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ABSTRACT 

The Navy Expeditionary Combat Command (NECC) community gathers information and 

intelligence documents that accumulate over time on file stores. The intelligence consumers 

needed a method to search all prior knowledge documents, preferably based on common language 

keywords and phrases. This challenge could be solved by working with an existing vendor product 

with the associated licensing, support, and maintenance. The Naval Postgraduate School (NPS) 

team took a computer science (CS) approach to identify the various workings of a document 

store/search portal (system). An evaluation of each technology step involved was conducted, and 

potential solutions and their associated costs were considered. The team found that given user 

specifications, a tech-savvy team, and combined with open-source and Department of Defense 

(DOD)–licensed software, one can build and maintain a system that meets the requirements of the 

Department of Navy (DON) community. 

  



 vi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK   



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION................................................................................................................. 1 

A. BACKGROUND ............................................................................................................... 1 
B. REPORT ORGANIZATION ........................................................................................... 2 

II. INDUSTRY SOLUTION...................................................................................................... 3 

A. CONTENT MANAGEMENT SYSTEM ........................................................................ 3 

III. TECHNOLOGY ................................................................................................................... 6 

A. INTRODUCTION............................................................................................................. 6 
B. DOCUMENT TO IMAGES ............................................................................................. 6 
C. IMAGE TO TEXT ............................................................................................................ 6 
D. TERM FREQUENCY – INVERSE DOCUMENT FREQUENCY (TF-IDF) .......... 10 
E. COMBINING TF-IDF AND OCR ................................................................................ 11 
F. COSINE SIMILARITY.................................................................................................. 11 
G. MIDDLEWARE AND DATABASE SETUP ............................................................... 13 
H. END USER EXPERIENCE ........................................................................................... 15 
I. TECHNOLOGY CONCLUSION ................................................................................. 16 

IV. FINDINGS AND CHALLENGES..................................................................................... 17 

V. FUTURE WORK ................................................................................................................ 19 

LIST OF REFERENCES ........................................................................................................... 21 

INITIAL DISTRIBUTION LIST .............................................................................................. 23 

 
  



 viii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



 ix 

LIST OF FIGURES 

Figure 1. IBM Content management .......................................................................................... 3 
Figure 2. 3-Tier architecture (NPS work). ................................................................................. 4 
Figure 3. Documents to Images using the PIL library. .............................................................. 6 
Figure 4. Basic workings of an OCR algorithm. ........................................................................ 7 
Figure 5. Using the trained OCR model Tesseract and natural language toolkit nltk ................ 7 
Figure 6. Example of the text recognized by the OCR (sample data). ....................................... 8 
Figure 7. Extracted text data from the OCR ............................................................................... 8 
Figure 8. Word frequency distributions at each preprocessing stage. ........................................ 9 
Figure 9. Equation for calculating TF-IDF scores (Siddiqui, 2019). ....................................... 10 
Figure 10.    Cosine Similarity (Nagella, 2019)............................................................................. 12 
Figure 11.    Cosine Similarity Matrix (8 documents and 1 query) ............................................... 13 
Figure 12.    Database Schema ...................................................................................................... 14 
Figure 13.    Document Load process and Search steps. ............................................................... 15 
Figure 14.    User interface on different devices ........................................................................... 16 
  



 x 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



 1 

I. INTRODUCTION 

A. BACKGROUND 
The Navy Expeditionary Combat Command (NECC) community gathers a substantial 

quantity of intelligence via datasets that are processed and summarized into reports. 

These reports accumulate over time on disk stores, distributed across multiple computers. 

This poses a problem when searching for historic documents. Archiving the documents to 

a single server, accessible to the entire NECC community, would enable and enrich 

ongoing and future intelligence analysis. Further, documents in a single database store 

can be preprocessed and analytics gathered for matching with keyword search. 

 

The initial understanding was that the NPS team would be provided raw datasets to 

evaluate and analyze. After several meetings with NECC, it became clear that data is 

preprocessed and summarized in the form of reports. Reports can be in any format, 

namely Adobe Acrobat PDF, Microsoft Word and Microsoft PowerPoint, various image 

types and plain text. These reports are distributed to the community via email/file systems 

and need to be searched later. There is no centralized system to store, analyze, and 

generate analytics (based on the documents) for the community.  

 

The team took a Computer Science (CS) approach to understand the challenges and 

evaluate a solution that could be built with in-house developers and Department of 

Defense (DOD) licensed software. NPS researchers studied an industry standard, IBM 

Content Management Systems (CMS). The team had prior background with processing 

large datasets and extracting analytics using the Hadoop Distributed File System (HDFS) 

and a relational database. Common algorithms/code focus on plain text; since the NPS 

team was familiar with processing binary files and extracting needed information in plain 

text, this could be applied to the non-plain text documents. Data growth is an important 

consideration that should be handled seamlessly with technology. For this the NPS team 

used its background in Big Data technologies with HDFS. 
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After documents were loaded into the system, algorithms had to be researched that could 

extract the keywords in plain text and create metrics. These metrics will aid in generating 

intelligent results when the user community searches historical information with 

keywords and phrases. The NPS team used its background in document classification to 

evaluate existing industry standard algorithms that may be applied to this problem set. 

 

For any such system to be viable, the user community needs a friendly user interface. 

There is also the challenge of multiple devices like a laptop, desktop, handheld devices, 

and smart phones. The NPS team looked at openly available technologies like HTML5, 

JavaScript, open-source webserver, and Python programming libraries. The frontend 

(browser on laptop/phone) needs to send data over the internet to a webserver 

(middleware) that is subsequently sent to the database (Oracle) backend. For all of this to 

work, the three parts need to be compatible. 

 

Overall, technologies need to be available via DOD licensing and be cost effective. The 

plan was not to recommend any esoteric or custom software that might be a financial 

challenge and face a lack of developer community support. Instead of total reliance on 

vendor consulting teams, these technologies must be supported by DON in-house 

technology teams with training and minimal vendor support. A basic architecture is 

proposed that would enable end users to load the documents into a single database store, 

preprocessed for analytics and searched using keywords. 

 

 

B. REPORT ORGANIZATION 
 

The content management section discusses the industry standard tool that was selected 

and evaluated by the NPS computer science team to model a cost-effective and 

supportable solution that could fit the NECC needs. The technology section evaluates the 

various components that goes into putting an overall system together, step by step. The 

findings section discusses the challenges and lessons learned. Finally, recommendations 

and future work are summarized. 
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II. INDUSTRY SOLUTION 

A. CONTENT MANAGEMENT SYSTEM 
 

Gartner is a technology research company that ranks software based on criteria relevant 

to end-user community. If one were to buy a CMS application, they would first refer to 

Gartner reports for guidance. For CMS software Gartner ranks IBM high along with other 

industry vendors. The NPS team members had prior familiarity with IBM software and 

thus chose IBM CMS for this study.  The following diagram depicts 3 of the key steps in 

the document management process from the IBM CMS: Capture, Transform, and 

Deliver. 

 

Figure 1. IBM Content management 
 

The NECC intelligence documents come in many formats including PDF, Microsoft 

Word, Microsoft PowerPoint, various image types and plain text. Keywords need to be 

extracted for classification and searching. Extracting keywords from binary format files is 

done by first converting the document to an image during the Capture phase. 
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Optical Character Recognition (OCR) is next used to extract keywords. The extracted 

words need to be cleaned and fed to a classification algorithm to create metrics. These 

metrics are used when documents are searched using keywords (query). This is the 

Transform phase. Finally, during the Deliver phase the results are consumed, via a variety 

of potential devices, by the end users. The NPS Team learned from this model and 

replicated the needed functionality using open-source and DOD licensed software. The 

study also considered that the IBM CMS licensing model contained additional features, 

unnecessary to the NECC community. And as such, applicable components of the system 

were studied and evaluated using alternate software packages. 

                                                                                 

                                                          

Figure 2. 3-Tier architecture (NPS work). 
 
 

Any system has three basic requirements, a backend database to store all the files and 

keywords, a web/application server-based platform (middleware) to run the algorithms 

for capture, extract, and classification, and finally a browser-based method for consuming 

the information (frontend). The Flask webserver receives the data from the browser and 

does preprocessing on the Flask server using Python code (middleware) and handles 

communication with the database. A complete system consists of backend, middleware 

and frontend communicating with each other using network protocols. This is known as a 

3-Tier architecture, and it can be implemented using a variety of programming languages 

including Python (well supported by the community). 
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The Flask middleware implemented in this project is a Python based framework that and 

enables one to run all the code that does the processing. The backend is an Oracle 

database that can handle a variety of data types (text, binary). The user interface is a 

browser, accessed using a laptops/desktops or other smart device. To study the phone 

interface an Android device was used along with a Java to Python container to run the 

Python programs. 
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III. TECHNOLOGY 

A. INTRODUCTION 
 

The system architecture involves several steps, and they are discussed in this section. 

Each step involves different software packages. The team chose the Python programming 

language as it is a widely used and supported platform. The functional steps are put 

together using a Python web/application server FLASK (middleware).  

 

B. DOCUMENT TO IMAGES 
 

The first step is to convert the documents to images. The team chose to use the Python 

Pillow Library (PIL). PIL is a collection of Python code to handle reading of documents 

and converting them to images (JPEG). The diagram below explains the flow. 

 

 

 

 

 

Figure 3. Documents to Images using the PIL library. 
 

C. IMAGE TO TEXT 
 

One of the most common methods for extracting words from images includes a specific 

type of Computer Vision model called an Optical Character Recognition (OCR) model. 

Computer Vision refers to computational algorithms that can identify features within an 

image to provide analysis of what is displayed in the image. By studying the differences 

in color between pixels in an image, these computer algorithms can identify edges and 

curves. As a result, these algorithms can be used for a variety of applications, including 

identifying text in images. This specific study utilized OpenCV, a series of computational 

methods meant to edit and process images.  

PDF Convert to 
collection of PIL 
objects 

Convert PIL 
Objects to JPEG 

Image Data stored 
in the database. 



 7 

 

The diagram shows how an OCR system functions internally at a high level. 

 

 
Figure 4. Basic workings of an OCR algorithm. 

 

For the OCR model, this study utilized the pre-trained Tesseract OCR model created by 

Google. A pre-trained model refers to algorithms that have already been given data to 

help them identify patterns within this data. Without pre-trained OCR models, data 

scientists have to find large quantities of images, with each letter in different orientations 

and fonts to set up the OCR model, before the model can recognize the text in license 

plates or other images. Tesseract algorithms must be configured for the specific text for 

the project, and it was done using custom regular expressions (regex). 

 

After OCR extracts the words, the text must be cleaned using the Python Natural 

Language toolkit (nltk). The punctuation removal, capitalization normalization, stop-

word elimination and lemmatization are done using nltk. 

 

 

 
 
 
 
 
 
 
 
Figure 5. Using the trained OCR model Tesseract and natural language toolkit nltk 

 

 

Read in image as 
an OpenCV object 

Basic Preprocessing in OpenCV 
(grayscale, sharpen, make words 
clearer) 

Tesseract library to pull out text using 
custom regular expression (regex). 
Configuration 

Text undergoes basic preprocessing using 
nltk library (punctuation, capitalization, 
stop-words, and lemmatization) 
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The Tesseract OCR library was selected because it can recognize the text lines within an 

image, which helps the final model recognize skewed images. One of the benefits of 

using a pre-trained model, such as the Tesseract OCR library, is that we do not need to 

de-skew, or straighten, images during pre-processing and still retain the image quality. 

However, this model is not optimal and can be further improved by performing basic 

preprocessing techniques using OpenCV, an open-source image recognition library. The 

image can be cleaner if we convert the images to grayscale, or black and white, and 

increase the contrast between the shadows and highlights, thereby also improving the 

OCR’s accuracy. 

 
Figure 6. Example of the text recognized by the OCR (sample data). 

 
The OCR algorithm distinguishes the words from text and encloses them in a green box, 

which are then stored as plain text as shown below. 

Figure 7. Extracted text data from the OCR 
 

As shown in the above figures, the Tesseract OCR picks up almost all the words in an 

image or document, thereby allowing it to gather an extremely close replica of the file 

contents. To use the Tesseract OCR and OpenCV libraries, each page of the PDF must be 

converted into an image. The text from each page is then combined to create the final raw 

text from the files. After evaluating the OCR and other Python libraries to pull out all the 
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relevant text from the document, the various preprocessing methods for natural language 

processing (NLP) were studied. 

 

Preprocessing is an extremely important part of working with natural languages. All 

natural languages, such as English, are geared towards communicating smoothly and 

effectively with other humans. However, for a computer that only understands numbers, 

there is unnecessary data that does not provide important information. 

                                                            

Figure 8. Word frequency distributions at each preprocessing stage.  

 

The initial preprocessing consisted of removing punctuation, capitalization, and 

tokenizing the text into a list of words. Afterward, we removed stop words or words in 

natural language, which do not provide meaning or context, and lemmatized the words, 

thereby converting them to their root word. Finally, we calculated the word frequency 

distribution to see what content was left after preprocessing. 

Before Preprocessing Remove Punctuation Remove Stop Words 
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After removing punctuation and capitalization, the frequency distribution changes, but 

still returns words that are not unique and relevant to the document. After removing these 

stop-words and lemmatizing the data, we can see the distribution change drastically to 

include words pertaining to the document’s topic, which helps to improve the accuracy of 

our search algorithm later. 

 
 

D. TERM FREQUENCY – INVERSE DOCUMENT FREQUENCY (TF-IDF) 
 

Many studies have been conducted to test the efficacy of different types of document 

search algorithms. Document search algorithms can be defined as computational 

algorithms that can search through a series of documents and return relevant documents 

based on a query or a search phrase.  

 

One of the most efficient and popular methods of sorting through documents is by using 

Term Frequency - Inverse Document Frequency vectors (TF-IDF) (Qaiser et al, 2018). 

TF-IDF vectors are numbers that represent how relevant a specific word is to a document 

in a collection of documents. These numbers are calculated by comparing the frequency 

of a term to the frequency of the same term in other documents, as shown in the 

following equation: 

  

 
Figure 9. Equation for calculating TF-IDF scores (Siddiqui, 2019). 
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The frequency of a word can be calculated by counting the number of times the term 

appears in the document compared to the total number of words in that document. Then, 

comparing this frequency to the frequency of the same term in other documents gives us 

our TF-IDF value. Next, by calculating the TF-IDF value for every word in all the 

documents, we can determine which keywords are the most relevant to each document. 

Next, using these keywords, we can construct an algorithm that will accurately return 

relevant documents. Finally, when a user enters a search phrase or query, documents with 

keywords matching the search phrase are returned.  

 

E. COMBINING TF-IDF AND OCR 
 

By combining these two technological concepts of TF-IDF and OCR, we hypothesized 

that the OCR model can significantly improve the accuracy of a TF-IDF-based document 

search engine, specifically when working with paper documents. 

 

F. COSINE SIMILARITY  
 

After creating the matrix with all the TF-IDF vectors, we must calculate the similarity of 

each document vector to the query vector (keywords). Each vector is represented in a 3D 

space, such as the one depicted in figure 10 below. The closer the vectors are, the more 

related they are to each other.  
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Figure 10. Cosine Similarity (Nagella, 2019). 

 
Two major ways to calculate closeness exist. These are (i) Euclidean distance and (ii) 

Cosine similarity. Euclidean distance measures the magnitude and angle of the vectors 

while cosine similarity measures only the angle between the vectors (Nagella, 2019). 

Euclidean distance is useful for exact sentence matches, where the vectors are likely to be 

angled the same way but with varying magnitudes, such as the vectors depicted in case 2 

of Figure 7. However, since we are trying to match long documents to short queries, the 

magnitude would not be similar, resulting in low precision and accuracy when returning 

related documents. We calculated the cosine similarity to find the documents with the 

smallest angle between the query and document.  

 

By focusing on the last row in the cosine similarity matrix, we can see the similarity 

scores for the documents to the query, and in turn, return the document with the highest 

score. It is important to note that the last element in the last row does not count as a 

relevant document since it represents the similarity when comparing the query to itself. 

Figure 11 provides an example of a cosine similarity matrix for eight documents and a 

single query. The matrix is very similar to a confusion matrix. 
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Figure 11. Cosine Similarity Matrix (8 documents and 1 query) 
 

The matrix shows the similarity numbers between 8 documents and the query which is set 

of 1 or more keywords. The higher numbers mean the matching is better and that 

document is selected. 

 
G. MIDDLEWARE AND DATABASE SETUP 
 
To store all the documents for the finalized product, we used an Oracle XE Database, 

which is a laptop version. Oracle databases scale from laptop computers (less computing 

power) to large servers (greater computing power), thus testing on the XE provided a 

good base line understanding.  Figure 12 (ER diagram) shows a schema of 3 tables. The 

central table is the Filenames table that has unique IDs for each file. The Files table 

contains the binary version of the file stored as a database Blob type. The text table has 

all related text for the file. All tables are linked via the File ID to maintain data integrity. 
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Figure 12. Database Schema 
 

For each uploaded file, a new file ID is generated to easily access the data and connect 

the two tables together.  

 

The figure below summarizes the 2 key flows of information in the user experience. 

Initially the documents are loaded using the browser interface on the end-user device, 

following which the Flask applications goes through the steps of capture, preprocessing 

and store. Subsequently the documents are searched with queries (keywords) and the best 

match document returned. The load and the search actions are independent of each other. 
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Figure 13. Document Load process and Search steps. 

 

Each time a file is loaded, it goes through the OCR process followed by database store. 

The search will access the stored information to find the best match. 

 

H. END USER EXPERIENCE 
 

A Flask framework allows a browser with HTML/CSS frontend to connect to a Python 

backend. Flask applications are deployed as web applications easily accessible using a 

smart phone or laptop. The Flask framework automatically allows the user to search for 

an existing file and interface with the backend code to load it into the Oracle database. 

The figure below shows the same interface on different devices. A custom phone app was 

not chosen as the Android device uses a Java/Kotlin codebase which is not compatible 

with the Python libraries. Thus, using the browser option makes it a web-based 

application that works on both phones and laptop/desktops. 
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Figure 14. User interface on different devices 

 

One way to integrate Python code into Java is to utilize a Java library called Jython. This 

library allows users to run Python code in a Java compiler. This option would entail a 

larger coding effort. 

 

I. TECHNOLOGY CONCLUSION 
 

The open-source community and the DoD/DoN licensing mechanism provides many 

options to achieve technology projects. A user community working with a technology 

savvy team can research the software and integrate it into a viable product.  

 



 17 

IV. FINDINGS AND CHALLENGES 

The NPS team started building a sandbox to evaluate the possible technologies. For a 

document store that can scale up, an Oracle vendor database product was considered. 

Using the Oracle XE laptop version, the team loaded documents and wrote SQL search 

queries. In the sandbox, NPS used the laptop version (database) with the assumption that 

a production Oracle database will work with the same codebase as the laptop version. 

 

In the studied system, keywords need to be extracted from the documents. While it is 

easy to achieve this with plain text, with binary format documents, the solution is to use 

optical character recognition (OCR) technology. The first step is to convert the 

documents to image format and then use the OCR application to extract the keywords. 

Extracted keywords need to be cleaned of punctuation marks and stop-words (words used 

for grammatical sense) and lemmatized (variations of a word need to be made one). All 

final extracted words are stored along with the original documents, thus the database 

handles binary and plain text datatypes. 

 

For each document loaded, the keywords are employed to create a matrix using term 

frequency-inverse document frequency (TF-IDF) vector algorithms. To calculate distance 

metrics, the cosine similarity algorithms are run on the matrix. Distance metrics are 

critical when the end users search for documents using keywords and phrases, as they 

will help generate a list of documents that are closest to the search string. 

 

The team evaluated the frontend on a laptop using a browser. The middleware is from 

Flask (open-source application server), which is a Python programming language 

product. Flask lets one build the full software application in Python, so all the algorithms 

are Python packages that can be deployed to the Flask webserver and use the database as 

a store. When the frontend is deployed on an Android phone, it uses the Java 

programming language while Flask uses Python. A workaround is to use a Java to Python 

connector Jython, which allows Java applications to use Python libraries/code. This is an 
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extra layer of software that can increase execution time and degrade the speed of 

execution as data grows. 

 

The system studied by the team requires that each time a document is loaded, all the 

calculations must be redone; this can be a challenge when the number of documents starts 

to grow. The sandbox did not fully test data growth using a HDFSs system.  

 

Initial NECC results were encouraging. The study has aided in raising awareness of the 

problem. Follow-on research needs to be conducted before this solution can be 

implemented into production. 
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V. FUTURE WORK 

The NPS team studied the document store/search system on a laptop sandbox, so the next 

step would be to scale up the evaluation. A server-based system can be used with a HDFS 

backend to understand the challenges of large-volume execution. A repository of datasets 

in the terabyte range will be a more realistic test of the system. Middleware technology 

needs to work on all platforms; if it works with Python and not with Java then a more 

generic middleware architecture needs to be researched and evaluated. Frontend 

technologies need to be examined on a wide range of devices, with large user community 

involvement. The middleware architecture needs to handle user growth for 

loading/searching of documents, thus more options beyond Flask need to be evaluated. 

 

Additionally, there are many DOD CMS vendors who can be reached to present their 

solutions and evaluated. More studies need to be done with other DOD entities that may 

have already solved this problem. 
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