

Calhoun: The NPS Institutional Archive

DSpace Repository

Faculty and Researchers

Faculty and Researchers' Publications

2022

Assessment of Nighttime Airborne Visual ASW Capability

Yakimenko, Oleg A.

Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/71839

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

Assessment of Nighttime Airborne Visual ASW Capability

Naval Postgraduate School

Background and Motivation

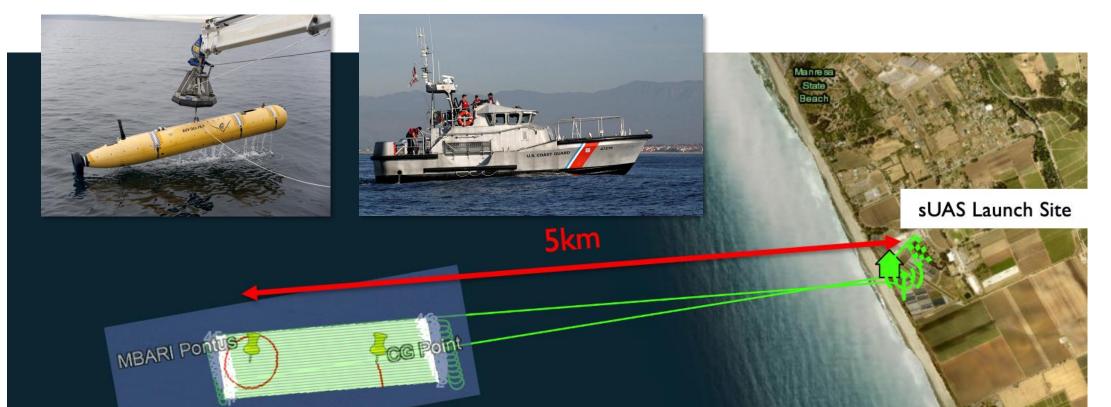
- Combine low-light sensors, advance signal processing, and small unmanned aerial system (sUAS) technologies to provide an innovative relatively inexpensive, nighttime antisubmarine warfare (ASW) capability.
- Leverage marine bioluminescence to enhance nighttime imagery of subsurface objects.
- Utilize Monterey Bay's diverse marine mammal habitat ulletto experimentally determine the efficacy of the proposed technology for marine mammal detection.

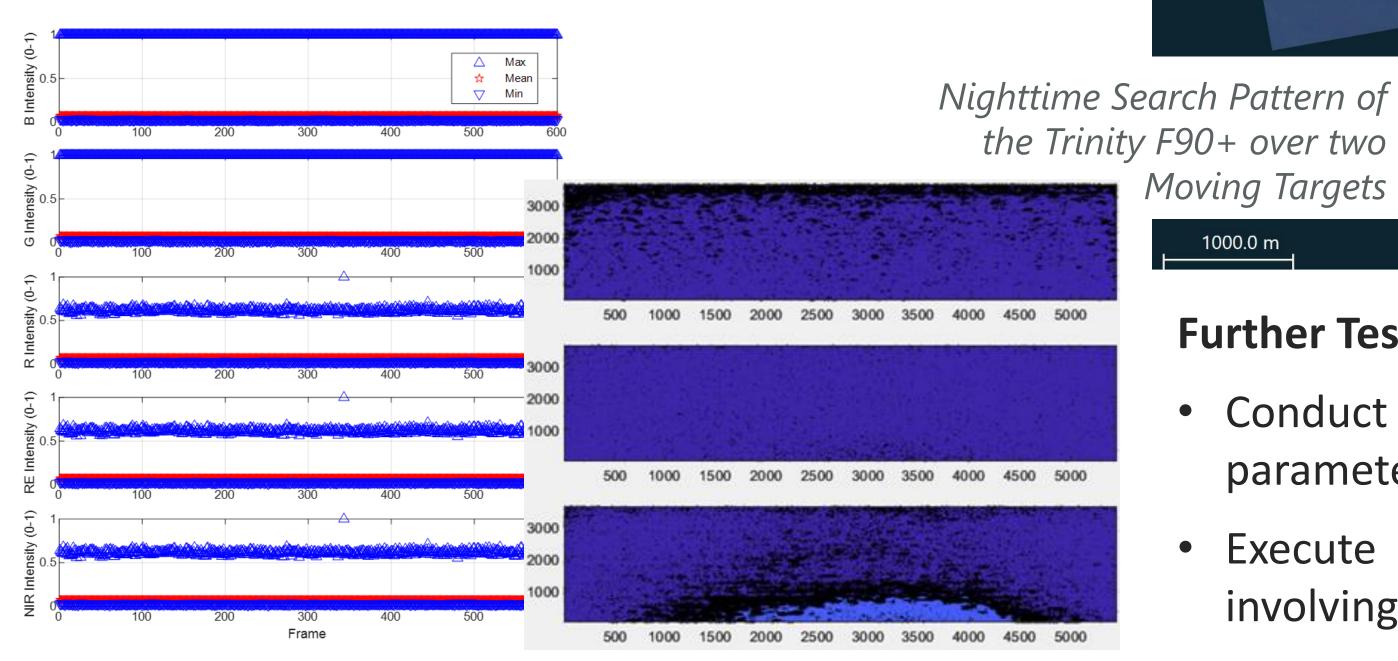
sUAS Whale Detection Concept

Bay Acader

Bioluminescence in Monterey Bay Measured by MBARI

Lines of Effort


Building a partnership with USCG, MBARI, NOAA, several commercial organizations to explore feasibility of using bioluminescence to detect moving subsurface objects at night.


USCG Station & Naval Postgrad 122°W 54' 48'	14.2 14 13.8 USCG Station & Stal Postgrad	54' 54'			
	MicaSense RedEdge- MX	MicaSense RedEdge-P	Sony UMC-R10C	Sony RXIR II	SBIG STC-428- based sensor
Spectral Bands	blue, green, red, red edge, near-IR	blue, green, red, red edge, near-IR, panchromatic	RGB	RGB	grayscale
Dimensions , pix	I,280×960	1,456×1,088	5,456×3,632	7,952×5,304	3,208×2,200
Total Number of Pixels	1,228,800 (per band)	1, 584 ,128 (per band)	19,816,192	42,177,408	7,057,600
Field of View, °	47.1 × 36.2	49.6 × 38.3		54.3 × 37.8	
Ground Sample Distance (GSD) 100 m AGL, cm/	pix	6.4 (per band)	2.66	1.29	
Dimensions / CN Sensor Size, mm	48×36	4.8 × 3.6	23.2 × 15.4	35.9 × 24.0	4.4 × 9.9
Output bit deptl bits	, 8	12	16	16	8
Lens	f = 5.5 mm	f = 5.5 mm	f=16 mm, F2.8	f=35 mm, F2.0	
Capture Rate / Trigger Interval,	s (1.4)	I (1.4)	1.1 (1.6)	1.4	0.9
Exposure, s	0.00066 0.245				0.001 3,600
Dimensions / CN Sensor Size, mm	48×36	4.8 × 3.6	23.2 × 15.4	35.9 × 24.0	4.4 × 9.9
Dimensions, cm Weight, g	9.4 × 6.3 × 4.6 380	8.7 × 6.8 × 6.3 315	429	694	2,100
weight, g	300	515	727	074	2,100

- Integration of an array of sensors with a COTS electric vertical take-off and landing (eVTOL) long-endurances UAS and getting clearances for night over-the-water operations.
- Analysis of bioluminescence in Monterey Bay at different depths throughout a year.
- Development of algorithms to analyze nighttime \bullet multispectral imagery.

To-Date Accomplishments and Future Research

- Conducted lab testing of different COTS and inhousebuilt sensors to identify best performing settings for nighttime bioluminescence experiments.
- Coordinated a large scale nighttime offshore experiment in conjunction with MBARI, USCG, and NOAA.

Searching for Imagery Anomalies

Flight Data: sUAS altitude: 50m sUAS speed: 17m/s Flight time: 57mins (45 mins on target) Number of photos taken: UMC: MS: 9,665 (1,933 per band) MBARI rover depth: 1m to 3m (yo-yo)

NRP Project ID:

NPS-22-N090-B

Further Testing and Data Analysis

- Conduct more realistic lab tests varying sensors parameters.
- Execute another nighttime sUAS flying campaign involving heterogeneous moving targets.
- Execute nighttime flight operations from a boat.

Researchers: Prof. Oleg Yakimenko, LT Justin Goff (USCG), Alexander Elbrecht Systems Engineering Department **Topic Sponsor:** N8 - Integration of Capabilities & Resources

1000.0 m

Distribution A - Approved for public release; distribution is unlimited.