32% 0.499 N/A N/A
PGD (𝜺=0.5) 91% 0.5 87% 0.5 N/A N/A 48% 0.5 34% 0.5 N/A N/A

DeepFool (𝜺=0.5) 89% 11.647 N/A N/A N/A N/A 71% 13.01 N/A N/A N/A N/A
Square (𝜺=0.5) 18% 0.495 N/A N/A N/A N/A 11% 0.496 N/A N/A N/A N/A

C&W ℓ2 (𝑪=0.0) 81% 0.333 72% 0.401 N/A N/A 16% 0.313 18% 0.534 N/A N/A
Auto Attack (𝜺=0.5) 91% 0.5 90% 0.5 N/A N/A 49% 0.5 47% 0.5 N/A N/A

Figures 4.10, 4.11, and 4.12 show examples of ARLA’s non-targeted, targeted, and hybrid
attack, tailored to the Gradient Regularization model. Though our goal was to create mini-
mally perturbed adversaries, we recognize that this quality is subjective to the image being
altered. For example, the AE generated for the ship in Figure 4.12 has an ℓ2 distance nearly
double the hybrid attack average. However, we can still consider this a minimally perturbed
AE, as the perturbations blend well with the benign image.
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Figure 4.10. ARLA non-targeted attack against the Gradient Regularization
model, where 𝛼=0.031. Adapted from [36].

Figure 4.11. ARLA targeted attack against the Gradient Regularization
model, where 𝛼=0.031. Adapted from [36].
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Figure 4.12. ARLA hybrid attack against the Gradient Regularization model,
where 𝛼=0.031. Adapted from [36].

4.4 TRADES Model
Table 4.4 contains the performance metrics for ARLA compared to other attacks when
targeting the TRADES model and highlights a performance increase for certain attacks
compared to previous experiments. For white box attacks, ARLA’s non-targeted attack had
a considerably higher success rate than previous experiments, while keeping adversarial
noise constrained. PGD and Auto still outperformed ARLA in terms of success rate, and the
Carlini-Wagner attack had a matching success rate with fewer perturbations. ARLA’s white
box targeted attack was the worst of its three attacks, both in terms of attack success and
average ℓ2 distance. ARLA’s hybrid attacked outperformed its targeted attack with a 16%
higher success rate and 0.1 lower average distance. For black box attacks, ARLA remained
a poor performer compared to most other attacks, despite this experiment being its second
best for black box attacks.
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Table 4.4. Comparative attack performance against the TRADES model.
TRADES Model

White Box (Benign Accuracy = 0.87) Black Box (Benign Accuracy 0.84)
Non-Targeted Targeted Hybrid Non-Targeted Targeted Hybrid

Success
Rate

Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
ARLA (𝜶=0.031) 64% 0.49 45% 0.568 61% 0.467 21% 0.381 19% 0.429 20% 0.312
FGSM (𝜺=0.5) 62% 0.499 64% 0.499 N/A N/A 42% 0.499 38% 0.5 N/A N/A
PGD (𝜺=0.5) 87% 0.5 85% 0.5 N/A N/A 48% 0.5 42% 0.5 N/A N/A

DeepFool (𝜺=0.5) 89% 14.688 N/A N/A N/A N/A 72% 15.554 N/A N/A N/A N/A
Square (𝜺=0.5) 24% 0.493 N/A N/A N/A N/A 16% 0.496 N/A N/A N/A N/A

C&W ℓ2 (𝑪=0.0) 64% 0.296 61% 0.271 N/A N/A 21% 0.359 20% 0.268 N/A N/A
Auto Attack (𝜺=0.5) 87% 0.5 87% 0.5 N/A N/A 48% 0.5 47% 0.5 N/A N/A

Figures 4.13, 4.14, and 4.15 show examples of ARLA’s non-targeted, targeted, and hybrid
attacks against the TRADES model.

Figure 4.13. ARLA non-targeted attack against the TRADES model, where
𝛼=0.031. Adapted from [36].
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Figure 4.14. ARLA targeted attack against the TRADES model, where
𝛼=0.031. Adapted from [36].

Figure 4.15. ARLA hybrid attack against the TRADES model, where
𝛼=0.031. Adapted from [36].

45

_________________________________________________________
NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



4.5 PadNet Model
Table 4.5 contains the performance metrics for ARLA compared to other attacks when
targeting the PadNet model. For the white box non-targeted attack, ARLA was the top
performing attack, with a success rate 17% higher than the next best attack (Auto) while
also having a shorter average ℓ2 distance by 26%. These results are significant because they
indicate that ARLA was able to avoid the padding class in a way that other non-targeted
attacks could not. In the white box targeted category, ARLA was only outperformed by
PGD, though our attack had a lower ℓ2 average. Clearly ARLA had trouble finding pixel
changes that placed the AE in the decision boundary for the target class, but more work
will need to be done to determine the cause. Two hypotheses exist: 1) the 𝛼 value was too
high and the target class was overshot, or 2) ARLA was not able to change enough pixels
to find space in the target class decision boundary. ARLA’s white box hybrid attack scored
5% lower than its non-targeted attack with a marginally lower ℓ2 average.

This experiment was the most successful for ARLA’s black box attacks, where ARLA won
the non-targeted category by 9% with an average ℓ2 32% shorter. In the black box targeted
attack category, ARLA came in a distant second behind PGD. Unlike ARLA’s white box
hybrid attack, the black box hybrid attack had a higher ℓ2 average compared to the black
box non-targeted attack.

Table 4.5. Comparative attack performance against the PadNet model.
PadNet Model

White Box (Benign Accuracy = 0.89) Black Box (Benign Accuracy = 0.9)
Non-Targeted Targeted Hybrid Non-Targeted Targeted Hybrid

Success
Rate

Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
Success

Rate
Avg ℓ2

Dist
ARLA (𝜶=0.031) 62% 0.322 51% 0.39 57% 0.314 29% 0.252 21% 0.44 22% 0.296
FGSM (𝜺=0.5) 0% N/A 0% N/A N/A N/A 0% N/A 0% N/A N/A N/A
PGD (𝜺=0.5) 0% N/A 60% 0.5 N/A N/A 0% N/A 56% 0.5 N/A N/A

DeepFool (𝜺=0.5) 33% 15.628 N/A N/A N/A N/A 30% 17.191 N/A N/A N/A N/A
Square (𝜺=0.5) 21% 0.495 N/A N/A N/A N/A 13% 0.493 N/A N/A N/A N/A

C&W ℓ2 (𝑪=0.0) 11% 0.012 21% 0.023 N/A N/A 9% 0.005 12% 0.0327 N/A N/A
Auto Attack (𝜺=0.5) 45% 0.433 37% 0.419 N/A N/A 20% 0.4 15% 0.433 N/A N/A

Figures 4.16, 4.17, and 4.18 show examples of ARLA’s non-targeted, targeted, and hybrid
attack, tailored to the PadNet model.
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Figure 4.16. ARLA non-targeted attack against the PadNet model, where
𝛼=0.031. Adapted from [36].

Figure 4.17. ARLA targeted attack against the PadNet model, where
𝛼=0.031. Adapted from [36].
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Figure 4.18. ARLA hybrid attack against the PadNet model, where 𝛼=0.031.
Adapted from [36].

4.6 Summary
In this chapter, we presented the results from our experiments. For each attacked model,
we discussed ARLA’s performance metrics, attack success rate, and average ℓ2 distance
compared to other well-known attacks. We also showed examples of each of ARLA’s attacks
(non-targeted, targeted, and hybrid) for each model. ARLA proved to be a successful attack
across all models, but was the best-performing attack against the PadNet defense.
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CHAPTER 5:
Discussion and Future Work

In this chapter, we discuss ARLA’s performance as an attack and summarize our imple-
mentation of deep Q-learning in this research space. Section 5.1 discusses ARLA as a
potentially adaptive attack, one that performs well against all defenses. Section 5.2 dis-
cusses ARLA’s overall performance in white box versus black box attacks. Section 5.3,
discusses the performance trends of ARLA’s hybrid attack compared to its non-targeted
and targeted attacks. Section 5.4 examines ARLA’s learning trends and analyzes bad and
good examples of learning. Finally, Sections 5.5, 5.6, and 5.7 propose improvements for
ARLA to be pursued in future research.

5.1 Attack Adaptability
The most significant finding of our research is that ARLA is a viable adversarial attack
methodology, and that it may in fact be universally adaptive to any defense. Adversarial
research is difficult due to how quickly new attacks and defenses are formed. A defense may
claim to be robust against an array of attacks but is then quickly defeated by a new, stronger
attack. That said, developing a new attack is often unnecessary, as almost all defenses are
susceptible to existing attacks that have been modified [40]. Such attacks are considered
adaptive, in that they can be adapted to exploit the weaknesses of a specific defense. The
success of such attacks has made them the standard for evaluating whether a defense is truly
robust against attack [40].

It is our continued hypothesis that an RL based attack like ARLA can be universally
adaptive. Unlike static adaptive attacks, ARLA does not require humans to tune it for a
specific defense. Using an RL methodology allows our attack to optimize pixel changes in
the pursuit of higher rewards, so that regardless of the defense method, ARLA can learn how
to exploit the vulnerabilities inherent in the model. The best evidence for this claim can be
seen in our last experiment, in which we attacked the PadNet defense. While our comparison
attacks were far less successful against this defense than against previous models, ARLA
did remarkably well. For non-targeted white box attacks, ARLA outperformed the second
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best attack by 17% with a 25% lower average ℓ2. ARLA’s targeted white box attack was its
highest performing for all experiments, only outperformed by PGD, which had an average
ℓ2 28% higher than ARLA. These results indicate that ARLA was able to learn how to
exploit the PadNet defense without any human input.

If ARLA is in fact universally adaptive, then it would be a prime choice for probing the
weaknesses of any DNN before being deployed in the real world. As promising as these
results are, more work needs to be done before this claim can be made definitively.

5.2 Attack Limitations
A caveat to ARLA’s potential adaptability is that this property seems only to apply to white
box attacks, not black box. Our results clearly indicate that ARLA is a poor attack method
when the target model is unknown to the attacker. For all experiments, save PadNet, ARLA
showed a significant performance drop relative to its white box attacks but also in contrast
to the comparison attacks. In most cases, ARLA’s black box success rates were two to three
times lower than those of the comparison attacks. We attribute this performance gap to how
ARLA is changing the picture. The intent behind ARLA is to make the minimum number
of changes necessary to induce a misclassification: that is, only a small subset of the image
pixels will be altered. These minimal pixel changes are clear from viewing the enhanced
noise shown in our Chapter 4 figures. So if ARLA alters a pixel that has high importance in
the white box model, there is no guarantee that it will have the same importance in the black
box model. By contrast, most of our comparison attacks add a small amount of perturbation
to a larger subset of the image pixels, if not all the pixels. This approach makes it far more
likely that the most important pixels in an image will be altered enough to induce a large
amount of loss, leading to a misclassification. Based on these results, we believe that future
research should focus on ARLA solely as a white box methodology.

5.3 Hybrid Attack Performance
As described in Chapter 3, ARLA’s hybrid attack takes a different approach from its non-
targeted attack. The hybrid attack has three main features: 1) gradient maps are calculated
using a target label, 2) pixel changes are made using gradient descent, and 3) success
is determined by the image being classified as any incorrect class (�̂� ≠ 𝑦). Table 5.1
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captures the performance gaps between ARLA’s non-targeted and hybrid attacks. Across all
experiments, the non-targeted attack had a 3–6% higher success rate than the hybrid attack,
averaging 4% higher overall. Comparing average ℓ2 distances, the hybrid attack produced
AEs that were 1.5–6.6% shorter than those produced by the non-targeted attack. Analyzing
the percentage of hybrid attack AEs that were misclassified to the target label, we found
that it averaged to 21% across all models. While it was not in the scope of our current
research, there may be an adversarial defense for which the gradient descent approach to
pixel changes makes ARLA’s hybrid attack a more powerful attack methodology.

Table 5.1. Comparison metrics for ARLA hybrid attack compared to its non-
targeted and targeted attacks.

Success Rate Average ℓ2 Distance
Non-Tgt Hybrid % Diff Non-Tgt Hybrid % Diff

Target Label
Hit Rate

Undefended 56% 53% -3% 0.427 0.399 -6.6% 34%
PGDAT 51% 45% -6% 0.456 0.449 -1.5% 36%

Grad. Regularization 48% 43% -5% 0.461 0.434 -5.9% 16%
TRADES 64% 61% -3% 0.49 0.467 -4.7% 15%
PadNet 62% 57% -5% 0.322 0.314 -2.5% 5%
Average N/A N/A -4% N/A N/A -4.2% 21%

5.4 Learning Limitations
While analyzing the adversarial examples generated by ARLA, we observed that the AE
with the shortest ℓ2 distance was often generated early in the 100 training episodes on each
image. Table 5.2 displays this pattern, where on average the shortest AE was found with
an Y-greedy value between 0.723 and 0.841, indicating that ARLA did not produce the
shortest AE as a result of a learned behavior policy but simply as a byproduct on the way
to learning a policy. Table 5.2 also shows a trend in which the best-scoring AE is generated
somewhere in the middle of training, with the last AE generated using relatively few random
actions. From this result we can discern that a policy is being learned, but not for the desired
behavior.

To further explore this potential learning deficiency, we had ARLA train on a single envi-
ronment for 5,000 episodes, at 500 steps per episode, with all other parameters similar to
our experiments. In an optimal policy, the AE with the shortest ℓ2 distance from the original
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Table 5.2. ARLA’s average Y-greedy values for shortest ℓ2, best scoring, and
last generated adversarial examples. LG and SM refer to the large and small
𝛼 values ARLA used for pixel changes.

Average 𝜺-Greedy Values
Non-Target Target Combined

Model Shortest Best Last Shortest Best Last Shortest Best Last
Undefended LG 0.796 0.554 0.219 0.771 0.457 0.221 0.784 0.501 0.251
Undefended SM 0.801 0.576 0.164 0.78 0.435 0.137 0.781 0.486 0.158

PGDAT 0.816 0.592 0.17 0.816 0.528 0.135 0.814 0.566 0.161
Grad Reg 0.811 0.636 0.16 0.811 0.629 0.243 0.812 0.647 0.188
TRADES 0.735 0.572 0.093 0.723 0.446 0.151 0.747 0.548 0.124
PadNet 0.841 0.632 0.173 0.796 0.517 0.227 0.821 0.536 0.178

image should also have the highest score. This was not the case for ARLA, and we can refer
to Figure 5.1 to analyze an example of sub-optimal learning. Here, looking at the top left
image, we see that in 5,000 episodes, ARLA generated 2,613 adversaries. The shortest AE
(center image) was generated using actions that were randomly selected for 95% of the steps
played, which using our Y-greedy policy means that it was generated around episode 250.
This shortest AE should have been the solution that ARLA was attempting to optimize. In
the top right image, which is the final adversary generated, we can observe that for this envi-
ronment, ARLA learned that the best policy was simply to change the red and green pixels.
The first rewards plot, “Original Rewards,” plots all the rewards for the 5,000 episodes.
However, this plot does not give us a clear idea about which rewards are associated with
AEs, so the plot below, “AE vs Non-AE Rewards,” color codes successful and unsuccessful
episodes to clearly identify trends between the two. As the Y-greedy value approached the
minimum value of 0.01, ARLA did not have a strong policy, and its performance, defined
as high rewards, tapered off. Once ARLA begins to make more predictions per episode
( 50+%), bad experiences began to fill its replay memory, making it more unlikely that
ARLA would be able to sample good experiences for learning. The “Normalized Rewards”
and “AE Only Rewards” plots support this analysis. If we wanted rewards to increase over the
course of training, then optimal behavior would have the ℓ2 distances decreasing at the same
rate. The distance plots, bottom-middle and bottom-right, show that the opposite happened,
before ARLA’s online model experienced catastrophic forgetting. The bottom-middle plot
in particular supports our analysis that ARLA only learned to bias pixel changes, leaving
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agent movement to random actions.

Figure 5.1. Example of ARLA being unable to learn a good behavior policy,
leaving it unable to figure out this frog. Adapted from [36].

During this analysis, we did find environments where ARLA was able to learn good behavior,
if not optimal. Figure 5.2 shows one such example. Here we can see that the shortest AE was
produced early, but the final AE was generated using the minimal Y-greedy value allowed
per our policy, 0.01. Distance trends are still not good, but we can observe a steep decrease
towards the end as rewards begin to spike. Unfortunately, the shortest AE did not receive
the highest reward, but the learned policy is much closer to this ideal than in our previous
example of the frog.
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Figure 5.2. An example of ARLA learning a good policy for this benign
example of the dog class. Adapted from [36].

Our results have shown that ARLA can learn, but at this stage of development, it is far too
inconsistent. To improve its performance, we propose three key areas of future research in
the sections below.

5.5 Future Work —Reward Function
Since the reward function is what helps an agent discern good versus bad actions in the
pursuit of a goal, the majority of future research should be spent developing a better reward
function for ARLA. To reiterate our goal for rewards, the highest-scoring episode should
also be the one that produces the AE with the shortest ℓ2 distance from the benign original.
The reward function used in our research came up well short of that goal and allowed
ARLA to disassociate high-reward episodes from those where minimally perturbed AEs
were generated. In rare cases, ARLA was able to learn a policy where the highest-scoring
episodes did not produce an adversarial example at all. The challenge that this task represents
should not be underestimated, because while the concept is simple (short_ℓ2 + high_loss =
great job!), formulating a mathematically complete function is no small task.

That said, one potential improvement was immediately evident in the analysis of our results,
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and could be easily implemented. In our current function, loss ratios that fall below our
positive reward threshold are simply given a static reward of -4, while high loss ratios are
given a dynamic reward based on the amount of loss they induced. Using a static negative
reward is a mistake because it can lead to a behavior that we refer to as pixel mining. Pixel
mining occurs when ARLA makes a change to a pixel that causes both a large amount
of error and flips the sign of that pixel’s gradient. If ARLA changes that pixel again, it
will be in the opposite direction, and with the gradient returning to its original value and
ARLA receiving a reward of -4. However, that negative reward does not matter much, since
changing that pixel a third time will generate the same large reward it experienced the first
time. Repeating this cycle, ARLA can accumulate large positive rewards that are only offset
marginally by much smaller negative rewards. Instead, negative rewards should also be
dynamic, canceling out any positive reward just received which would disincentivize pixel
mining.

5.6 Future Work —Prioritized Experience Replay
In this research, we used a deque, which is a very simple data structure, to store a finite
number of previous experiences, which allowed newer experiences to replace older ones
once the memory reached capacity (first in, first out). Experiences were stored as tuples
with no way to differentiate whether an experience was meaningful, such that it would lead
to faster learning or not. As such, experiences were sampled uniformly from the memory,
which made it impossible to know whether the agent is learning meaningful transitions.
This problem was compounded by the fact that many pixels in an image may not actually be
that important for inducing loss, which allowed the memory to become saturated with poor
experiences. This in turn led to a situation where, as the Y-greedy value decayed, ARLA’s
behavior policy made consistently poor predictions and filled the memory with more poor
experiences. Any good experiences caused through random action were eventually pushed
out of memory to make room for newer predicted experiences. An example of this behavior
is the frog from Figure 5.1.

Instead of using this basic experience replay, we propose that future work incorporate
prioritized experience replay. Introduced by Schaul et al. [41] in 2015, experiences are
sampled not at random, but based on their priority, defined by a transitions temporal
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difference error (TD-error). Using TD-error as a general approximation for how much an
agent can learn from a specific state transition, meaningful experiences can be replayed
more often. For each training step, a new TD-error is calculated, and priorities are updated
for all stored experiences. Research has shown that of the improvements that can be made to
DQN, prioritized experience replay is one of the most valuable in terms of increased agent
performance [42].

5.7 Future Work —Environment
An issue that we have considered for future research is how ARLA will scale to images
with larger dimensions. For larger images, the time needed to sufficiently explore the
environment will exponentially increase. While this research attempted to address the
exploration-exploitation problem by determining the best starting location based on gradient
map values, that approach may not be sufficient for ImageNet [43], where the average
dimensions are 469x387 pixels. We propose cropping the image to the most important
pixels, which might help constrain ARLA by presenting a smaller portion of the image as
the observable state, e.g., the 16x16 portion of the image with the highest gradients. By
altering the environment this way, we hypothesize that ARLA will be able to use any size
image to learn how to generate strong AEs.

5.8 Summary
In this chapter we explained that ARLA is a viable attack methodology capable of generating
minimally perturbed adversarial examples and that it shows potential for being adaptable to
any defense methodology. We outlined the performance discrepancy between white box and
black box attacks and concluded that ARLA is best suited as a white box attack. We described
the performance differences between ARLA’s hybrid attacks compared to its non-targeted
and targeted attacks and concluded that the hybrid attack is a slightly worse-performing
non-targeted attack with better ℓ2 distance metrics. We analyzed ARLA’s capacity to learn
a good behavior policy, and concluded that ARLA is not learning the desired behavior,
leaving more work to be done. Finally, we recommended the next steps of this research and
outlined three proposed lines of research.
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CHAPTER 6:
Conclusion

For the USN and DOD to successfully transition current systems and processes into highly-
effective human-machine teams, senior leadership will need to field equipment that utilizes
deep neural networks. For critical applications, the trustworthiness and reliability of these
networks is paramount. While integrating ML and DNNs can make a transformative dif-
ference in performance, there has been a bevy of research showing that they are widely
susceptible to perturbed or noisy data. This is especially true for DNNs used in image
recognition, where adversarial examples pose a substantial risk. As we discussed in Chapter
1, degraded performance in systems that use image recognition can have severe and poten-
tially life threatening consequences. For this reason, DNNs used in military systems will
need to use robust testing protocols to identify their vulnerability to adversarial attacks. In
this thesis we presented a novel reinforcement learning–based attack, ARLA, that could be
used for such a purpose.

Unlike the comparison attacks we used, ARLA was able to successfully attack all five
CIFAR-10 models used in this research, four of which were defended in some manner. This
is strong evidence that ARLA is a universally adaptive attack, able to exploit a wide variety
of defenses, which would make it a highly useful tool for evaluating DNNs in development.
Future work should test this statement by incorporating a more diverse set of defensive
techniques. We also found that the behavior policies that ARLA learns are inconsistent, and
at times contrary to the goal of creating AEs. Future work needs to be done to stabilize
ARLA and optimize the behavior policy being learned, through a combination of a better
reward function and prioritized experience replay.

As the DOD incorporates cutting-edge machine learning technologies into future systems,
its leaders should be realistic about the benefits and the threats. No system can be perfectly
hardened against malicious behavior, and deep neural networks are no exception. To build
a better defense, continuous work will need to be done to find new exploitable weaknesses.
It is our hope that our research plays some small part in that journey.
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