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(57) ABSTRACT

A method and system for modeling fibrous composites.
Initially, material properties are obtained for a model of a
fibrous composite, where the model includes integration
points and unit cells. For each integration point, composite
level stresses and strains are determined based on the
material properties, the composite level stresses and strains
are decomposed into component level stresses and strains
for the integration point, the component level stresses and
strains are used to calculate failure quotients at the integra-
tion point, an appropriate material reduction model is
applied at a component level based on the failure quotients
to detect a component failure, the component failure is
upscaled to determine updated material properties at a
composite level, and the updated material properties are
incorporated into the model. At this stage, a composite
failure is detected based on the updated model.
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1
FIBROUS COMPOSITE FAILURE CRITERIA
WITH MATERIAL DEGRADATION FOR
FINITE ELEMENT SOLVERS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/684,889, filed Jun. 14, 2018, which is
hereby incorporated in its entirety by reference.

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates generally to methods and
systems for applying fibrous composite failure criteria with
material degradation to finite element solvers.

2. Description of the Related Art

In recent years, two prominent investigations into the
characterization and prediction of composite failure, the
World-Wide Failure Exercise 1 and II, have been initiated
and completed in 2004 and 2013. The investigations explore
the effectiveness and utility of many different composite
failure theories against many sets of experimental data. The
World-Wide Failure Exercise (WWFE) was prompted
mostly because many theories have been put forth to under-
stand the ultimate strength of composites. Most of these
theories begin from the better-understood homogeneous and
isotropic metals and plastics and add correction factors to
account for the observed differences. Few of the failure
theories, however, approach composites from the direction
that a composite is an assemblage of various parts, each of
them with particular properties, ways of interacting, and
ultimate failure conditions.

Common evaluations used in composite failure theories
are limit criteria, interactive criteria, and separate mode
criteria. The maximum stress and maximum strain criteria
belong to the limit criteria while Hill-Tsai and Tsai-Wu
criteria are examples of interactive criteria. Alternatively,
Hashin-Rotem and Hashin criteria are the separate mode
criteria. While the theories listed here are popular choices
for designers and finite element software manufacturers,
there are many additional criteria proposed. All of the
theories relied exclusively on the in situ composite-level
uniaxial failure values to predict failures in the quadrants,
i.e., the combined stress states.

SUMMARY OF THE INVENTION

Embodiments in accordance with the invention relate to
modeling fibrous composites. Initially, material properties
are obtained for a model of a fibrous composite, where the
model includes integration points and unit cells. For each
integration point, composite level stresses and strains are
determined based on the material properties, the composite
level stresses and strains are decomposed into component
level stresses and strains for the integration point, the
component level stresses and strains are used to calculate
failure quotients at the integration point, an appropriate
material reduction model is applied at a component level
based on the failure quotients to detect a component failure,
the component failure is upscaled to determine updated
material properties at a composite level, and the updated
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material properties are incorporated into the model. At this
stage, a composite failure is detected based on the updated
model.

In some embodiments, the composite level stresses and
strains are decomposed by generating a relationship matrix
based on the material properties, partially inverting the
relationship matrix to generate a downscaling matrix, and
using the inverted relationship matrix to decompose the
composite level stresses and strains to the component level
stresses and strains.

In some embodiments, the component failure are upscaled
to determine the updated material properties at the compos-
ite level by multiplying a combined stiffness matrix and the
downscaling matrix to generate a distributed stiffness
matrix, linearly combining and weighting directional stiff-
nesses to generate a normal stiffness matrix for the fiber
composite, and inverting the normal stiffness matrix, where
the updated material properties are extracted from the
inverted normal stiffness matrix.

In some embodiments, the component failure is upscaled
to determine the updated material properties at the compos-
ite level by estimating a shear modulus of each half cell of
a target unit cell by combining corresponding shear moduli
of corresponding quarter cells, where each of the corre-
sponding shear moduli is weighted by a cross-sectional area
of corresponding quarter cell in a plane of interest and
combining the shear modulus of the half cells to obtain an
upscaled shear modulus for the target unit cell, where the
updated material properties also includes the upscaled shear
modulus.

In some embodiments, the appropriate material reduction
model is a fiber failure in tension model, a fiber failure in
compression model, a fiber-matrix interface failure model,
or a matrix failure model.

In some embodiments, each of the unit cells comprises
eight subcells, where two of subcells represent fiber prop-
erties of the fibrous composite and the six remaining cells
represent matrix properties of the fibrous composite.

Embodiments in accordance with the invention are best
understood by reference to the following detailed descrip-
tion when read in conjunction with the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic diagram of multiscale
coupling.

FIG. 2A shows a unit-cell model for modeling fibrous
composites.

FIG. 2B shows a unit cell with an elongated 1-2 quarter-
cell.

FIG. 3 shows progressive failure flow and stiffness reduc-
tion methodology.

FIG. 4 shows the relationships between sections and
integration points.

FIG. 5 illustrates a workflow for modeling fibrous com-
posites.

FIG. 6 illustrates an example computing system for
executing modeling of fibrous composites.

Embodiments in accordance with the invention are further
described herein with reference to the drawings.

DETAILED DESCRIPTION OF THE
INVENTION

Embodiments described herein attempt to reconcile the
performance of a composite as the collection of constituent



US 11,556,683 B2

3

materials and their interactions for a range of composite
materials. An established multiscale model for materials is
used as the basis for a failure model for fiber composites.
The model’s computation is explained so that its results can
be used to formulate the inputs to the failure model. The
failure model proposed employs homogenization and dis-
aggregation methods that are enabled by micro-scale mod-
eling of the material’s constituents. This failure model is
then used to define strength reductions in the composite at
the micro-level. The strength reductions enable the defini-
tion of a progressive failure methodology for application to
the micro-scale, and ultimately, the macro-scale composite.
The failure model, the degradation model, and the multi-
scale model they are based upon are combined in a compu-
tational program for inclusion in finite element software for
efficient solving and prediction of intact and failed compos-
ite structural response.

This description begins with the explanation of the multi-
scale model and its computational foundations that is
described in view of FIGS. 1 and 2A. Also necessary to this
discussion is understanding the shortcomings of the
theory—where its representation of reality is questionable—
most importantly so they can be mitigated and the range of
applicability of the theory understood.

Following the definition of the Multi-scale Cellular
model, the failure model for fibrous composites based on the
elements of the multi-scale model is described with respect
to FIG. 2B. Initial damage is then expanded so that indi-
vidual failure of a lamina can contribute to the progressive
damage of a multilayer, multi-angle laminate.

In order to increase the utility of the failure model based
on multi-scale modeling, the multi-scale model, the failure
initiation criteria as well as the damage progression model is
then implemented in, for example, Fortran code suitable for
use in most finite element solvers (3DS’s Abaqus in this
example). This damage initiation and progressive damage is
described with respect to FIG. 3. The Fortran implementa-
tion was tested against five sets of WWFE data as well as
three different sets of experiments.

Lastly, the multi-scale model is then explored through a
parametric analysis of the inputs of the method: constituent
modulus, fiber volume fraction, temperature variations, and
small angle perturbations, which are described in view of
FIGS. 4 and 5.

FIG. 1 illustrates a schematic diagram of multiscale
coupling 100. Multiscale modeling 100 of a fibrous com-
posite relates the material properties, stresses and strains at
the lamina level (called macro-level) 106 to those at the
constituent material level (called micro-level) 102. Both
levels are connected bi-directionally (up-scale 106 and
down-scale 110) through the unit-cell model 104.

FIG. 2A shows a unit-cell model 200 for the representa-
tive composite strand has eight subcells 202A-202H. For a
fibrous composite, only four subcells are strictly necessary.
However, the model to be described was developed not only
for the fibrous composite but also for particulate and whisker
composites, and is unmodified in this discussion to retain its
flexibility. As a result, the unit-cell model 200 used here has
eight subcells 202A-202H. Material properties are assigned
to each subcell 202A-202H. The assignment of properties
and the relative sizes of the subcells 202A-202H are based
on the constituents’ material properties and the fiber volume
fraction. For instance, a fibrous composite would be repre-
sented by fiber properties (moduli, volume fraction, coeffi-
cients of thermal expansion, Poisson’s ratio, etc.) assigned
to subcells 1 202A and 2 202B, while the matrix properties
are assigned to the remaining subcells 202C-202H. In addi-
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tion, inclusions, voids and alternative materials as well as
different cellular aspect ratios can also be modeled.

For this description, the following terms are defined:

Strand: the entire unit cell 200 containing connected fiber

and matrix portions; the strand is the macro-level
composite

Subcell (202A-202H): the lowest division of the compos-

ite unit cell 200, one of eight rectangular prisms with
assigned material properties; stresses and strains
assigned to a subcell are denoted by, for example, o',
and &>, indicating x-directional normal stress in the 1st
subcell 202A and z-directional normal strain in the 3rd
subcell 202C, respectively

Quarter-cell: the combination of two subcells in a par-

ticular direction; for instance, a fibrous composite
assigns fiber properties to subcells 1 202A and 2 202B,
therefore the fiber lies in the 1-2 quarter-cell 202A-B;
stresses and strains are denoted similarly to subcells; a
second superscript indicates the included subcell such
as o'2_indicating the fiber-directional stress in the 1-2
202A-B quarter-cell

Half-cell: similar to the quarter-cell, describing a whole

side of the unit cell; stresses in this case are denoted
with the addition of superscripts: o>*"®, which repre-
sents the z-directional stress in the 3-4-7-8 202C-D,
202G-H half-cell

Upscale: to use constituent mechanical properties in order

to predict composite macro properties

Downscale: to decompose the macro level strains of a

composite into stresses and strains in each of the
subcells in the unit cell

In this description, the coordinates are described as
below:

x—the longitudinal fiber direction

y—the first transverse direction, starting in the 1-2 quar-

ter-cell 202A-B, with the direction toward the 3-4
quarter-cell 202C-D; the y-direction is always used as
the in-plane direction

7—the second transverse direction, starting in the 1-2

quarter-cell 202A-B, with the direction toward the 5-6
quarter-cell 202E-F; the z-direction is always used as
the out-of-plane or thickness direction

The strand description starts with the geometrical rela-
tionships of the unit cell 200 and the subcells 202A-202H
that comprise it. In FIG. 2A, the total dimension on each side
is taken as unity. The fiber is described as assuming the
entire first 202A and second 202B subcells (the full x length
of the subcell). Matrix material is assigned to the third 202C
through eighth 202H subcell, also filling the entire x direc-
tion of the unit cell 200. In the y and z directions, the
fiber-to-matrix ratio or volume fraction (v,) control the
dimensions of the subcells 202A-202H. For example, the
unit cell length in the y direction is the sum of the fiber
subcell y dimension 212 and the 34 quarter-cell y dimension
210.

As proposed in Kwon and Berner, Micromechanics model
for damage . . . , Engineering Fracture Mechanics, Vol. 52,
No. 2, pp. 231-242, Sep. 1995, the subcells are joined
together by requiring normal stress continuity between adja-
cent subcells 202A-202H as stated below:

Iy 2 3o d 5678
0){ 70){ ’OX 70){ ’OX 70){ ’OX 70){

M

d2)

12_y 34 5 56_5 78
Oy Oy ’Oy Oy

o 12,0, 56 o

z Yz Yz

=0, ©)

Shear-stress continuity between subcells 202A-202H adja-
cent in the shear stress direction is expressed:
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12 34 56 78
T (C))
T, = 0 =, )]
T 12:1: 121: 12:1: 12 (6)

xz Xz 2Vxz xz

Compatibility of normal and shear strains between each
half-cell is expressed:

12_, 34_, 56_. 78
sx 78){ 78){ 78){

M

12 34_ 56, 78
by, “+boe, " =be, +boe,

®)

18,2408, %=c e, 40t 8

©

ny1234:Y)g;5678 (1 0)

3478
Yoz

1256_,

Yaz an

1357_,, 2468

Yoz e (12)

Where

1234_,

Yy nylz(al+a2)b 1+yw34(a 1+az)by (13)

5678:YW56(al+az)b 1+YW78(‘1 1+a2)by (14)

Yy

1236y Pla +az)e 41, e +a)e,

Yz "
1282y 3a an)e 4y, S a +an)es (16)
e T P erren)b 4y, (e ea)by an
o B, errea)b 4y, e ea)by e

The last required connection is the consideration that the
total strain is the volume-averaged sum of the subcell
strains. The relationships above are described as

vrgh

& = ij

8 (19
=

»

where &, is the ij-th strain component of the composite, V”
is the volume of the n-th subcell, and ¢, is the ij-th strain
component of the n-th subcell. The same expression can be
also written for the stress components like

20

=

8
?U:ZV” i
n=1

This system of equations allows for the volume-averaged
combination of the properties of the constituents yielding a
global or macro-scale set of properties of the composite.
Once the macro-scale properties are established, a macro-
scale compliance matrix can be simply employed to calcu-
late the macro-scale strains to applied stresses. The finite
element method can be also utilized to analyze a complex
shape of composite structure subjected to the applied load-
ing in order to compute the macro-scale stresses and strains.
The unit-cell model determines the stresses and strain at
every subcell from these macro-scale strains. Thermal
effects can also be included in this model.

As shown in Kwon and Park, the model’s performance for
the prediction of macro properties of a composite, knowing
only the properties of the constituents, is very satisfactory.
The upscale and downscale routines are simple routines that
can be implemented in any numerical software package in
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6

500 or so lines (much fewer with efficient coding). The
relationships between the subcells are simple and intuitive.

An additional strength of the theory is that the degraded
properties of a lamina can be calculated before the analysis.
The global-to-subcell (downscale) transformation relation-
ships and composite-level constitutive relationships for each
type of failure (and all combinations of failures) can be
formed from the constituent properties in the first iteration
and stored as reference values, allowing the subroutine to
avoid matrix inversions and decompositions unrelated to
solving the finite element problem, potentially significantly
speeding up the subroutine performance.

The theory, while simple in its formulation and imple-
mentation, does have some drawbacks. The routines rely on
some data that may not be readily available, specifically,
transverse moduli and Poisson’s ratio of fibers and shear
modulus of fibers. These values may not be readily available
from manufacturers or experimentalists. However, reason-
able guesses for unknown properties can be made without
significant impact to the output of the method. Also, as will
be shown, the method itself can be used to estimate
unknown properties from global values and known proper-
ties.

The formulation does not include shear coupling, that is:
normal stresses on the composite only result in normal
strains. Furthermore, the theory allows for strain disconti-
nuities in the y and z directions between quarter-cells as well
as shear-strain discontinuity between half-cells.

In a unit cell 200, the total shearing strain for both
half-cells 202A-B, 202E-F and 202C-D, 202G-H equals the
macro-level shearing strain; however, adjacent quarter-cells
(1-2 202A-B and 5-6 202E-F, 3-4 202C-D and 7-8 202G-H)
are allowed to have incompatible shear strains. This is of
important consequence, since the calculation regarding
maximum principal strain relies on the shear strain value.
This allowed discontinuity is likely only an artifact of the
model, and will negatively impact any failure calculations
based on these strains. An adjustment for this discontinuity
is discussed below with respect to FIG. 2B and as will be
shown, provides a convenient ability to tune a failure
envelope such that it provides a failure range from conser-
vative to aggressive.

To determine the material properties of the composites,
the material properties of the constituents must be known.
The multiscale model, comprised of continuous fibers and
matrix material, requires the input of the material properties
of first the fiber, the composite and some details of the
composite itself. Most of the material properties that are of
concern can be found in literature provided from a material’s
manufacturer. In some cases, the relevant material properties
are difficult to locate, are not provided, or are difficult or
impractical to measure. In such cases, estimates for these
properties adapted from similar materials can be used or the
properties can be estimated using known properties of the
constituents and composite. These estimates can be accom-
plished with the multiscale model’s upscale and downscale
routines discussed below.

The fiber, in most cases, is the main strength member for
the composite. It usually consumes the majority of the
volume of the composite and accounts for at least 90% of the
modulus of the composite. The multiscale model requires
the input of the following properties in order to complete
both the upscaling (homogenizing) and downscaling calcu-
lations:

1. B/, —TLongitudinal Young’s Modulus

2. B/ —Transverse Young’s Modulus

Y . . . .
3. foy, V’;Z—Longltudlnal and Transverse Poisson’s Ratio
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4. G/_—Shear Modulus

5. Vf—yﬁber volume fraction

6. o/ —Coeflicient of thermal expansion for fiber in
longitudinal direction

7. (xfy—coefﬁcients of thermal expansion (CTE) of fiber
in transverse direction

As discussed, some of these inputs are not easily obtained.
Transverse Young’s modulus (Efy), Poisson’s ratios (foy,
nyz), shear modulus (Gfxy) and coefficients of thermal expan-
sion (o7, ocfy) are infrequently reported by manufacturers or
are difficult to establish. However, reasonable estimates for
these inputs can be used for preliminary modeling. The
WWFE provided this data for its participants; however, for
the designer and researcher, this same WWFE data can be a
starting point for comparable materials. The composite and
constituent data provided by the WWFE was used in this
implementation.

The matrix material provides the composite that which the
fiber material cannot: transverse and shear stiffness as well
as support in compression loading. The multiscale model
requires fewer properties of the matrix material since the
matrix is considered homogeneous and isotropic. The prop-
erties required are:

1. E,—Young’s modulus of matrix (assumed isotropic)

2. v,—Poission’s ratio (assumed isotropic)

3. a™—CTE for matrix

The matrix material properties are usually more available
than those of the fiber material. Most of the needed prop-
erties are available from resin manufacturers or can be
obtained experimentally. Again, for the majority of test cases
in this implementation, the WWFE data was comprehensive
and included all required values.

Many methods have been proposed to estimate macro
composite properties from the properties of the constituents.
Finite element models of representational volume elements
can be used to homogenize the constituents to predict macro
properties. The multiscale method can be used to predict
macro properties.

The prediction methods rely on the documented proper-
ties of composites, found from manufacturers, academia,
and reference texts. In addition to the data found in these
sources, the estimation methods may also rely on data that
is difficult to obtain. The usually unknown properties are:

1. Efy—The transverse elastic modulus of the fibrous

portion of the composite

2. nyZ—The transverse Poisson’s ratio of the fibrous

portion of the composite

3. Gfxy—The shear modulus of the fibrous portion of the

composite

These properties, and some of the better-known properties
that are not available, can sometimes be assumed to be the
same as their orthogonal counterparts by assuming that the
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material is isotropic. For carbon fiber, however, this is a poor
representation because the experimentally measured trans-
verse elastic modulus was 6% of the longitudinal modulus.
Therefore, for carbon fibers it may be best suited to take the
transverse elastic modulus of carbon fibers as 10% of their
longitudinal values.

To estimate other unknown properties, the multiscale
method can be combined with an optimizer that uses known
properties of both the constituents and the composite to tune
initial guesses provided by the user. Preliminary work was
done forming a nonlinear optimizer that uses the known
composite properties as targets and all function inputs as
parameters. The optimizer uses the objective function:

8
minimize » |1 —x;|
X £
=1

subjectto 025 <x; <2,i=1,... ,8
[outputs] = upscale_functiof{inputs)
£ = Egiven

E = E§iven

v, = ngen

*Other constraints

The optimizer changes the multiples (x;) of one or many
of the upscaling function inputs (the constituent materials’
properties) and penalizes departures from unity on these
multiples.

An additional use of this optimizer is tuning the values of
selected constituent properties such that the upscaled mate-
rial properties exactly reproduce those measured experimen-
tally. Using an optimizer in this way also allows for a
cross-property adjusting while preventing major departures
from the stated constituent values. This simple routine can
be implemented in programs like Excel, MATLLAB or more
advanced solvers. Further adjustments can be made to this
routine to refine its method. Also, additional weights can be
added to the objective such that changes to certain input
parameters are “penalized” more than other changes.

Some additional work was done to determine the sensi-
tivity of the forward function outputs to the material prop-
erty inputs. The results are summarized in TABLE 1.
TABLE 1 represents the change of the output variable (the
major columns) due to a -10% change (the left minor
column) and a +10% change (the right minor column) in the
input variables (the rows). Both positive and negative
changes are shown so that it can be determined whether the
sensitivity is in general linear or not, and the general
response direction of the output variable.

TABLE 1

Function output sensitivity

E, E, E; G, G, G; Vi2 V23
efl -9.88 9.88 -0.05 0.04 -0.05 0.04 — — — — — — — — -0.18  0.15
eft — — =542 499 -542 499 — — -2.86 247 — — 0.10 -0.08 0.78 -0.76
nufl2  — — 0.03 -0.03 0.03 -0.03 — — — — — — =533 533 0.11 -0.11
nuf23  — — 026 -0.25 0.26 -0.25 — — 0.55 -0.54 — — 0.03 -0.03 -3.16 3.14
em -0.12 0.12 -498 456 -498 456 -946 935 -7.55 716 -9.46 935 -0.09 0.09 -0.68 0.55
num — — =373 489 -3.73 4.9 258 -245 2.00 -1.93 2.58 -245 -491 521 -11.75 1391
vf -9.69 9.69 -7.23 7.66 -7.23 7.66 -15.65 2074 -749 88l -15.68 20.74 2.07 -2.05 556 -5.44
gf12 — — — — — — -0.66 055 — — -0.66 055 — — — —
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As seen in TABLE 1, the volume fraction, when changed
by itself, has the largest effect on all output variables. While
this variable has the most cross-output effect, it is usually
one of the best known inputs into the model, reducing its
variability. As expected, the fiber properties dominated the
fiber-direction modulus, and the perpendicular modulus was
relatively evenly split between the fiber transverse modulus
and the matrix modulus. This table gives a general map as
to what properties to adjust to dial in the mathematical
model’s property estimates to experimentally observed
properties.

Additionally, in the general range of +10%, most of the
output responses were generally linear (or can be approxi-
mated as linear); however, for larger changes, some of the
responses were nonlinear, emphasizing the need to have
relatively good estimates of the unknown properties of the
constituents before using the simple optimizer above.

In order to implement the multiscale model in both
upscale and downscale directions, the relationship matrix, T,
is formed as a 24x24 matrix. This relationship matrix uses
Equations 1 through 3, 7 through 9 and Equation 19. These
equations represent that the total strain of the strand is the
sum of the strains contained in the strand, and that the strain
is also volume-averaged strain.

The relationship matrix T is composed of three sub-
matrices [[T,][T,][T5]17. The first portion, T,, forms the
relationships between global stress and subcell stress. The
first four rows of T, expresses Equations 1. Similarly, the
remaining eight rows reflect normal stresses in the y and z
(Equations 2 and 3). To demonstrate, the fifth row relates the
strains between the 12 quarter-cell 202A-B and the 34
quarter-cell 202C-D in the y direction. The linear system is
thus:

[c§x = c§y = c§z =% ] 2D
12 34 12 .34 12 .34 T
[&° & & & el & 1 =0

where the entries like ¢/, are the (n, m) entry in the fiber
component subcell stiffness matrix, and likewise for the
matrix material subcell stiffness matrix.

Submatrix T, establishes the normal strain relation-
ships—that the directional strain of the strand is equal
between each half-cell, and that the strain in each half-cell
is the weighted sum of the strains of each quarter-cell
(Equations 7 through 9). Submatrix T, parses Equation 19,
establishing that the global directional strain is the sum of
the volume-weighted subcell strains.

Once T is formed, it is partially inverted to obtain the
24x3 R matrix which allows the volume-averaged and
stress-equating distribution of global normal strains (g,) to
subcell normal strains (g,) by multiplying Re*=e“. Only the
last three columns of R are for non-zero equations, so R is
obtained by solving the linear system TR={e,, e,; €,.},
where e, are the 22nd through 24th unit vectors.

To establish the upscaling, a combined stiffness matrix
(24x24) is formed and multiplied by the downscaling matrix
R to obtain the 24x3 distributed stiffness matrix. The direc-
tional stiffnesses are then linearly combined and weighted
by the relative volumes of the subcells. This yields a 3x3
normal stiffness matrix for the material. To obtain the
upscaled values for directional moduli and Poisson ratio,
this matrix can be inverted and the values extracted, where
the diagonals are the inverse of the upscaled composite
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directional stiffnesses, and the off diagonals are these values
with the composite Poisson ratios in the numerator.

To calculate the upscaled shear moduli, Equations 13
through 18 are used. The shear modulus of each half-cell is
estimated by combining its quarter-cell’s shear moduli,
weighted by the quarter-cell cross-sectional area (length and
width) in the plane of interest (Equations 22 and 23). These
values are then combined across the half-cells by applying
the half-cell dimension in depth as the weighting factor. For
instance, the shear modulus of the unit cell in the x-y plane
is calculated:

S S 22
Y an [Ghrab /o

5678 _ 1 23)
ol aby | G, + aby [ G,

G, = 1 G 1 0, G378 4

where a, b,, ¢, are the dimensions from FIG. 2A and
a=a, +a,.

To summarize the above, the micro-mechanical model for
fiber composites are described, as well as some of its
benefits and shortcomings. Additionally, the inputs to the
method—namely the properties of the constituents—were
described. For properties that are either unknown or less-
well defined like the transverse modulus of a fiber phase,
estimating methods and optimization routines were pro-
posed. The sensitivity of the outputs of the upscaling routine
are also explored in order to target the most effective
alterations to input properties to better represent macro-level
properties. Lastly, the mechanics of the calculation of the
upscaling method are explained. With the upscaling and
associated downscaling methods defined, the material prop-
erties and response under load, both macro and micro, can
be predicted.

Composite materials have been applied to many load-
carrying structures and gradually replaced metals in struc-
tures and devices. This ubiquity makes accurate predictions
of failure strengths of composites essential. The multi-phase,
inhomogeneous and anisotropic nature of composite mate-
rials lies at the heart of the complexity of accurate failure
prediction.

The failure criteria proposed below uses stresses and
strains exhibited in the constituent materials such as fiber
and matrix materials as described in the following sections.
The criteria were developed to describe physics-based
modes of failure at the micro-scale level. The failure modes
are fiber breakage, fiber buckling, matrix cracking, and
fiber/matrix interface debonding. The proposed criteria are
evaluated against available experimental data as given in the
World-Wide Failure Exercise data.

As discussed previously, many of the existing failure
theories are based on the use of the test data of a lamina. This
theory currently requires the use of constituent materials’
strength data. If some of those data are not available, they
can be derived from the lamina level test data. The failure
envelope of a composite is defined as the locus of points of
each failure mode. The following failure criteria are similar
to the Hashin separate mode criteria, but is distinct from
Hashin in its use of the micro-mechanics model as its basis
and its use of strain rather than stresses.

This criterion is applicable for fiber under tensile loading.
This failure mode is called fiber breakage. Once the fiber
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subcell’s resultant strain reaches the failure strain of the
fiber, the fiber is considered failed based on the following
criterion:

(€20 + (27 + (2 @5

=1
el

This failure criterion takes shear angle into account so that
the elongation of the fiber is not only the longitudinal
lengthening of the fiber subcell, but also the imposed shear
angle, as shown in FIG. 2B. FIG. 2B shows a unit cell 252
with an elongated 1-2 quarter-cell 254. The shearing angle
may not initially appear important, but it becomes signifi-
cant for larger shearing stress on top of the longitudinal
stress.

The data required to implement this criterion is the fiber
elongation at failure, sfu,t, which is commonly available
information. While using this value in the failure model
yields results within 4% of the stated composite value, the
micro-mechanics model can also be used to adjust this
quantity so as to exactly match the macro-level anchor point.
To do this, the macro failure stress is applied to the unit
strand and the fiber failure strain is calculated using the
downscaling routine. This can be useful since the fiber
elongation at failure may provide an over-prediction of the
stated longitudinal strength of the composite.

This formulation of the fiber breakage criteria is unique
since other criteria that separate the modes of composite
failure are primarily stress-based. Due to the ability to
extract both the normal and shear strain of the fiber phase of
the composite through the multiscale method, the failure
strain of the constituent can be used directly rather than rely
on the macro-level failure values.

The second criterion is for fiber failure while under

compression. It is called fiber buckling, and the criterion is
defined as

(€202 + (/27 + (2 @6

=1
el

where ¢, «c 18 the fiber (and composite) longitudinal strain at
the stated ultimate compressive stress as calculated by

in which the superscript C indicates composite (macro-
scale) values. Since this value is derived from the macro
failure stress through the micro-scale model, it requires no
adjustment like the fiber breakage criterion.

One of the most important portions of this failure criteria
is the debonding of the fiber/matrix interface between the
fiber and matrix phases. The simplest form of this criterion
describes the failure of the interface when the transverse
normal stress between the fiber subcell and its adjacent
matrix subcell reach a critical value. As stated, this criterion
would simply be a maximum shear stress criteria applied at
the subcell level:
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34 (27)
M =1

Tu

where T, is the in-plane failure shear of the composite. This,
as will be shown later, is an incomplete picture, since
longitudinal tensile stresses appear to delay shear failure and
transverse tensile stresses appear to promote shear failure.
This requires that there be some additional terms in the shear
failure portion to account for the promotion or delay of the
onset of shear failure in a composite sample. Empirical data
will be used to determine which outputs of the multiscale
method are best suited as terms in the failure criteria.

To understand the response of the subcells reported by the
multiscale method as load progressed through the normal-
shear space, a hemielliptical path through each of the
normal-shear planes was chosen. These paths are meant to
provide controlled, prior-to-failure input of loads to the
multiscale downscale routine in order to plot the output. The
paths were defined by the stated failure points of the
composite (O, 7, O, ¢ O, 1, O, ¢ and T, ;) as the semimajor
and semiminor radii. For this illustration, the properties of a
T300-BSL914C were used. The paths were defined by:

Txy

(15109)2+(8x107)2=1

for the o,—,,, subspace and

(4:—f09)2+(8xTX1y07)2=

for the o,—,,, subspace.

The stress values are calculated in the micro-model as the
micro-model is swept through these paths. The shear stress
between the 12 and 34 quarter-cells from the applied stress
as well as both the x and y stresses in the 34 quarter-cell,
‘534xy, o>?, and 034y are determined.

In the o -7, subspace, the calculated o, and o, subcell
stresses in the 34 quarter-cell are two and four orders of
magnitude, respectively, less than the applied longitudinal
load. This is reasonable, since the fiber is the major load-
carrying component. Alternatively, in the oy-txy subspace,
the calculated ox and oy subcell stresses are both the same
order of magnitude and same sign as the applied transverse
normal stress.
For the o,-t,, plane, empirical data implies that ultimate
failure is delayed with tensile o, and promoted with com-
pressive o,, the calculated o*_ can be used to diminish
‘534xy. The impact that o>*_ has on the criteria can be
controlled using a scaling factor o,. The first alteration to
Equation 27 becomes:

34 34
Ty — Q10

28

Tu

For the o,-T , plane, observation implies that ultimate

failure is promoted with tensile o, and delayed with com-
. 4 .

pressive 0,, the calculated o ", can then be used to increase

%, Likewise, its impact can likewise be scaled with o

The corresponding alteration to Equation 27 becomes:
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T34 + wzo’ift
A

@29

xy
Tu

For a complete shear picture and to enable the use of a
single criterion for all of shear space, we combine Equations
28 and 29, and allow for simplicity a,=c.,:

‘z'i;1 + wl(o’;4 -0t ) 30
BRI A S

Tu

This form is satisfactory for the interface when it is under
shear stress; however, it does not include interface debond-
ing under pure transverse tension. It is logical to assume that
debonding under transverse load will occur only under
tensile transverse loading rather than compressive loading,
which will likely reinforce any interaction between the fiber
and matrix subcells until some other failure occurs, like
matrix cracking due to the same compressive load. To
include this impact, the transverse stress term is added:

: o'§4 >0 (3B

0 :o'§450

where o, is the stated transverse failure strength of the
composite.

It can be observed that bonded subcells under either
longitudinal or transverse normal stresses experience some
interface stresses due to the mismatch in stiffness of the two
materials. The criterion includes the impact of the normal
stresses on the interface shearing stress. For the complete
criteria, we combine Equations 30 and 31 and allow them to
interact as a quadratic polynomial. The criterion is stated as:

[T'+m(o—§4—o—34)]2+n(a_§4]z L (32
Ty (o
and similarly for the 12-56 interface:

33)

2 2
oy (o'f6 - o'iG) 0'36
— = 2| +n=| =1

Tu (e

where T, is the interface shear stress, calculated for the 34
subcell as:

O RE (34)
- 2
or calculated for the 56 subcell as:
| GL ARGy (35)
TEm—

and o' is the scaling factor—currently vv'—v/ is the fiber
volume fraction, T, is the critical interface shear stress, and
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0, is the critical interface normal stress. The impact of the
shear-to-normal scaling factor, o.;, is explored below along
with the criteria’s performance against experimental data.

The interface shear stress, T* is expressed as in Equation
34 and 35 as the average of the shear stresses in adjacent
subcells. Using the portion of the downscaling routine
described in Equation 24, these values should be the same;
however, this averaging ensures that small variations
between the two calculated shear strains are minimized.
Values for T, can be calculated using the downscaling
routine by applying the macro-level shear stress at failure to
the unit strand and obtaining the interface stress between the
fiber and matrix subcells. Values for o, are adequately
estimated using the uniaxial transverse failure strength.

The additional parameter, ‘n’, is equal to 1 when the
composite is under transverse tension and zero when the
composite is under transverse compression. The reason for
this is to indicate that interface failure between the fiber
subcell and the matrix subcell (specifically separation due to
transverse normal stress) will only happen when the speci-
men is under transverse tension. Compressing this interface
can only reinforce the connection between the subcells until
the matrix reaches a crush value (i.e., failure by maximum
principal strain as described below).

This formulation can take the matrix quadratic failure
criterion (a matrix-specific application):

(oW omay (T
(7 £
Xn Y X X \Sm

where X, Y, and S are the matrix failure strengths. The
longitudinal term can be neglected to simplify the above to:

Similar strengthening is observed in composite failure
values while under transverse compression and shear dis-
cussed previously. Their accounting for this behavior
becomes:

Ty (36)

oy\2 2 o 0, <0
(—)+ =1l u=
Y §—uo, 0 o,20

However the criteria proposed in Equations 32 and 33
include the presumed shear interaction between the matrix
subcell and the fiber subcell due to normal loading in either
or both the transverse and longitudinal directions. This
criterion allows for the theory to account for the lack of
shear-coupling as well as the observed delay in shearing
failure while under longitudinal stress and the promotion of
failure while under transverse tension.

The primary reason that the normal stress terms are in the
above formulation is due to the observation in the WWFE
data that normal stresses either promote or delay specimen
failure depending on orientation and sign. The primary
thought about this interaction is that two bonded dissimilar
materials undergoing the same strain will experience differ-
ent stresses. For instance, the subcells undergoing longitu-
dinal stress without bonding would all respond as indepen-
dent springs and reach their own strain state that satisfies the
stress state. In the case of the fiber subcell, its independent
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elongation would be less than the composite’s elongation
due to the applied stress. Conversely, the matrix subcells’
independent elongation would be much greater than the
composite’s elongation. The two materials, however, impact
one another. The fiber subcell is further elongated by the
presence of the matrix subcells and the matrix subcells’
elongations are moderated by the presence of the fiber. This
mismatch is the likely reason for normal stresses causing
interface shearing.

Matrix failure is also called matrix cracking. The failure
criterion employed the maximum strain criterion, since it
relies only on the calculation of the maximum principal
strain experienced in each of the matrix subcells. The only
complication of this criterion is the requirement to moderate
the shear strain value between the fiber-matrix half-cell and
the matrix-matrix half-cell. As discussed earlier, the shear
strain compatibility only applies in each half-cell. The shear
strain that must be used, therefore, is some combination of
the calculated shear strain for the matrix portion of the
fiber-matrix half-cell (worst case) or the calculated shear
strain for the matrix-matrix half-cell. The compromise is the
mean of the two, making the criterion:

& &F (€)
— =21 0R — =1
E e

it ,c

where €™, and &™; are the principal strains of the state of
strain determined from the following matrix:

A A A E Y (38)
S=lea g0
0 0 e

The strain tensor for the matrix subcells is formed with the
off-diagonals as shown in order to overcome the disconti-
nuity allowed discussed above with respect to FIG. 2A. It
averages the shear strains calculated for the 34 and 78
quarter-cells. The impact of this averaging is discussed
below along with the criteria’s performance against existing
data. The tensor for failure in the 56 subcell is similar in
concept; however, it needs to overcome the same shortcom-
ings in the xz plane.

8¢ 0 ye+vL 14 39
&0 = 0 £§6 0
nE+yS4 0 &2°

Notice that only 34 and 56 matrix failure are the only ones
considered since matrix failures in 34 or 56 quarter-cells are
assumed to propagate to the 78 quarter-cell. Additionally,
the 78 quarter-cell is small in comparison to the other matrix
cells, so failures in the 78 quarter-cell and their associated
reductions in strength are small in comparison to the reduc-
tions due to a pure 34 or 56 failure. In practical terms, this
failure is exhibited primarily in the transverse compression
regime.

Again, this formulation is unique in that it uses the
maximum principal strains of the matrix subcells rather than
the global (normal) strain of the composite to determine
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matrix failure, enabled again by the disaggregation tech-
niques in the multiscale method.

In addition to estimating unknown variables, as discussed
above, the failure model parameters may also need to be
adjusted such that the composite meets a stated or tested
strength. In order to provide these data for better modeling,
the multiscale method can be used to update the critical
failure values. For instance, in longitudinal failure the virgin
fiber’s elongation at failure is used initially as the determi-
nation for longitudinal failure. Using this value may over-
predict longitudinal failure stress by 5-10%. The longitudi-
nal composite failure stress or strain as measured in
experiments can be used through the multiscale method to
update the failure strain of the fiber to that reported by the
multiscale method with the failure stress or strain applied.
To simplify this updating, a Fortran routine was written that
takes as inputs the constituent parameters of the composite
and the so-called failure anchor points and outputs the
upscaled composite properties (homogenized moduli, etc.)
as well as updated estimates for failure values such that the
failure model represents the required composite anchor
points.

Above, calculations made possible by the multiscale
method and observation of empirical data were joined to
propose novel criteria for fiber composite failure. The cri-
teria proposed is a separate mode stress- and strain-based
criteria. The fiber failure criteria as well as the matrix failure
portions are unique to this method, while the interface
failure portion is based on the matrix quadratic failure
criterion with additions made possible by the multiscale
calculations.

Described below is a progressive failure and material
degradation model that would take place after the proposed
criteria indicated a failure. Finally, the multiscale formula-
tion, the failure criteria, and progressive damage model are
combined into a single subroutine to be included in finite
element solutions. The performance of this model for both
uniaxial lamina and multi-angle laminates as well as and
explorations of its inputs are also included.

With a criterion that indicates under which conditions a
particular ply will fail, a method must be developed to
reduce the stiffness of the failed ply in the failure direction
and allow this reduced stiffness to propagate through the
remainder of the structure. In order to describe this method,
damage modes will be discussed as well as the logic behind
particular reductions to the unit strand. The defined failure
criteria is used as an indication of when material degradation
in a single unidirectional ply should begin. The methodology
behind the proposed strength reduction technique and its
general implementation in the context of the multiscale
model is then described. Finally, the damage initiation and
strength reduction are applied to the strength of a laminate
and the laminate’s ultimate failure.

The damage modes are divided between longitudinal and
transverse damage modes. Damage types characterized by
these modes will be defined and the reductions that are taken
as a result of those damages will be introduced. The method
of tracking damage and storing and communicating this
information in a solution process will be discussed. A few
methods explored in this implementation that help determine
“ultimate failure” of a composite sample under test will be
introduced.

Described here is essentially a mode-specific progressive-
softening ply-discount method, where specific failures in
specific plies are reduced in stiffness following failure.
Nearly any discount method can be applied using this
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implementation’s failure theory such as ply-discount, par-
allel spring, and first-ply failure.

The four failure types defined by the criteria described
above are the fiber elongation, interface failure, fiber buck-
ling, and matrix failure by maximum principal strain. To
determine when a composite lamina transitions from an
intact to a damaged state, Equations 25, 26, 32,33 and 37 are
used as initiation quotients. When any of these quotients
reach unity, the subject lamina or portion of lamina is
considered failed. Post failure behavior and ultimate failure
follow damage initiation indicated by the criteria described
above.

Progressive failure is defined as the path of feasible
failures that follow an initial failure. Feasible failures are
failures that can logically take place after an initial failure.
For instance, beginning with an interface failure, a matrix
failure due in whole or part to transverse loading is not
feasible as the matrix material is conceptually separate from
transverse support; however, fiber failure following an inter-
face failure is a feasible failure. The damage initiation
quotients give a starting point for where in the loading life
of a structure the properties should begin to degrade. The
way in which the properties should degrade and by what
quantities will be based on the conceptual model of the unit
cell.

The first damage mode is that characterized by failures
that would result in significant reduction in the longitudinal
strength of the composite or ply in either tension or com-
pression. Longitudinal damage is characterized by either or
both of fiber failure by elongation or matrix failure by
maximum principal strain in either tension or compression.

Longitudinal tensile failures reduce the longitudinal
modulus of the constituent material. When fiber failure is
indicated, the modulus of the fiber subcell is reduced in the
present model by 99%, though this is a tunable parameter.
This is likely the most consequential longitudinal failure,
since the fiber subcell’s modulus contributes over 90% of
the modulus of the composite strand.

Matrix material failure and interface failure caused by
longitudinal tension are also permitted. Matrix cracking in
the longitudinal direction is handled similarly to a fiber
break, reducing the contribution of the matrix material to the
longitudinal stiffness of the unit strand. Longitudinal ten-
sion, when combined with transverse tension or compres-
sion or in-plane shear also may cause interface debonding,
however interface failure caused by longitudinal tension
would cause a smaller reduction in longitudinal modulus due
only to the reduced Poisson effect that this interface pro-
vided before failure. The damage caused by the interface
debonding is discussed below.

As a feasible failure, matrix longitudinal failure by crack-
ing following interface failure must be only due to longitu-
dinal and out-of-plane (thickness direction) strains. This is
due to the presumption that a failed interface cannot sustain
in-plane transverse strain, and therefore cannot transmit that
strain to the matrix material subcells. In this instance,
Equation 38 would be altered as:

0 7 +7L 14
= 0 0 0
Vi +vE14 0

34
EX

34
EZ

Similar reductions would be done for interface debonding in
the 56 quarter-cell.
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The reduction in strength of failed fiber and/or matrix
subcells is accomplished by altering the transformation
matrix T, described above. Since the first submatrix T,
controls the x or longitudinal properties of the composite
strand, those entries are the elements that are reduced. In
conjunction with the reduction in longitudinal stiffness due
to a longitudinal failure, shear stiffness is also reduced in the
upscaling and downscaling routines by reducing the appro-
priate quantities in Equations 22 and 23 and their orthogonal
counterparts.

Compressive damage, mainly characterized as fiber buck-
ling or matrix crush causes a similar reduction in subcell
stiffness, and is reduced in the same manner as tensile
damage. An additional consideration is a reduction in lon-
gitudinal stiffness of the fiber subcell following interface
failure. This reduction considers any loss of stiffness of the
fiber subcell due to the removal of that subcell’s reinforce-
ment. This reduction is again taken during the upscale/
downscale matrix formation by reducing the stiffness con-
tributions of the fiber.

FIG. 3 shows progressive failure flow and stiffness reduc-
tion methodology. FIG. 3 begins with interface failure
302A-B since it alone of the four failure types is considered,
in the context of a laminate, a possible intermediate or
non-catastrophic failure mode. If fiber failure by either
elongation 304A-B—tensile fracture or buckling 306A-B—
or matrix failure by compression 308 A-B is indicated absent
of interface failure 302A-B, these usually are associated
with complete failure. However, the present model allows
for the appropriate reduction in stiffness of the failed ply and
the detection of additional failures.

The stiffness of the strand is initially reduced by the
interface failure 302A-B, which causes the y-direction stift-
ness (E°)) and the shear stiffness (G°,,) to approach zero,
while the longitudinal and z-transverse (E°,, B°)) stiffnesses
remain unchanged. The shear stiftness of the fiber (1-2)
subcell (Gfxy) is also reduced, since half of the supporting
matrix is no longer attached.

No additional transverse failures can occur since the
stiffness in the transverse direction is very low. This, how-
ever, does not preclude longitudinal failures of the fiber or
the separated matrix subcells. Following this initial failure,
three types of failure are now possible: fiber elongation
304 A-B, fiber buckling 306A-B and matrix cracking 308A-
B. These failures cause additional reductions in the remain-
ing stiffnesses of the strand, indicating ultimate failure of the
represented ply.

Matrix failure 308A-B following interface failure 302A-B
becomes more complex. The matrix can now be considered
a separated homogeneous and (assumed) isotropic material
under a [o,, 0, 0,, 0, T, 0] state of stress. The o, T, and

T,, components are all assumed to be zero since there is
conceivably separation between the 3478 half-cell and the
1256 half-cell, not allowing the 3478 half-cell to sustain
stress in the y direction. In this case, the matrix stiffnesses
can be used to determine additional matrix failures by
maximum principal strain, as discussed earlier. Also, a
portion of the shear stress (strain) from the laminate (sur-
rounding lamina) can be placed on the z faces of the 3478
half-cell.

Transverse damage is described as either 34 quarter-cell
interface failure or 34 quarter-cell matrix failure as defined
above. This type of failure should result in a similar reduc-
tion in stiffness for both modes, since a matrix crack or a
fiber-matrix debonding mode would likely be indistinguish-
able or occur at the same time. To reduce the stiffness of the
unit cell due to this failure, the construction of the relation-
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ship matrix t and the distributed stiffness matrix is altered.
The elastic modulus of the affected subcells (34 and 78) are
reduced to 1% of their initial value in the direction of failure.
To apply this to the unit cell, the submatrix [T,] entries
related to the transverse stiffness of the 34 and 78 subcells
are multiplied by the reduction factor (1%) and the upscaled
stiffness matrix and the downscaling matrix R are reformed
with the reduced transverse stiffnesses.

The 78 quarter-cell’s properties are also reduced in this
instance, since a 34 quarter-cell interface failure or matrix
failure is assumed to affect the 78 quarter-cell equally. This
simulates a crack that has propagated through the entire xz
plane of the unit cell since it may not be reasonable to
assume that a crack would initiate between the fiber 12
quarter-cell and matrix 34 quarter-cell and not propagate
through the unit cell. A similar reduction is programmed for
interface failure between the 56 quarter-cell and the 12
quarter-cell, and it similarly effects the 78 quarter-cell stiff-
ness in the z direction.

In addition to transverse stiffness reduction, a transverse
failure is also assumed to reduce the shear stiffness of the
unit cell as the bond between the 1256 half-cell and 3478
half-cell is modeled as no longer contributing to the trans-
verse stiffness of the unit cell. For instance, a 3478 trans-
verse failure would provide little shearing resistance to
shearing in the x-y and y-z planes. As such, the shear moduli
for those cells must be reduced. To accomplish this, while
forming the unit-cell shear moduli, the shear stiffnesses of
the affected subcells is reduced in the failure directions by
the reduction factor (again, 1% of its initial value), and
recombine the subcell moduli to generate the upscaled unit
cell modulus.

In the case of transverse failure, the fiber subcell in this
model has lost its support in the failure plane, since the
fiber-matrix bond is modeled to be either non-existent or
significantly diminished. Fibers, in the absence of a matrix
material, are assumed to not be able to sustain shear loading
(despite one of the entries in the subroutine being the shear
modulus of the fiber). For these reasons, the shear modulus
in the model is also reduced. In addition to reducing the
shear stiftness of the fiber subcells following a transverse
interface failure, the transverse stiffness of the fiber subcell
is also reduced. This prevents artificial or nonexistent
strength of the unit cell provided by a failed bond and its
corresponding Poisson ratio.

The current model reduces the shear modulus by 99%,
however this estimate can be improved with experiments
like a three-rail shear test or combined experiments that
would load a sample such that interface failure would be
indicated and then the sample would then be tested in a
three-rail shear test.

Two different failure criteria can track similarly present-
ing failures. Interface debonding and matrix tensile failure
may be the same failure or at least, they may be indistin-
guishable. For instance, transverse interface failure can be
indicated by the transverse criteria quotient, and reductions
taken due to that failure. In this case, transverse matrix
failure in the 3478 half-cell would be ignored since it is no
longer the major mode of failure. In future iterations of this
method, the matrix failure criteria would change following
an interface failure such that it checks only the principal
strains in the feasible loading directions. An interface failure
would preclude further loading in the transverse directions,
therefore any further failures in a matrix subcell would need
to be due to loading in the remaining loading directions.

302B, 304B, 306B, 308B shows a similar progression,
however the strand is under transverse compression and
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either longitudinal tension or compression. The major dif-
ference between these two scenarios is that despite interface
failure, transverse stiffness (B°,) is not reduced since the
matrix is intact and remains in contact with the other two
subcells. The major reduction in stiffness would be the
in-plane shear stiffness, since the shear stiffness, provided by
the bond between the 3478 half-cell and 1256 half-cell no
longer exists. There would likely be frictional contact sus-
taining some shear stress, but it is ignored. Furthermore,
similar to the interface failure under transverse tension, the
shear strength of the fiber subcell is reduced following the
removal of the support from the failed interface. Subsequent
failures in this case can be fiber failure (elongation or
buckling), matrix failure by maximum principal strain,
though the stress state in this case is [o,, 0, 0,, 0, T, 0] T

Under compression, an interface failure would likely only
cause a reduction in the shear stiffness of the lamina as well
as a reduction in the fiber buckling strain, since one of the
supporting matrix subcells has debonded. Similar to the
above scenario, the additional failures following interface
failure allow for further reductions in the strand’s stiffness.

Unlike uniaxial composite, in a laminate, initial failure is
likely not ultimate failure. The load borne by the structure
will most likely cascade to the remaining intact (or partially
intact) load bearing members. In a homogenized laminate,
the stiffness contribution of the failed lamina would be
appropriately reduced as required by the indicated failure,
and the stiffness matrix for the laminate would be re-
homogenized. In a finite element software, the stiffness
contribution of a failed section point would be similarly
reduced and then re-homogenized in accordance with the
modeling technique.

In order to reduce the post-failure stiffness of the unit-
strand, the upscale and downscale routines require informa-
tion regarding which cell and the failure direction of that
cell. For three matrix quarter-cells and three directions, this
requires nine pieces of information for each analysis point.
These nine entries can be included in a 3-by-3 matrix. The
columns of the matrix describe the failure directions: x, y
and z; while the rows of the matrix describe the subcells that
have failed. An entry of zero in any position indicates an
undamaged state. An entry of one in a position indicates a
fully failed state. This matrix is referred to as failang.

Entries in failang are attributed to failed states and com-
binations of failed states. For instance, a 1 in the (1,1)
position of failang describes a failure in the 34-subcell in the
x direction, and a 1 in the (2,2) position describes a failure
in the 56-subcell in the y direction. The matrix failang is a
convenient way to control the reduction of the properties of
the constituents in the transformation matrix in order to
obtain a degraded material constitutive matrix.

To simplify the storage of failang, the failure modes it
describes can be broken into the three individual directions
for failure. Transverse failures in the y direction—3478
interface failures and 3478 matrix failures—can be repre-
sented in failang as:

failangy =

o o o
— o -

o o O
[ —

and similarly for failures in the x and z directions. Using this
method, all normal failures and their combinations can be
described by the sum of these three matrices. Above, reduc-
tions in shear stiffness were associated with normal failures;
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using these associations, all reductions to stiffness—both
shear and normal—following a failure can be described by
a normal failure only. This also reduces the information
required to be stored regarding failure status of an integra-
tion point to three variables. The three variables scale
predetermined matrices, which sums to failang:

010 000 100 (40)
failang=2,|0 0 0[+&%|0 0 I |+&4[1 0 0
010 001 100

where , represents the amount of reduction in strength due
to each failure type, varying between zero and one. For
example, a 3478 half-cell interface failure with a 1% reduc-
tion in y strength combined with a 50% reduction due to a
5678 half-cell interface failure would yield:

010 000 100 0 001 O
failang=0.01{0 0 0|+05/0 0 1|+00/1 0 O0f=|0 0O 05
010 001 100 0 001 05

This scheme would then only require the storage of the T,
and a Ty, indicating a reduction in strength due to a fiber
failure. While either zero or one are currently used in
failang, these fractional values can be input to indicate
fractional reductions of the properties at an interface or
within a subcell. These fractional reductions can be used in
a damage description where the composite under examina-
tion progressively softens over the analysis steps.

In some finite element software, provision for the evolu-
tion of damage or progressive softening of a material is
allowed such that the energy dissipated in the failure of a
material agrees with experiment. This damage evolution is
also employed to improve stability of an implicit calculation
involving progressive damage such that softening can be
accomplished over a few increments rather than all at once.

The finite element software Abaqus describes its method
for accomplishing this in the Abaqus user manual Section
24.3.1. In general, the stiffness of a material is modeled as
linear-clastic until a damage initiation criterion is satisfied.
Following damage initiation, the material is progressively
softened based on the energy dissipated during the damage
process. The progress of damage is controlled by a damage
variable that varies from zero to one, reducing portions of
the stiffness matrix based on the type of failure indicated by
the initiation criterion. This approach can be implemented
using failang by considering the appropriate ¢, as the dam-
age variable which increases following an indicated failure
from zero to one (intact to fully failed) through the fractional
values required by the energy release rate.

For uniaxial samples, ultimate failure can be simple to
predict, since a single failure likely indicates ultimate fail-
ure. The complete strength of the sample is typically lost due
to that failure. In a lamina however, the load previously
carried by a ply that has failed in a particular way is
redistributed to the adjacent plies that are capable of carry-
ing the transferred load. The stress-state in a laminate
becomes complex due to the various material orientations
and their associated orthotropy. What would normally be a
simple biaxial state in an isotropic (or uniaxial orthotropic)
material becomes a complex o,-0,-T,, state of stress. This
is further complicated with the unloading of a failed ply and
the redistribution of its load to the adjacent plies. Ultimate
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failure in uniaxial composites, described above, was indi-
cated when a single failure of a lamina represented ultimate
failure. Simple criterion like “excessive strain” or “an inabil-
ity to increase the applied load” are objectively true, how-
ever a more finite means of measuring failure is needed to
determine failure since first ply failure would likely yield
needlessly conservative estimates for failure. When deter-
mining ultimate failure while applying the present model to
the WWFE tasks, an approach was used that quantifies the
planar components of strain. This approach uses a change of
“strain radius” where the strain radius allows the capture of
the change of any single (or all three) strain quantities due
to the failure of a ply. In the following form, it treats a
change in any strain equally:

1N, P40 @

This form can be modified to change the weight of the
contributing factors.

The strain radius can be used in three ways. As a measure
of resultant strain, a maximum strain at a point of interest
can be chosen and analysis can be stopped, indicating
composite failure. Alternatively, the first derivative of the
strain radius with respect to the load can provide a “cost” of
the next load increment in terms of strain—analogous to
“marginal cost,” and termed marginal strain. Lastly, the
second derivative of the strain radius with respect to load
allows the determination of both the area of maximum
curvature of the strain radius curve as well as the inflection
point of the marginal strain curve by peak-finding.

As loading of a composite progresses prior to major
failures, the strain increases at a slow rate, commensurate
with the small reductions in the stiffness of the loaded and
(partially) failed ply. As damage continues, the strain radius
(or resultant strain) increases more rapidly until it begins to
grow without bound.

The most convincing indication of failure in a simulation
would be either the growth without bound of the displace-
ment of all (or a portion) of the composite sample under
test—analogous to a sample rupture, or the decrease to near
zero of the load applied to the composite—analogous to
extreme softening of the sample. In order to load the sample,
either a pressure load on the surface of the sample laminate,
or a displacement of the outer surfaces of the composite can
be prescribed. In the case of the displacement, a loading
condition must be prescribed on the outer surfaces and
monitor the displacement of a telltale portion of the com-
posite. In the case of load-carrying capacity, a nodal dis-
placement is imposed on the sample and the reaction forces
are monitored.

A Python script was used to generate failure envelope for
the laminated composite from the finite element solver.
Similar to the MATLAB envelope, a radar search was
devised that changed the loading of the composite under test
to follow chosen loading ratios. Each loading ratio was
divided into 40 equal steps in order to accurately locate the
features of failure as a percentage of the loading ratio.
Likewise, each quadrant was divided into 50 sectors each
corresponding to a loading ratio.

Once the solution is complete for a particular loading
ratio, the Python routine extracts the history variables for the
position of the center node, calculates their norms and
differentiates twice. This data for each of the “slices” of each
quadrant is written to a text file where it could be imported
and parsed by a simple routine.

The method pursued to determine if failure has occurred
in the Abaqus simulation was the plotting of the strain of the
middle elements in both x, y and shear. These strains were
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then used to compute a single magnitude to measure the
middle elements. The second derivative of the strain radius
(Equation 41) with respect to the applied load was taken to
locate the area of greatest curvature of the strain radius
curve. These locations can correspond to initial and final
failures of the composite under test.

Using this scheme in the first quadrant for the laminate, it
can be seen that in some cases there are small perturbations
in the second derivative, indicating that the rate of displace-
ment is changing, followed by larger values for the second
derivative, showing large curvature in the displacement
curve. Small perturbations in the second derivative are
assumed to mean that there are intermediate (but not com-
pletely fatal) failures in the composite. At these loading
points, the composite’s rate of displacement increases owing
to the reduction in stiffness of a failed ply. The larger
perturbations are indicative of rapid change in the growth of
the displacement, which are assumed to mean that they are
the location of ultimate failure.

With the multiscale model described with respect to
FIGS. 1 and 2A, the failure model it enables which is
described with respect to FIG. 2B, and the progressive
damage model described here, all the portions that are
required for inclusion in either simple estimating methods
like a MATL.AB routine or more complex implementations
in finite element software are present. These concepts are to
be combined in a single Fortran routine such that they can
be used in finite element software to provide composite
properties, failure indications, and degraded material prop-
erties in the case of failure. Below this routine and its
operation is described, followed by its use and performance
against experimental data.

Initial development and testing of the proposed failure
theory was conducted in the MATTL.AB software. Transition-
ing the failure theory and multiscale method from MATLAB
to finite element software would increase their applicability
and utility from simple models to more complex composite
structures. This section describes the mechanics required to
interface the multiscale failure theory with finite element
solvers.

FIG. 5 illustrates a workflow 500 for modeling fibrous
composites. As is the case with the other processes described
herein, various embodiments may not include all of the steps
described below, may include additional steps, and may
sequence the steps differently. Accordingly, the specific
arrangement of steps shown in FIG. 5 should not be con-
strued as limiting the scope of removably forming a part on
a porous substrate.

In block 504, material properties are obtained for a model
of a fibrous composite. For example, finite element solvers
such as those provided by ABAQUS, ANSYS, CALCULIX,
NASTRAN, among others, can use a subroutine to calculate
or provide the material properties (e.g., constitutive rela-
tionships) based on input data. Finite element solvers typi-
cally allow a more flexible interface for a user to input their
own constitutive model for materials they desire to model.

The “user defined material” is an additional way for a user
of a finite element package to provide material information
to the software about the structure or material under exami-
nation. Under normal use, a finite element package can take
as input the material properties of a structure as engineering
constants, or tabular data. Most software has very flexible
ways to input this data and allow for many different methods
to change and manipulate this data as the solution pro-
gresses, however if a material model does not conform to
these entry requirements, a user defined material script or
“UMAT” must be constructed.
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The user materials interface is different from most uses of
finite element software implementation since it takes state
information from the solver: time, temperature, strain, loca-
tion, etc., and uses this information in any way the user
requires to provide the constitutive relationships of that
integration point and an updated state of stress and strain
based on any in-step changes to the material properties. This
flexibility is a perfect platform for the implementation of the
multiscale model.

The finite element solver describes the material used in a
model in relation to the elements used. If the material is
described as a composite layup, the finite element solver
breaks the thickness or stacking direction into layers, with
the material properties (modulus, orientation, etc.) assigned
to each layer. Each layer can then be assigned an odd number
of section points (user assignable) that describe points in
each of the layers’ thickness. FIG. 4 shows the relationships
between section points 404 and integration points 406. The
section points 404 should be odd since they identify the top,
middle and bottom of the layer 402. In the plane of the
element 402, the section points 404 are in alignment with the
integration points 406 of the element. The user material
subroutine is called at each section point 404 of each
element in each increment of the solver’s solution process.

For an iteration of the model, each integration point in the
model is processed. In block 506, it is determined whether
there are more integration points to process. If there are
more integration points to process, workflow 500 proceeds
to block 508 to process the next integration point.

In block 508, composite level stresses and strains are
determined for the fibrous composite. Specifically, the com-
posite level stresses and strains are determined based on the
material properties from the finite element solver. A benefit
of the described workflow 500 is that the degraded proper-
ties of the fibrous composite can be calculated before the
analysis. Composite-level constitutive relationships for each
type of failure (and all combinations of failures) can be
formed from the constituent properties in the first iteration
and stored as reference values, allowing the workflow 500 to
avoid matrix inversions and decompositions unrelated to
solving the finite element problem, potentially significantly
speeding up the workflow’s 500 performance.

In block 510, composite level stresses and strains are
decomposed into component level stresses and strains. For
example, the downscale operation can be performed as
described above using subroutines and appropriate linear
algebra libraries.

In this example, a relationship matrix T is formed from the
undamaged or damaged constituent material properties and
is partially inverted forming the downscaling matrix R using
a linear algebra solver such as the LAPACK solver DGESV
(double precision, general matrix, linear solver). The linear
solver obtains R by solving the linear system TR={e,, €,
e,,} by lower-upper (LU) decomposition, where e, are the
22nd through 24th unit vectors.

As a sub-function in the UMAT, the Downscale subrou-
tine takes the R matrix returned by DGESV and uses it to
decompose the normal strains input into the UMAT by the
solver to normal strains in each subcell though matrix-vector
multiplication: Re&?=g=#>eell,

The shear strains are calculated using the shear strains
input by the solver, the shear modulus of the unit-strand
constituents, and the section-point failure status from the
current (or previous) solution-step of the workflow 500. The
process uses the relationships above, Equations 13 through
18 to decompose the global shear strains to subcell shear
strains. For an undamaged composite, the calculation is
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straightforward; however, for damaged composite, the rou-
tine degrades the shear modulus of the half-cell by the
proportion indicated in the failang matrix.

In block 512, failure criteria are applied at the integration
point. Specifically, failure criteria are applied to determine if
a failure has occurred, where the failure can be fiber failure
in tension (Equation 25), fiber failure in compression (Equa-
tion 26), fiber/matrix interface failure (Equation 27), and/or
matrix failure (Equation 37).

In block 514 if a failure is detected, a corresponding
material reduction model (i.e., fiber failure in tension, fiber
failure in compression, fiber/matrix interface failure, and/or
matrix failure) is applied at the component level. For
example, the subcell stresses and strains calculated during
the downscale portion can be used to determine the damage
initiation quotients. The fiber and interface quotients are
calculations based on the stresses and strains; however, the
matrix failure criterion relies on an additional subroutine
that takes the subcell’s strain tensor and calculates the
principal strains for comparison to the matrix failure strain.
This eigenvalue-solving subroutine can be an implementa-
tion of the program found in Ungural and Fenster, Advanced
Strength and Applied Elasticity, 4th ed (Upper Saddle River,
N.J.: Prentice Hall, 2003).

In block 516, the material properties of the model are
updated at the composite level to account for any failures
that may have occurred. Specifically, the failures applied
above at the component level can be upscaled to the com-
posite level and incorporated into the material properties.
The upscale routine can be established following the for-
mation of R during the downscale portion. For example, the
upscale calculation can be the same calculation described
above. The constitutive relationship defined by this upscale
operation is then stored as a return variable to the finite
element solver.

In block 518, a determination is made as to whether a
composite failure has occurred. The composite failure deter-
mination can be performed as described above. If a final
failure has occurred, the workflow 500 can proceed to block
522 and stop. If a final failure has not occurred, the worktlow
500 can return to block 506 to process the next integration
point. In this manner, each integration point in the model can
be processed for the current iteration.

After all the integration points have been processed,
workflow 500 proceed to block 520 to initiate the next
iteration of the model. The next iteration of the model can be
performed to proceed to the next time interval. In some
cases, the force being applied to the fibrous composite can
also be modified in the next iteration.

Workflow 500 then proceeds to execute the next iteration
of the model in blocks 504-518.

Workflow 500 can be performed to test various designs of
fibrous composites. In this manner, various configurations of
fibrous composites can be evaluated to identify configura-
tions that satisfy performance requirements. If a fibrous
composite is determined to fail at less than the target
requirements, the fibrous composite can be iteratively rede-
signed and tested until it satisfies the requirements.

Crucial to the operation of the UMAT is the storage and
reference to the state of the section point. The UMAT
records all subcell strains and stresses at each increment for
each section point. For large models, this storage, especially
if written as a history variable, can become too large. The
UMALT routine, which implements the micro model as well
as the failure model with damage progression, currently
stores all quarter-cell stresses and strains. In addition to
storing the stresses and strains of the quarter-cell, the UMAT
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also computes and stores the general failure state and the
individual values for each failure quotient. Lastly, it stores
the three values for T, which control the value for failang,
directly impacting the computed stiffness of the failed
integration point/section point.

Also included in the state variables are the failure quo-
tients from the six failure criteria (fiber, 34-interface, 56-in-
terface, 34-matrix, 56-matrix, 78-matrix) and the previous
solution increment failure state. These data (and the subcell
stresses and strains used to compute them) are the essential
data stored in the state variable array.

The link between the multiscale failure model and finite
element software is now completed through the use of the
UMALT. The UMAT framework also affords the flexibility for
improvements to the failure model using multiscale calcu-
lations. In addition to identifying failure, the UMAT also
includes the progressive failure logic and post-failure stift-
ness reduction technique.

The multiscale failure model provided reasonably suc-
cessful representations of the failure envelopes for a wide
variety of fibrous composites—varying in both material and
construction. Shortcomings of the outputs, namely over
prediction of failure stresses in some stress regions and an
earlier-than-expected prediction of interface failures in oth-
ers, require more analysis. Overall, the performance of the
implementation to this dataset was encouraging. Compari-
sons to additional datasets is also desired.

In addition to demonstrating model validity and effec-
tiveness, cylinder testing led to other experimental observa-
tions such as observations concerning the utility of the
clamshell shims, the superior performance of DIC for strain
measurement over foil strain gauges, and precautions
required during testing to obtain satisfactory results. These
observations will lead to improvements in testing proce-
dures, data collection capabilities, and modeling techniques.
Furthermore, unexpected trends seen in the carbon cylinder
data and the finite element simulations with regard to the
performance of the cylinder as a function of its outermost
winding will provide valuable insight into methods used to
design composite layups for optimal structures.

Parametric studies provide valuable insight into the opera-
tion of the composite failure model. They provide a check to
ensure that the model does not produce spurious results
under reasonable perturbations, while at the same time
provide estimates as to how a composite would perform if
the constituents were altered. In the case of the altered F/ for
0,-T,,, a shortfall of using a composite-level failure stress in
the failure model formulation is demonstrated. A better
formulation and an object for further research is altering the
interface failure criteria such that, like the fiber failure
criteria and the matrix failure criteria, it utilizes constituent
properties exclusively. The remainder of the parametric
studies provide reasonable or explainable results, but results
that should be confirmed with modeling and experimenta-
tion.

The multiscale method for fibrous composites was first
defined, and its computation was adapted to a finite element
user material. Using experimental data as a guide, the
outputs from the computation of the model were observed in
stress-space. They were then combined to generate a sepa-
rate mode failure criteria that shares same functional forms
with previous criteria. These criteria are unique in that they
use additional geometric considerations as well as calcula-
tions made possible by the multiscale method to account for
more realistic failure modes. The proposed failure criteria,
unlike most typical criteria, successtully reproduces features
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in experimentally derived failure envelopes in the three
stress planes and is easily used for many different compos-
ites of varying properties.

Initial failure in a complex structure may not lead imme-
diately to complete failure of the structure, but rather to a
gradual degradation. For this purpose, the failure criteria
was combined with a logical framework that postulated
potential degradations to individual portions of a composite.
This degradation model then used the multiscale model to
recalculate the stiffness properties of a composite. The
failure model and degradation framework combine to form
a flexible composite analysis tool.

The analysis tool proposed can calculate macro-level
composite properties, check for local failures, and degrade
the properties if failure is indicated. The failure model and
framework discussed, distinct from other methods, is com-
prehensive. It forms a single coordinated method that esti-
mates composite properties from constituent properties,
estimates composite strengths based on constituent strengths
and experimental data, identifies failure initiation, and
degrades material properties based on failure.

The failure and degradation model was then implemented
in Fortran so it may be used infinite element software as a
user-defined material. As such, the multiscale method
reports the undamaged material properties for the construc-
tion of the elemental stiffness matrix. While not computa-
tionally optimal, the method carries a small computational
overhead and is simply implemented.

The multiscale failure and degradation model was then
tested using data from the World-Wide Failure Exercise
which afforded an enormous set of data using varied mate-
rials and varied loading conditions. Against this data the
model provided a reasonable representation of the failure of
the subject composite, both uniaxial and laminated. For
additional validation, filament wound cylinders were con-
structed and destructively tested. These tests were then
modeled with finite elements so that stress-strain data and
final failure values predicted by the multiscale failure and
degradation model could be compared with additional
experimental results.

In the course of these experiments, novel experimental
methods and data processing schemes methods were
devised. These methods included improvements to test
specimen construction, the joining of data collected on
unconnected measurement systems, as well as the construc-
tion of devices that enable the collection of data during
many-channel experiments.

Lastly, observations during these experiments regarding
the placement of strain gauges on composite samples and
best-practices for successtul tests as well as areas for further
research were presented.

The failure model also enables a user to conduct what-if
analyses to determine a composite’s response to changed
parameters. The model was used for a simple parametric
study in which the input constituent properties were altered,
showing the variability of and the sensitivity of the model to
the variation of the properties of the composite. Analyses
such as this can enable a designer to better select composite
reinforcement and matrix combinations as well as layup
angles in a structure to optimize a design’s performance.

The work described here could benefit from additional
explorations and improvements, coding efficiencies, valida-
tion of assumptions by experiment, and exercising the model
with additional modeling scenarios.

Applicability—This model and the UMAT derived from it
appear to perform successfully while analyzing uniaxial and
multi-angle continuous fibrous composites, however, the
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range of applicability of this model needs to be better
understood such that it can be used in appropriate situations
when it will the appropriate failure model to use

Computational Improvements—The current form of the
UMALT, while functional, is likely not computationally effi-
cient. The current form of the upscale/downscale formula-
tion uses a linear algebra solving routines to extract the
downscaling matrix. Efficiencies may be obtained by includ-
ing an included subroutine that solves for the downscaling
matrix rather than using the linear algebra library function,
perhaps requiring less computational overhead. In addition
to exploring whether alternative functions would yield
improvements, the relationship matrix is a sparse matrix.
Sparse matrix solvers may also provide improved perfor-
mance.

More improvements to the UMAT would be a minimiza-
tion of branching inside the subroutine. The current form has
a significant amount of branching due to the if . . . then
statements that are used for detecting and accounting for
failures in the composite’s integration point. The minimiza-
tion or elimination of this branching would be required to
modify the UMAT for use as a subroutine in Abaqus’
explicit solver which requires that the UMAT be vector-
ized—a VUMAT.

The sum of the UMAT’s computations may also be done
a priori. Intact and damaged downscaling matrices and
constitutive relationships can be calculated as part of model
pre-processing, and stored for later access by the subroutine
rather than computing these values at each integration point
and each loading increment. Initial explorations using this
technique were unsuccessful; however, it could prove a
benefit for large models.

Validation of the assumptions by experiment—The plots
of laminated composites included potential intermediate
failures of plys at levels of low loading as compared to the
ultimate failure. It is unknown whether this indication is
actual or not. Some failure models are based on the accu-
mulation of microcracks in a composite, perhaps this indi-
cation is the beginning of the formation of microcracks. In
order to explore this assumed behavior, a laminated com-
posite beam could be constructed and loaded prior to ulti-
mate failure, but beyond the assumed intermediate failure
load. After this loading, nondestructive testing (ultrasonic,
radiographic, acoustic, shearographic) could be conducted
to determine if intermediate failures are present, and attempt
to quantify them.

Real Structure Damage Detection—Finite element mod-
els of composite structures can be used in conjunction with
real-world testing to localize structural damage. This dam-
age detection method could potentially be used as a non-
destructive method for determining composite intermediate
failures such as those discussed above. Laminated compos-
ite beams or tubes could be constructed and stressed to a
level higher than where intermediate failures are predicted,
but short of ultimate failure. Once these potentially com-
promised specimen are prepared, known techniques could
be used to determine whether the failures are present or not.

Additional Parametric Studies—Additional studies could
be conducted that examine sensitivity to failure ‘anchor
points’ as input data. It is important to know how and how
significantly an envelope changes for varying input values of
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Modeling of Alternate composites—The failure model
can be extended for use in composites other than uniform
uniaxial composite and laminated composite with single
orientations. The model, since it is implemented on the
“material” level can be used very flexibly. For instance,
chopped strand mat could be modeled using randomized
orientations of the UMAT material model. The model can
also be validated for its applicability to woven composites.
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Known techniques for woven composites in the context of
multiscale modeling, the multiscale failure model would
likely be able to be tailored for use in a composite textile
application.

Modeling of Complex Structures—Additional explora-
tion of the multiscale method and the failure model should
be conducted using additional benchmarking problems such
as structures with more complex features. Classic bench-
mark problems including panels with holes and panels with
stiffeners can be modeled using the multiscale failure model
to further explore its applicability. These benchmark prob-
lems form an essential step to using the method and model
for more comprehensive composite structural analysis.

In addition to structures with planned features such as
holes and stiffeners, structures with inclusions and delami-
nations can be modeled in finite element software. Tests can
be made with the multiscale failure model and finite element
simulations of structures with inclusions using cohesive
contact, crack propagation and element deletion.

Temperature Effects—Thermal stresses in composites are
included in known studies and techniques, and can be
implemented in the UMAT devised for this implementation.
Additional parametric studies can be conducted to determine
the impact that temperature changes have on the prediction
of a failure envelope. Additional experiments can be con-
ducted to compare the prediction of the multiscale failure
model to an actual composite subjected to higher and lower
temperatures.

The invention may be implemented on virtually any type
of computer regardless of the platform being used. For
example, as shown in FIG. 6, a computer system 600
includes a processor 602, associated memory 604, a storage
device 606, and numerous other elements and functionalities
typical of today’s computers (not shown). The computer 600
may also include input means 608, such as a keyboard and
a mouse, and output means 612, such as a monitor. The
computer system 600 may be connected to a local area
network (LAN) or a wide area network (e.g., the Internet)
614 via a network interface connection (not shown). Those
skilled in the art will appreciate that these input and output
means may take other forms.

Further, those skilled in the art will appreciate that one or
more elements of the aforementioned computer system 600
may be located at a remote location and connected to the
other elements over a network. Further, the invention may be
implemented on a distributed system having a plurality of
nodes, where each portion of the invention may be located
on a different node within the distributed system. In one
embodiment of the invention, the node corresponds to a
computer system. Alternatively, the node may correspond to
a processor with associated physical memory. The node may
alternatively correspond to a processor with shared memory
and/or resources. Further, software instructions to perform
embodiments of the invention may be stored on a computer
readable medium such as a compact disc (CD), a diskette, a
tape, a file, or any other computer readable storage device.

This disclosure provides exemplary embodiments of the
present invention. The scope of the present invention is not
limited by these exemplary embodiments. Numerous varia-
tions, whether explicitly provided for by the specification or
implied by the specification or not, may be implemented by
one of skill in the art in view of this disclosure.

What is claimed is:

1. A method for modeling fibrous composites, the method

comprising:

(a) obtaining, using a computer processor, material prop-
erties for a computer model of a fibrous composite,
wherein the computer model comprises a plurality of
integration points and a plurality of unit cells;
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(b) obtaining real-world structure data by:
constructing a laminated composite according to the
material properties;
loading the laminated composite at a predicted level to
generate intermediate failures but short of ultimate
failure; and
analyzing the loaded laminated composite to obtain the
real-world structure data;
(c) for each integration point of the fibrous composite:
determining composite level stresses and strains based
on the material properties and the real-world struc-
ture data;
decomposing the composite level stresses and strains
into component level stresses and strains for the
integration point;
using the component level stresses and strains to cal-
culate failure quotients at the integration point;
selecting an appropriate material reduction model
based on a type of failure, wherein the type of failure
is determined based on failure quotients;
applying the appropriate material reduction model at a
component level based on the failure quotients;
upscaling a component failure to determine updated
material properties at a composite level; and
incorporating the updated material properties into the
computer model; and
(d) repeating step (c) for each iteration of the computer
model until a composite failure is detected in the
updated computer model
wherein the type of failure is a fiber failure in tension, and
wherein the type of failure is determined based on a
failure criterion represented as:

@27 + 3 + 27
=
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where ¢ is matrix material subcell stiffness, v, and v, are
subcell strains, and efu,t represents fiber elongation at
failure

wherein x represents the x-direction, y represents the

y-direction, and z represents the z-direction,

and wherein each of the plurality of unit cells comprises

two subcells which represent a fiber, where the 12 in the
model represents the two subcells.

2. The method of claim 1, wherein decomposing the
composite level stresses and strains comprises:

generating a relationship matrix based on the material

properties;

partially inverting the relationship matrix to generate a

downscaling matrix; and

using the inverted relationship matrix to decompose the

composite level stresses and strains to the component
level stresses and strains.
3. The method of claim 2, wherein upscaling the compo-
nent failure to determine the updated material properties at
the composite level comprises:
multiplying a combined stiffness matrix and the down-
scaling matrix to generate a distributed stiffness matrix;

linearly combining and weighting directional stiffnesses
to generate a normal stiffness matrix for the fiber
composite; and

inverting the normal stiffness matrix, wherein the updated

material properties are extracted from the inverted
normal stiffness matrix.



US 11,556,683 B2

31

4. The method of claim 3, wherein upscaling the compo-
nent failure to determine the updated material properties at
the composite level further comprises:
estimating a shear modulus of each half cell of a target
unit cell by combining corresponding shear moduli of
corresponding quarter cells, wherein each of the cor-
responding shear moduli is weighted by a cross-sec-
tional area of corresponding quarter cell in a plane of
interest; and
combining the shear modulus of the half cells to obtain an
upscaled shear modulus for the target unit cell, wherein
the updated material properties also includes the
upscaled shear modulus.
5. The method of claim 1, wherein the appropriate mate-
rial reduction model is one selected from a group consisting
of a fiber failure in tension model, a fiber failure in com-
pression model, a fiber-matrix interface failure model, and a
matrix failure model.
6. The method of claim 1, wherein each of the plurality of
unit cells comprises eight subcells, and wherein two of the
eight subcells represent fiber properties of the fibrous com-
posite and six remaining cells of the eight cells represent
matrix properties of the fibrous composite.
7. A non-transitory computer-readable medium compris-
ing executable instructions for modeling fibrous composites
by causing a computer system to:
(a) obtain material properties for a computer model of a
fibrous composite, wherein the computer model com-
prises a plurality of integration points and a plurality of
unit cells;
(b) obtain real-world structure data by:
constructing a laminated composite according to the
material properties;

loading the laminated composite at a predicted level to
generate intermediate failures but short of ultimate
failure; and

analyzing the loaded laminated composite to obtain the
real-world structure data;
(c) for each integration point of the fibrous composite:
determine composite level stresses and strains based on
the material properties and the real-world structure
data;

decompose the composite level stresses and strains into
component level stresses and strains for the integra-
tion point;

use the component level stresses and strains to calculate
failure quotients at the integration point;

select an appropriate material reduction model based on
a type of failure, wherein the type of failure is
determined based on failure quotients;

apply the appropriate material reduction model at a
component level based on the failure quotients;

upscale a component failure to determine updated
material properties at a composite level; and

incorporate the updated material properties into the
computer model; and

(d) repeat step (c) for each iteration of the computer model
until a composite failure is detected in the updated
computer model

wherein the type of failure is a fiber failure under com-
pression, and wherein the type of failure is determined
based on a failure criterion represented as:
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where &, is matrix material subcell stiffness, v, and y,, are
subcell strains, and ¢/, .. 18 a fiber and composite longitudinal
strain at a stated compressive stress, and wherein sfu,c is
calculated using:

where o€, is macro-scale normal stress for a target unit
cell and E€, is macro-scale longitudinal Young’s
Modulus, wherein the superscript C represents the
composite macro-scale values, wherein X represents the
x-direction, y represents the y-direction, and z repre-
sents the z-direction,

and wherein each of the plurality of unit cells comprises

two subcells which represent a fiber, where the 12 in the
model represents the two subcells.

8. The computer-readable medium of claim 7, wherein
decomposing the composite level stresses and strains com-
prises:

generating a relationship matrix based on the material

properties;

partially inverting the relationship matrix to generate a

downscaling matrix; and

using the inverted relationship matrix to decompose the

composite level stresses and strains to the component
level stresses and strains.
9. The computer-readable medium of claim 8, wherein
upscaling the component failure to determine the updated
material properties at the composite level comprises:
multiplying a combined stiffness matrix and the down-
scaling matrix to generate a distributed stiffness matrix;

linearly combining and weighting directional stiffnesses
to generate a normal stiffness matrix for the fiber
composite; and

inverting the normal stiffness matrix, wherein the updated

material properties are extracted from the inverted
normal stiffness matrix.

10. The computer-readable medium of claim 9, wherein
upscaling the component failure to determine the updated
material properties at the composite level further comprises:

estimating a shear modulus of each half cell of a target

unit cell by combining corresponding shear moduli of
corresponding quarter cells, wherein each of the cor-
responding shear moduli is weighted by a cross-sec-
tional area of corresponding quarter cell in a plane of
interest; and

combining the shear modulus of the half cells to obtain an

upscaled shear modulus for the target unit cell, wherein
the updated material properties also includes the
upscaled shear modulus.

11. The computer-readable medium of claim 7, wherein
the appropriate material reduction model is one selected
from a group consisting of a fiber failure in tension model,
a fiber failure in compression model, a fiber-matrix interface
failure model, and a matrix failure model.

12. The computer-readable medium of claim 7, wherein
each of the plurality of unit cells comprises eight subcells,
and wherein two of the eight subcells represent fiber prop-
erties of the fibrous composite and six remaining cells of the
eight cells represent matrix properties of the fibrous com-
posite.



