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ABSTRACT 

 Machine learning is found in nearly every facet of daily life. Large amounts of 

data are required but not always available for specific problems, precluding the use of 

advanced methods such as deep learning and convolutional neural networks. The 

Euclidean Network (EN) can be used to mitigate these issues. The EN was thoroughly 

tested to prove its viability as a classification algorithm and that its methods may be used 

to augment data and transform the input data to increase its feature space dimensionality. 

Originally, it was hypothesized that the EN could be used to synthetically generate data 

to augment a data set, though this method was proven to be ineffective. The next area of 

research sought to expand the dimensionality of the input feature space to improve 

performance with additional classifiers. This area showed positive results, which 

supported the hypothesis that more complex, dense input would give algorithms more 

insight into the data and improve performance. The EN has been found to perform 

exceptionally well as an independent classifier, as it achieved the highest accuracy for 12 

of the 21 data sets. For the remaining 9, though it did not have the highest accuracy, the 

EN performed comparably to more sophisticated algorithms. The EN also proved capable 

to expand a data set’s feature space to further improve performance. This tactic provided 

a more robust classification technique and saw an average increase in accuracy of 3% 

between all data sets. 
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CHAPTER 1:
Introduction

1.1 Purpose
The proliferation of machine learning has led to more advanced and sophisticated learning
algorithms, specifically neural networks. This work discusses a new type of network that
utilizes an alternate approach to the traditional perceptron used in traditional neural net-
works. As explained in [1], a typical neural network calculates the hidden layer values via
the dot product of the input and weights. The Euclidean Network (EN), however, calculates
the hidden layer values with the squared differences of the input and weights. This work
demonstrates that the EN shows exceptional performance in classification tasks, but also
discusses additional uses for the algorithm to alter the input data to improve performance.
Two methods used to alter the data were synthetic point generation and feature space ex-
pansion. The research discussed in this thesis showed that the means by which additional
points are synthetically generated was not conducive to performance, but upsampling the
feature space proved to be an effective method to improve classification accuracy. Further
research with the EN can provide valuable insight into neural network weight calculations to
improve classification accuracy. This research is also significant because it utilizes feature
space transformations to increase a data set’s dimensionality. This transformation can ex-
pand the problem sets for machine learning and enable more complex algorithms to benefit
from an expanded feature space.

The following three research questions provided the impetus for this research:

1. Can the EN perform well as an independent classifier?
2. What are the effects of synthetic point generation?
3. Can higher dimensional feature space improve accuracy?

1
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1.2 Research Questions and Hypotheses
The order of this work followed three specific areas of interest: performance of the EN as
an independent classifier; effects of data augmentation with synthetically generated points
from the EN’s hidden layer; and transformation of the input data into higher dimensional
space and how it affects classification accuracy.

1.2.1 EN as an Independent Classifier
The first set of experiments were performed under the hypothesis that the EN would outper-
form other distance-based approaches for classification problems. The goal of these tests
was to determine whether the accuracy results are comparable to or greater than the results
of existing classifiers. Additionally, they sought to identify whether the EN performs better
or worse for specific data set characteristics or types. Multiple classification models were
trained of various types for each data set used in this research. To respond to this research
question, the EN was trained on the same data sets to compare performance metrics.

1.2.2 Effects of Synthetic Point Generation
Secondly, this work discusses the effects of data augmentation and whether multiple itera-
tions of synthetic point generation improve performance when used to train another EN or
alternate classifier. Synthetic data points were generated with the EN and combined with
the original data set to create a new, hybrid data set. The hypothesis was that classification
accuracy would increase when the hybrid data set was used as the input data for an untrained
EN or other classifier. A method built into the EN allows data points to be extracted and
plotted in the same feature space as the input data. These data points are used to augment
the existing data set. This augmented data set was then used to retrain multiple classification
models. The results of the augmented data were compared with the results of the raw input
data to conclude the effects of synthetic point generation.

1.2.3 Effects of Increased Dimensionality
Finally, the effects of feature space expansion were thoroughly tested to discover if higher
dimensional data improved classification accuracy. These tests were performed under the
hypothesis that models would benefit from input data that had an expanded feature space.

2
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A specific focus was given to identify whether data sets with a limited number of features
benefited from this upsampling to give algorithms more information from which to extract
useful data patterns to improve performance. As with synthetic point generation, the EN
contains a built-in method that produces higher dimensional data from the input data set.
The new, expanded data set was used to train multiple classifiers to discern its effects on
accuracy when compared to the raw data set results.

1.3 Chapter Summary
Chapter 2 discusses the background of the research and other work related to applicable
methods used with the EN. Chapter 3 describes the EN’s derivation and functionality. It also
discusses the data acquisition process and how the EN was applied to perform classification,
synthetic point generation, and feature space transformation. Chapter 4 contains the results
from each experiment and provides metrics with accuracy percentages and comparisons.
Finally, Chapter 5 contains the discussion of results and drawn conclusions, as well as
potential future tasks to continue the research.

3
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CHAPTER 2:
Background and Related Work

This chapter provides background information on machine learning, specifically classifi-
cation tasks. The EN utilizes concepts from traditional classification approaches, which
are described in Section 2.1. These concepts include the method of classification, training
process, logistic regression, neural networks, and other classification algorithms used for
comparison with the EN.

Additionally, this chapter compares the applicable research questions with similar areas
of work. No published research was identified with regard to altering the calculation of
a neural network’s hidden layer, affecting its backpropagation and gradient calculations.
However, much research has been conducted in the realm of data augmentation and feature
engineering, both of which are applications for which the EN was tested.

2.1 Machine Learning
Géron [1] described machine learning as the art and science of “programming computers so
they can learn from data.” A plethora of data is needed to effectively train machine learning
algorithms. This potential issue is compounded for supervised learning algorithms, where
that data must have accurate labels. Acquiring and labeling data can be cumbersome, but it
is necessary so that the appropriate amount of data can be provided to teach an algorithm
the desired outcomes.

Classification is a common task performed with supervised learning, wherein an algorithm
is trained on input data that contains a set of features that correspond to a label, or class.
The model is trained to associate feature values and relationships with a specific class. This
thesis utilized multiclass classification via a one-vs-all (or one-vs-rest) method. This method
works by creating a binary classifier for each class. For example, if a model is trained to
classify vehicles with labels: sedan, truck, van, it will create a classifier for sedan, truck,
and van, independently. In [1], Géron described that once the model is trained and test data
is used, the resultant prediction from the model will be the output with the highest score of

5
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the three classifiers. This score is calculated with the model’s parameters, which are tuned
using a method call gradient descent.

Gradient descent is used during training to optimize the parameters of a model. The objective
of gradient descent is to minimize the cost function by iterating through parameter values
that are often randomly initialized. The minimum is identified by a derivative (gradient) that
is equal zero. As described in [1], when the gradient is zero, a minimum has been found,
but additional steps are required to ensure that training does not converge to local minima,
but instead continues to find the global minimum to produce the best-trained model. There
are multiple types of gradient descent, but for the purposes of this thesis, stochastic gradient
descent is used. This method uses random instances of the data to compute the gradient.
Therefore, it is capable of training larger data sets, since only one instance needs to be
saved in memory for each training iteration. Géron [1] stated that the stochastic method also
produces a more irregular descent towards optimization and never quite reaches the optimal
solution though, on average it will produce results very close to it.

A hyperparameter to control the rate of the descent is learning rate. Learning rate controls
how quickly (or slowly) the model trains. A high learning rate may skip over desired minima
and cause the model to diverge. Alternatively, it is warned in [1] that if the learning rate
is too small the model can take much longer to converge and it may get stuck in a local
minimum, failing to find the optimal parameter values.

In addition to selecting an appropriate learning rate, one must be aware of overfitting or
underfitting throughout the training process. In [1], overfitting is said to result from a model
that may be too complex for the data and train specifically to the training set. This results in
a high training accuracy score, but the model will fail to generalize well, which will result
in poor results beyond the training set. Alternatively, a model that underfits is too simple for
the data and will not produce accurate predictions. It is often more favorable to work with
a model that initially overfits the data. This is because regularization techniques and other
tuning can be done to improve the model. An overfitting model is evidence that the data can
be learned and that there are patterns to be discerned for predictions. However, underfitting
models provide little insight to analyzing the data beyond the application of more complex
models or data.

6
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Figure 2.1. The sigmoid function forces values to be between 0 and 1, al-
lowing them to be treated as probabilities. These probabilities are then used
to predict the class label for a given input.

2.1.1 Logistic Regression
The EN borrows concepts from logistic regression notably, the log loss and sigmoid func-
tions. These functions are discussed in depth in Section 3.1.2. Logistic regression works
by computing a probability for a particular class instance. This probability comes from the
sigmoid function (Figure 2.1), since all output values will be between 0 and 1. As described
in [1], the class prediction depends on if the output of the sigmoid is less than or greater
than 0.5. This break occurs where 𝑥 = 0, so if the input is positive, logistic regression will
predict 1 and 0 if the input is negative. The EN also utilizes the sigmoid function to form
its predictions in a similar manner.

Logistic regression makes predictions with the sigmoid function, but it is trained using the
log loss function. The main concept is that this function outputs a higher cost for incorrect
label predictions and a near zero cost for correct predictions. As explained in [2], the log
loss function is convex, so gradient descent can be used to find the global minimum . The
EN utilizes the same log loss function for its forward pass during training only.

7
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2.1.2 Neural Networks
The simplest example of an artificial neural network is the perceptron. The perceptron
calculates the weighted sum of the inputs, then applies some activation function to that sum
to get an output. A multilayer perceptron expands this idea by stacking layers of perceptrons
to produce a network consisting of an input layer, hidden layer(s), and output layer. This
architecture is discussed further in Section 3.1.1. Typically, a softmax layer is added to the
output layer for purposes of classification. Each possible class label will have its own output
neuron and the softmax activation function will ensure that the probabilities of each neuron
add up to 1. Multiclass classification, as described in [1] is performed by predicting the
class label with the highest probability.

A major strength of a dense neural network is its use of backpropagation during training.
Backpropagation allows the network to adjust each of its parameters based on the error from
the desired outcome. Géron [1] summarizes the backpropagation algorithm as follows: the
network’s forward pass makes a prediction, which is then used to calculate the error; the
algorithm then goes backwards through the network to measure the contribution to that
error from each connection. It then adjusts the weights to reduce the error via gradient
descent. Backpropagation relies on the chain rule of calculus to propagate the error through
each connection in terms of the respective parameters of that layer. The EN conducts its
forward and backward pass in a similar fashion to a fully connected neural network, which
are shown in detail in Sections 3.1.1 and 3.1.2.

A more advanced application of a dense neural network is the CNN. CNNs work by
introducing convolutional layers to the hidden layers of a neural network. As described
in [3], a filter, or kernel is used to slide across the input, convolve the features in the
receptive field, and produce an output of a new size, based on the kernel size. Multiple
convolutional layers can be stacked to extract more information from low-level features
so that they become larger in the next layer. This process enables the CNN to learn more
information from a given input than a typical classifier. A benefit of CNNs is their variety
of architectures and the ability to fine tune a model for very specific problem sets. Many
architectures exist, but for the purposes of this thesis, a simple architecture (two to three
convolutional layers) was used.

8
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2.1.3 Additional Classification Algorithms
Throughout this thesis, a number of classifiers were used for comparison in addition to the
previously described logistic regression and neural network algorithms. These algorithms
include, linear SVM, Gaussian RBF kernel SVM, k-nearest neighbors (KNN), and random
forest. The linear SVM algorithm attempts to separate data points within a certain feature
space with a line, fitting the widest margin possible between instances of the classes. The
linear SVM can also take advantage of different kernels, as seen with the Gaussian RBF
kernel SVM. This SVM uses the kernel trick to improve performance on data that is not
linearly separable. In [1], the kernel trick is explained to improve performance by creating
additional similarity features between instances. With these added features, the data may
become linearly separable to achieve high classification accuracy. Another algorithm that
checks for instance similarity is KNN. The hyperparameter, 𝑘 is used to tell the algorithm
how many surrounding instances to consider for each point. KNN classifies an instance with
a plurality vote between those surrounding points. Effectively, points that are closer to other
points of a particular class are labeled as that respective class. The next algorithm tested
against the EN was a random forest classifier. A random forest operates as an ensemble of
decision trees. According to Géron [1], these decision trees use attributes of specific features
to create nodes that branch through additional features until they reach a classification node.
The random forest has an advantage over decision trees due to its ensemble nature and
introduction of randomness, which results in greater tree diversity to produce a higher-
performing model.

2.2 Data Augmentation
Data augmentation can be used as a regularization technique by adding realistic variants of
the data to the training set. In [4], it is stated that affine transformations such as, rotation,
translation, and scaling can be used for image classification to force a model to learn
additional variations of acceptable images, while preserving labels. This method easily
augments image data by creating additional samples of specified classes and helps the
model accurately classify test samples given its more robust training set.

Schlüter and Grill [5] applied a similar process to sound data, where input data was aug-
mented by applying random frequency filters and shifting the pitch. An issue with the

9
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previous two examples is that they are both domain specific. For example, rotation and
cropping can only be applied in the image domain. Another approach suggested a process
that was agnostic to the domain from which the data came. DeVries and Taylor’s [6] ap-
proach utilized a system of encoders to transform encoded data in the feature space, rather
than the raw input to improve model performance.

This thesis also used a data agnostic approach, as synthetic points were generated with the
first layer of weights once the network had been fully trained. Instead of altering known
samples for more data, the EN would create new data points based on existing data points’
weights with their respective labels.

2.3 Feature Engineering
Much research has been conducted on methods of feature engineering. A large part of
feature engineering occurs in the data acquisition and cleaning process. As described in [7],
this is where important features are identified and thus chosen to be used for training
models. This process, feature selection, goes hand-in-hand with feature extraction, where
certain features are combined into more useful training data. All of these methods involve
reducing the feature space, whereas the EN seeks to improve classification accuracy by
increasing the feature space. An area of this research was conducted in [8] for reinforcement
learning models, where it was examined that higher dimensional input data allowed learning
algorithms to extract more complex functions and states, which improved training. This idea
is reflected in the goal of the EN to increase input dimensionality.

Additionally, research in [4] was conducted to augment data sets within their feature space.
Though this thesis does not necessarily augment the data with its feature space extractions,
it does use the activations as an independent data set to train new models. As discussed
by Wong and Gatt [4], augmentation within the feature space proved to be beneficial due
to the activations’ ability to “extract salient information on which the classifier performs
learning.” This observation supports the hypothesis that higher dimensional data would
enable more complex algorithms to extract previously hidden, underlying information that
can be used to improve classification performance.
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CHAPTER 3:
Methodology

3.1 Euclidean Network Design

3.1.1 Contrast to Conventional Neural Networks
Before delving into the specifics of the EN, a brief overview of a conventional neural
network may be helpful. A simple, single layer neural network is shown in Figure 3.1. The
input, 𝑋 is passed to the network, which calculates the hidden layer using weights,𝑊 . From
there, the hidden layer, 𝑧ℎ is activated using a sigmoid function to produce 𝑎ℎ. Those values
are then used with the hidden weights, 𝑊ℎ to produce the output node, 𝑧𝑜𝑢𝑡 . That final node
is then activated to produce the output or prediction.

Traditional neural networks calculate the hidden layer using Equation 3.1 and the desired
activation function. The subscript ℎ denotes the hidden layer. The node denoted by 𝑧𝑜𝑢𝑡 in
Figure 3.1 is similarly calculated, substituting 𝑎ℎ for 𝑋 and 𝑊ℎ for 𝑊 as seen in Equation
3.2.

𝑧ℎ = 𝑊𝑇𝑋 (3.1)

𝑧𝑜𝑢𝑡 = 𝑊𝑇
ℎ 𝑎ℎ (3.2)

The EN differs in its calculation of the hidden layer. As shown in Equation 3.3, the weights
are subtracted from the input rather than multiplied, and the difference is squared. This
causes the weights to fit the data differently than a NN by converging in and around data
points within the data manifold during training.

𝑧ℎ = (𝑋 −𝑊)2 (3.3)

11
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Figure 3.1. A simple neural network with three input nodes that receive the
input data 𝑋, five hidden nodes, and a single output. Subscript ℎ denotes
elements of the middle, hidden layer.

Another key difference between the EN and a typical neural network is how it makes
its predictions. A conventional neural network may use a softmax function at the output to
produce a probability distribution for each class. With this method, the class with the highest
probability is used as the network’s prediction. However, the EN creates distinct binary
classification networks for each class, which it uses to perform multiclass classification via
a one-vs-all technique. The weights for each network of the EN exist in the same space as
the input data and are updated to be further or closer to the input points as the network is
trained. This process creates a push and pull dynamic between input data points and network
weights.

After training, the EN acts similar to a distance measurement function that measures distance
between a sample input and the EN’s weights. During test time, a given point will be passed
through each network. The network that produces the lowest value will denote the class
prediction.

12

_________________________________________________________
NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



3.1.2 Gradient Derivation

Familiar Functions and Forward Pass
The EN uses two functions that are common in classification algorithms. These two functions
are the logistic regression loss function (Equation 3.4) and the sigmoid activation function,
along with its derivative (Equation 3.5).

𝐽 =


−𝑙𝑜𝑔(1 − �̂�), if 𝑦 == 0

−𝑙𝑜𝑔(�̂�), if 𝑦 == 1
(3.4)

𝜎(𝑥) = 1
1 + 𝑒−𝑥

𝜎′(𝑥) = 𝜎(𝑥) · (1 − 𝜎(𝑥))
(3.5)

Each network instantiated by the EN computes its forward pass with the calculations found
in Equation 3.6, with the same naming convention seen in Figure 3.1.

𝑧ℎ = (𝑋 −𝑊)2

𝑎ℎ = 𝜎(𝑧ℎ)
𝑧𝑜𝑢𝑡 = (𝑎ℎ −𝑊ℎ)2

�̂� = 𝜎(𝑧𝑜𝑢𝑡)

(3.6)

Each set of weights (𝑊 and 𝑊ℎ) is updated using the learning rate hyperparameter and
the partial derivatives of the loss function, depending on the data point’s true label. The
following equations display the calculations for the partial derivatives of each set of weights
and for each true label. The only possible labels are 0 and 1 since the EN uses a one-vs-all
technique.

13
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Backpropagation
The variable 𝐽 represents the loss, which is minimized with respect to the weights of the
corresponding layer. The below equations show the calculations for these partial derivatives
( 𝛿𝐽
𝛿𝑊ℎ

and 𝛿𝐽
𝛿𝑊

) for each label value (0 or 1).

If the class label is 0 (𝑦 == 0), 𝑊ℎ is updated with Equation 3.7. The calculations for each
partial derivative are shown in Equation 3.8.

𝛿𝐽

𝛿𝑊ℎ

=
𝛿𝐽

𝛿�̂�

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡

𝛿𝑧𝑜𝑢𝑡

𝛿𝑊ℎ

(3.7)

𝛿𝐽

𝛿𝑊ℎ

=
1

𝑙𝑛(10) (1 − �̂�) · 𝜎
′(𝑧𝑜𝑢𝑡) · (−2(𝑎ℎ −𝑊ℎ)) (3.8)

Continuing with a true label of 0, the set of weights 𝑊 is updated using Equation 3.9,
expanded in Equation 3.10.

𝛿𝐽

𝛿𝑊
=
𝛿𝐽

𝛿�̂�

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡

𝛿𝑧𝑜𝑢𝑡

𝛿𝑎ℎ

𝛿𝑎ℎ

𝛿𝑧ℎ

𝛿𝑧ℎ

𝛿𝑊
(3.9)

𝛿𝐽

𝛿𝑊
=

1
𝑙𝑛(10) (1 − �̂�) · 𝜎

′(𝑧𝑜𝑢𝑡) · (−2(𝑎ℎ −𝑊ℎ)) · 𝜎′(𝑧ℎ) · (−2(𝑋 −𝑊)) (3.10)

Next we calculate the partial derivatives if the label is 1. The set of weights 𝑊ℎ is updated
with Equation 3.11 with the substitutions shown in Equation 3.12.

𝛿𝐽

𝛿𝑊ℎ

=
𝛿𝐽

𝛿�̂�

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡

𝛿𝑧𝑜𝑢𝑡

𝛿𝑊ℎ

(3.11)

𝛿𝐽

𝛿𝑊ℎ

= − 1
�̂� · 𝑙𝑛(10) · 𝜎

′(𝑧𝑜𝑢𝑡) · (−2(𝑎ℎ −𝑊ℎ)) (3.12)

Finally, when 𝑦 == 1, the set of weights 𝑊 is updated using Equation 3.13, expanded in
Equation 3.14.

𝛿𝐽

𝛿𝑊
=
𝛿𝐽

𝛿�̂�

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡

𝛿𝑧𝑜𝑢𝑡

𝛿𝑎ℎ

𝛿𝑎ℎ

𝛿𝑧ℎ

𝛿𝑧ℎ

𝛿𝑊
(3.13)

𝛿𝐽

𝛿𝑊
= − 1

�̂� · 𝑙𝑛(10) · 𝜎
′(𝑧𝑜𝑢𝑡) · (−2(𝑎ℎ −𝑊ℎ)) · 𝜎′(𝑧ℎ) · (−2(𝑋 −𝑊)) (3.14)
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Algorithm 1 EN Training
Variables
𝑋_𝑡𝑟𝑎𝑖𝑛 training set of input values
𝑦_𝑡𝑟𝑎𝑖𝑛 true labels of training set
𝑒𝑝𝑜𝑐ℎ𝑠 number of training epochs
[ learning rate
𝑊 first set of weights, prior to hidden layer
𝑊ℎ weights from hidden layer, preceding output layer
𝑧ℎ hidden layer output, prior to activation
𝑎ℎ sigmoid activation of 𝑧ℎ
𝑧𝑜𝑢𝑡 final output prior to activation
Functions
𝑖𝑛𝑖𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛) initializes network weights, given training data
𝑙𝑒𝑛(𝑥) returns number of samples in 𝑥

𝑟𝑎𝑛𝑑𝑖𝑛𝑡 (𝑥) produces random integer in range 0 to 𝑥 − 1
𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥) produces class prediction from input vector
𝜎′(𝑥) applies derivative of sigmoid function

1: 𝑖𝑛𝑖𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛)
2: for 𝑒 in 𝑟𝑎𝑛𝑔𝑒(𝑒𝑝𝑜𝑐ℎ𝑠) do
3: for 𝑖 in 𝑟𝑎𝑛𝑔𝑒(𝑙𝑒𝑛(𝑋_𝑡𝑟𝑎𝑖𝑛)) do
4: 𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑒𝑥 ← 𝑟𝑎𝑛𝑑𝑖𝑛𝑡 (𝑙𝑒𝑛(𝑋_𝑡𝑟𝑎𝑖𝑛))
5: 𝑥𝑖 ← 𝑋_𝑡𝑟𝑎𝑖𝑛[𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑒𝑥 : 𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑒𝑥 + 1]
6: 𝑦𝑖 ← 𝑦_𝑡𝑟𝑎𝑖𝑛[𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑒𝑥 : 𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑒𝑥 + 1]
7: �̂�← 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥𝑖)
8: if 𝑦𝑖 == 0 then
9: ∇𝑊ℎ

← 1
𝑙𝑛(10) (1−�̂�) · 𝜎

′(𝑧𝑜𝑢𝑡 ) · (−2(𝑎ℎ −𝑊ℎ))
10: ∇𝑊 ← 1

𝑙𝑛(10) (1−�̂�) · 𝜎
′(𝑧𝑜𝑢𝑡 ) · (−2(𝑎ℎ −𝑊ℎ)) · 𝜎′(𝑧ℎ) · (−2(𝑥𝑖 −𝑊))

11: 𝑊ℎ ← 𝑊ℎ − ([ ∗ ∇𝑊ℎ
)

12: 𝑊 ← 𝑊 − ([ ∗ ∇𝑊 )
13: end if
14: if 𝑦𝑖 == 1 then
15: ∇𝑊ℎ

← − 1
�̂�·𝑙𝑛(10) · 𝜎

′(𝑧𝑜𝑢𝑡 ) · (−2(𝑎ℎ −𝑊ℎ))
16: ∇𝑊 ← − 1

�̂�·𝑙𝑛(10) · 𝜎
′(𝑧𝑜𝑢𝑡 ) · (−2(𝑎ℎ −𝑊ℎ)) · 𝜎′(𝑧ℎ) · (−2(𝑥𝑖 −𝑊))

17: 𝑊ℎ ← 𝑊ℎ − ([ ∗ ∇𝑊ℎ
)

18: 𝑊 ← 𝑊 − ([ ∗ ∇𝑊 )
19: end if
20: end for
21: end for

3.1.3 EN Training Algorithm
The procedure for training the EN is shown in Algorithm 1. Training begins by first initializ-
ing the weights. Line 2 begins the for loop to iterate through the number of training epochs.
The inner for loop is performed for the number of samples in the training set, as shown in
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Line 3. A random index is selected from the training set, which is saved into the temporary
variables 𝑥𝑖 and 𝑦𝑖 per Lines 4-6. The model’s prediction is acquired from a forward pass
through the EN and saved in Line 7. Lines 8 and 14 contain if statements to decide which
form of the partial derivative to use as described in Section 3.1.2. The respective contents
of each if statement apply the appropriate updates to each set of weights. ∇𝑊 and ∇𝑊ℎ

are
calculated via the partial derivative (Lines 9-10 and 15-16), which is then multiplied by the
learning rate, [. That product is then subtracted from the current weight values to produce
the updated weights (Lines 11-12 and 17-18). This process is repeated for the assigned
number of epochs to complete training the EN.

3.1.4 Multiclass Classification
As noted in Section 3.1.1, the EN creates a separate network for each class present in the
data set. For example, if a data set contains three classes, the EN will create three separate
networks (0, 1, and 2) of an identical structure. All three would have the same number of
hidden nodes and train over the same number of epochs, but each network updates its own
weights independently. Each network trains by iterating through every data point. Network
0 would imply Class 0, so for the purposes of the loss function, a data point with a true
label of 0 would follow backpropagation where 𝑦 == 0 and a data point with a true label
of 1 or 2 would perform backpropagation for 𝑦 == 1. The same process would be followed
for Networks 1 and 2 for classes 1 and 2, respectively. In this way, each network is trained
as a binary, one-vs-all classifier and later aggregated during test time to perform multiclass
classification.

3.1.5 Weights, Thresholds, and Decision Function
The EN accepts three hyperparamters: number of hidden neurons, epochs, and learning rate.
The number of hidden neurons is the number of nodes in the hidden layer of each network
which determines the size of the weight matrix. The EN initializes its weights by randomly
selecting data points throughout each class. This sets the first set of weights to be equal to
random samples of the data. Throughout training, the weights are updated, but they persist
in the same space as the data set.
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Each network has a threshold 𝑡 that is first learned over the training set to maximize each
network’s binary classification score, and later tuned using the validation set to maximize
accuracy over the multiclass prediction.

�̂�𝑖 =


0 if 𝑓𝑖 (𝑥) < 𝑡𝑖

1 if 𝑓𝑖 (𝑥) ≥ 𝑡𝑖

(3.15)

The binary prediction for each network is taken by comparing its raw output with its learned
threshold, as shown in Equation 3.15. �̂�𝑖 is the prediction for network 𝑓𝑖 given that network’s
threshold 𝑡𝑖. In multiclass classification, with 𝑛 classes, an output vector Φ is built by
iterating over 𝑛 networks and applying Equation 3.15 such that Φ = {�̂�1, �̂�2, �̂�3...�̂�𝑛}. Then,
the multiclass prediction is taken by:

𝑌 = argmin
�̂�𝑖

(Φ) (3.16)

For most representative cases in the data, Φ should only have one 0 for the predicted class
while the rest of the values should be 1. For example, ifΦ = {1, 1, 0, 1, 1}, then the prediction
would be 2. However, some edge cases were found that produced prediction vectors with
all ones, or with more than one zero. For example, if Φ = {1, 1, 1, 1} or Φ = {1, 1, 0, 1, 0},
then Equation 3.16 would produce errors. In these instances, �̂�𝑖 is calculated by taking the
absolute difference between the network prediction 𝑓𝑖 (𝑥) and its learned threshold 𝑡𝑖, as
shown in Equation 3.17. Then, Equation 3.16 is applied to take the minimum argument of
Φ for the class prediction.

�̂�𝑖 = | 𝑓𝑖 (𝑥) − 𝑡𝑖 | (3.17)

3.1.6 Training Example
In this Section, we provide an example of training an EN on the make_moons and
make_circles data sets from the scikit-learn library [9]. These data sets were chosen specif-
ically because they are non-linear and 2D. Figure 3.2 shows how the EN’s weights converge
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Figure 3.2. From left to right, the raw data and each network’s weights at
1, 50, and 100 epochs.

to fit the non-linear data over three training epochs of 1, 50, and 100 respectively. The raw
data set is shown on the far left. As epochs increase, the figure shows how weights begin to
converge to their optimal location that minimizes loss during gradient descent.

The final set of weights (i.e., the far right images in Figure 3.2) are plotted in green over
the raw data in Figure 3.3. Note that the moons data set weights for Class 0 converged to
surround the data points for Class 1. This is counterintuitive because one would expect the
weights for Network 0 to converge around data points from Class 0. Similarly, the circles
data set weights appear to be interlaced throughout both classes, yet each data set achieved a
100% prediction accuracy. To better understand the final position of the weights, edge cases
with Class 0 labels were selected from each data set. In addition to the three edge cases, a
single, unambiguous point was selected for analysis. The edge points were chosen based on
their position and vicinity in relation to the alternate class. Figure 3.3 displays the selected
points in red. Each point was passed through Network 0 and Network 1 (associated with
Class 0 and Class 1, respectively).

Table 3.1 displays the information for each point. Based on the performance of the EN, it
is clear that it is correctly classifying these points, even though the weights converge to an
unexpected location. For example, point 103 from Figure 3.3 and Table 3.1 is an instance
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Figure 3.3. The example moons (left) and circles (right) data sets. The red
points are near potential decision boundaries, where more uncertainty exists
between each class. The edge cases and weights are shown for only one class
for simplistic purposes.

of Class 0. Despite its vicinity to Class 1 instances, its label was accurately predicted by the
model.

When the thresholds are taken into account, it becomes more clear as to how each network
handles these points and why the algorithm is able to make an accurate prediction. Table 3.2
shows the threshold values for each network and data set. To classify each point, the model
compares the raw output from each network to that network’s threshold. If the output is less
than the threshold then a 0 is recorded; otherwise, a 1 is recorded. The minimum value’s
index is then taken as the model’s prediction. For sample point 436 from Table 3.1, Network
0’s raw output is 0.056. Since this is less than Network 0’s threshold (0.19), 0 is recorded.
Alternatively, Network 1’s output is 4.637, which is greater than its threshold, scoring a 1.
The algorithm returns the index of the 0 prediction as the model’s predicted label. Because
only one 0 was recorded for this sample, no further heuristic is required.

However, in cases where there are multiple 0’s or 1’s recorded, a tie breaker must be held
to produce a single label prediction. An example of this tie breaker is seen in the first edge
case of the moons data (sample 866). This point produced raw outputs of 0.929 and 3.519
for Networks 0 and 1, respectively. To correctly classify this point as Class 0, we take the
minimum absolute difference between the raw output and the threshold for each network.
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Table 3.1. Network Raw Output Compared to Threshold

Moons Edge Point Data
Sample index (x, y) Net0 Raw Out Net1 Raw Out Predicted Class

436 (-0.243, 1.398) 0.056 4.637 0
866 (-1.783, -0.797) 0.929 3.519 0
103 (-0.800, -0.173) 0.808 3.467 0
642 (-0.509, 1.022) 0.676 3.118 0

Circles Edge Point Data
Sample index (x, y) Net0 Raw Out Net1 Raw Out Predicted Class

660 (-0.180, 2.034) 0.473 4.083 0
989 (1.165, -0.379) 1.794 4.229 0
964 (0.362, 2.392) 0.692 10.62 0
245 (-1.902, 0.007) 0.395 9.985 0

Table 3.2. Network Thresholds

Thresholds Net0 Net1
Moons 0.19 0.25
Circles 0.06 0.08

For example, �̂�0 = |0.929 − .19|, and �̂�1 = |3.519 − 0.25|. Thus, the model predicts Class 0
because �̂�0 < �̂�1. This comparison of raw outputs to thresholds is completed for each data
point that has multiples of the same label prediction. This calculation enables the EN to
assign the appropriate class to each label and make accurate predictions.

3.2 Data Acquisition and Preparation
21 diverse real-world data sets were selected from the University of California Irvine
Machine Learning Repository [10]. A complete list of the chosen data sets and their char-
acteristics can be found in Table 3.3. Most of the data sets contain very few features, with
the largest feature space being 64. All data sets contain no missing values and each sample
contains one label for classification purposes. Minimal adjustments of the data sets were
required in order to prepare them for input into the EN and additional classification models.
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In order for the EN to process the class labels, they had to be adjusted to the values 0 to 𝑛−1,
where 𝑛 is the number of classes. However, it is important to note that this is not relabeling
the classes into ordinal data; it is only to assign classes with a string data type to an integer.
The data was then separated into its 𝑥 and 𝑦 values, where 𝑥 contained all of the feature
information and 𝑦 contained the label. These values were then split into a train and test
set. Next, the feature columns were passed through a pipeline to scale and normalize their
values. All inputs were normalized, but the scaling applied by the pipeline varied slightly
depending on the model performance for a particular data set. The feature data was scaled
using either a standard score (standard scaler) or a minimum-maximum range (min-max
scaler). The feature data of the test set was then transformed using the pipeline parameters
of the training data. Once this data preparation was complete, the data sets were passed
through multiple iterations of models in accordance with the described hypotheses.

3.3 Euclidean Network as an Independent Classifier
Initial tests of the EN showed promising results. The EN classification performance was
compared to other popular classification algorithms. The metric used for this comparison
was the accuracy score. Precision and recall were used in the tuning process for each
model, but the final results comparison used only accuracy. The following other classifiers
were used for comparisons: Gaussian RBF kernel SVM, linear SVM, random forest, KNN,
logistic regression, dense neural network, and CNN. The hyperparameters were tuned for
each model and both scaling techniques were tested to achieve the best observed accuracy
score with the test set.

The process of tuning the EN mostly included adjustments to the number of hidden neurons,
epochs, and learning rate. The most sensitive hyperparameter for the EN is the number of
hidden neurons, so this value was adjusted first. Most data sets were tested with the following
number of neurons: 100, 300, 500, and 1000. Some data sets were tested with more, with the
highest value tested at 10,000. Once the optimal number of hidden neurons was identified,
the number of epochs and the learning rate were tuned. The number of epochs used was
typically 100, 300, 500, or 1000. Initially, the learning rate was set to 0.1 and generally
remained in the 0.01 to 0.3 range. The learning rate was also tuned according to the epochs
to ensure that the model reached convergence. Though an exhaustive grid search method
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Table 3.3. Data Sets

Data Set Features Classes Samples
Australian Credit 14 2 690
Balance Scales 4 3 625
Breast Cancer 30 2 569
German Credit 24 2 1000
Glass 9 7 214
Heart 13 2 270
Image Seg 19 7 2100
Ionosphere 34 2 351
Iris 4 3 150
Landsat 36 6 6435
Letter Recog 16 26 20000
OptDigits 64 10 5620
Pima Diabetes 8 2 768
Sonar 60 2 208
Soybean 35 4 47
TAE 5 3 151
Vehicle Silhouettes 18 4 846
Vowel Recog 13 11 990
Waveform 21 3 5000
Waveform+noise 40 3 5000
Wine 13 3 178

was not used to find the optimal hyperparameter values, enough test runs were performed
to produce high accuracy scores with roughly tuned parameters.

Once all models had been tuned and test runs completed, the accuracy scores for each
model were compared for all data sets. Through this comparison, it was evident that the
EN could perform well as an alternative classification algorithm and could also outperform
well-established algorithms. Metrics from these tests are discussed further in Section 4.1.

3.4 Synthetic Point Generation
Synthetic point generation is a useful technique to augment data sets that may not contain
many training samples. The EN is able to augment a data set by adding its first layer of
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weights to the original data set. With this method, a small data set can be grown to an
adequate size for effective training. The goal is to use the additional samples to effectively
train a model that can continuously perform well as more data is added. To perform data
augmentation via the EN, the first layer of weights, as seen in Figure 3.4, is extracted from
a trained model. Because the EN uses independent networks to train each class, the weights
from each network are assigned the class label of that particular network. This process
creates new data points within the same feature space as the input data. These data points
are assigned a label based on the network from which they came. To test the effects of
synthetic points, the EN was trained and the weights from the first layer were extracted.
These were then concatenated with the input data set to create a new, hybrid data set. This
data set consisted of the original, raw data and the newly generated synthetic points. Once
the hybrid data set was created, it was used as the input data set for a number of classifiers.
The KNN, Gaussian RBF SVM, and the EN were retrained with the hybrid data set. The
accuracy was then calculated for each model with the same test set, but with the newly
trained parameters based on the hybrid data.

Additionally, the effects of multiple iterations of synthetic point generation were examined.
This process consisted of performing the above augmentations, retraining the EN model
with the hybrid data, then augmenting that hybrid data with additional synthetic points. This
method could potentially vastly increase the available samples for a data set. However, the
accuracy of the models continued to decrease after implementing data augmentation. This
decrease was seen whether a single or multiple iterations were performed. This is further
discussed in Section 4.2 to explain why the hybrid data produced poor results and also to
provide a better understanding of how the EN weights converge.

3.5 Feature Space Expansion

3.5.1 Extracting Activations
The last area of research involved expanding the input data set’s feature space to increase
its dimensionality. Many data sets contain very few features and may limit the learning of
more intensive algorithms, particularly CNNs. Many of the data sets chosen for this thesis
possess a limited number of features, which made them prime candidates to test the effects
of increased dimensionality. The additional features are not arbitrarily added. Instead, their
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Figure 3.4. A simple network highlighting the first layer of weights. They
possess the same dimensionality of the input data, so they may be treated
as individual data points for the purposes of data augmentation.

values come from the second layer of weights, and the magnitude of the expansion depends
on the number of classes and the hidden neurons hyperparameter.

𝑧ℎ = (𝑋 −𝑊)2

𝑎ℎ = 𝜎(𝑧ℎ)
(3.18)

In order to extract the required weights from the model, the EN was trained on the raw,
input data set. The values are calculated with Equation 3.18, previously described in Section
3.1.2. Once the EN was trained, the values of the activations (i.e., second layer of weights)
were saved into a new data set. The size of this new data set depended on the number of
classes and hidden neurons. A visual representation of the section of the network that is
being used to produce the new data set is shown in Figure 3.5. Because the EN creates
a network for each class, the feature space of the activations is equal to the number of
classes multiplied by the number of hidden neurons. While tuning the EN, many data sets
achieved high accuracy results with 100 to 1000 hidden neurons. These values produced
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Figure 3.5. Encircled here is the second layer of weights, also called activa-
tions, for a single network. Note how the number of activations is directly
linked to the number of neurons in the hidden layer.

activations that contained a few hundred to a few thousand features, much more than the
original data set. For example, the Glass Identification data set contained 7 classes and the
EN was tuned to contain 1000 hidden neurons. This combination produced a new data set
with 7000 features, much more than the original 9.

Because feature expansion was performed with the EN, it was important to also test a similar
process with traditional neural networks. Single layer, dense networks were also trained and
tuned with each data set. Traditional neural networks train their parameters differently, so
the shape of the output data set was different. After the activation data was extracted, the
number of new features equaled just the number of hidden neurons. To compare to the
same data set (Glass Identification), a neural network was tuned to 1000 hidden nodes.
This produced activations consisting of 1000 features. The same, second layer of weights
is taken from each architecture, but as described in Section 3.1.1, the EN creates a separate
network for each class. This results in an even larger feature space than the traditional neural
network’s activation data.
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3.5.2 Testing Scheme
The initial experiments with activations compare the classification accuracy of multiple
classifiers using the EN activations and raw data sets. An EN was trained and tuned for
each data set, saving the activation data into a separate file for later use. It was then used
as a new input data set for a CNN, random forest (RF), and a Gaussian RBF kernel SVM.
Each model was tuned for the raw data and activations separately in order to achieve the
highest score for each. Particular attention was given to testing CNNs due to their ability
to identify complex functional relationships. A basic architecture was used, but tuning was
accomplished by adjusting the number of convolutional layers, dense layers, and dropout
ratio. Finally, the accuracy score for each model with the activation data was compared
to the accuracy of the models with the raw data. Section 4.3 discusses complete results.
Though the results were mixed, most of the data sets saw an increase in accuracy when they
used the activation data from the EN, dense neural network, or both.
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CHAPTER 4:
Experimental Results

4.1 Euclidean Network Classification Results
All data sets were tested with each classifier (Gaussian RBF kernel SVM, linear SVM,
random forest, KNN, logistic regression, dense neural network, and CNN) and the model
with the highest accuracy was recorded for comparison with the EN. The EN had an
accuracy greater than or equal to the next highest scoring model for 12 of the 21 data sets.
The results for each data set are shown in Table 4.1. The EN still performed well on the other
seven data sets, achieving accuracy scores comparable to the other classifiers. The largest
disparities between the best classifier and the EN were 6.5% and 13.1% for the Teacher
Assistant Evaluation and Vowel Recognition data sets, respectively. The EN’s accuracy for
the remaining five data sets was within 5% of the best model’s accuracy as shown in Figure
4.1. A bar plot was also created for each data set to better visualize accuracy differences
between each of the models. Figures 4.2 and 4.3 provide the accuracy results for all 21 data
sets.

Figure 4.1. The difference in accuracy percentage between the best-
performing model and the EN. Most models had a difference of 0, meaning
the EN was the best model.
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Table 4.1. Highest Accuracy Models

Data Set Best Model Best Accuracy (%) EN Accuracy (%)
Australian Credit EN Tied 70.3 70.3
Balance Scales CNN 98.4 89.6
Breast Cancer EN Tied 100.0 100.0
German Credit EN 80.0 80.0
Glass EN 76.7 76.7
Heart EN Tied 81.5 81.5
Image Seg CNN 96.7 94.0
Ionosphere EN 97.2 97.2
Iris EN Tied 100.0 100.0
Landsat CNN 90.4 88.7
Letter Recog SVM 97.4 90.8
OptDigits SVM/CNN 99.0 96.8
Pima Diabetes EN Tied 77.9 77.9
Sonar Tied(SVM/RF/NN) 88.1 83.3
Soybean EN Tied 100.0 100.0
TAE LR 71.0 64.5
Vehicle Silhouettes SVM 90.6 84.7
Vowel Recog SVM 99.0 85.9
Waveform EN 88.4 88.4
Waveform+noise EN 89.6 89.6
Wine EN Tied 100.0 100.0

The EN showed promising results and was able to produce the highest accuracy score for
most, but not all, of the data sets. However, it performed comparably in those other cases.
These results show the viability of using the EN as an independent classifier. Though the EN
performed well on all data sets, further research is required to discern if there are particular
types of data sets for which the EN performs better or worse. From the above results, the
answer is unclear as to which types of data sets would favor the use of an EN.

4.2 Effects of Synthetic Point Augmentation
As mentioned in Section 3.4, the augmented data consistently produced lower accuracy
scores than the raw data. Only eleven data sets were fully tested, but each model produced
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Figure 4.2. The first 9 of the 21 plots (remainder shown in Figure 4.3). Each
plot displays the results of each algorithm for comparison with the EN.

lower accuracy scores, except for two, where no change was observed. However, additional
iterations of data augmentation further decreased model performance and produced lower
accuracy in all cases. Due to the low performance, this particular area of testing was cut
short due to the computing time required for each data set and model. Table 4.2 shows the
single iteration results for the tested data sets. These data sets were augmented with synthetic
points generated by the EN, which were then joined with the original data set to produce
the hybrid data set. New models were then trained on this hybrid data. Displayed are the
comparison results for the raw data’s accuracy for the KNN, Gaussian RBF kernel SVM,
and EN. Though inauspicious, the poor results provided the impetus to conduct further
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Table 4.2. Synthetic Point Augmentation Results

Data Set Raw
KNN

Augmented
KNN

Raw
SVM

Augmented
SVM

Raw
EN

Augmented
EN

Australian Credit 60.1 48.6 53.6 54.3 70.3 69.6
Balance Scale 78.4 71.2 94.4 93.6 92.0 57.6
Glass Identifica-
tion

65.1 14.0 65.1 60.5 76.7 48.8

Heart Disease 74.1 46.3 74.1 61.1 81.5 61.1
Image Segmenta-
tion

94.3 94.3 95.2 95.7 95.0 81.4

Landsat Satellite 89.5 89.4 87.8 87.9 88.7 84.2
Optical Recogni-
tion of Digits

98.0 97.1 99.5 98.8 98.6 73.3

Sonar 83.3 69.0 88.1 78.6 83.3 81.0
Teaching Assis-
tant Evaluation

58.1 29.0 67.7 22.6 64.5 38.7

Waveform+noise 71.0 48.4 84.0 75.4 89.6 56.0
Wine 91.7 51.4 100.0 70.8 100.0 91.7

analysis as to why accuracy suffered when synthetic points were introduced. These tests led
to a greater understanding of how the EN’s weights converge and, when plotted in the same
space as the original data, why they are not effective for augmentation.

To understand how the synthetic points affected the data set, the moons data set was used
for its simplicity [9]. Its two-dimensional space made visualization much easier, so moons
were created, an EN was trained, and the first set of weights were plotted in the same space
as the original data. The weights for each of the two networks are shown on the left-hand
side of Figure 4.4. The raw data set consists of the two masses near the center of the
plot, with the synthetic points surrounding them. This plot easily distinguishes the weights
(synthetic points) from the raw data and shows where they converged once fully trained.
Once clearly identified, the weights were again plotted with the raw data, but with the same
color scheme for class labels. The right-hand plot of Figure 4.4 shows the hybrid data set
(raw data and synthetic points) with common class label colors. It shows that the synthetic
points converged to surround the opposite class. Visually, this seemed counterintuitive, but
as discussed in Section 3.1.5, the calculation of the weights and classification based on the
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network thresholds confirmed the final location of the synthetic points. From Figure 4.4, it
is clear that the hybrid data creates more ambiguity by adding data points with the opposite
label near existing points, causing the models’ performance to suffer. Once the synthetic
points were visualized, it became clear why multiple iterations of synthetic point generation
further degraded accuracy. These findings negate the hypothesis that data augmented with
EN weights will improve accuracy. These results also showed that EN augmentation had a
negative effect on all model and data types.

4.3 Euclidean Network Activations Results

4.3.1 Activations and Raw Data
Initially, EN models were trained on the data sets to produce the activation data. These
activations have a larger feature space than the original data. This higher-dimensional data
was used as input to train additional models for each data set. Three classification algorithms
were selected to be trained with the activation data: CNN, random forest, and Gaussian RBF
kernel SVM. With 21 data sets, this resulted in a total of 63 new models. The EN activations
produced the same or better accuracy than the raw data for two-thirds of the models, with
nearly 60% being strictly better. Figures 4.6 and 4.7 show the comparison plots produced
for each data set. Some models showed significant disparity between the raw data and
activation results, while others had near identical performance. It was expected that some
models would have similar performance because when the feature space was expanded,
the new features were highly correlated with the original since they were created based
off of the original features’ weights. This expectation of highly correlated values led to
further examination of the feature space via heat maps. The expanded feature space was
analyzed for common patterns between the original features and those created by the EN.
Figure 4.5 shows examples from three data sets. The expected output was heavily correlated
values throughout the entire heat map. However, each data set produced a unique map with
differing levels of correlation.

Another analysis included the use of grayscale images to visualize the expanded feature
space. This process involved the selection of random samples from each class and plotting
the features in a nearly square image. The purpose of this analysis was to see if samples from
a specific class showed common patterns in their feature space images. Figure 4.8 shows an
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example from the Waveform data set. This data set contained three classes, from which three
samples were taken. Each plot shows three clear separations in the feature space, though
a pattern may not be immediately clear. The top three plots contain three samples of data
points labeled Class 0. When visually compared, one can see that the topmost row of each
of these plots shares a more similar pattern than the two bottom rows for each sample. The
same can be said for the second row of the Class 1 plots (middle row of plots), and the
bottom row of Class 2’s plots (bottom row of plots). The expanded feature space creates a
data set with greater separation between the classes, as seen by the clear delineation between
each plot’s rows. This point is made more evident when quantitative analysis is performed
for each set of plots. The average value was taken for each row of each sample. For the
Class 0 samples, the top row (corresponding to a predicted label of 0) showed very little
variance, 3.88e-5, while the variances for the other class labels for those same samples
were 6.30e-4 and 1.16e-3. This shows how the EN activations produced an image where
the corresponding, accurately predicted class is more similar between samples than the
incorrect labels.

The EN is able to better classify the data set because it can produce activation data that
has greater separation between classes, while maintaining likeness between samples of
the same class. Based on the performance for this particular data set (Waveform, Figure
4.7), one can see that this separation is favorable so that a model can more accurately
classify samples. Alternatively, Figure 4.9 shows the Heart Disease activation images. The
delineations between the rows and classes in the feature space image are less evident and,
consequently, the models did not perform as well when trained on the activation data. Again,
quantitative analysis was performed in a similar manner as with the Waveform data set. This
time, the Heart Disease activation images produced similar variances between each sample’s
predicted class (1.84e-6 and 3.77e-5). From the activation comparison results in Figure 4.6,
the CNN can be seen to have still performed well with the EN activations, while the other
two models show no improvement or lower performance. This may be explained by the
CNN’s ability to extract more information from each data set, despite the closer variances
between the predicted classes of each sample. The ability for the EN to transform the data to
higher dimensions can, in some cases, create greater separation between the classes in that
data. This greater separation can enable models to perform better than when trained on the
original data set. However, it is not a guarantee for all data sets and, in some cases, the use
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of activation data decreased model accuracy, though these instances were in the minority
(one-third of models tested).

4.3.2 Euclidean and Neural Network Activations
Additionally, a traditional neural network was used to expand the feature space of the data
sets. This was done to enable a direct comparison between the EN’s activations and those
from a conventional architecture. The previous section discussed the effects of higher-
dimensional data on training, but it did not compare the results of an alternate method for
creating that higher-dimensional space. To account for this, each data set was also passed
through a dense neural network to extract the hidden layer activations. The neural network’s
activation data showed similar results to the EN when compared to the raw data, so the
objective then was to see if the EN activations produced a better accuracy score than its
traditional counterpart. Due to the computational demand of some of the larger data sets,
only 42 models were compared for the EN and neural network. Of these 42, two-thirds
showed equal or better performance, with one-third producing strictly better results with
the EN. Comparison plots were produced to show the performance of the models with the
EN and neural network activations, shown in Figures 4.10 and 4.11. As with the previous
test, there was no clear correlation between a data set’s characteristics and its activation
performance. Both the EN and neural network improved the models’ performance for most
of the data sets, which supported the claim that a higher-dimensional feature space can
improve classification.
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Figure 4.3. The final 12 plots for each data set shows the accuracy results for
each model. The EN tied or out performed the next best model for 66.67%
of the data sets.
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Figure 4.4. Left: synthetically augmented data with highlighted weights (red
and green). Right: hybrid data with corresponding class labels.

Figure 4.5. Correlation heat maps of higher-dimensional feature space.
Lighter colors were expected throughout the image to show greater cor-
relation between the created features, but each data set produced unique
patterns of correlation.
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Figure 4.6. The first 12 of the 21 plots (remainder shown in Figure 4.7).
Each plot shows the comparison between the results of the raw data with
the EN activations for the CNN, random forest, and Gaussian RBF kernel
SVM.
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Figure 4.7. The final 9 plots for each data set comparing the accuracy results
for the raw data and EN activations.
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Figure 4.8. Visualization of the expanded feature space for the Waveform
data set. The clear separation into three rows corresponds to the three class
labels.
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Figure 4.9. Activation data image for the Heart Disease data set. Less obvious
delineation between the class rows corresponds with lower performance.
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Figure 4.10. The first 9 of 20 plots where the EN and neural network acti-
vations were compared.
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Figure 4.11. The final 12 plots showing EN and neural network activations
comparisons. The Letter Recognition data set was omitted due to memory
requirements and computational complexity.
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CHAPTER 5:
Conclusions and Future Work

5.1 Conclusions
In two of the three areas of research, the EN showed positive results. These areas were the
performance of the EN in terms of classification accuracy as an independent algorithm and
the EN’s ability to transform the data into higher dimensionality to improve performance
with existing classifiers. The analysis of synthetic point generation via the EN’s first layer
of weights showed that this method of augmentation was ineffective and degraded results
for all data sets.

As a standalone classifier, the EN performed comparably to CNNs and neural networks for
all 21 data sets and achieved the highest accuracy score for 12. If all models are compared
instead of individual data sets, the EN achieved the highest accuracy score for 114 of the
147 models (77.5%). Additionally, the EN’s activations produced higher accuracy for 42 of
the total 63 models. The activations were able to improve the performance of at least one
model for 19 data sets; the remaining two data sets had already achieved 100% accuracy, so
allowed no further improvement from EN activations.

To better quantify the positive results for each of the successful areas, percent difference was
used to show the EN’s success. The left plot of Figure 5.1 shows the percent difference of
the EN against four of the top-performing algorithms (Gaussian RBF kernel SVM, random
forest, CNN, and a fully connected neural network). As an independent classifier, the EN
showed an average of more than a 3.5% increase in classification accuracy versus the other
four displayed algorithms.

The next area of interest, expansion of the feature space, is shown in the right plot of Figure
5.1. This plot shows the percent difference of the Gaussian RBF kernel SVM, random
forest, and CNN when the EN activation data is used as input versus the raw data. Here,
the EN activations resulted in a 3% average improvement across the data sets for these
three models. The overall positive percent difference when EN methods were applied shows
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Figure 5.1. Percent increase of the EN compared to other algorithms (left)
and the percent increase of the displayed models when using the EN activa-
tion data compared to raw data as input (right). The horizontal lines display
the average percent increase between the EN and the corresponding model
for all data sets.

that it can perform well for classification tasks and produce comparable results to more
advanced architectures. The results also support feature space expansion as a promising
area of research and a technique to consider to improve performance for smaller data sets.

5.2 Discussion
One goal of this thesis was to determine if certain data set characteristics could provide
insight into whether or not certain functions of the EN could improve performance. In this
pursuit, the EN’s accuracy was plotted against each data set’s characteristics to include
the number of features, classes, samples, and the product of the number of features and
classes. The average accuracy between the CNN, Gaussian RBF kernel SVM, and random
forest with the expanded feature space data was also plotted against the same characteristics.
The plots showed a slight upward trend, but nothing strong enough to provide definitive
explanation as to why some data sets performed well and others did not. There was also a
lot of variation in results between data sets with similar characteristics, i.e., same number
of features and/or classes.

From this analysis, it remains unclear what types of data sets benefit most from the EN.
Increasing the dimensionality of the input data revealed a more positive trend in smaller data
sets (low number of features and classes). Though performance was not increased across
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the board for all models and data sets, using hidden layer activations to expand the feature
space of some data sets was shown to be effective. This improvement occurs more often for
data sets with a small number of features and classes. This fits with the original goal of the
research to create a more complex data set from which better functional relationships could
be extracted. A very simple data set would benefit more from expanding its feature space
than an already complex (high dimensionality) data set.

5.3 Future Work
Immediate future work would apply to the code and functionality of the EN. The EN
architecture is nascent and therefore not optimized for full implementation. Currently,
its runtime is significantly longer than other classifiers because it does not incorporate
parallelization or graphics processing unit (GPU) support. Because the EN creates multiple
networks that train independently for each class, they could each be trained simultaneously,
in parallel. Training each network simultaneously would greatly reduce runtime and enable
the EN to be applied to data sets with a larger number of classes. Additionally, introducing
GPU support would further increase the training speed.

Another option to improve the algorithm’s efficiency would be the inclusion of generators.
Python generators would allow the models to work with batches and mitigate some of
the memory issues experienced with larger data sets. This would be especially useful for
those cases where the activations of an already large data set have extensive memory
requirements. With optimized code, the run time and memory needs of the EN could be
vastly decreased to make it more competitive with CNN and other architectures in terms of
operating requirements.

Due to the magnitude of features present in the activation data sets, additional and more
complex CNN architectures may be used to monitor performance. This research used a
basic CNN architecture, consisting of two to three hidden layers to expedite testing, but it is
likely that there are other architectures that would be more adept at extracting key relational
data from the higher-dimensional feature space.

The success of the EN as a standalone classifier suggests that it could also perform well
on its own higher-dimensional data. A possible experiment would be to use the EN to
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produce a larger feature space (as performed in this thesis), then recycle that activation
data into a new, untrained EN. Unfortunately, additional work would need to be invested
into the EN architecture to optimize it. In its current state, the EN does not take advantage
of parallelization or GPU support. Once the algorithm is optimized, additional and more
complex experiments may be performed.
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APPENDIX: Full Derivation

Sigmoid function and its derivative.

𝜎(𝑥) = 1
1 + 𝑒−𝑥

𝜎′(𝑥) = 𝜎(𝑥) · (1 − 𝜎(𝑥))

(A.1)

Activations of input, X and weights, W.

𝑧ℎ = (𝑋 −𝑊)2

𝑎ℎ = 𝜎(𝑧ℎ)
𝑧𝑜𝑢𝑡 = (𝑎ℎ −𝑊ℎ)2

�̂� = 𝜎(𝑧𝑜𝑢𝑡)

(A.2)

Loss Function.

𝐽 =


−𝑙𝑜𝑔(1 − �̂�), if 𝑦 == 0

−𝑙𝑜𝑔(�̂�), if 𝑦 == 1
(A.3)

47

_________________________________________________________
NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU



𝛿𝐽
𝛿𝑊ℎ

if y==0.

𝛿𝐽

𝛿𝑊ℎ

=
𝛿𝐽

𝛿�̂�

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡

𝛿𝑧𝑜𝑢𝑡

𝛿𝑊ℎ

𝛿𝐽

𝛿�̂�
=

1
𝑙𝑛(10) (1 − �̂�)

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡
= 𝜎′(𝑧𝑜𝑢𝑡)

𝛿𝑧𝑜𝑢𝑡

𝛿𝑊ℎ

= −2(𝑎ℎ −𝑊ℎ)

(A.4)

𝛿𝐽
𝛿𝑊ℎ

if y==1.

𝛿𝐽

𝛿𝑊ℎ

=
𝛿𝐽

𝛿�̂�

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡

𝛿𝑧𝑜𝑢𝑡

𝛿𝑊ℎ

𝛿𝐽

𝛿�̂�
= − 1

�̂� · 𝑙𝑛(10)

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡
= 𝜎′(𝑧𝑜𝑢𝑡)

𝛿𝑧𝑜𝑢𝑡

𝛿𝑊ℎ

= −2(𝑎ℎ −𝑊ℎ)

(A.5)
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𝛿𝐽

𝛿𝑊1 if y==0.

𝛿𝐽

𝛿𝑊1 =
𝛿𝐽

𝛿�̂�

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡

𝛿𝑧𝑜𝑢𝑡

𝛿𝑎ℎ

𝛿𝑎ℎ

𝛿𝑧ℎ

𝛿𝑧ℎ

𝛿𝑊1

𝛿𝐽

𝛿�̂�
=

1
𝑙𝑛(10) (1 − �̂�)

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡
= 𝜎′(𝑧𝑜𝑢𝑡)

𝛿𝑧𝑜𝑢𝑡

𝛿𝑎ℎ
= −2(𝑎ℎ −𝑊ℎ)

𝛿𝑎ℎ

𝛿𝑧ℎ
= 𝜎′(𝑧ℎ)

𝛿𝑧ℎ

𝛿𝑊1 = −2(𝑋 −𝑊1)

(A.6)
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𝛿𝐽

𝛿𝑊1 if y==1.

𝛿𝐽

𝛿𝑊1 =
𝛿𝐽

𝛿�̂�

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡

𝛿𝑧𝑜𝑢𝑡

𝛿𝑎ℎ

𝛿𝑎ℎ

𝛿𝑧ℎ

𝛿𝑧ℎ

𝛿𝑊1

𝛿𝐽

𝛿�̂�
= − 1

�̂� · 𝑙𝑛(10)

𝛿�̂�

𝛿𝑧𝑜𝑢𝑡
= 𝜎′(𝑧𝑜𝑢𝑡)

𝛿𝑧𝑜𝑢𝑡

𝛿𝑎ℎ
= −2(𝑎ℎ −𝑊ℎ)

𝛿𝑎ℎ

𝛿𝑧ℎ
= 𝜎′(𝑧ℎ)

𝛿𝑧ℎ

𝛿𝑊1 = −2(𝑋 −𝑊1)

(A.7)
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